JP2011177738A - Laser beam machining apparatus and laser beam machining method - Google Patents

Laser beam machining apparatus and laser beam machining method Download PDF

Info

Publication number
JP2011177738A
JP2011177738A JP2010043341A JP2010043341A JP2011177738A JP 2011177738 A JP2011177738 A JP 2011177738A JP 2010043341 A JP2010043341 A JP 2010043341A JP 2010043341 A JP2010043341 A JP 2010043341A JP 2011177738 A JP2011177738 A JP 2011177738A
Authority
JP
Japan
Prior art keywords
processing
liquid
laser beam
laser
processing surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010043341A
Other languages
Japanese (ja)
Inventor
Masakuni Takahashi
正訓 高橋
Satoru Higano
哲 日向野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010043341A priority Critical patent/JP2011177738A/en
Priority to CN2011100065943A priority patent/CN102166686A/en
Publication of JP2011177738A publication Critical patent/JP2011177738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam machining apparatus and a laser beam machining method, capable of removing any machining removal stuff, suppressing pollution of a laser beam system with a liquid, and efficiently irradiating with a laser beam. <P>SOLUTION: This invention relates to an apparatus for machining by irradiating a workpiece W with the laser beam L, including a laser beam irradiation mechanism 2 for irradiating the workpiece W with the laser beam L, and a fluid supplying mechanism 3 in which the laser beam L allows a transparent fluid F to flow on a machining surface of the workpiece W in a laminar flow state along the machining surface. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば超硬質材料の加工などに好適なレーザ加工装置およびレーザ加工方法に関する。   The present invention relates to a laser processing apparatus and a laser processing method suitable for processing ultra-hard materials, for example.

一般に、立方晶窒化硼素焼結体(以下CBN焼結体とする)やダイヤモンド焼結体のような超硬質材料を用いた部材や工具などの形状加工には、砥石による研削など力学的な方法で整形が行われている。しかしながら、CBN焼結体やダイヤモンド焼結体は、力学的に強固であり、加工ごとに変形する砥石などでは、ミクロンオーダーの精密な加工を施すことが困難であった。また、所望の加工性状を得るためにCBN焼結体やダイヤモンド焼結体などからなる表面を有する部材にレーザ光を照射し、繰り返し走査することで、切断等の加工を施す方法も知られている。この方法では、レーザ光の照射によって生じた溶融物等の加工除去物の堆積により、次のレーザ光が走査される際に、堆積した加工除去物によってレーザ光が阻害されると共に吸収されて加工速度が低下し、効率の良い精密な面加工が困難であった。   In general, a mechanical method such as grinding with a grindstone is used to shape a member or a tool using an ultra-hard material such as a cubic boron nitride sintered body (hereinafter referred to as a CBN sintered body) or a diamond sintered body. The shaping is done. However, CBN sintered bodies and diamond sintered bodies are mechanically strong, and it has been difficult to perform micron-order precision processing with a grindstone that deforms with each processing. Also known is a method of performing processing such as cutting by irradiating a member having a surface made of a CBN sintered body or a diamond sintered body with a laser beam and repeatedly scanning in order to obtain desired processing properties. Yes. In this method, when the next laser beam is scanned due to the deposition of a work removal material such as a melt generated by the laser light irradiation, the laser light is inhibited and absorbed by the deposited work removal material and processed. The speed was reduced, and efficient and precise surface processing was difficult.

このため、加工除去物の堆積を防止する方法として、従来、アシストガスによって加工除去物を吹き飛ばす方法や、例えば特許文献1に記載されているように水を高圧で吹き付ける方法が提案されている。この方法では、水を高圧に吹き付けることで加工部の冷却を行っているが、加工除去物も吹き飛ばすことができると考えられる。また、特許文献2には、被加工物が保持された加工ハウジング内に蒸留水等の液体を収納して該液体を介して被加工物にレーザ光を照射する技術が提案されている。なお、この方法では、レーザ光を透過させるために加工ハウジングが透明ガラス又は透明樹脂の透明板で形成されている。   For this reason, as a method for preventing the accumulation of the processed removed material, conventionally, a method of blowing the processed removed material with an assist gas or a method of spraying water at a high pressure as described in Patent Document 1, for example, has been proposed. In this method, the processed part is cooled by spraying water at a high pressure, but it is considered that the processed removal can also be blown away. Patent Document 2 proposes a technique of storing a liquid such as distilled water in a processing housing in which a workpiece is held and irradiating the workpiece with laser light through the liquid. In this method, the processing housing is formed of a transparent plate of transparent glass or transparent resin in order to transmit laser light.

特開2006−96051号公報JP 2006-96051 A 特開2009−66657号公報JP 2009-66657 A

上記従来の技術には、以下の課題が残されている。
すなわち、従来のアシストガスを用いた加工方法では、加工除去物をすべて吹き飛ばすことが難しく、また従来の水を吹き付ける方法では、水圧が高く跳ね返りによってレーザ光の光学系が汚染されてしまうという不都合があった。また、特許文献2に記載の技術では、加工ハウジング内に液体を収容させているため加工ハウジングの外部から加工ハウジングを介してレーザ光を入射しているので、透明板で加工ハウジングを形成しても透過時にレーザ光が減衰してしまうと共にレーザ光により加工ハウジング自体が損傷してしまう問題があった。
The following problems remain in the conventional technology.
In other words, it is difficult to blow off all the processed removal by the processing method using the conventional assist gas, and the conventional method of spraying water has a disadvantage that the water pressure is high and the optical system of the laser beam is contaminated by rebounding. there were. In the technique described in Patent Document 2, since the liquid is accommodated in the processing housing, laser light is incident from the outside of the processing housing through the processing housing. Therefore, the processing housing is formed of a transparent plate. However, there is a problem that the laser beam is attenuated during transmission and the processing housing itself is damaged by the laser beam.

