JP2011177651A - Arsenic-containing solution treatment method - Google Patents

Arsenic-containing solution treatment method Download PDF

Info

Publication number
JP2011177651A
JP2011177651A JP2010044388A JP2010044388A JP2011177651A JP 2011177651 A JP2011177651 A JP 2011177651A JP 2010044388 A JP2010044388 A JP 2010044388A JP 2010044388 A JP2010044388 A JP 2010044388A JP 2011177651 A JP2011177651 A JP 2011177651A
Authority
JP
Japan
Prior art keywords
arsenic
containing solution
iron
solution
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010044388A
Other languages
Japanese (ja)
Inventor
Mitsuo Abumiya
三雄 鐙屋
Yusuke Sato
祐輔 佐藤
Hironobu Mikami
寛信 見上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2010044388A priority Critical patent/JP2011177651A/en
Publication of JP2011177651A publication Critical patent/JP2011177651A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Compounds Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an arsenic-containing solution treatment method which can inhibit generation of a precipitate of arsenic compounds, which has low stability as an arsenic compound and is difficult to be separated from an arsenic-containing solution containing other elements including iron because of small particle diameter thereof. <P>SOLUTION: In the arsenic-containing solution treatment method, an oxidizing agent is added to the acidic arsenic-containing solution which contains pentavalent arsenic and trivalent iron, and is under the atmospheric pressure. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

各種の工程で発生する、ヒ素を含有する溶液の処理方法である。   This is a method for treating a solution containing arsenic generated in various processes.

ヒ素含有溶液を処理する際、ヒ素と鉄とを反応させ、スコロダイトのような化合物を生成させる方法が知られている。そこで、産業上、各種の工程で発生するヒ素含有溶液中のヒ素を、スコロダイトのような安定な化合物へと処理することで、ヒ素を固定化して処理することが提案されている。   When processing an arsenic-containing solution, a method is known in which arsenic and iron are reacted to form a compound such as scorodite. Therefore, it has been proposed in the industry to fix arsenic by treating arsenic in arsenic-containing solutions generated in various processes into a stable compound such as scorodite.

ここで、ヒ素と鉄とを反応させて固定化する際、両者の液中濃度、反応時期には一定の管理が必要である。ところが、特に、非鉄製錬工程において発生するヒ素含有溶液には、鉱石、添加剤等に由来する鉄を始めとする元素が含まれている。このため、前記ヒ素含有溶液の処理の際に、ヒ素と鉄との不用意で自然発生的な反応が起きてしまう。当該ヒ素と鉄とので自然発生的な反応を回避する為に、ヒ素含有溶液の鉄を事前に除去するか、または、ヒ素含有溶液に鉄が混入しないプロセスを設計した上で、工程管理をする必要があった。   Here, when arsenic and iron are reacted and immobilized, a certain control is required for the concentration in the solution and the reaction time of both. However, in particular, the arsenic-containing solution generated in the non-ferrous smelting process contains elements such as iron derived from ores and additives. For this reason, in the treatment of the arsenic-containing solution, an inadvertent and spontaneous reaction between arsenic and iron occurs. In order to avoid a spontaneous reaction between the arsenic and iron, remove the iron in the arsenic-containing solution in advance, or design a process in which iron is not mixed into the arsenic-containing solution, and then control the process. There was a need.

一方、ヒ素含有溶液中における鉄とヒ素とのモル比を制御することで、スコロダイトを生成可能とする技術も開示されている。例えば、特許文献1は、ヒ素と鉄とを含む多様な条件下のヒ素含有溶液中において、鉄モル比を低めに設定し、塩基性ナトリウムを添加することでヒ酸鉄を生成することを提案している。   On the other hand, a technique is disclosed in which scorodite can be generated by controlling the molar ratio of iron and arsenic in an arsenic-containing solution. For example, Patent Document 1 proposes that iron arsenate is generated by adding a basic sodium in an arsenic-containing solution containing arsenic and iron, with a low iron molar ratio. is doing.

