JP2011178755A - Photoresponsive dichroic luminescent material - Google Patents

Photoresponsive dichroic luminescent material Download PDF

Info

Publication number
JP2011178755A
JP2011178755A JP2010047056A JP2010047056A JP2011178755A JP 2011178755 A JP2011178755 A JP 2011178755A JP 2010047056 A JP2010047056 A JP 2010047056A JP 2010047056 A JP2010047056 A JP 2010047056A JP 2011178755 A JP2011178755 A JP 2011178755A
Authority
JP
Japan
Prior art keywords
complex
formula
light
independently
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010047056A
Other languages
Japanese (ja)
Inventor
Hirohiko Hojo
博彦 北條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2010047056A priority Critical patent/JP2011178755A/en
Publication of JP2011178755A publication Critical patent/JP2011178755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide such a luminescent material that the luminescent spectra and/or plane of polarization of emitted light change significantly before and after luminescent change by external field stimulation by light. <P>SOLUTION: A complex is provided, being represented by formula (I) (wherein, six Ms are each mutually independently a divalent cation of the corresponding group 12 element; six Rs are each mutually independently H or an organic substituent with 1-18C alkyl chain as the fundamental skeleton; and X<SP>p-</SP>is a p-valent anion). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光照射によって発光色及びその偏光面が変化する錯体、ならびにその製造法に関するものである。   The present invention relates to a complex whose emission color and its polarization plane are changed by light irradiation, and a method for producing the same.

発光性有機物質は、表示素子、記録素子、照明素子などの用途に使用され、電子デバイスの主要な材料として位置づけられている。有機物質を用いる利点として、軽量化、多彩化、エネルギー移動の高効率化などが挙げられる。一方で、短い寿命、化学的不安定性などの短所が指摘されているものの、用途を限定すれば解決できる問題も多い。最近は、外場の変化に対する刺激応答性など有機物質特有の機能も注目されており、総合的にみると、有機物質を用いるメリットは相当にあると考えられている。   A luminescent organic substance is used for applications such as a display element, a recording element, and a lighting element, and is positioned as a main material of an electronic device. Advantages of using organic substances include weight reduction, diversification, and high efficiency of energy transfer. On the other hand, shortcomings such as short life and chemical instability have been pointed out, but there are many problems that can be solved if the application is limited. Recently, attention has been paid to functions unique to organic substances such as stimulus responsiveness to changes in the external field, and it is considered that there are considerable merits of using organic substances when viewed comprehensively.

物質の発光現象は、外から注入されるエネルギーによって状態が励起し、これが緩和する過程でエネルギーが光として放射するときに生じる。エネルギー源として光、電気、陰極線、圧力、熱、摩擦などが用いられ、その機構に応じてそれぞれフォトルミネッセンス、エレクトロルミネッセンス、カソードルミネッセンス、ピエゾルミネッセンス、熱ルミネッセンス、トライボルミネッセンス等と呼ばれる。とりわけ研究例も多く、有用性が高いのはフォトルミネッセンス材料である。その理由として、材料に対して非接触でエネルギーを注入することができ、損傷が少なく、大がかりな装置も不要である点などが挙げられる。   The light emission phenomenon of a substance occurs when a state is excited by energy injected from the outside and energy is emitted as light in the process of relaxation. Light, electricity, cathode ray, pressure, heat, friction, and the like are used as energy sources, which are called photoluminescence, electroluminescence, cathodoluminescence, piezominescence, thermoluminescence, triboluminescence, etc., depending on the mechanism. In particular, there are many research examples, and photoluminescent materials are highly useful. The reason is that energy can be injected in a non-contact manner with respect to the material, damage is small, and a large-scale device is unnecessary.

フォトルミネッセンス材料を用いたものとして、特許文献1にユウロビウム錯体の発光化合物及び液媒体を少なくとも含有する発光性インキが開示されている。また、特許文献2には、大気成分との接触下で有機発光材料に光を照射することにより有機発光材料の発光色を制御する方法が開示されている。   As a material using a photoluminescent material, Patent Document 1 discloses a luminescent ink containing at least a luminescent compound of a eurobium complex and a liquid medium. Patent Document 2 discloses a method of controlling the emission color of an organic light emitting material by irradiating the organic light emitting material with light in contact with atmospheric components.

特開2008−115225号公報JP 2008-115225 A 特開2007−149468号公報JP 2007-149468 A

フォトルミネッセンス材料は光エネルギーを吸収し、物質に固有のスペクトルをもった光に変換して放射する。したがって物質が不変ならば、必然的に発光スペクトルは固定される。異なる発光スペクトルをもつ物質を複数用いることにより、表示素子の視認性、記録素子の信頼性、照明素子の多色性など機能の大幅な向上が見込まれる。一方で、材料の多元化は素子の構造を複雑化し、組み立て工程の煩雑化、歩留まりの低下を引き起こすなどの難点も予想される。   The photoluminescent material absorbs light energy, converts it into light having a spectrum inherent to the substance, and emits it. Thus, if the material is unchanged, the emission spectrum is necessarily fixed. By using a plurality of substances having different emission spectra, the functions such as the visibility of the display element, the reliability of the recording element, and the multicolor of the illumination element are expected to be greatly improved. On the other hand, the diversification of materials is expected to have problems such as complicating the structure of the element, complicating the assembly process, and reducing the yield.

発光スペクトルを、外場による刺激又は検出条件の調整によって変えることができれば、複数の発光材料を用いることなく、上述の機能向上を達成することができる。外場として光、電気、陰極線、圧力、熱、摩擦などを用いることができるが、ここでもまた光は制御しやすい刺激源として有用である。また発光の検出法の観点からいえば、光の偏光性を利用することにより、発光スペクトルの変化をより鋭敏に検知できる可能性がある。これを実現するためには外場刺激による発光変化の前後で、放射光の偏光面が顕著に変化することが必要であるが、このような性質をもつ発光性材料は現在のところ知られていない。   If the emission spectrum can be changed by stimulation by an external field or adjustment of detection conditions, the above-described functional improvement can be achieved without using a plurality of light emitting materials. Light, electricity, cathode ray, pressure, heat, friction, and the like can be used as an external field, but light is also useful as an easily controlled stimulus source. Further, from the viewpoint of the detection method of luminescence, there is a possibility that the change in the emission spectrum can be detected more sensitively by utilizing the polarization property of light. To achieve this, it is necessary for the polarization plane of the emitted light to change significantly before and after light emission changes due to external field stimuli, but luminescent materials with such properties are currently known. Absent.

本発明は、光による外場刺激による発光変化の前後で、放射光の発光スペクトル及び/又は偏光面が顕著に変化する発光性材料を提供することを目的とする。   An object of the present invention is to provide a luminescent material in which the emission spectrum and / or polarization plane of emitted light changes significantly before and after the change in emission due to external field stimulation by light.