本発明は、前述の課題に鑑みてなされたもので、加工除去物を除去可能であると共に液体によるレーザ光学系の汚染を抑制でき、さらに効率的にレーザ光を照射可能なレーザ加工装置およびレーザ加工方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and can provide a laser processing apparatus and a laser that can remove a workpiece and can prevent contamination of a laser optical system with a liquid and can irradiate laser light more efficiently. An object is to provide a processing method.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明のレーザ加工装置は、加工対象物にレーザ光を照射して加工する装置であって、前記加工対象物に前記レーザ光を照射するレーザ光照射機構と、前記加工対象物の加工表面上に前記レーザ光が透明な液体を、前記加工表面に沿う層流状態にして流す液体供給機構と、を備えていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the laser processing apparatus of the present invention is an apparatus that processes a workpiece by irradiating the workpiece with a laser beam, the laser beam irradiation mechanism that irradiates the workpiece with the laser beam, and the processing of the workpiece. And a liquid supply mechanism for flowing a liquid in which the laser beam is transparent on the surface in a laminar flow state along the processing surface.

本発明のレーザ加工方法は、加工対象物にレーザ光を照射して加工する方法であって、前記加工対象物の加工表面上に前記レーザ光が透明な液体を、前記加工表面に沿う層流状態にして流すステップと、前記層流状態の前記液体を通して前記加工対象物に前記レーザ光を照射するステップと、を有していることを特徴とする。   The laser processing method of the present invention is a method of processing by irradiating a processing target with laser light, wherein the laser light is transparent on the processing surface of the processing target, and the laminar flow along the processing surface is performed. And a step of irradiating the workpiece with the laser light through the laminar liquid.

これらのレーザ加工装置およびレーザ加工方法では、加工対象物の加工表面上に透明な液体を加工表面に沿う層流状態にして流すので、加工表面上の皮膜となる透明な液体を介して透過したレーザ光が加工対象物を加工し、生じた加工除去物が堆積物除去用液となる液体によって加工点近傍から飛散せず定常的に排出される。この際、加工表面に液体を単純に流した場合、液体が乱流状態となって波立ち、透過するレーザ光の集光が乱れて、その結像(焦点)が正確に合わない場合があるが、本発明では液体が光学的に安定な層流状態で流されるので、正確にレーザ光の焦点を加工表面に合わせることができる。また、液体が乱流状態になると、流された加工除去物が再び加工点近傍に戻ってしまうおそれがあるのに対し、本発明では液体が層流状態で流されるので、加工点近傍に加工除去物が戻ることがない。したがって、層流状態の液体によって加工除去物を残らず除去可能であると共に、液体の跳ね返りが無くレーザ光学系の汚染を抑制できる。さらに、透明板などにレーザ光を透過させないと共にレーザ光の集光に影響を与え難い層流状態の液体を介してレーザ光を照射するので、効率の良い加工を行うことができる。   In these laser processing apparatuses and laser processing methods, a transparent liquid is caused to flow on the processing surface of the processing object in a laminar flow state along the processing surface, so that it is transmitted through the transparent liquid that becomes a film on the processing surface. The laser beam processes the object to be processed, and the generated processed removal object is steadily discharged without being scattered from the vicinity of the processing point by the liquid as the deposit removing liquid. At this time, if the liquid is simply flowed to the processing surface, the liquid may be in a turbulent state and rippling, and the condensing of the transmitted laser light may be disturbed, and the image formation (focus) may not be accurately adjusted. In the present invention, since the liquid is flowed in an optically stable laminar flow state, the laser beam can be accurately focused on the processing surface. In addition, when the liquid is in a turbulent state, the flowed work removal may return to the vicinity of the processing point again, whereas in the present invention, the liquid is flowed in a laminar state, so that the processing is performed near the processing point. The removed material will not return. Therefore, it is possible to remove all the processed removal by the laminar liquid, and there is no rebound of the liquid, and contamination of the laser optical system can be suppressed. Furthermore, since the laser beam is irradiated through the liquid in a laminar flow state that does not transmit the laser beam to the transparent plate or the like and does not easily affect the focusing of the laser beam, efficient processing can be performed.

また、本発明のレーザ加工装置は、前記レーザ光照射機構が、前記加工表面上を流れる前記液体に対して前記液体の下流側に向けて斜めに前記レーザ光を入射させることを特徴とする。
すなわち、このレーザ加工装置では、レーザ光照射機構が、加工表面上を流れる液体に対して液体の下流側に向けて斜めにレーザ光を入射させるので、加工除去物が液体の下流方向に向けて出やすくなり、液体による除去効率が高くなる。
In the laser processing apparatus of the present invention, the laser light irradiation mechanism makes the laser light incident obliquely toward the downstream side of the liquid with respect to the liquid flowing on the processing surface.
That is, in this laser processing apparatus, the laser beam irradiation mechanism causes the laser beam to enter the liquid flowing on the processing surface obliquely toward the downstream side of the liquid, so that the processed removal object is directed toward the downstream direction of the liquid. It becomes easy to come out and the removal efficiency by the liquid becomes high.

