JP2011178617A - Method for forming graphene film - Google Patents

Method for forming graphene film Download PDF

Info

Publication number
JP2011178617A
JP2011178617A JP2010045132A JP2010045132A JP2011178617A JP 2011178617 A JP2011178617 A JP 2011178617A JP 2010045132 A JP2010045132 A JP 2010045132A JP 2010045132 A JP2010045132 A JP 2010045132A JP 2011178617 A JP2011178617 A JP 2011178617A
Authority
JP
Japan
Prior art keywords
substrate
film
graphene film
graphene
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010045132A
Other languages
Japanese (ja)
Inventor
Katsuya Nozawa
克弥 能澤
Shigeo Yoshii
重雄 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010045132A priority Critical patent/JP2011178617A/en
Publication of JP2011178617A publication Critical patent/JP2011178617A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a graphene film on a substrate. <P>SOLUTION: The method includes: a metal thin film-forming step of forming the metal thin film on a sapphire substrate having a c-plane; a first heat treatment step in a hydrogen atmosphere; a second heat treatment step in a mixed atmosphere of hydrogen and methane; and a cooling step. Thus, the graphene film having less defects is formed on the sapphire substrate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は基板上にグラフェン膜を形成する方法に関する。   The present invention relates to a method for forming a graphene film on a substrate.

グラフェン(グラファイト原子層)膜は各種電子デバイスの構成材料として期待されている。グラフェン膜の形成方法としては、バルク状のグラファイトから粘着テープ等を用いて剥離させる方法や、炭化ケイ素基板を加熱して表面のシリコン原子を脱離させる方法、化学気相成長法(Chemical Vapor Deposition、CVD法)により金属表面にグラフェン膜を成長する方法等が知られている。   Graphene (graphite atomic layer) film is expected as a constituent material of various electronic devices. The graphene film can be formed by peeling from bulk graphite using adhesive tape, heating silicon carbide substrate to desorb silicon atoms on the surface, chemical vapor deposition (Chemical Vapor Deposition) A method of growing a graphene film on a metal surface by a CVD method) is known.

特許文献1には、カーボン薄膜(グラファイト層)を基板上に配置させる従来技術として、アルミナ又は石英からなる基体表面に形成された白金,ニッケル,コバルト,パラジウムまたはそれらの合金上にCVD法によりグラファイト層を形成する技術が開示されている。   In Patent Document 1, as a conventional technique for disposing a carbon thin film (graphite layer) on a substrate, graphite is formed by CVD on platinum, nickel, cobalt, palladium or an alloy thereof formed on a substrate surface made of alumina or quartz. Techniques for forming layers are disclosed.

特許文献2には、グラフェン膜を基板上に配置させる従来技術として、シリコン基板上にグラファイト化触媒層としてニッケルからなる多結晶金属薄膜を形成し、さらにCVD法によりグラフェン膜を形成する技術が開示されている。   Patent Document 2 discloses a technique in which a graphene film is formed on a silicon substrate by forming a polycrystalline metal thin film made of nickel as a graphitization catalyst layer on a silicon substrate, and further forming a graphene film by a CVD method. Has been.

特許文献3には、グラフェン膜を基板上に配置させる従来技術として、ニッケル単結晶上にCVD法によりグラフェン膜を形成する技術が開示されている。   Patent Document 3 discloses a technique for forming a graphene film on a nickel single crystal by a CVD method as a conventional technique for disposing a graphene film on a substrate.

非特許文献1には、グラフェン膜を基板上に配置させる従来技術として、シリコン基板上にニッケルからなる多結晶金属薄膜を形成し、さらにCVD法によりグラファイトを形成する技術が開示されている。   Non-Patent Document 1 discloses a technique of forming a polycrystalline metal thin film made of nickel on a silicon substrate and further forming graphite by a CVD method as a conventional technique for disposing a graphene film on the substrate.