本発明は、式(I):

(式中、
6個のMは、それぞれ互いに独立して、12族元素の二価陽イオンであり;
6個のRは、それぞれ互いに独立して、水素又は炭素数1〜18のアルキル鎖を基本骨格とする有機置換基であり;そして
p−はp価の陰イオンを表す)
で示される錯体に関する。
The present invention relates to a compound of formula (I):

(Where
6 M's are each independently a divalent cation of a group 12 element;
6 R's are each independently an organic substituent having hydrogen or an alkyl chain having 1 to 18 carbon atoms as a basic skeleton; and X p- represents a p-valent anion)
It is related with the complex shown by these.

本発明によれば、紫外光の照射により発光スペクトルが変化する発光性材料を得ることができ、特に結晶形態の場合は、発光の偏光面を顕著に変化させることができ有用である。   According to the present invention, it is possible to obtain a luminescent material whose emission spectrum is changed by irradiation with ultraviolet light, and particularly in the case of a crystalline form, the polarization plane of luminescence can be remarkably changed, which is useful.

配位子分子(V)溶液を酢酸亜鉛のメタノール溶液での滴定において、配位子分子(V)に対する亜鉛イオンの量比を変えたときの紫外・可視吸光スペクトルを示す。図中の差し込み図は、各波長のモル吸光係数の亜鉛イオンの添加量に対する変化を示している。図中のDPTRIPは配位子分子(V)を示す。The titration of a ligand molecule (V) solution with a methanol solution of zinc acetate shows an ultraviolet / visible absorption spectrum when the amount ratio of zinc ions to the ligand molecule (V) is changed. The inset in the figure shows the change of the molar extinction coefficient of each wavelength with respect to the added amount of zinc ions. DPTRIP in the figure indicates the ligand molecule (V). 実施例3の錯体のX線単結晶構造解析の結果を示す。The result of the X-ray single crystal structure analysis of the complex of Example 3 is shown. 実施例3の錯体のX線単結晶構造解析の結果を示す。The result of the X-ray single crystal structure analysis of the complex of Example 3 is shown. 実施例3の錯体の単結晶の紫外線照射後の偏光光学顕微鏡写真(ハロゲンランプ透過光下)を示す。図中の矢印は透過容易軸の向きを示す。The polarization optical micrograph after the ultraviolet irradiation of the single crystal of the complex of Example 3 (under halogen lamp transmitted light) is shown. The arrow in the figure indicates the direction of the easy transmission axis. 実施例3の錯体の単結晶の紫外線照射後の偏光光学顕微鏡写真(紫外線照射下;左図)及び吸収スペクトル(右図)を示す。左図中の交差する矢印は、偏光子の回転角度の方向を示す。The polarization optical microscope photograph (under ultraviolet irradiation; left figure) and the absorption spectrum (right figure) after ultraviolet irradiation of the single crystal of the complex of Example 3 are shown. The intersecting arrows in the left figure indicate the direction of the rotation angle of the polarizer. 実施例3の錯体の単結晶の540nmにおける吸光度の変化の極グラフを示す。The polar graph of the change of the light absorbency in 540 nm of the single crystal of the complex of Example 3 is shown. 実施例3の錯体の単結晶の紫外線照射後の偏光光学顕微鏡写真(紫外線照射下)を示す。図中の矢印は透過容易軸の向きを示す。The polarization optical microscope photograph (under ultraviolet irradiation) of the single crystal of the complex of Example 3 after ultraviolet irradiation is shown. The arrow in the figure indicates the direction of the easy transmission axis. 実施例3の錯体の単結晶の紫外線照射後の偏光光学顕微鏡写真(紫外線照射下)を示す。図中の矢印は透過容易軸の向きを示す。The polarization optical microscope photograph (under ultraviolet irradiation) of the single crystal of the complex of Example 3 after ultraviolet irradiation is shown. The arrow in the figure indicates the direction of the easy transmission axis. 実施例3の錯体の単結晶の紫外線照射後の発光スペクトルを示す。The emission spectrum after the ultraviolet irradiation of the single crystal of the complex of Example 3 is shown. 実施例2の紫外線照射後の錯体の溶液の吸光スペクトルを示す。図中の差し込み図は紫外線照射前後の差スペクトルを示す。The absorption spectrum of the solution of the complex after the ultraviolet irradiation of Example 2 is shown. The inset in the figure shows the difference spectrum before and after UV irradiation. 実施例2の紫外線照射後の錯体の溶液の励起波長350nmでの蛍光スペクトルを示す。The fluorescence spectrum in excitation wavelength 350nm of the solution of the complex after the ultraviolet irradiation of Example 2 is shown. 実施例2の紫外線照射後の錯体の溶液の励起波長500nmでの蛍光スペクトルを示す。The fluorescence spectrum in the excitation wavelength of 500 nm of the solution of the complex after the ultraviolet irradiation of Example 2 is shown.

本発明の式(I)の6個のMは、それぞれ互いに独立して、12族元素の二価陽イオンすなわち亜鉛、カドミウム、水銀であり、特に制限されないが、人体に対する安全性の点で、亜鉛がより好ましい。
なお、6個のMは全て同じ12族元素の二価陽イオンであってもよい。
The six M's in the formula (I) of the present invention are each independently a divalent cation of a group 12 element, that is, zinc, cadmium, and mercury, and are not particularly limited, but in terms of safety to the human body, Zinc is more preferred.
The six Ms may all be divalent cations of the same group 12 element.

本発明の式(I)の6個のRは、それぞれ互いに独立して、水素又は炭素数1〜18のアルキル鎖を基本骨格とする有機置換基である。
上記有機置換基として、炭素数1〜18の直鎖状又は分岐のあるアルキル基が例示され、特に制限されないが、試薬入手の容易さと反応性の高さの点で、炭素数1〜8の直鎖状のアルキル基であることが、特にメチル基であることが好ましい。
ここで、上記アルキル基は、任意の基で中断されていてもよく、及び/又は末端に任意の基を有していてもよい。
例えば、上記アルキル基は、エーテル基、エステル基、芳香環、又はスルフィド基などから選択される1個以上の基で中断されていてもよいが、溶解度の点で、エーテル基又はエステル基で、特にエーテル基で中断されているのが好ましい。
また、例えば、上記アルキル基は末端に水酸基、チオール基、ジスルフィド基、又はカルボキシル基などから選択される1個以上の基を有していてもよいが、溶解度及び被塗布物との相互作用のしやすさの点で、末端に水酸基又はチオール基を、特にチオール基を有しているのが好ましい。
上記芳香環は、特に制限されないが、溶解度及び試薬入手の容易さの点で、フェニル基、ナフチル基、ピリジニウム基、特にフェニル基が好ましい。
なお、6個のRは全て同じ基であってもよい。
Six Rs of the formula (I) of the present invention are each independently an organic substituent having hydrogen or an alkyl chain having 1 to 18 carbon atoms as a basic skeleton.
Examples of the organic substituent include a linear or branched alkyl group having 1 to 18 carbon atoms, and are not particularly limited. However, in terms of easy availability of reagents and high reactivity, the organic substituent has 1 to 8 carbon atoms. A linear alkyl group is preferred, and a methyl group is particularly preferred.
Here, the alkyl group may be interrupted by an arbitrary group and / or may have an arbitrary group at the terminal.
For example, the alkyl group may be interrupted with one or more groups selected from an ether group, an ester group, an aromatic ring, or a sulfide group, but in terms of solubility, an ether group or an ester group, In particular, it is preferably interrupted by an ether group.
In addition, for example, the alkyl group may have one or more groups selected from a hydroxyl group, a thiol group, a disulfide group, a carboxyl group, or the like at the terminal, but the solubility and the interaction with the coating object From the viewpoint of easiness, it is preferable that the terminal has a hydroxyl group or a thiol group, particularly a thiol group.
The aromatic ring is not particularly limited, but is preferably a phenyl group, a naphthyl group, a pyridinium group, particularly a phenyl group from the viewpoint of solubility and availability of reagents.
The six Rs may all be the same group.