また、本発明のレーザ加工装置は、前記液体供給機構が、前記液体を前記加工表面上へ供給する供給ノズルを備え、該供給ノズルが、前記加工表面に沿って長い長孔状の開口端を有していることを特徴とする。
すなわち、このレーザ加工装置では、供給ノズルが、加工表面に沿って長い長孔状の開口端を有しているので、扁平な開口端を有する供給ノズルから液体が幅広に加工表面に供給されて供給ノズルと加工点とを比較的近づけても層流状態を容易に得ることができ、小さい加工対象物にも適用可能となる。
Further, in the laser processing apparatus of the present invention, the liquid supply mechanism includes a supply nozzle for supplying the liquid onto the processing surface, and the supply nozzle has a long and long opening end along the processing surface. It is characterized by having.
That is, in this laser processing apparatus, since the supply nozzle has a long and long opening end along the processing surface, the liquid is widely supplied to the processing surface from the supply nozzle having a flat opening end. Even if the supply nozzle and the processing point are relatively close to each other, a laminar flow state can be easily obtained, and it can be applied to a small processing object.

また、本発明のレーザ加工装置は、前記液体供給機構が、前記液体を前記加工表面上へ供給する複数の供給ノズルを備え、複数の前記供給ノズルが、同一方向に向けた各開口端を前記加工表面に沿って隣接状態に並べて配置されていることを特徴とする。
すなわち、このレーザ加工装置では、複数の供給ノズルが、同一方向に向けた各開口端を加工表面に沿って隣接状態に並べて配置されているので、隣接する各供給ノズルからの液体が一体となって一つの供給ノズルの場合よりも流量を抑えて幅広な層流状態を容易に得ることができる。
Further, in the laser processing apparatus of the present invention, the liquid supply mechanism includes a plurality of supply nozzles for supplying the liquid onto the processing surface, and the plurality of supply nozzles have the opening ends directed in the same direction. It is characterized by being arranged side by side along the processed surface.
That is, in this laser processing apparatus, since the plurality of supply nozzles are arranged with the respective open ends directed in the same direction arranged adjacent to each other along the processing surface, the liquid from each adjacent supply nozzle is integrated. Therefore, it is possible to easily obtain a wide laminar flow state by suppressing the flow rate as compared with the case of one supply nozzle.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るレーザ加工装置およびレーザ加工方法によれば、加工対象物の加工表面上にレーザ光が透明な液体を、加工表面に沿う層流状態にして流すので、液体を透過するレーザ光の焦点が正確に合うと共に、加工除去物を定常的に効率よく排出することができる。したがって、基板、切削工具や金型の加工などにおいて、効率の良い加工を行うことができる。
The present invention has the following effects.
That is, according to the laser processing apparatus and the laser processing method according to the present invention, the liquid with transparent laser light flows on the processing surface of the processing object in a laminar state along the processing surface, so that the laser transmitting the liquid is transmitted. It is possible to accurately focus the light and to efficiently and efficiently discharge the processed removed material. Therefore, efficient processing can be performed in processing of a substrate, a cutting tool, and a mold.

本発明に係るレーザ加工装置およびレーザ加工方法の第1実施形態において、レーザ加工装置を示す簡易的な全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS In 1st Embodiment of the laser processing apparatus and laser processing method which concern on this invention, it is the simple whole block diagram which shows a laser processing apparatus. 第1実施形態において、加工対象物上に液体を供給する供給ノズルを示す平面図である。In 1st Embodiment, it is a top view which shows the supply nozzle which supplies a liquid on a workpiece. 第1実施形態において、レーザ加工時の状態を説明するための要部の拡大断面図である。In 1st Embodiment, it is an expanded sectional view of the principal part for demonstrating the state at the time of laser processing. 第1実施形態において、供給ノズルの先端部を示す斜視図である。In 1st Embodiment, it is a perspective view which shows the front-end | tip part of a supply nozzle. レーザ光の入射角度と水に対する反射率との関係を示すグラフである。It is a graph which shows the relationship between the incident angle of a laser beam, and the reflectance with respect to water. 本発明に係るレーザ加工装置およびレーザ加工方法の第2実施形態において、供給ノズルを示す平面図である。In 2nd Embodiment of the laser processing apparatus and laser processing method which concern on this invention, it is a top view which shows a supply nozzle.

以下、本発明に係るレーザ加工装置およびレーザ加工方法の第1実施形態を、図1から図5を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。   Hereinafter, a first embodiment of a laser processing apparatus and a laser processing method according to the present invention will be described with reference to FIGS. 1 to 5. In each drawing used for the following description, the scale is appropriately changed in order to make each member recognizable or easily recognizable.