他に、オートクレーブによる175℃の高温、加圧雰囲気にてヒ素と鉄とを反応させてスコロダイトを生成させる方法がある。   In addition, there is a method of generating scorodite by reacting arsenic and iron in an autoclave at a high temperature of 175 ° C. under a pressurized atmosphere.

特開2008−231478号公報JP 2008-231478 A

上述したように、ヒ素と鉄とが共存している多様な条件下のヒ素含有溶液を対象とし、スコロダイトの生成反応を進行させる方法が提案されている。
一方、各種工程にて発生してくるヒ素含有溶液を直ちに処理して、例えばスコロダイトを生成させて、安定化させることが考えられる。しかしながら、各種工程にて発生してくるヒ素含有溶液は、各々の発生量が少ないながら、その成分、性状等が多様である場合が多い。このような場合、当該発生してくる各々のヒ素含有溶液を直ちに処理して、例えばスコロダイトを生成させて安定化せるのは、多くの作業工数を必要とする。そこで、これら各々のヒ素含有溶液を所定期間、貯留、保管処理してバッチ量を大きくし、一度に安定化処理してしまうことが考えられる。
As described above, a method for advancing the scorodite production reaction has been proposed for arsenic-containing solutions under various conditions in which arsenic and iron coexist.
On the other hand, it is conceivable to immediately treat the arsenic-containing solution generated in various steps to generate, for example, scorodite and stabilize it. However, arsenic-containing solutions generated in various processes often have various components, properties, and the like, although each generation amount is small. In such a case, it takes a lot of work steps to immediately treat each arsenic-containing solution that is generated, for example, to generate and stabilize scorodite. Therefore, it is conceivable that these arsenic-containing solutions are stored and stored for a predetermined period of time to increase the batch amount and stabilize at once.

しかしながら本発明者らの検討によると、前記発生してくる各々のヒ素含有溶液は、ヒ素以外に、3価鉄を始めとする多様な元素をも含有しているものである。この為、前記所定期間の貯留、保管処理において、所望も制御もされていない自然発生的なヒ素−鉄反応による、ヒ素−鉄化合物沈殿が生成してしまう。これら自然発生的なヒ素−鉄化合物沈殿の大部分は、ヒ素化合物としての安定性が低くヒ素の溶出量が多いという問題、および、粒子径が小さくて溶液から分離が困難な為、操作性が悪いという問題を抱えている。   However, according to the study by the present inventors, each of the generated arsenic-containing solutions contains various elements including trivalent iron in addition to arsenic. For this reason, arsenic-iron compound precipitation is generated by the spontaneous arsenic-iron reaction that is neither desired nor controlled in the storage and storage processes for the predetermined period. Most of these naturally occurring arsenic-iron compound precipitates have problems of low stability as arsenic compounds and a large amount of arsenic elution, and operability because of their small particle size and difficulty in separation from solution. I have the problem of being bad.

本発明は、上述の状況もとでなされたものであり、その解決しようとする課題は、鉄を始めとする他元素も含有しているヒ素含有溶液から、ヒ素化合物としての安定性が低く、粒子径が小さくて溶液から分離が困難なヒ素化合物の沈殿物が生成することを抑制することの出来るヒ素含有溶液の処理方法を提供することである。   The present invention has been made under the above circumstances, and the problem to be solved is that the arsenic compound has low stability as an arsenic compound solution containing other elements including iron. An object of the present invention is to provide a method for treating an arsenic-containing solution capable of suppressing the formation of a precipitate of an arsenic compound that has a small particle size and is difficult to separate from a solution.