非特許文献2には、グラフェン膜を基板上に配置させる従来技術として、多結晶の銅箔を基板として用い、CVD法によりグラフェン膜を形成する技術が開示されている。   Non-Patent Document 2 discloses a technique for forming a graphene film by a CVD method using a polycrystalline copper foil as a substrate as a conventional technique for disposing a graphene film on a substrate.

非特許文献3には、サファイアおよび酸化マグネシウムからなる基板上に、銅、銀、アルミニウム、金、ニッケルの薄膜をエピタキシャル成長する技術が開示されている。   Non-Patent Document 3 discloses a technique for epitaxially growing a thin film of copper, silver, aluminum, gold, and nickel on a substrate made of sapphire and magnesium oxide.

特許第3044683号公報Japanese Patent No. 3044683 特開2009−107921号公報JP 2009-107921 A 特開2009−143799号公報JP 2009-143799 A

Alfonso Reina et al., Nano Lett. vol.9 pp.30 (2009)Alfonso Reina et al., Nano Lett. Vol.9 pp.30 (2009) Xuesong Li et al., Science vol.324 pp.1312 (2009)Xuesong Li et al., Science vol.324 pp.1312 (2009) H. Bialas et al., Vaccum vol.45 pp.79 (1994)H. Bialas et al., Vaccum vol.45 pp.79 (1994)

グラフェン膜を基板上に形成する技術としては、基板上に金属触媒膜を形成し、CVD法により金属触媒膜上に、グラフェン膜を形成する手法が知られている。しかし、多結晶の金属膜を下地として用いた場合、その表面には配向の異なる多数の金属結晶粒子が露出しているため、均質なグラフェン膜の形成が困難であった。配向の異なる結晶粒子上には、互いに結晶方位の異なるグラフェンが形成される。結晶方位の異なるグラフェンが混在すると、単一の結晶を構成することができず、粒子界面(粒界)が形成したり欠陥が発生したりする。グラフェン結晶の粒界や欠陥は電子散乱の原因となるため、グラフェン膜中における電子の移動度が低下し、結果としてグラフェン膜の導電性が低下したり、グラフェン膜を用いた電子デバイスの動作速度が低下したりする。また、配向の異なる結晶粒子上では析出速度の違いにより、異なる膜厚のグラフェン膜が形成することがあり、これもグラフェン膜の膜厚の均一性を低下させる原因となる。一方で単結晶金属を基板として用いた場合には、上記問題は発生しないが、単結晶金属基板の作製コストが高く、さらに大面積の単結晶金属基板の作成が困難であるという課題があった。   As a technique for forming a graphene film on a substrate, a technique is known in which a metal catalyst film is formed on a substrate and a graphene film is formed on the metal catalyst film by a CVD method. However, when a polycrystalline metal film is used as a base, it is difficult to form a homogeneous graphene film because a large number of metal crystal particles having different orientations are exposed on the surface. Graphenes having different crystal orientations are formed on crystal grains having different orientations. When graphene having different crystal orientations coexists, a single crystal cannot be formed, and a grain interface (grain boundary) is formed or a defect is generated. Grain boundaries and defects in graphene crystals cause electron scattering, which reduces the mobility of electrons in the graphene film, resulting in a decrease in the conductivity of the graphene film and the operating speed of electronic devices using the graphene film Or drop. In addition, graphene films with different film thicknesses may be formed on crystal grains having different orientations due to the difference in precipitation rate, which also causes a decrease in the uniformity of the film thickness of the graphene film. On the other hand, when a single crystal metal is used as a substrate, the above problem does not occur, but there is a problem that the production cost of the single crystal metal substrate is high and it is difficult to produce a single crystal metal substrate having a large area. .