本発明の式(I)において、Xp−はp価の陰イオンを表す。当該p価の陰イオンは、式(I)中の[ ]内の錯体単位と電気的中性を達成し得るものであれば特に制限されず、一価(p=1)、二価(p=2)、三価(p=3)、又は四価以上の多価(p≧4)の陰イオンであってもよい。
上記一価の陰イオンとしてテトラフルオロホウ酸イオン(BF )、ヘキサフルオロリン酸イオン(PF )、ハロゲン化物イオン、カルボン酸イオン、又は硝酸イオンなどが例示され、上記二価の陰イオンとして硫酸イオン又は炭酸イオンなどが例示され、上記三価の陰イオンとしてリン酸イオンなどが例示される。
本発明で好ましいXp−として、試薬入手のしやすさ及び単離・精製の容易さの点で、テトラフルオロホウ酸イオン及びヘキサフルオロリン酸イオンが、特にヘキサフルオロリン酸イオンが挙げられる。
In the formula (I) of the present invention, X p− represents a p-valent anion. The p-valent anion is not particularly limited as long as it can achieve electrical neutrality with the complex unit in [] in the formula (I), and is monovalent (p = 1), divalent (p = 2), trivalent (p = 3), or tetravalent or higher polyvalent (p ≧ 4) anions.
Examples of the monovalent anion include tetrafluoroborate ion (BF 4 ), hexafluorophosphate ion (PF 6 ), halide ion, carboxylate ion, and nitrate ion. Examples of the ions include sulfate ions or carbonate ions, and examples of the trivalent anions include phosphate ions.
Xp- preferred in the present invention includes tetrafluoroborate ion and hexafluorophosphate ion, particularly hexafluorophosphate ion in terms of easy availability of reagents and ease of isolation / purification.

本発明の式(I)の錯体の製法は特に制限されるものではないが、例えば以下の方法で製造することができる。   Although the manufacturing method of the complex of the formula (I) of the present invention is not particularly limited, for example, it can be manufactured by the following method.

4,4’,4”−トリヒドロキシトリフェニルメタン(II):

を原料として、前駆体(III):

を合成する手順を下記スキーム1に示す。
4,4 ′, 4 ″ -trihydroxytriphenylmethane (II):

As a raw material, precursor (III):

The procedure for synthesizing is shown in Scheme 1 below.

4,4’,4”−トリヒドロキシトリフェニルメタン(II)は市販されているか、既知の方法で製造可能である。4,4’,4”−トリヒドロキシトリフェニルメタン(II)の1当量に対し、パラホルムアルデヒド(ホルムアルデヒド換算で6乃至10当量)、及びジメチルアミン水溶液(ジメチルアミン換算で6乃至10当量)を反応させる。生じた沈殿をろ過により回収し、減圧乾燥して前駆体(III)を白色粉末として得る。   4,4 ′, 4 ″ -Trihydroxytriphenylmethane (II) is commercially available or can be prepared by known methods. One equivalent of 4,4 ′, 4 ″ -trihydroxytriphenylmethane (II) On the other hand, paraformaldehyde (6 to 10 equivalents in terms of formaldehyde) and a dimethylamine aqueous solution (6 to 10 equivalents in terms of dimethylamine) are reacted. The resulting precipitate is collected by filtration and dried under reduced pressure to obtain the precursor (III) as a white powder.

前駆体(III)をN,N−ジ−2−ピコリルアミン(IV):

と反応させて、配位子分子(V):

を合成する手順を下記スキーム2に示す。
Precursor (III) is converted to N, N-di-2-picolylamine (IV):

Reaction with the ligand molecule (V):

The procedure for synthesizing is shown in Scheme 2 below.

前駆体(III)の1当量に対して、N,N−ジ−2−ピコリルアミン(IV)(市販されているか既知の方法で製造可能である)を6乃至10当量及び高沸点有機溶媒を加え、加熱して反応させる。反応溶液を放冷した後、生成物を精製し、減圧下で乾燥することにより配位子分子(V)を淡黄色粉末状固体として得る。   6 to 10 equivalents of N, N-di-2-picolylamine (IV) (commercially available or can be produced by a known method) and a high-boiling organic solvent with respect to 1 equivalent of the precursor (III) In addition, heat to react. After allowing the reaction solution to cool, the product is purified and dried under reduced pressure to obtain the ligand molecule (V) as a pale yellow powdery solid.

配位子分子(V)に金属塩:M(RCOO)を加えて錯形成させて、本願発明の式(I)の錯体を得る手順を以下のスキーム3に示す。 The following scheme 3 shows a procedure for obtaining a complex of the formula (I) of the present invention by adding a metal salt: M (RCOO) 2 to the ligand molecule (V) to form a complex.