上述の課題を解決する為、本発明者らは鋭意研究を行った。
その結果、ヒ素含有溶液(5価ヒ素含有溶液)が、さらに3価鉄を始めとする多様な元素をも含有しているものであるときでも、当該ヒ素含有溶液へ酸化剤を添加すると、所望も制御もされていない自然発生的なヒ素−鉄反応による、ヒ素−鉄化合物沈殿の生成を抑制出来ることを知見し、本発明を完成した。
さらに、当該自然発生的なヒ素−鉄化合物の沈殿物生成が抑制されているヒ素含有溶液へ、例えば、所定量の2価鉄と酸化剤とを添加することで、粒子径が大きくヒ素溶出量の小さなスコロダイトを生成させることが出来る。
In order to solve the above-mentioned problems, the present inventors have conducted intensive research.
As a result, even when the arsenic-containing solution (pentavalent arsenic-containing solution) further contains various elements such as trivalent iron, an oxidant is added to the arsenic-containing solution. The present invention was completed by discovering that the formation of arsenic-iron compound precipitates due to the spontaneous arsenic-iron reaction that is not controlled can be suppressed.
Further, for example, by adding a predetermined amount of divalent iron and an oxidizing agent to the arsenic-containing solution in which the generation of precipitates of the naturally occurring arsenic-iron compound is suppressed, the particle size is increased and the arsenic elution amount is increased. Of small scorodite.

即ち、上述の課題を解決する為の第1の手段は、
5価ヒ素と3価鉄とを含み大気圧下にある酸性のヒ素含有溶液へ、酸化剤を加えることを特徴とする、ヒ素含有溶液の処理方法である。
That is, the first means for solving the above-mentioned problem is
A method for treating an arsenic-containing solution, comprising adding an oxidizing agent to an acidic arsenic-containing solution containing pentavalent arsenic and trivalent iron at atmospheric pressure.

第2の手段は、
前記酸化剤を加える際に、前記ヒ素含有溶液のpH値を1以下とすることを特徴とする、第1の手段に記載のヒ素含有溶液の処理方法である。
The second means is
The method for treating an arsenic-containing solution according to the first means, wherein the pH value of the arsenic-containing solution is set to 1 or less when the oxidizing agent is added.

第3の手段は、
前記ヒ素含有溶液の(3価鉄のモル数/5価ヒ素のモル数)の値を1以上とすることを特徴とする、第1または第2の手段に記載のヒ素含有溶液の処理方法である。
The third means is
The method for treating an arsenic-containing solution according to the first or second means, wherein the value of (number of moles of trivalent iron / number of moles of pentavalent arsenic) of the arsenic-containing solution is 1 or more. is there.

第4の手段は、
5価砒素と3価鉄とを含み、大気圧下にある酸性のヒ素含有溶液へ酸化剤を加える工程と、
前記酸化剤を加えられたヒ素含有溶液へ、2価鉄と酸化剤とを投入する工程と、を有することを特徴とするヒ素含有溶液の処理方法である。
The fourth means is
Adding an oxidizing agent to an acidic arsenic-containing solution containing pentavalent arsenic and trivalent iron and under atmospheric pressure;
And a step of adding divalent iron and an oxidizing agent to the arsenic-containing solution to which the oxidizing agent has been added.

第5の手段は、
前記5価砒素と3価鉄とを含み、大気圧下にある酸性のヒ素含有溶液へ酸化剤を加える工程を経たヒ素含有溶液を、所定期間保管した後、前記2価鉄と酸化剤とを投入する工程を実施することを特徴とする、第4の手段に記載のヒ素含有溶液の処理方法である。
The fifth means is
The arsenic-containing solution containing the pentavalent arsenic and the trivalent iron and subjected to the step of adding an oxidizing agent to the acidic arsenic-containing solution under atmospheric pressure is stored for a predetermined period, and then the divalent iron and the oxidizing agent are added. The method for treating an arsenic-containing solution according to the fourth means, characterized in that the step of charging is performed.

第6の手段は、
前記2価鉄と酸化剤とを投入する工程で得られた反応後液を2価鉄源として、再度、2価鉄と酸化剤とを投入する工程にて添加する、ことを特徴とする第4または第5の手段に記載のヒ素含有溶液の処理方法である。
The sixth means is
The post-reaction liquid obtained in the step of adding the divalent iron and the oxidizing agent is added as a divalent iron source, and is added again in the step of adding the divalent iron and the oxidizing agent. A method for treating an arsenic-containing solution described in the fourth or fifth means.