上記課題を解決する本発明に係るグラフェン膜の形成方法は、基板上にグラフェン膜を形成する方法であって、前記基板はc面サファイア基板であり、前記方法は、前記基板上にニッケルあるいはコバルトからなる金属膜を形成する工程と、前記基板を水素ガス雰囲気下で加熱することにより前記金属膜を再結晶化させて、エピタキシャル金属膜を形成する第1の熱処理工程と、前記基板をメタンガスと水素ガスの混合雰囲気下で加熱する第2の熱処理工程とを有する。   A method of forming a graphene film according to the present invention that solves the above problem is a method of forming a graphene film on a substrate, wherein the substrate is a c-plane sapphire substrate, and the method includes nickel or cobalt on the substrate. Forming a metal film comprising: a first heat treatment process for recrystallizing the metal film by heating the substrate in a hydrogen gas atmosphere to form an epitaxial metal film; and methane gas for the substrate. And a second heat treatment step of heating in a mixed atmosphere of hydrogen gas.

本発明によれば、品質の高いグラフェン膜を基板上に形成する方法が提供される。   According to the present invention, a method for forming a high-quality graphene film on a substrate is provided.

グラフェン膜の形成方法の工程を示す図The figure which shows the process of the formation method of a graphene film グラフェン膜の形成方法の工程における基板状態を示す断面図Sectional drawing which shows the substrate state in the process of the formation method of a graphene film 実施の形態1および実施の形態2で得られたグラフェン膜のラマンスペクトルを示す図The figure which shows the Raman spectrum of the graphene film obtained in Embodiment 1 and Embodiment 2

本明細書では、複数の炭素原子がsp2結合により結合して六員環構造を形成し、シート状の形態をとったものをグラファイト原子層、あるいはグラフェンと記載する。また、六員環構造のみからなる単一原子層のグラフェンだけでなく、部分的に欠陥を含むグラフェンや、数層から数十層の複数のグラフェンが積層した膜、また多数の配向の異なるグラフェンが同一層内に集合してなる多結晶グラフェン等を総称してグラフェン膜と記載する。 In this specification, a structure in which a plurality of carbon atoms are bonded by an sp 2 bond to form a six-membered ring structure and take a sheet-like form is referred to as a graphite atomic layer or graphene. In addition to single-atom-layer graphene consisting of only a six-membered ring structure, partially defective graphene, a film in which several to several tens of layers of graphene are stacked, and many graphenes with different orientations Are collectively referred to as a graphene film.

本発明で用いるサファイア基板としては、c面配向したサファイア基板を用いることができる。   As the sapphire substrate used in the present invention, a c-plane oriented sapphire substrate can be used.

また、本発明で用いる金属薄膜は、ニッケルもしくはコバルトからなる金属薄膜を用いることができる。   Moreover, the metal thin film used by this invention can use the metal thin film which consists of nickel or cobalt.

ニッケルもしくはコバルトの金属薄膜を用いることで、c面サファイア上に、結晶性の高いエピタキシャル膜を形成できる。ニッケルおよびコバルトの金属薄膜の面心立方格子結晶構造において、その(111)面とサファイアのc面とはほぼ格子整合した状態となるため、前記薄膜がサファイアc面上にエピタキシャル成長する。またこれらエピタキシャル膜の(111)面上にはグラフェンがエピタキシャル成長するため、グラフェン膜における粒界や欠陥の発生を抑制でき、高品質のグラフェン膜を得ることができる。   By using a nickel or cobalt metal thin film, an epitaxial film with high crystallinity can be formed on c-plane sapphire. In the face-centered cubic lattice crystal structure of the nickel and cobalt metal thin films, the (111) plane and the c-plane of sapphire are substantially lattice-matched, so that the thin film is epitaxially grown on the sapphire c-plane. Further, since graphene is epitaxially grown on the (111) plane of these epitaxial films, generation of grain boundaries and defects in the graphene film can be suppressed, and a high-quality graphene film can be obtained.

(実施の形態1)
以下、本発明の第1の実施の形態であるグラフェン膜の形成の工程を、図1および図2を用いて詳細に説明する。
(Embodiment 1)
Hereinafter, the step of forming the graphene film according to the first embodiment of the present invention will be described in detail with reference to FIGS.