配位子分子(V)をメタノール等の有機溶媒に溶解し、その1当量に対し、金属のカルボン酸塩:M(RCOO)〔式中、M及びRはそれぞれ式(I)について定義されたとおりである〕を6当量以上加えて反応溶液を得、該反応溶液から溶媒を留去することで、Xp−が上記金属のカルボン酸塩由来のカルボン酸イオンである本発明の式(I)の錯体を固体として得ることができる。これは、6当量以上の金属のカルボン酸塩を加えると12当量以上のカルボン酸イオンが生じ、そのうち6当量がRCOOとして、3当量がXp−として、それぞれ式(I)の構造に含まれ、残り3当量以上がカルボン酸として遊離してくることによるものである。あるいは、上記反応溶液に適当なXp−の塩を加えて沈殿させ、本発明の式(I)の錯体を固体として得ることもできる。
ここで、Xp−の塩とは、例えば、アルカリ金属(例えばリチウム、ナトリウム、カリウムなど)又は四級アンモニウムイオンと、Xp−との塩であり、ここで、Xp−としては、例えば、テトラフルオロホウ酸イオン(BF )、ヘキサフルオロリン酸イオン(PF )、ハロゲン化物イオン、カルボン酸イオン、硫酸イオン、硝酸イオンなどの一価、二価、三価、又は四価以上の多価の陰イオンを用いてもよい。
The ligand molecule (V) is dissolved in an organic solvent such as methanol, and 1 equivalent thereof is a metal carboxylate: M (RCOO) 2 [wherein M and R are defined for the formula (I), respectively. 6 equivalents or more] is added to obtain a reaction solution, and the solvent is distilled off from the reaction solution, whereby X p- is a carboxylate ion derived from a carboxylate of the above metal ( The complex of I) can be obtained as a solid. This is because when 6 or more equivalents of metal carboxylate are added, 12 or more equivalents of carboxylate ions are generated, of which 6 equivalents are RCOO and 3 equivalents are X p- and are included in the structure of formula (I), respectively. This is because the remaining 3 equivalents or more are liberated as carboxylic acid. Alternatively, the complex of the formula (I) of the present invention can be obtained as a solid by adding an appropriate salt of X p- to the reaction solution and precipitating it.
Here, the salt of X p- is, for example, a salt of an alkali metal (for example, lithium, sodium, potassium, etc.) or a quaternary ammonium ion and X p- , where X p- , Tetrafluoroborate ions (BF 4 ), hexafluorophosphate ions (PF 6 ), halide ions, carboxylate ions, sulfate ions, nitrate ions, etc., monovalent, divalent, trivalent, or tetravalent You may use the above polyvalent anion.

(性質)
本発明の式(I)の錯体は、常温、常圧で無色透明又は薄い赤紫色を帯びた、結晶又は非晶の固体であってもよい。
(nature)
The complex of the formula (I) of the present invention may be a crystalline or amorphous solid that is colorless and transparent or light reddish purple at room temperature and atmospheric pressure.

(光化学反応)
本発明の式(I)の錯体は、水銀ランプ等による紫外線光照射下において、無色透明又は薄い赤紫色から濃赤紫色に変化してもよい。その際、結晶の形状など固体の外観の変化は認められなくてもよい。このような光照射による固体の色変化の速度は、結晶であればその結晶軸と照射光軸との関係によって変わり得る。例えば結晶が六角柱状であれば、六角形の底面に照射した場合は、側面に照射した場合よりも色変化の速度が速い。光学顕微鏡で結晶形状がわかる程度の大きな結晶状の固体に比べて、微粉末状結晶又は非晶質状の固体の場合には光照射による色変化の速度が速い。
(Photochemical reaction)
The complex of the formula (I) of the present invention may change from colorless transparent or light red purple to deep red purple under ultraviolet light irradiation by a mercury lamp or the like. At that time, a change in the appearance of the solid such as the crystal shape may not be recognized. The speed of the color change of the solid due to such light irradiation can vary depending on the relationship between the crystal axis and the irradiation optical axis in the case of a crystal. For example, if the crystal is a hexagonal column, the color change rate is faster when the hexagonal bottom surface is irradiated than when the side surface is irradiated. In the case of a fine powdery crystal or an amorphous solid, the speed of color change due to light irradiation is faster than that of a crystalline solid that is large enough to show the crystal shape with an optical microscope.

(光物性)
本発明の式(I)の錯体は、有機溶媒中では314nm、370nm付近に吸収極大を示してもよい。この場合、その溶液に紫外線を照射すると薄青色の発光が見られてもよく、照射波長350nmの光に対して、450nm付近を中心波長とする発光スペクトルが得られてもよい。本発明の式(I)の錯体に水銀ランプ等により紫外線照射して生じ得る濃赤紫色の物質は、固体状態で赤橙色に発光し、放射光のスペクトルは620nm付近に極大を示してもよい。その際の放射光は著しく偏光しており、例えば結晶が六角柱状であれば柱の長軸方向に平行な面内での強度が最も小さく、これに垂直な面内での強度がもっとも大きい。この物質を有機溶媒に溶解した溶液は赤紫色を呈し、314nm、543nm付近に吸収極大を示してもよい。後者の吸収帯は500nm付近に肩を伴ってもよい。この溶液に紫外線を照射すると赤みを帯びた薄青色の発光が見られてもよく、照射波長350nmの光に対して、450nm付近を中心波長とする発光スペクトルが得られてもよい。この発光バンドの中、570nm付近には小さいピークが見られてもよい。照射波長を500nmにすると、580nm付近を中心波長とする発光スペクトルが得られてもよい。450nmの発光に対する励起スペクトルでは、320nm、370nmにピークが見られてもよく、580nmの発光に対する励起スペクトルでは548nmにピークが見られてもよく、このピークは500nm付近に肩を伴ってもよい。
(Light physical properties)
The complex of the formula (I) of the present invention may exhibit an absorption maximum in the vicinity of 314 nm and 370 nm in an organic solvent. In this case, when the solution is irradiated with ultraviolet light, light blue light emission may be seen, and an emission spectrum having a central wavelength around 450 nm may be obtained for light with an irradiation wavelength of 350 nm. The deep red-purple substance that can be produced by irradiating the complex of formula (I) of the present invention with ultraviolet rays from a mercury lamp or the like may emit red-orange in a solid state, and the spectrum of the emitted light may show a maximum at around 620 nm. . The emitted light at that time is remarkably polarized. For example, if the crystal is a hexagonal column, the intensity in the plane parallel to the major axis direction of the column is the smallest, and the intensity in the plane perpendicular to this is the largest. A solution obtained by dissolving this substance in an organic solvent exhibits a reddish purple color, and may exhibit absorption maximums at around 314 nm and 543 nm. The latter absorption band may have a shoulder near 500 nm. When this solution is irradiated with ultraviolet light, reddish light blue light emission may be observed, and an emission spectrum having a central wavelength around 450 nm may be obtained for light with an irradiation wavelength of 350 nm. Within this emission band, a small peak may be seen near 570 nm. When the irradiation wavelength is 500 nm, an emission spectrum having a central wavelength around 580 nm may be obtained. In the excitation spectrum for the emission of 450 nm, peaks may be seen at 320 nm and 370 nm, and in the excitation spectrum for the emission of 580 nm, a peak may be seen at 548 nm, and this peak may have a shoulder near 500 nm.