第7の手段は、
前記酸化剤を加えることとは、酸素ガス、空気、酸素を含むガス、窒素等で希釈された空気、オゾンから選択される1種以上を前記ヒ素含有溶液へ吹き込むことであるか、または、過酸化水素水を前記ヒ素含有溶液へ添加することである、ことを特徴とする第1から第6の手段のいずれかに記載のヒ素含有溶液の処理方法である。
The seventh means is
Adding the oxidant means blowing at least one selected from oxygen gas, air, oxygen-containing gas, air diluted with nitrogen, etc., ozone into the arsenic-containing solution, or excess The method for treating an arsenic-containing solution according to any one of the first to sixth means, wherein hydrogen oxide water is added to the arsenic-containing solution.

本発明に係るヒ素含有溶液の処理方法によれば、ヒ素含有溶液が、3価鉄を始めとする他元素を含有しているときでも、自然発生的なヒ素−鉄化合物の沈殿物が生成することを抑制出来る。   According to the method for treating an arsenic-containing solution according to the present invention, even when the arsenic-containing solution contains other elements such as trivalent iron, a naturally occurring arsenic-iron compound precipitate is generated. Can be suppressed.

本発明を実施するにあたり、ヒ素含有溶液中のヒ素は、5価ヒ素であることが望ましい。もし、含有されるヒ素が3価ヒ素の場合は、予め、5価ヒ素へ酸化しておくことが好ましい。尤も、本発明を実施中に添加する酸化剤量を増加させることで、本発明を実施中に3価ヒ素を5価ヒ素へ酸化することも出来る。   In practicing the present invention, the arsenic in the arsenic-containing solution is preferably pentavalent arsenic. If the arsenic contained is trivalent arsenic, it is preferably oxidized beforehand to pentavalent arsenic. However, trivalent arsenic can be oxidized to pentavalent arsenic during implementation of the present invention by increasing the amount of oxidizing agent added during implementation of the present invention.

本発明を実施するにあたり、ヒ素含有溶液中の含まれている鉄を始めとする元素において、鉄は、3価鉄の鉄化合物または3価鉄イオンであることが望ましい。2価鉄の鉄化合物または2価鉄イオンであると、上述したヒ素の酸化時に、当該2価鉄が3価鉄へ酸化される為、酸化剤の消費が増大するからである。尤も、当該酸化剤の消費増大を許容出来る場合や、2価鉄量が少ない場合は特に問題とならない。   In practicing the present invention, in the elements including iron contained in the arsenic-containing solution, iron is desirably a trivalent iron compound or a trivalent iron ion. This is because, when the iron compound is divalent iron or divalent iron ions, the divalent iron is oxidized to trivalent iron during the above-described oxidation of arsenic, so that the consumption of the oxidizing agent increases. However, there is no particular problem when the increase in consumption of the oxidizing agent can be tolerated or when the amount of divalent iron is small.

自然発生的なヒ素−鉄化合物の沈殿物が生成することを抑制する工程において使用される酸化剤は、酸素ガス、空気、酸素を含むガス、空気を含むガス、窒素等で希釈された空気、オゾン、過酸化水素水のいずれから選択される1種以上を用いることが出来る。
前記酸化剤を加える方法は、酸素ガス、空気、酸素を含むガス、窒素等で希釈された空気、オゾンから選択される1種以上の場合は、ヒ素含有溶液へ吹き込めば良いし、過酸化水素水は、ヒ素含有溶液へ直接添加すれば良い。
尤も、酸化時の形態は気体である方、吹き込み、添加を行いの酸化の程度を制御しやすく、設備費用も安価である。
酸化剤の吹き込み量、添加量は、液量や各種濃度に応じて適宜行えばよく、撹拌も同時に実施してもよい。具体的には、ヒ素含有溶液の状態を観察しながら、酸化剤の吹き込み、添加を行い、自然発生的なヒ素−鉄化合物の沈殿物の生成が起きていないことを確認すれば良い。
The oxidant used in the process of suppressing the formation of naturally occurring arsenic-iron compound precipitates is oxygen gas, air, gas containing oxygen, gas containing air, air diluted with nitrogen, One or more selected from either ozone or hydrogen peroxide water can be used.
The oxidant may be added by blowing into an arsenic-containing solution in the case of at least one selected from oxygen gas, air, gas containing oxygen, air diluted with nitrogen, etc., ozone, Water may be added directly to the arsenic-containing solution.
However, it is easier to control the degree of oxidation when the gas is oxidized, blown or added, and the equipment cost is low.
The amount of the oxidizing agent blown and the amount added may be appropriately determined according to the liquid amount and various concentrations, and the stirring may be performed simultaneously. Specifically, while observing the state of the arsenic-containing solution, an oxidizing agent is blown and added, and it is confirmed that no spontaneous arsenic-iron compound precipitate is generated.