まず、c面(0001)を有するサファイア基板101(図2(a))を洗浄し、その上部に電子ビーム蒸着によりニッケル薄膜102を形成した(図1(a)および図2(b))。ここでニッケル薄膜の膜厚は70nmとした。次に前記サファイア基板を、熱処理装置内に保持し、装置内部を水素ガス雰囲気として、第1の熱処理工程として1000℃での加熱処理を行った(図1(b))。上記処理により、前記サファイア基板上のニッケル薄膜は再結晶化し、(111)面に結晶配向したエピタキシャル金属膜103を形成した(図2(c))。なお、第1の熱処理工程を行った基板を装置から取り出してX線回折により評価したところ、ニッケル薄膜が(111)面を形成して配向し、サファイアc面に対してエピタキシャル膜を形成していることが確認された。   First, the sapphire substrate 101 (FIG. 2A) having the c-plane (0001) was cleaned, and a nickel thin film 102 was formed thereon by electron beam evaporation (FIGS. 1A and 2B). Here, the thickness of the nickel thin film was set to 70 nm. Next, the sapphire substrate was held in a heat treatment apparatus, and the interior of the apparatus was placed in a hydrogen gas atmosphere, and a heat treatment at 1000 ° C. was performed as a first heat treatment step (FIG. 1B). By the above treatment, the nickel thin film on the sapphire substrate was recrystallized to form an epitaxial metal film 103 having a crystal orientation on the (111) plane (FIG. 2C). In addition, when the board | substrate which performed the 1st heat treatment process was taken out from the apparatus and evaluated by X-ray diffraction, the nickel thin film formed the (111) plane and orientated, and formed the epitaxial film with respect to the sapphire c plane. It was confirmed that

グラフェン膜の形成に当たっては、第1の熱処理工程の後、基板を取り出さずに装置内部をメタンガス1%、水素ガス99%の混合ガス雰囲気に置換し、第2の熱処理工程として再度1000℃で加熱処理を行った(図1(c))。前記第2の熱処理工程の後、基板を室温付近まで冷却し(図1(d))装置より取り出した。   In forming the graphene film, after the first heat treatment step, the inside of the apparatus is replaced with a mixed gas atmosphere of 1% methane gas and 99% hydrogen gas without taking out the substrate, and heated again at 1000 ° C. as the second heat treatment step. Processing was performed (FIG. 1 (c)). After the second heat treatment step, the substrate was cooled to near room temperature (FIG. 1D) and taken out from the apparatus.

上記の工程により、エピタキシャル金属膜103上にグラフェン膜104が形成し、グラフェン膜形成基板105が得られた(図2(d))。得られたグラフェン膜104についてラマン分光分析により評価を行った結果を図3(a)に示す。図3(a)に示されるように、ラマンスペクトルでは1590cm−1付近と2750cm−1付近に、炭素の6員環構造に起因する明瞭なGバンドおよび2Dバンドのピークが観測された。一方で1370cm−1付近には欠陥に起因するDバンドのピークが観測されたが、そのピーク強度はGバンドのピーク強度に比較して小さく、Dバンドピーク強度/Gバンドピーク強度の比(D/G比)は0.09と小さな値となった。この結果は、基板105上のグラフェン膜104が良好なグラフェン膜であることを示している。 Through the above steps, a graphene film 104 was formed on the epitaxial metal film 103, and a graphene film-formed substrate 105 was obtained (FIG. 2D). FIG. 3A shows the result of evaluating the obtained graphene film 104 by Raman spectroscopic analysis. As shown in FIG. 3 (a), in the Raman spectrum in the vicinity of 1590 cm -1 and near 2750 cm -1, a peak of distinct G band and 2D band due to 6-membered ring structure of carbon was observed. On the other hand, a D band peak due to defects was observed in the vicinity of 1370 cm −1 , but the peak intensity was smaller than the G band peak intensity, and the ratio of D band peak intensity / G band peak intensity (D / G ratio) was as small as 0.09. This result indicates that the graphene film 104 over the substrate 105 is a good graphene film.