本発明の錯体は、結晶であっても非晶であっても発光材料として使用することができる。しかし、偏光性の変化を利用できるという点で、結晶がより好ましい。非晶から結晶を得るには、溶媒に溶かして結晶として析出させたり、あるいは溶融させて結晶化させたりするなど、慣用の方法が使用できる。例えば、本発明の錯体の溶解性はXp−の性質に左右され得るが、例えばPF の塩の場合、クロロホルムやテトラヒドロフランなどの低極性溶媒に溶解させ、これらの溶媒と貧溶媒を適宜配合することによって再結晶させることもできる。
また、本発明の錯体は比較的結晶化しやすいので、従来知られている方法、例えば、溶液の徐冷や溶媒の徐蒸発による再結晶、又は減圧下での昇華などで、単結晶として得ることができる。
The complex of the present invention can be used as a luminescent material regardless of whether it is crystalline or amorphous. However, crystals are more preferred in that changes in polarization can be utilized. In order to obtain crystals from amorphous, conventional methods such as dissolving in a solvent and precipitating as crystals, or melting and crystallizing can be used. For example, the solubility of complexes of the invention may depend on the nature of X p-but, for example PF 6 - when the salt is dissolved in a low polar solvent such as chloroform or tetrahydrofuran, these solvents and the poor solvent as appropriate It can also be recrystallized by blending.
In addition, since the complex of the present invention is relatively easily crystallized, it can be obtained as a single crystal by a conventionally known method, for example, recrystallization by slow cooling of a solution, slow evaporation of a solvent, or sublimation under reduced pressure. it can.

本発明の式(I)の錯体は、公知の有機発光錯体と同様にして、発光材料として素子などの作製に使用することができる。例えば、式(I)の錯体を適当な溶媒に溶かして塗布したり、樹脂などに混ぜ込んで積層させたり、又はインクジェット記録法、スピンコート、物理蒸着法(PVD法)、若しくは化学蒸着法(CVD法)などを用いて発光層を支持体などに形成させたりして、発光、表示、記録、又は照明素子などを作製することができる。また、有機発光錯体の分野で慣用の各種添加剤を配合してもよい。   The complex of the formula (I) of the present invention can be used as a light-emitting material for the production of devices and the like in the same manner as known organic light-emitting complexes. For example, the complex of the formula (I) is dissolved in an appropriate solvent and applied, mixed with a resin or the like, laminated, ink jet recording method, spin coating, physical vapor deposition method (PVD method), or chemical vapor deposition method ( The light emitting layer can be formed on a support or the like using a CVD method or the like, and light emission, display, recording, or a lighting element can be manufactured. Various additives commonly used in the field of organic light-emitting complexes may be blended.

以下、実施例を挙げて本発明をさらに詳しく具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

配位子分子(V)の溶液を亜鉛イオンの溶液で滴定することにより、錯形成の挙動及び錯体の光学的特性を調べた。配位子分子(V)の1×10-4Mメタノール溶液を調製し、酢酸亜鉛のメタノール溶液で滴定した。配位子分子(V)に対する亜鉛イオンの量比を0.0、1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0と変えたときの紫外・可視吸光スペクトルを図1に示す。図1中の差し込み図は、299nm、314nm、370nmにおけるモル吸光係数の、亜鉛イオンの添加量に対する変化を示している。この図より亜鉛イオン六当量で錯形成が飽和することが示された。 The behavior of complex formation and the optical properties of the complex were investigated by titrating a solution of the ligand molecule (V) with a solution of zinc ions. A 1 × 10 −4 M methanol solution of the ligand molecule (V) was prepared and titrated with a methanol solution of zinc acetate. FIG. 1 shows ultraviolet / visible absorption spectra when the amount ratio of zinc ions to the ligand molecule (V) is changed to 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0. The inset in FIG. 1 shows changes in molar extinction coefficients at 299 nm, 314 nm, and 370 nm with respect to the amount of zinc ions added. From this figure, it was shown that complex formation is saturated with 6 equivalents of zinc ions.

配位子分子(V)を用いて、式(I-a):

に示す錯体を合成した。配位子分子(V)310mg(0.2mmol)を量りとって10mLのメタノールに溶解し、この溶液に酢酸亜鉛二水和物260mg(1.2mmol)を加えた。5分静置した後、ヘキサフルオロリン酸カリウムのメタノール溶液(110mg/10mL)を加え、さらに24時間静置した。生じた沈殿をろ過により回収し、減圧乾燥して目的とする錯体(I-a)508mgを無色微結晶粉末として得た(収率93%)。化合物の構造は1H NMR, IR, FAB MSの各方法により同定した。
Using the ligand molecule (V), the formula (Ia):

The complex shown below was synthesized. 310 mg (0.2 mmol) of the ligand molecule (V) was weighed and dissolved in 10 mL of methanol, and 260 mg (1.2 mmol) of zinc acetate dihydrate was added to this solution. After standing for 5 minutes, a methanol solution of potassium hexafluorophosphate (110 mg / 10 mL) was added, and the mixture was further allowed to stand for 24 hours. The resulting precipitate was collected by filtration and dried under reduced pressure to obtain 508 mg of the desired complex (Ia) as a colorless microcrystalline powder (yield 93%). The structure of the compound was identified by 1H NMR, IR, FAB MS methods.

配位子分子(V)を用い、式(I-b):

で示す錯体を合成した。配位子分子(V)310mg(0.2mmol)を量りとって10mLのメタノールに溶解し、この溶液に酢酸亜鉛二水和物260mg(1.2mmol)を加えた。5分静置した後、テトラフルオロホウ酸カリウムのメタノール溶液(65mg/10mL)を加え、さらに2日静置した。生じた沈殿をろ過により回収し、減圧乾燥して目的とする錯体(I-b)232mgをやや赤紫色を帯びた無色結晶性固体として得た(収率45%)。化合物の構造は1H NMR, IR, FAB MSの各方法により同定した。
Using the ligand molecule (V), the formula (Ib):

The complex shown in FIG. 310 mg (0.2 mmol) of the ligand molecule (V) was weighed and dissolved in 10 mL of methanol, and 260 mg (1.2 mmol) of zinc acetate dihydrate was added to this solution. After leaving still for 5 minutes, the methanol solution (65 mg / 10mL) of potassium tetrafluoroborate was added, and also left still for 2 days. The resulting precipitate was collected by filtration and dried under reduced pressure to obtain 232 mg of the target complex (Ib) as a colorless crystalline solid having a slightly reddish purple color (yield 45%). The structure of the compound was identified by 1H NMR, IR, FAB MS methods.