ヒ素含有溶液へ前記酸化剤を吹き込み、添加を行う際、ヒ素含有溶液は大気圧下に置いて実施することが出来るので、装置設備は簡便なものを用いることが出来る。
また、ヒ素含有溶液へ前記酸化剤を吹き込み、添加を行う際、ヒ素含有溶液のpH値は1.5以下、さらには1.0以下とすることが好ましい。当該pH値の制御を行うことで、保管中のヒ素含有溶液における自然発生的なヒ素−鉄化合物の沈殿物生成をさらに抑制することが出来る。pH調整剤としては、水酸化マグネシウム、硫酸、等が好適である。
When the oxidant is blown into the arsenic-containing solution and added, the arsenic-containing solution can be placed under atmospheric pressure, so that the equipment can be simple.
In addition, when the oxidizing agent is blown into the arsenic-containing solution and added, the pH value of the arsenic-containing solution is preferably 1.5 or less, more preferably 1.0 or less. By controlling the pH value, spontaneous arsenic-iron compound precipitate formation in the arsenic-containing solution being stored can be further suppressed. As the pH adjuster, magnesium hydroxide, sulfuric acid and the like are suitable.

さらに、ヒ素含有溶液へ前記酸化剤を吹き込み、添加を行う際、ヒ素含有溶液中の(3価鉄のモル数/5価ヒ素のモル数)の比の値を1以上とすることが好ましい。当該3価鉄のモル数/5価ヒ素のモル数)の比の値を1以上とする制御を行うことで、保管中のヒ素含有溶液における自然発生的なヒ素−鉄化合物の沈殿物生成をさらに抑制することが出来る。処理対象のヒ素含有溶液中の3価鉄のモル数が不足の場合は、さらに、必要量の3価鉄塩を補充添加すれば良い。
当該(3価鉄のモル数/5価ヒ素のモル数)の比の値の上限は、特にはないが、鉄も有用な金属である為、使用量を少なくすることが生産コスト削減の観点から望ましい為、3以下が適宜である。
Furthermore, when the oxidizing agent is blown into the arsenic-containing solution and added, it is preferable that the ratio value of (number of moles of trivalent iron / number of moles of pentavalent arsenic) in the arsenic-containing solution is 1 or more. By controlling the ratio of the ratio of the number of moles of trivalent iron to the number of moles of pentavalent arsenic to be 1 or more, spontaneous precipitation of arsenic-iron compounds in arsenic-containing solutions during storage can be achieved. Further suppression can be achieved. If the number of moles of trivalent iron in the arsenic-containing solution to be treated is insufficient, a necessary amount of trivalent iron salt may be further supplemented.
The upper limit of the ratio value (number of moles of trivalent iron / number of moles of pentavalent arsenic) is not particularly limited, but iron is also a useful metal, so reducing the amount used reduces the production cost. Therefore, 3 or less is appropriate.