(実施の形態2)
次に、本発明の第2の実施の形態であるグラフェン膜の形成の工程を、図1および図2を用いて詳細に説明する。
(Embodiment 2)
Next, the process of forming the graphene film according to the second embodiment of the present invention will be described in detail with reference to FIGS.

まず、c面(0001)を有するサファイア基板101(図2(a))を洗浄し、その上部に電子ビーム蒸着によりコバルト薄膜102を形成した(図1(a)および図2(b))。ここでコバルト薄膜の膜厚は150nmとした。次に前記サファイア基板を、熱処理装置内に保持し、装置内部を水素ガス雰囲気として、第1の熱処理工程としてて1000℃での加熱処理を行った(図1(b))。上記処理により、前記サファイア基板上のコバルト薄膜は再結晶化し、エピタキシャル金属膜103を形成した(図2(c))。   First, the sapphire substrate 101 (FIG. 2A) having the c-plane (0001) was cleaned, and a cobalt thin film 102 was formed thereon by electron beam evaporation (FIGS. 1A and 2B). Here, the thickness of the cobalt thin film was 150 nm. Next, the sapphire substrate was held in a heat treatment apparatus, and the interior of the apparatus was placed in a hydrogen gas atmosphere, and a heat treatment at 1000 ° C. was performed as a first heat treatment step (FIG. 1B). By the above process, the cobalt thin film on the sapphire substrate was recrystallized to form an epitaxial metal film 103 (FIG. 2C).

第1の熱処理工程の後、基板を取り出さずに装置内部をメタンガス1%、水素ガス99%の混合ガス雰囲気に置換し、第2の熱処理工程として再度1000℃で加熱処理を行った(図1(c))。前記第2の熱処理工程の後、基板を室温付近まで冷却し(図1(d))装置より取り出した。   After the first heat treatment step, the inside of the apparatus was replaced with a mixed gas atmosphere of 1% methane gas and 99% hydrogen gas without taking out the substrate, and heat treatment was performed again at 1000 ° C. as the second heat treatment step (FIG. 1). (C)). After the second heat treatment step, the substrate was cooled to near room temperature (FIG. 1D) and taken out from the apparatus.

上記の工程により、エピタキシャル金属膜103上にグラフェン膜記104が形成し、グラフェン膜形成基板105が得られた(図2(d))。得られたグラフェン膜104についてラマン分光分析により評価を行った結果を図3(b)に示す。図3(b)に示されるように、ラマンスペクトルでは1590cm−1付近と2720cm−1付近に、炭素の6員環構造に起因する明瞭なGバンドおよび2Dバンドのピークが観測された。また、本実施の形態2では、1370cm−1付近の欠陥に起因するDバンドのピークは観測されなかった。この結果より、実施の形態2において得られたグラフェン膜104は、実施の形態1に比較しても、さらに欠陥の少ない良好なグラフェン膜であることが示された。 Through the above steps, the graphene film notation 104 was formed on the epitaxial metal film 103, and the graphene film-formed substrate 105 was obtained (FIG. 2D). FIG. 3B shows the result of evaluating the obtained graphene film 104 by Raman spectroscopic analysis. As shown in FIG. 3 (b), the Raman spectra near 1590 cm -1 and near 2720cm -1, a peak of distinct G band and 2D band due to 6-membered ring structure of carbon was observed. In the second embodiment, no D-band peak due to defects near 1370 cm −1 was observed. From this result, it was shown that the graphene film 104 obtained in Embodiment 2 is a good graphene film with fewer defects than that in Embodiment 1.