本実施形態のレーザ加工装置1は、図1から図3に示すように、加工対象物Wにレーザ光Lを照射して加工する装置であって、加工対象物Wにレーザ光Lを照射するレーザ光照射機構2と、加工対象物Wの加工表面上にレーザ光Lが透明な液体Fを、加工表面に沿う層流状態にして流す液体供給機構3と、加工対象物Wを保持して移動可能な移動機構4と、これらを制御する制御部5と、を備えている。   As shown in FIGS. 1 to 3, the laser processing apparatus 1 of the present embodiment is an apparatus that processes a workpiece W by irradiating the workpiece W with the laser light L, and irradiates the workpiece W with the laser light L. The laser beam irradiation mechanism 2, the liquid supply mechanism 3 for flowing the liquid F in which the laser beam L is transparent on the processing surface of the processing object W in a laminar state along the processing surface, and the processing object W are held. A movable moving mechanism 4 and a control unit 5 for controlling them are provided.

上記加工対象物Wは、例えば、基板、切削工具や金型であり、SiC基板等の基板、または加工される表面が焼結ダイヤモンド焼結体、CBN焼結体若しくは気相合成によって成膜されたダイヤモンド膜などで構成されているもの等である。
上記移動機構4は、水平面に平行なX方向に移動可能なX軸ステージ部4xと、該X軸ステージ部4x上に設けられX方向に対して垂直なかつ水平面に平行なY方向に移動方向なY軸ステージ部4yと、該Y軸ステージ部4y上に設けられ加工対象物Wを保持可能であると共に水平面に対して垂直方向に移動可能なZ軸ステージ部4zと、で構成されている。
The workpiece W is, for example, a substrate, a cutting tool, or a mold, and a substrate such as a SiC substrate, or a surface to be processed is formed into a film by a sintered diamond sintered body, a CBN sintered body, or vapor phase synthesis. It is composed of a diamond film or the like.
The moving mechanism 4 includes an X-axis stage portion 4x that can move in the X direction parallel to the horizontal plane, and a moving direction in the Y direction that is provided on the X-axis stage portion 4x and that is perpendicular to the X direction and parallel to the horizontal plane. A Y-axis stage unit 4y and a Z-axis stage unit 4z provided on the Y-axis stage unit 4y and capable of holding the workpiece W and movable in a direction perpendicular to the horizontal plane.

上記レーザ光照射機構2は、Qスイッチのトリガー信号によりレーザ光Lを発振すると共にスポット状に集光させる光学系も有するレーザ光源6と、照射するレーザ光Lを走査させるガルバノスキャナ7と、保持された加工対象物Wの加工位置を確認するために撮像するCCDカメラ8と、を備えている。
上記レーザ光源6は、波長190〜550nmのレーザ光を用いることが可能であり、例えば本実施形態では、波長355nmのレーザ光Lを発振するレーザ光源を用いている。
The laser beam irradiation mechanism 2 includes a laser light source 6 having an optical system that oscillates a laser beam L in response to a trigger signal of a Q switch and collects it in a spot shape, a galvano scanner 7 that scans the irradiated laser beam L, and a holding unit. And a CCD camera 8 that captures an image to confirm the processing position of the processed object W.
The laser light source 6 can use laser light with a wavelength of 190 to 550 nm. For example, in the present embodiment, a laser light source that oscillates laser light L with a wavelength of 355 nm is used.

上記ガルバノスキャナ7は、移動機構4の直上に配置されている。また、上記CCDカメラ8は、ガルバノスキャナ7に隣接して設置されている。
このレーザ光照射機構2は、図3に示すように、加工表面上を流れる液体Fに対して液体Fの下流側に向けて斜めにレーザ光Lを入射させるように光学系およびガルバノスキャナ7が設定されている。
なお、斜めにしたレーザ光Lの入射角度θは、液体F表面でのレーザ光の反射率が20%以内となる範囲とする。すなわち、液体Fに斜めにレーザ光Lを入射する場合、入射角度θによって反射率が異なり、加工品質へ影響を与えるためであり、反射率が20%を超える角度に設定した場合、均質な加工が困難となるためである。例えば、液体Fが水である場合、この入射角度θの範囲(反射率20%以下となる角度)は、0〜66度であり、液体Fがエタノールの場合、0〜65度である。なお、レーザ光Lの入射角度θと水に対する反射率との関係を、図5に示す。この入射角度θは、加工対象物Wの加工表面に対して垂直にレーザ光Lを照射した際の角度θを0度として計算している。
The galvano scanner 7 is disposed immediately above the moving mechanism 4. The CCD camera 8 is installed adjacent to the galvano scanner 7.
As shown in FIG. 3, the laser light irradiation mechanism 2 includes an optical system and a galvano scanner 7 so that the laser light L is incident on the liquid F flowing on the processing surface obliquely toward the downstream side of the liquid F. Is set.
Note that the incident angle θ of the oblique laser beam L is set so that the reflectance of the laser beam on the surface of the liquid F is within 20%. That is, when the laser beam L is incident on the liquid F obliquely, the reflectivity varies depending on the incident angle θ and affects the processing quality. When the reflectivity is set to an angle exceeding 20%, a uniform processing is performed. This is because it becomes difficult. For example, when the liquid F is water, the range of the incident angle θ (an angle at which the reflectance is 20% or less) is 0 to 66 degrees, and when the liquid F is ethanol, the range is 0 to 65 degrees. The relationship between the incident angle θ of the laser light L and the reflectance with respect to water is shown in FIG. The incident angle θ is calculated by setting the angle θ when the laser beam L is irradiated perpendicularly to the processing surface of the workpiece W as 0 degree.