式(I-b)で表される錯体の構造をX線単結晶構造解析法によって調べた。実施例3で得られた錯体の中から、長さ約0.5mm、直径約0.1mmの六角柱状の単結晶を選び取り、X線回折像を測定した。常法によって構造解析を行った結果、図2に示すような化合物の構造が確認された。この結晶は六方晶系に属し、結晶格子内でこの錯体はc軸方向に積み重なって柱を作り、柱が最密充填構造をとっていることがわかった(図3)。晶癖と晶系との比較から、結晶格子のc軸は六角柱状結晶の長手方向に一致すると判断した。   The structure of the complex represented by the formula (I-b) was examined by an X-ray single crystal structure analysis method. From the complex obtained in Example 3, a hexagonal columnar single crystal having a length of about 0.5 mm and a diameter of about 0.1 mm was selected and an X-ray diffraction image was measured. As a result of structural analysis by a conventional method, the structure of the compound as shown in FIG. 2 was confirmed. This crystal belongs to the hexagonal system, and it was found that in the crystal lattice, this complex was stacked in the c-axis direction to form columns, and the columns had a close-packed structure (FIG. 3). From comparison between crystal habit and crystal system, it was determined that the c-axis of the crystal lattice coincided with the longitudinal direction of the hexagonal columnar crystal.

実施例3の錯体の中から、長さ約0.5mm、直径約0.1mmの六角柱状の単結晶を選び取り、偏光光学顕微鏡で観察した。出力100Wの高圧水銀ランプを用いて紫外線を顕微鏡の鏡筒内に導入し、結晶に照射することにより結晶が無色から赤紫色に変化するのを観察した。5分程度照射した結晶をスライドグラス上に縦横に配置し、ハロゲンランプ透過光により観察した。偏光子の向きを90度回転させて図4の左右に示す2枚の写真を撮影した。紫外線未照射の結晶は偏光子の向きによらず無色透明であるのに対し、照射後の結晶は長軸方向(c軸方向)が透過容易軸と平行な場合には淡い赤紫色、これに垂直な場合には濃い赤紫色を呈する様子が観察された。   From the complex of Example 3, a hexagonal columnar single crystal having a length of about 0.5 mm and a diameter of about 0.1 mm was selected and observed with a polarizing optical microscope. Using a high-pressure mercury lamp with an output of 100 W, ultraviolet rays were introduced into the microscope barrel, and the crystals were observed to change from colorless to reddish purple by irradiating the crystals. The crystals irradiated for about 5 minutes were arranged vertically and horizontally on a slide glass and observed with light transmitted through a halogen lamp. Two photographs shown on the left and right in FIG. 4 were taken with the orientation of the polarizer rotated 90 degrees. Crystals that have not been irradiated with ultraviolet rays are colorless and transparent regardless of the orientation of the polarizer, whereas the crystals after irradiation have a light reddish purple color when the major axis direction (c-axis direction) is parallel to the easy transmission axis. In the vertical case, a deep reddish purple color was observed.

実施例3の錯体の中から、長さ約0.5mm、直径約0.1mmの六角柱状の単結晶を選び取り、偏光光学顕微鏡で観察した。出力100Wの高圧水銀ランプを用いて紫外線を顕微鏡の鏡筒内に導入し、結晶に照射することにより結晶が無色から赤紫色に変化するのを観察した。5分程度照射した結晶をスライドグラス上に配置し、ハロゲンランプ透過光を用い、偏光子を回転させて結晶軸と透過容易軸のなす角を変えながら吸収分光測定を行った(角度の取り方は図5の左図に示すとおり)。図5の右図に示すように、吸収スペクトルは540nm付近にピークを示し、490nm付近に肩を示した。吸光度は偏光子の回転角が0°、30°、60°、90°と変わるとともに低くなった。吸収のピーク波長である540nmにおける吸光度の変化を極グラフにしたところ、図6に示すように明瞭な双極型を示した。   From the complex of Example 3, a hexagonal columnar single crystal having a length of about 0.5 mm and a diameter of about 0.1 mm was selected and observed with a polarizing optical microscope. Using a high-pressure mercury lamp with an output of 100 W, ultraviolet rays were introduced into the microscope barrel, and the crystals were observed to change from colorless to reddish purple by irradiating the crystals. The crystal irradiated for about 5 minutes was placed on a slide glass, and absorption spectroscopy measurement was performed using a halogen lamp transmitted light and rotating the polarizer to change the angle between the crystal axis and the easy transmission axis. Is as shown in the left figure of FIG. As shown in the right figure of FIG. 5, the absorption spectrum showed a peak around 540 nm and a shoulder around 490 nm. The absorbance decreased as the rotation angle of the polarizer changed from 0 °, 30 °, 60 °, and 90 °. When the change in absorbance at 540 nm, which is the peak wavelength of absorption, was plotted in a polar graph, a clear bipolar type was shown as shown in FIG.

実施例3の錯体の中から、長さ約0.5mm、直径約0.1mmの六角柱状の単結晶を選び取り、偏光光学顕微鏡で観察した。出力100Wの高圧水銀ランプを用いて紫外線を顕微鏡の鏡筒内に導入し、結晶に照射することにより結晶が無色から赤紫色に変化するのを観察した。5分程度照射した結晶をスライドグラス上に縦横に配置し、紫外線照射下において蛍光像観察を行った。検光子の向きを90度回転させて図7の左右に示す2枚の写真を撮影した。結晶は、長軸方向(c軸方向)が検光子の透過容易軸と平行な場合には青白色、これに垂直な場合には赤紫色の発光を呈する様子が観察された。   From the complex of Example 3, a hexagonal columnar single crystal having a length of about 0.5 mm and a diameter of about 0.1 mm was selected and observed with a polarizing optical microscope. Using a high-pressure mercury lamp with an output of 100 W, ultraviolet rays were introduced into the microscope barrel, and the crystals were observed to change from colorless to reddish purple by irradiating the crystals. The crystals irradiated for about 5 minutes were arranged vertically and horizontally on a slide glass, and fluorescence images were observed under ultraviolet irradiation. The analyzer was rotated 90 degrees to take two photographs shown on the left and right in FIG. The crystal was observed to emit blue-white when the long axis direction (c-axis direction) was parallel to the easy transmission axis of the analyzer, and reddish purple when vertical.