本発明にかかるグラフェン膜の形成方法は、基板上へのグラフェン膜形成方法として有用である。特にグラフェン膜を利用した半導体膜、電極材料等の電子デバイスやエネルギーデバイスの用途に有用できる。   The method for forming a graphene film according to the present invention is useful as a method for forming a graphene film on a substrate. In particular, it can be useful for applications of electronic devices and energy devices such as semiconductor films and electrode materials using graphene films.

101 サファイア基板
102 金属膜
103 エピタキシャル金属膜
104 グラフェン膜
105 グラフェン膜形成基板
101 Sapphire substrate 102 Metal film 103 Epitaxial metal film 104 Graphene film 105 Graphene film forming substrate

Claims (1)

基板上にグラフェン膜を形成する方法であって、
前記基板上にニッケルあるいはコバルトからなる金属膜を形成する工程と、
前記基板を水素ガス雰囲気下で加熱することにより前記金属膜を再結晶化させて、エピタキシャル金属膜を形成する第1の熱処理工程と、
前記基板をメタンガスと水素ガスの混合雰囲気下で加熱する第2の熱処理工程とを有し、
前記基板はc面サファイア基板である、方法。
A method of forming a graphene film on a substrate,
Forming a metal film made of nickel or cobalt on the substrate;
A first heat treatment step of recrystallizing the metal film by heating the substrate in a hydrogen gas atmosphere to form an epitaxial metal film;
A second heat treatment step of heating the substrate in a mixed atmosphere of methane gas and hydrogen gas,
The method, wherein the substrate is a c-plane sapphire substrate.
JP2010045132A 2010-03-02 2010-03-02 Method for forming graphene film Pending JP2011178617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045132A JP2011178617A (en) 2010-03-02 2010-03-02 Method for forming graphene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045132A JP2011178617A (en) 2010-03-02 2010-03-02 Method for forming graphene film

Publications (1)

Publication Number Publication Date
JP2011178617A true JP2011178617A (en) 2011-09-15

Family

ID=44690546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045132A Pending JP2011178617A (en) 2010-03-02 2010-03-02 Method for forming graphene film

Country Status (1)

Country Link
JP (1) JP2011178617A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006824A (en) * 2010-05-28 2012-01-12 Nippon Telegr & Teleph Corp <Ntt> Method for synthesizing graphene and carbon molecule thin film
JP2012020903A (en) * 2010-07-15 2012-02-02 Nippon Telegr & Teleph Corp <Ntt> Method for forming graphene and graphite thin film, and method for forming graphene and graphite thin film substrate
WO2013102359A1 (en) * 2012-01-03 2013-07-11 西安电子科技大学 Method for preparing graphene on sic substrate based on annealing with assistant metal film
JP2013538180A (en) * 2010-09-28 2013-10-10 エンパイア テクノロジー ディベロップメント エルエルシー Graphene growth substrate with orientation recrystallization
US8747947B2 (en) 2011-09-16 2014-06-10 Empire Technology Development, Llc Graphene defect alteration
JP2014528897A (en) * 2011-09-30 2014-10-30 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Preparation of graphene-based carbon particles using hydrocarbon precursor materials
US9011968B2 (en) 2011-09-16 2015-04-21 Empire Technology Development Llc Alteration of graphene defects
US9091634B2 (en) 2011-09-16 2015-07-28 Empire Technology Development Llc Graphene defect detection
CN106185904A (en) * 2016-07-15 2016-12-07 浙江大学 A kind of high fold graphene paper
US9951418B2 (en) 2012-05-23 2018-04-24 Xidian University Method for preparing structured graphene on SiC substrate based on Cl2 reaction
CN110581063A (en) * 2019-10-22 2019-12-17 北京石墨烯研究院 Transfer method of graphene wafer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006824A (en) * 2010-05-28 2012-01-12 Nippon Telegr & Teleph Corp <Ntt> Method for synthesizing graphene and carbon molecule thin film
JP2012020903A (en) * 2010-07-15 2012-02-02 Nippon Telegr & Teleph Corp <Ntt> Method for forming graphene and graphite thin film, and method for forming graphene and graphite thin film substrate
JP2013538180A (en) * 2010-09-28 2013-10-10 エンパイア テクノロジー ディベロップメント エルエルシー Graphene growth substrate with orientation recrystallization
US9011968B2 (en) 2011-09-16 2015-04-21 Empire Technology Development Llc Alteration of graphene defects
US8747947B2 (en) 2011-09-16 2014-06-10 Empire Technology Development, Llc Graphene defect alteration
US9091634B2 (en) 2011-09-16 2015-07-28 Empire Technology Development Llc Graphene defect detection
US9938151B2 (en) 2011-09-16 2018-04-10 Empire Technology Development Llc Alteration of graphene defects
JP2014528897A (en) * 2011-09-30 2014-10-30 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Preparation of graphene-based carbon particles using hydrocarbon precursor materials
WO2013102359A1 (en) * 2012-01-03 2013-07-11 西安电子科技大学 Method for preparing graphene on sic substrate based on annealing with assistant metal film
US9691612B2 (en) 2012-01-03 2017-06-27 Xidian University Process for preparing graphene on a SiC substrate based on metal film-assisted annealing
US9951418B2 (en) 2012-05-23 2018-04-24 Xidian University Method for preparing structured graphene on SiC substrate based on Cl2 reaction
CN106185904A (en) * 2016-07-15 2016-12-07 浙江大学 A kind of high fold graphene paper
CN110581063A (en) * 2019-10-22 2019-12-17 北京石墨烯研究院 Transfer method of graphene wafer