上記液体供給機構3は、液体Fを加工表面上へ供給する供給ノズル9を備えている。この供給ノズル9は、液体Fの供給源(図示略)に接続されていると共に加工対象物W上に設置され、加工表面上に水平に液体Fを流すようにノズルの軸線が加工表面と平行に配されている。
供給ノズル9は、開口端が円形の単管を採用しても構わないが、図2および図4に示すように、加工表面に沿って長い長孔状の開口端を有した矩形管の供給ノズル9が好ましい。
上記液体Fは、レーザ光Lに対して透明な液体であって、例えばアルコールや純水が採用される。
The liquid supply mechanism 3 includes a supply nozzle 9 for supplying the liquid F onto the processing surface. The supply nozzle 9 is connected to a supply source (not shown) of the liquid F and is installed on the workpiece W, and the axis of the nozzle is parallel to the machining surface so that the liquid F flows horizontally on the machining surface. It is arranged in.
The supply nozzle 9 may adopt a single tube having a circular opening end, but as shown in FIGS. 2 and 4, a supply of a rectangular tube having a long long opening end along the processing surface. Nozzle 9 is preferred.
The liquid F is a liquid transparent to the laser light L, and for example, alcohol or pure water is employed.

本実施形態のレーザ加工装置1により実際に加工を行う場合、例えば加工対象物WとしてSiC基板を加工する場合について説明する。   In the case where actual processing is performed by the laser processing apparatus 1 of the present embodiment, for example, a case where a SiC substrate is processed as the processing target W will be described.

まず、SiC基板の加工表面に対して純水を液体Fとして供給ノズル9より10ml/secにて流す。この際、基板表面に1mm厚の層流となった純水の膜が生成される。次に、液体Fを流しながら、波長355nm、出力6Wおよび繰り返し周波数60kHzのレーザ光Lを300mm/secにて走査する。また、この際のレーザ光Lの入射角度θは、基板平面とレーザ光Lとのなす角が33度となる様に構成した(レーザ光Lの反射率は5%未満)。
この結果、従来では深さ方向に加工を繰り返していく際に加工除去物の飛散によってレーザ光が吸収され、加工速度が低下していたのに対し、本実施形態では、図3に示すように、層流状態の液体Fによって加工除去物が飛散することなく定常的に下流側へ排出され、効率の良い加工が可能になる。
First, pure water is supplied as liquid F from the supply nozzle 9 at a rate of 10 ml / sec to the processed surface of the SiC substrate. At this time, a pure water film having a laminar flow of 1 mm is generated on the substrate surface. Next, while flowing the liquid F, a laser beam L having a wavelength of 355 nm, an output of 6 W, and a repetition frequency of 60 kHz is scanned at 300 mm / sec. In addition, the incident angle θ of the laser beam L at this time is configured such that the angle formed by the substrate plane and the laser beam L is 33 degrees (the reflectance of the laser beam L is less than 5%).
As a result, conventionally, when processing is repeated in the depth direction, the laser beam is absorbed by scattering of the processed removed material and the processing speed is reduced. In this embodiment, as shown in FIG. Then, the processing removal material is constantly discharged to the downstream side by the liquid F in the laminar flow state, and efficient processing becomes possible.

このように本実施形態のレーザ加工装置1では、加工対象物Wの加工表面上に透明な液体Fを加工表面に沿う層流状態にして流すので、加工表面上の皮膜となる透明な液体Fを介して透過したレーザ光Lが加工対象物Wを加工し、生じた加工除去物が堆積物除去用液となる液体Fによって加工点k近傍から飛散せず定常的に排出される。この際、加工表面に液体Fを単純に流した場合、液体Fが乱流状態となって波立ち、透過するレーザ光Lの集光が乱れて、その結像(焦点)が正確に合わない場合があるが、本実施形態では液体Fが光学的に安定な層流状態で流されるので、正確にレーザ光Lの焦点を加工表面に合わせることができる。   Thus, in the laser processing apparatus 1 of this embodiment, since the transparent liquid F flows on the processing surface of the workpiece W in a laminar state along the processing surface, the transparent liquid F that forms a film on the processing surface. The laser beam L that has been transmitted through the workpiece processes the workpiece W, and the generated workpiece removal is steadily discharged from the vicinity of the machining point k by the liquid F serving as the deposit removing liquid. At this time, when the liquid F is simply made to flow on the processing surface, the liquid F becomes a turbulent state and undulates, the condensing of the transmitted laser light L is disturbed, and the image formation (focus) is not accurately aligned. However, in this embodiment, since the liquid F is flowed in an optically stable laminar flow state, the laser beam L can be accurately focused on the processing surface.

また、液体Fが乱流状態になると、流された加工除去物が再び加工点k近傍に戻ってしまうおそれがあるのに対し、本実施形態では液体Fが層流状態で流されるので、加工点k近傍に加工除去物が戻ることがない。したがって、層流状態の液体Fによって加工除去物を残らず除去可能であると共に、液体Fの跳ね返りが無くレーザ光学系の汚染を抑制できる。さらに、透明板などにレーザ光Lを透過させないと共にレーザ光Lの集光に影響を与え難い層流状態の液体Fを介してレーザ光Lを照射するので、効率の良い加工を行うことができる。   In addition, when the liquid F is in a turbulent state, the flowed work removal may return to the vicinity of the processing point k again, whereas in the present embodiment, the liquid F is flowed in a laminar flow state. The processed removed object does not return near the point k. Therefore, it is possible to remove all the processed removal by the laminar flow state liquid F, and there is no rebound of the liquid F, and contamination of the laser optical system can be suppressed. Furthermore, since the laser beam L is irradiated through the liquid F in a laminar flow state that does not transmit the laser beam L to the transparent plate or the like and does not easily affect the focusing of the laser beam L, efficient processing can be performed. .