実施例3の錯体の中から、長さ約0.5mm、直径約0.1mmの六角柱状の単結晶を選び取り、偏光光学顕微鏡で観察した。出力100Wの高圧水銀ランプを用いて紫外線を顕微鏡の鏡筒内に導入し、結晶に照射することにより結晶が無色から赤紫色に変化するのを観察した。30分程度照射した結晶をスライドグラス上に縦横に配置し、紫外線照射下において蛍光像観察を行った。検光子の向きを90度回転させて図8の左右に示す2枚の写真を撮影した(矢印は透過容易軸の向き)。結晶は、長軸方向(c軸方向)が検光子の透過容易軸と平行な場合には青色、これに垂直な場合には赤橙色の発光を呈する様子が観察された。検光子のそれぞれの向きにおいて結晶の発光分光測定を行った結果、図9に示すスペクトルが得られた。透過容易軸がc軸に平行な場合のスペクトルは490nm、570nm付近にピークを示し、垂直な場合のスペクトルは460nm、620nm付近にピークを示した。   From the complex of Example 3, a hexagonal columnar single crystal having a length of about 0.5 mm and a diameter of about 0.1 mm was selected and observed with a polarizing optical microscope. Using a high-pressure mercury lamp with an output of 100 W, ultraviolet rays were introduced into the microscope barrel, and the crystals were observed to change from colorless to reddish purple by irradiating the crystals. The crystals irradiated for about 30 minutes were arranged vertically and horizontally on a slide glass, and fluorescence images were observed under ultraviolet irradiation. The orientation of the analyzer was rotated 90 degrees, and two photographs shown on the left and right in FIG. 8 were taken (the arrows indicate the direction of the easy transmission axis). The crystal was observed to emit blue light when the long axis direction (c-axis direction) was parallel to the easy transmission axis of the analyzer and red-orange light when perpendicular to this. As a result of measuring the emission spectrum of the crystal in each direction of the analyzer, the spectrum shown in FIG. 9 was obtained. The spectrum when the easy transmission axis was parallel to the c-axis showed peaks near 490 nm and 570 nm, and the spectrum when perpendicular was near 460 nm and 620 nm.

実施例2の錯体の粉末を100mg量ってメノウ製乳鉢にとり、乳棒でよくすりつぶした。これに、出力100Wの高圧水銀ランプを用いて紫外線を照射し、時々撹拌しながら5時間かけて粉末状固体が無色から赤紫色に変化するのを観察した。紫外線照射後の固体をジクロロメタンに溶解し、1×10-4Mの溶液を調製して紫外可視吸光分光測定を行ったところ、図10に示すスペクトルを得た。紫外線照射後の試料では、未照射の試料には見られなかった543nm付近の吸収帯が見られ、さらに490nm付近に肩吸収が見られた。図10の差し込み図は紫外線照射前後の差スペクトルである。 100 mg of the complex powder of Example 2 was weighed into an agate mortar and well ground with a pestle. This was irradiated with ultraviolet rays using a high-pressure mercury lamp with an output of 100 W, and the powdered solid changed from colorless to reddish purple over 5 hours with occasional stirring. The solid after irradiation with ultraviolet rays was dissolved in dichloromethane, and a 1 × 10 −4 M solution was prepared and subjected to ultraviolet-visible absorption spectrometry. The spectrum shown in FIG. 10 was obtained. In the sample after UV irradiation, an absorption band near 543 nm, which was not seen in the unirradiated sample, was observed, and shoulder absorption was observed near 490 nm. The inset of FIG. 10 is the difference spectrum before and after UV irradiation.

実施例2の錯体に紫外線を照射して得られた赤紫色固体をジクロロメタンに溶解し、1×10-4Mの溶液を調製して蛍光分光測定を行った。波長350nmの光で励起した場合には、図11に実線で示すスペクトルが得られた。このときの発光極大波長である448nmの発光強度の励起波長依存性、すなわち励起スペクトルを測定したところ、図11に点線で示すスペクトルが得られた。励起スペクトルには320nmと370nmにピークが見られた。励起波長を500nmにして測定した場合、図12に実線で示すスペクトル得られた。このときの発光極大波長である578nmに対する励起スペクトルを測定したところ、図12に点線で示すスペクトルが得られた。励起スペクトルには548nmに強いピークが見られたほか、320nmと370nmに弱いピークが見られた。 The reddish purple solid obtained by irradiating the complex of Example 2 with ultraviolet rays was dissolved in dichloromethane, and a 1 × 10 −4 M solution was prepared and subjected to fluorescence spectroscopic measurement. When excited with light having a wavelength of 350 nm, a spectrum indicated by a solid line in FIG. 11 was obtained. When the excitation wavelength dependence of the emission intensity at 448 nm, which is the emission maximum wavelength at this time, that is, the excitation spectrum was measured, a spectrum indicated by a dotted line in FIG. 11 was obtained. Excitation spectra showed peaks at 320 and 370 nm. When the excitation wavelength was measured at 500 nm, a spectrum indicated by a solid line in FIG. 12 was obtained. When the excitation spectrum for 578 nm, which is the maximum emission wavelength at this time, was measured, a spectrum indicated by a dotted line in FIG. 12 was obtained. The excitation spectrum showed a strong peak at 548 nm and weak peaks at 320 nm and 370 nm.

本発明の化合物は、光応答性二色性発光材料として使用することが可能であり、例えば、発光素子、表示素子、記録素子、照明素子として、各種光学的、電気光学的、又は電子的部品又はデバイスなど、例えば、電子写真用途、電子写真記録、有機記憶デバイス、照明用の光源、色素レーザー、フラットパネルディスプレイ、識別タグ、有機発光ダイオード(OLED)、ディスプレイのバックライト、光起電デバイスの増感剤若しくはセンサーデバイス、又は記録光源などの様々な用途に使用できる。   The compound of the present invention can be used as a light-responsive dichroic light-emitting material. For example, as a light-emitting element, a display element, a recording element, and an illumination element, various optical, electro-optical, or electronic components Or devices such as, for example, electrophotographic applications, electrophotographic recording, organic storage devices, light sources for illumination, dye lasers, flat panel displays, identification tags, organic light emitting diodes (OLEDs), display backlights, photovoltaic devices It can be used in various applications such as sensitizers or sensor devices, or recording light sources.

Claims (7)

式(I):

(式中、
6個のMは、それぞれ互いに独立して、12族元素の二価陽イオンであり;
6個のRは、それぞれ互いに独立して、水素又は炭素数1〜18のアルキル鎖を基本骨格とする有機置換基であり;そして
p−はp価の陰イオンを表す)
で示される錯体。
Formula (I):

(Where
6 M's are each independently a divalent cation of a group 12 element;
6 R's are each independently an organic substituent having hydrogen or an alkyl chain having 1 to 18 carbon atoms as a basic skeleton; and X p- represents a p-valent anion)
A complex represented by
6個のMが、それぞれ互いに独立して、亜鉛、カドミウム、又は水銀である、請求項1記載の錯体。   The complex according to claim 1, wherein the six M's are each independently of each other zinc, cadmium, or mercury. 6個のRが、それぞれ互いに独立して、炭素数1〜18のアルキル鎖を基本骨格とする有機置換基である、請求項1又は2記載の錯体。   The complex according to claim 1 or 2, wherein six R's are each independently an organic substituent having an alkyl chain having 1 to 18 carbon atoms as a basic skeleton. p−が、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ハロゲン化物イオン、カルボン酸イオン、硫酸イオン、又は硝酸イオンである、請求項1〜3のいずれか1項記載の錯体。 X p-is, tetrafluoroborate ion, hexafluorophosphate ion, halide ions, carboxylate ions, sulfate ion, or nitrate ion, any one complex according to claims 1-3. 請求項1〜4のいずれか1項記載の錯体を含む発光材料。   The luminescent material containing the complex of any one of Claims 1-4. 請求項5記載の発光材料を含む、表示素子、記録素子、又は照明素子。   A display element, recording element, or illumination element comprising the luminescent material according to claim 5. 請求項1〜4のいずれか1項記載の錯体の製造方法であって、
(1)式(II):