Similar Documents

Publication Publication Date Title
JP2011178617A (en) Method for forming graphene film
Lee et al. Synthesis of single-layer graphene: A review of recent development
US8470400B2 (en) Graphene synthesis by chemical vapor deposition
KR101636442B1 (en) Method of fabricating graphene using alloy catalyst
Lavin-Lopez et al. Synthesis and characterization of graphene: influence of synthesis variables
Lee et al. Significantly improved thickness uniformity of graphene monolayers grown by chemical vapor deposition by texture and morphology control of the copper foil substrate
US20140374960A1 (en) Method for producing a graphene film
Huet et al. Pressure-controlled chemical vapor deposition of single-layer graphene with millimeter-size domains on thin copper film
CA2851428A1 (en) Rapid synthesis of graphene and formation of graphene structures
KR20140114199A (en) Heterogeneous layered structure, method for preparing the heterogeneous layered structure, and electric device including the heterogeneous layered structure
JP2013067549A (en) Method for forming thin film
JP5578639B2 (en) Graphite film manufacturing method
US20150167148A1 (en) Method for Synthesis of Uniform Bi-Layer and Few-Layer Hexagonal Boron Nitride Dielectric Films
JP6723603B2 (en) Method for producing multilayer graphene and multilayer graphene laminate
Sajjad et al. Large scale synthesis of single-crystal and polycrystalline boron nitride nanosheets
Hemani et al. Interfacial graphene growth in the Ni/SiO2 system using pulsed laser deposition
Abd Elhamid et al. Study of graphene growth on copper foil by pulsed laser deposition at reduced temperature
WO2015060419A1 (en) Method for producing graphene film
TWI736556B (en) Epitaxial growth of defect-free, wafer-scale single-layer graphene on thin films of cobalt
Zhang et al. Twist the doorknob to open the electronic properties of graphene-based van der Waals structure
Pham et al. Optimum reproduction and characterization of graphene on copper foils by low pressure chemical vapor deposition
Gao et al. Controllable growth of two-dimensional materials on noble metal substrates
JP5962332B2 (en) Graphene growth method
Kim et al. Agglomeration effects of thin metal catalyst on graphene film synthesized by chemical vapor deposition
Piazzi et al. Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films