さらに、レーザ光照射機構2が、加工表面上を流れる液体Fに対して液体Fの下流側に向けて斜めにレーザ光Lを入射させるので、加工除去物が液体Fの下流方向に向けて出やすくなり、液体Fによる除去効率が高くなる。
また、供給ノズル9が、加工表面に沿って長い長孔状の開口端を有しているので、扁平な開口端を有する供給ノズル9から液体Fが幅広に加工表面に供給されて供給ノズル9と加工点kとを比較的近づけても層流状態を容易に得ることができ、小さい加工対象物Wにも適用可能となる。
Further, since the laser beam irradiation mechanism 2 causes the laser beam L to be incident obliquely toward the downstream side of the liquid F with respect to the liquid F flowing on the processing surface, the processed removal object exits in the downstream direction of the liquid F. It becomes easy and the removal efficiency by the liquid F becomes high.
Further, since the supply nozzle 9 has a long and long opening end along the processing surface, the liquid F is widely supplied to the processing surface from the supply nozzle 9 having a flat opening end, and the supply nozzle 9. Even if the machining point k is relatively close to each other, a laminar flow state can be easily obtained and can be applied to a small workpiece W.

次に、本発明に係るレーザ加工装置およびレーザ加工方法の第2実施形態について、図6を参照して以下に説明する。なお、以下の実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。   Next, a second embodiment of the laser processing apparatus and the laser processing method according to the present invention will be described below with reference to FIG. Note that, in the following description of the embodiment, the same components described in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第2実施形態と第1実施形態との異なる点は、第1実施形態では、一つの矩形管である供給ノズル9を採用しているのに対し、第2実施形態のレーザ加工装置では、図6に示すように、液体供給機構23が、液体Fを加工表面上へ供給する複数の供給ノズル29を備え、複数の供給ノズル29が、同一方向に向けた各開口端を加工表面に沿って隣接状態に並べて配置されている点である。   The difference between the second embodiment and the first embodiment is that, in the first embodiment, the supply nozzle 9 which is a single rectangular tube is adopted, whereas in the laser processing apparatus of the second embodiment, FIG. 6, the liquid supply mechanism 23 includes a plurality of supply nozzles 29 that supply the liquid F onto the processing surface, and the plurality of supply nozzles 29 have respective opening ends directed in the same direction along the processing surface. It is a point arranged side by side in an adjacent state.

すなわち、第2実施形態では、互いに同一方向に向けて並べられた複管の供給ノズル29を有しており、各供給ノズル29から供給される液体Fが加工点kでは合流して一つの層流を構成する。
この第2実施形態のレーザ加工装置では、複数の供給ノズル29が、同一方向に向けた各開口端を加工表面に沿って隣接状態に並べて配置されているので、隣接する各供給ノズル29からの液体Fが一体となって一つの供給ノズル29の場合よりも流量を抑えて幅広な層流状態を容易に得ることができる。
That is, in the second embodiment, the multi-pipe supply nozzles 29 arranged in the same direction are provided, and the liquid F supplied from each supply nozzle 29 merges at the processing point k to form one layer. Make up the flow.
In the laser processing apparatus according to the second embodiment, the plurality of supply nozzles 29 are arranged in such a manner that the respective open ends directed in the same direction are arranged adjacent to each other along the processing surface. A wider laminar flow state can be easily obtained by controlling the flow rate as compared with the case of the single supply nozzle 29 in which the liquid F is integrated.

なお、上記各実施形態の液体供給機構では、層流状態に液体を加工表面上に供給するための条件として、層流が乱流に遷移するときのレイノルズ数(臨界レイノルズ数)を超えないように次のように設定される。   In the liquid supply mechanism of each of the above embodiments, the condition for supplying the liquid to the processing surface in a laminar flow state does not exceed the Reynolds number (critical Reynolds number) when the laminar flow transitions to turbulent flow. Is set as follows.

まず、開口端が円形とされた単管の供給ノズルの場合、加工除去物を流すために必要な最小限の流量は5ml/minであり、この際の管内径は0.07mm以上が層流の下限となる。この管内径を5mmφを超えて大きくした場合、加工点kでの液体の層厚を揃えるため、加工点kと供給ノズルとの距離を離さなければならず、実用面で管内径は5mmφが最大となる。管内径を5mmφにした場合、層流を満たす条件は、管内径に流量が比例するため、流量を最大370ml/minまで増加させることができる。
この単管の供給ノズルでの層流条件を、以下の表1に示す。
First, in the case of a single tube supply nozzle having a circular opening end, the minimum flow rate required to flow the processed material is 5 ml / min, and the tube inner diameter in this case is a laminar flow of 0.07 mm or more. Is the lower limit. When the pipe inner diameter is increased beyond 5 mmφ, the distance between the processing point k and the supply nozzle must be increased in order to equalize the liquid layer thickness at the processing point k. In practical terms, the maximum pipe inner diameter is 5 mmφ. It becomes. When the inner diameter of the tube is 5 mmφ, the flow rate is proportional to the inner diameter of the tube, and the flow rate can be increased up to 370 ml / min.
The laminar flow conditions at this single tube supply nozzle are shown in Table 1 below.