で示される4,4’,4”−トリヒドロキシトリフェニルメタンを、パラホルムアルデヒド及びジメチルアミン水溶液と反応させて、式(III):

で示される前駆体を得ること;
(2)上記前駆体(III)を、式(IV):

で示されるN,N−ジ−2−ピコリルアミンと反応させて、式(V):

で示される配位子分子を得ること;
(3)上記配位子分子(V)に6当量以上の金属塩:M(RCOO)を加えて反応溶液を得ること;及び
(4)上記反応溶液から溶媒を留去するか、又は上記反応溶液にXp−の塩を加えて、上記式(I)の錯体を得ること、
を含む反応(式中、M、R、及びXp−は請求項1で定義されたとおりである)。
It is a manufacturing method of the complex of any one of Claims 1-4, Comprising:
(1) Formula (II):

4,4 ′, 4 ″ -trihydroxytriphenylmethane is reacted with paraformaldehyde and aqueous dimethylamine to give a compound of formula (III):

Obtaining a precursor represented by;
(2) The precursor (III) is converted into the formula (IV):

Is reacted with N, N-di-2-picolylamine represented by the formula (V):

Obtaining a ligand molecule represented by:
(3) adding 6 equivalents or more of metal salt: M (RCOO) 2 to the ligand molecule (V) to obtain a reaction solution; and (4) distilling off the solvent from the reaction solution, or Adding a salt of X p- to the reaction solution to obtain a complex of the above formula (I),
(Wherein M, R, and X p- are as defined in claim 1).
JP2010047056A 2010-03-03 2010-03-03 Photoresponsive dichroic luminescent material Pending JP2011178755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047056A JP2011178755A (en) 2010-03-03 2010-03-03 Photoresponsive dichroic luminescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047056A JP2011178755A (en) 2010-03-03 2010-03-03 Photoresponsive dichroic luminescent material

Publications (1)

Publication Number Publication Date
JP2011178755A true JP2011178755A (en) 2011-09-15

Family

ID=44690667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047056A Pending JP2011178755A (en) 2010-03-03 2010-03-03 Photoresponsive dichroic luminescent material

Country Status (1)

Country Link
JP (1) JP2011178755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3201962A1 (en) * 2014-09-30 2017-08-09 OSRAM OLED GmbH Organic electronic component, use of a zinc complex as a p-dopant for organic electronic matrix materials
CN108586768A (en) * 2018-06-11 2018-09-28 上海大学 Two-dimentional zinc coordination polymer and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3201962A1 (en) * 2014-09-30 2017-08-09 OSRAM OLED GmbH Organic electronic component, use of a zinc complex as a p-dopant for organic electronic matrix materials
JP2017538283A (en) * 2014-09-30 2017-12-21 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH Use of zinc complexes as p-type dopants for organic electronic devices, organic electronic matrix materials
US10256422B2 (en) 2014-09-30 2019-04-09 Osram Oled Gmbh Organic electronic component, use of a zinc complex as a p-dopant for organic electronic matrix materials
CN108586768A (en) * 2018-06-11 2018-09-28 上海大学 Two-dimentional zinc coordination polymer and preparation method thereof

Similar Documents

Publication Publication Date Title
Freund et al. Thiophene based europium β-diketonate complexes: effect of the ligand structure on the emission quantum yield
He et al. Reversible switching between normal and thermally activated delayed fluorescence towards “smart” and single compound white-light luminescence via controllable conformational distribution
Zhan et al. Multi-stimuli responsive fluorescent behaviors of a donor–π–acceptor phenothiazine modified benzothiazole derivative
CN102876320B (en) Cuprous complex luminescent material and preparation method thereof
Xu et al. Temperature-dependent luminescence properties of lanthanide (III) β-diketonate complex-doped LAPONITE®
Li et al. Water-soluble Tb 3+ and Eu 3+ complexes based on task-specific ionic liquid ligands and their application in luminescent poly (vinyl alcohol) films
Campbell et al. Highly luminescent and color‐tunable salicylate ionic liquids
Xue et al. Multicolour-and high-colour-contrast switching in response to force and acid vapour by introducing an asymmetric D–π–A–π–D structure
CN110461820B (en) Organic luminophores
Li et al. Near-infrared luminescent hybrid materials–PMMA doped with a neodymium complex: synthesis, structure and photophysical properties
Kiskin et al. Synthesis, structure and luminescence of {Zn2Ln (OH)}(Ln= Eu, Gd, Tb) complexes with a triangular metal core
Zhang et al. Preparation, characterization, and properties of PMMA-doped polymer film materials: a study on the effect of terbium ions on luminescence and lifetime enhancement
Ovchinnikov et al. Spectral manifestations of hybrid association of CdS colloidal quantum dots with methylene blue molecules
Chauhan et al. Study of photophysical behaviour of some Sm (III) complexes with 4-oxo-4 H-1-benzopyran-3-carboxaldehyde and other N, N′-donor π-conjugated ligands
CN110885340A (en) Europium-containing binuclear dual-ligand rare earth composite fluorescent material and preparation method thereof
Gusev et al. Ln (III) complexes of a bis (5-(pyridine-2-yl)-1, 2, 4-triazol-3-yl) methane ligand: synthesis, structure and fluorescent properties
Sun et al. Lanthanide complex-functionalized polyhedral oligomeric silsesquioxane with multicolor emission covered from 450 nm to 1700 nm
EP2663554B1 (en) Carbazole end capped bipyridine compounds and process for preparation thereof
Song et al. Luminescent properties of Ag (I)/Cu (I) coordination polymers: crystal structures and high intensity luminescence of a PMMA-doped hybrid material based on a quinoline-2, 3-dicarboxylic acid ligand
JP2011178755A (en) Photoresponsive dichroic luminescent material
Zheng et al. Dramatic improvement in photostability of luminescent Eu (III) complexes with tetraphenylimidodiphosphinate ligand
Chu et al. A new luminescent lanthanide supramolecular network possessing free Lewis base sites for highly selective and sensitive Cu 2+ sensing
Wu et al. Metal ion coordination enhancing quantum efficiency of ligand phosphorescence in a double-stranded helical chain coordination polymer of Pb 2+ with nicotinic acid
Wu et al. Achieving Stable and Switchable Ultralong Room-Temperature Phosphorescence from Polymer-Based Luminescent Materials with Three-Dimensional Covalent Networks for Light-Manipulated Anticounterfeiting
Shen et al. A thermosensitive fluorescent Eu-based metal–organic framework and its polyether sulfone composite film as a thermal sensor