次に、第1実施形態のような矩形管の供給ノズルの場合、単管の断面積と等価となる周長を設定することによって、単管の層流条件と同等の条件が適応可能である。矩形管を用いるメリットとしては、広範囲かつ適正厚さで層流を流すことが可能であることや、供給ノズルと加工点kとを比較的近くすることが可能であり、小さい加工対象物にも適用可能であることが挙げられる。なお、供給ノズルの開口部における厚さをdとし、幅をwとしたとき、条件としてd:wの比を1:20とし、d=0.1〜1mmとしたが、単管の断面積と等価となる周長であればこの限りではなく、適用可能である。
この矩形管の供給ノズルでの層流条件を、以下の表2に示す。
Next, in the case of a rectangular tube supply nozzle as in the first embodiment, a condition equivalent to the laminar flow condition of a single tube can be applied by setting a circumference equivalent to the cross-sectional area of the single tube. . The advantages of using a rectangular tube are that laminar flow can be applied over a wide range and at an appropriate thickness, the supply nozzle and the processing point k can be relatively close to each other, even for small processing objects. It is mentioned that it is applicable. In addition, when the thickness at the opening of the supply nozzle is d and the width is w, the ratio of d: w is 1:20 and d = 0.1 to 1 mm as conditions. As long as the circumference is equivalent to the above, the present invention is not limited to this and is applicable.
The laminar flow conditions at the supply nozzle of this rectangular tube are shown in Table 2 below.

また、第2実施形態のような複管の供給ノズルの場合、単管の組み合わせと考え、単管の層流条件と同等の条件が適応可能である。複管を用いるメリットとしては、流量を最小として広範囲に層流を流すことが可能であることや、管内径を最適にした際、流量を管数分増加させることが可能であることが挙げられる。ただし、供給ノズルと加工点kとの距離は、ある程度空けておく必要がある。
この複管の供給ノズルでの層流条件を、以下の表3に示す。
Further, in the case of a double-tube supply nozzle as in the second embodiment, it is considered as a combination of single tubes, and conditions equivalent to the laminar flow conditions of single tubes can be applied. Advantages of using double pipes include that laminar flow can flow over a wide range with a minimum flow rate, and that the flow rate can be increased by the number of tubes when the pipe inner diameter is optimized. . However, it is necessary to keep a certain distance between the supply nozzle and the processing point k.
The laminar flow conditions at the double-tube supply nozzle are shown in Table 3 below.

本発明のレーザ加工装置およびレーザ加工方法は、特に基板、切削工具または金型などの加工において好適なものである。   The laser processing apparatus and laser processing method of the present invention are particularly suitable for processing a substrate, a cutting tool, a mold, or the like.

1…レーザ加工装置、2…レーザ光照射機構、3,23…液体供給機構、9,29…供給ノズル、F…液体、L…レーザ光、W…加工対象物   DESCRIPTION OF SYMBOLS 1 ... Laser processing apparatus, 2 ... Laser beam irradiation mechanism, 3, 23 ... Liquid supply mechanism, 9, 29 ... Supply nozzle, F ... Liquid, L ... Laser beam, W ... Work object

Claims (5)

加工対象物にレーザ光を照射して加工する装置であって、
前記加工対象物に前記レーザ光を照射するレーザ光照射機構と、
前記加工対象物の加工表面上に前記レーザ光が透明な液体を、前記加工表面に沿う層流状態にして流す液体供給機構と、を備えていることを特徴とするレーザ加工装置。
An apparatus for irradiating a processing object with laser light,
A laser beam irradiation mechanism for irradiating the workpiece with the laser beam;
A laser processing apparatus comprising: a liquid supply mechanism configured to flow a liquid in which the laser light is transparent on a processing surface of the processing object in a laminar state along the processing surface.
請求項1に記載のレーザ加工装置において、
前記レーザ光照射機構が、前記加工表面上を流れる前記液体に対して前記液体の下流側に向けて斜めに前記レーザ光を入射させることを特徴とするレーザ加工装置。
In the laser processing apparatus of Claim 1,
The laser processing apparatus, wherein the laser beam irradiation mechanism causes the laser beam to be incident obliquely toward the downstream side of the liquid flowing on the processing surface.
請求項1または2に記載のレーザ加工装置において、
前記液体供給機構が、前記液体を前記加工表面上へ供給する供給ノズルを備え、
該供給ノズルが、前記加工表面に沿って長い長孔状の開口端を有していることを特徴とするレーザ加工装置。
In the laser processing apparatus according to claim 1 or 2,
The liquid supply mechanism includes a supply nozzle for supplying the liquid onto the processing surface;
The laser processing apparatus, wherein the supply nozzle has an elongated long opening end along the processing surface.
請求項1から3のいずれか一項に記載のレーザ加工装置において、
前記液体供給機構が、前記液体を前記加工表面上へ供給する複数の供給ノズルを備え、
複数の前記供給ノズルが、同一方向に向けた各開口端を前記加工表面に沿って隣接状態に並べて配置されていることを特徴とするレーザ加工装置。
In the laser processing apparatus as described in any one of Claim 1 to 3,
The liquid supply mechanism includes a plurality of supply nozzles for supplying the liquid onto the processing surface;
The laser processing apparatus, wherein the plurality of supply nozzles are arranged such that respective open ends directed in the same direction are arranged adjacent to each other along the processing surface.
加工対象物にレーザ光を照射して加工する方法であって、
前記加工対象物の加工表面上に前記レーザ光が透明な液体を、前記加工表面に沿う層流状態にして流すステップと、
前記層流状態の前記液体を通して前記加工対象物に前記レーザ光を照射するステップと、を有していることを特徴とするレーザ加工方法。
A method of processing by irradiating a processing object with laser light,
Flowing the liquid in which the laser beam is transparent on the processing surface of the processing object in a laminar state along the processing surface;
Irradiating the workpiece with the laser light through the liquid in the laminar flow state.
JP2010043341A 2010-02-26 2010-02-26 Laser beam machining apparatus and laser beam machining method Pending JP2011177738A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010043341A JP2011177738A (en) 2010-02-26 2010-02-26 Laser beam machining apparatus and laser beam machining method
CN2011100065943A CN102166686A (en) 2010-02-26 2011-01-10 Laser processing device and laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010043341A JP2011177738A (en) 2010-02-26 2010-02-26 Laser beam machining apparatus and laser beam machining method

Publications (1)

Publication Number Publication Date
JP2011177738A true JP2011177738A (en) 2011-09-15

Family

ID=44488108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010043341A Pending JP2011177738A (en) 2010-02-26 2010-02-26 Laser beam machining apparatus and laser beam machining method

Country Status (2)

Country Link
JP (1) JP2011177738A (en)
CN (1) CN102166686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072762A (en) * 2017-10-19 2019-05-16 株式会社ディスコ Laser processing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102922142A (en) * 2012-10-30 2013-02-13 张立国 Method for laser processing
WO2017109544A1 (en) * 2015-12-22 2017-06-29 Arcelormittal Method for preparing a pre-coated metal sheet, with removal of the coating by means of an inclined laser beam, and corresponding metal sheet
CN105652797A (en) * 2016-01-06 2016-06-08 广东工业大学 Real-time monitoring device and real-time monitoring method of surface flow water film
CN112475613B (en) * 2020-11-06 2022-04-05 中国科学院上海光学精密机械研究所 Laser processing device for water-gas coaxial auxiliary galvanometer scanning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281086A (en) * 1990-03-27 1991-12-11 Nec Corp Laser beam marker
JPH06142971A (en) * 1992-11-05 1994-05-24 Ishikawajima Harima Heavy Ind Co Ltd Under water machining device provided with ultraviolet pulse laser beam
JPH06331412A (en) * 1993-05-20 1994-12-02 Yazaki Corp Flow straightening device
JPH109930A (en) * 1996-06-19 1998-01-16 Yazaki Corp Flow regulating device
JP2001353589A (en) * 2000-06-09 2001-12-25 Aomori Prefecture Method and equipment of laser beam welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281086A (en) * 1990-03-27 1991-12-11 Nec Corp Laser beam marker
JPH06142971A (en) * 1992-11-05 1994-05-24 Ishikawajima Harima Heavy Ind Co Ltd Under water machining device provided with ultraviolet pulse laser beam
JPH06331412A (en) * 1993-05-20 1994-12-02 Yazaki Corp Flow straightening device
JPH109930A (en) * 1996-06-19 1998-01-16 Yazaki Corp Flow regulating device
JP2001353589A (en) * 2000-06-09 2001-12-25 Aomori Prefecture Method and equipment of laser beam welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072762A (en) * 2017-10-19 2019-05-16 株式会社ディスコ Laser processing device

Also Published As

Publication number Publication date
CN102166686A (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5431831B2 (en) Laser processing equipment
TWI260843B (en) Focusing an optical beam to two foci
JP5192216B2 (en) Laser processing equipment
JP5663776B1 (en) Suction method, suction device, laser processing method, and laser processing device
JP2011177738A (en) Laser beam machining apparatus and laser beam machining method
JP5639046B2 (en) Laser processing apparatus and laser processing method
TW201701978A (en) Method and device for producing a structured element, and structured element
WO2015008482A1 (en) Laser processing device, laser processing method, and laser oscillation device
TW202002130A (en) Method of cleaning extreme ultraviolet radiation source apparatus
JP2011125870A (en) Laser beam machining apparatus
Behera et al. State of the art on under liquid laser beam machining
JP2007061914A (en) Hybrid machining device
JP5610991B2 (en) Laser processing equipment
Markauskas et al. Efficient milling and cutting of borosilicate glasses through a thin flowing water film with a picosecond laser
JP2016036818A (en) Laser processing device
JP2007136642A (en) Material having microstructure and manufacturing method for the microstructure
JP2011189362A (en) Apparatus and method of laser machining
JP4123390B2 (en) Hybrid machining apparatus and hybrid machining method
JP5324828B2 (en) Laser processing equipment
JP2011125871A (en) Laser beam machining apparatus
JP5936414B2 (en) Laser processing equipment
JP2013163216A (en) Laser beam machining device
JP5501099B2 (en) Laser processing equipment
JP5501100B2 (en) Laser processing equipment
JP2000202676A (en) Laser beam machining head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204