前記酸化剤を吹き込んだヒ素含有溶液は、保管しておくことが出来る。当該ヒ素含有溶液の保管中における自然発生的なヒ素−鉄化合物の沈殿物の生成が抑制されているからである。
工業的には、各工程にて発生してくる多様なヒ素含有溶液に、上述の処理を行って自然発生的なヒ素−鉄化合物の沈殿物の生成が抑制した状態で保管しておき、所定量が溜まった時点で、当該ヒ素含有溶液中のヒ素をスコロダイト化、等にすることで処理することが出来る。
当該ヒ素含有溶液の処理方法は、自然発生的なヒ素−鉄化合物の沈殿物の生成が抑制された所定量のヒ素含有溶液から、結晶粒子が大きくヒ素の溶解性の小さなスコロダイト等を生成させるので、処理コストの削減、処理困難な産物の生成抑制の観点から、有効である。
The arsenic-containing solution into which the oxidizing agent is blown can be stored. This is because the spontaneous formation of arsenic-iron compound precipitates during storage of the arsenic-containing solution is suppressed.
Industrially, various arsenic-containing solutions generated in each process are stored in a state where the above-mentioned treatment is performed to suppress the formation of spontaneous arsenic-iron compound precipitates. When the fixed amount is accumulated, the arsenic in the arsenic-containing solution can be treated by making it scorodite or the like.
The arsenic-containing solution treatment method generates scorodite having large crystal particles and low arsenic solubility from a predetermined amount of arsenic-containing solution in which the formation of spontaneously generated arsenic-iron compound precipitates is suppressed. This is effective from the viewpoint of reducing processing costs and suppressing the production of difficult-to-process products.

以下、前記保管されていた所定量のヒ素含有溶液から、スコロダイトを生成させるのに、好適な処理方法例について説明する。尤も、所望により、他の処理方法を適用することも可能である。   Hereinafter, an example of a treatment method suitable for generating scorodite from the stored arsenic-containing solution in a predetermined amount will be described. However, other processing methods can be applied as desired.

前記自然発生的なヒ素−鉄化合物の沈殿物が生成することを抑制する工程を経た後、スコロダイトを生成させる工程を実施する前のヒ素含有溶液の液温は、低い方が自然発生的なヒ素−鉄化合物の沈殿物が生成することを抑制出来る。一方、スコロダイトを生成する時点では、70℃以上の液温が望まれる。   After the step of suppressing the formation of the spontaneously generated arsenic-iron compound precipitate, the lower the temperature of the arsenic-containing solution before the step of generating the scorodite, the lower the naturally occurring arsenic. -Generation | occurrence | production of the precipitate of an iron compound can be suppressed. On the other hand, at the time of producing scorodite, a liquid temperature of 70 ° C. or higher is desired.

また、スコロダイトを生成させるにあたり、生成反応前のヒ素含有溶液中のヒ素濃度は10g(As換算)/L以上に調整することが望ましい。ヒ素濃度が高い方が、スコロダイトの生産性が高く、生成反応も安定し易いからである。さらに好ましくはヒ素濃度が、20〜40g(As換算)/Lあると良い。   Moreover, when producing | generating a scorodite, it is desirable to adjust the arsenic density | concentration in the arsenic containing solution before production | generation reaction to 10 g (As conversion) / L or more. This is because the higher the arsenic concentration, the higher the productivity of scorodite and the easier the formation reaction. More preferably, the arsenic concentration is 20 to 40 g (as conversion) / L.

スコロダイトを生成させる工程において使用される酸化剤も、酸素ガス、空気、酸素を含むガス、空気を含むガス、窒素等で希釈された空気、オゾン、過酸化水素水のいずれから選択される1種以上を用いることが出来る。尤も、形態が気体である方が、酸化の程度を制御しやすく、設備費用も安価である。形態が液体である過酸化水素水は、直接、ヒ素含有溶液中へ添加すれば良い。
当該酸化剤の吹き込み量や添加量は、ヒ素含有溶液量や含有される各種成分濃度に応じて適宜行えばよく、撹拌も同時に実施してもよい。
The oxidizing agent used in the step of generating scorodite is also one selected from oxygen gas, air, oxygen-containing gas, air-containing gas, air diluted with nitrogen, ozone, and hydrogen peroxide water The above can be used. However, if the form is a gas, the degree of oxidation is easier to control, and the equipment cost is lower. What is necessary is just to add the hydrogen peroxide water whose form is a liquid directly in an arsenic containing solution.
The amount of the oxidizing agent blown or added may be appropriately determined according to the amount of the arsenic-containing solution and the concentration of various components contained, and stirring may be performed simultaneously.

当該スコロダイトの生成反応の終期は、例えば、原料溶液中のヒ素濃度をモニターまたは所定時間毎にサンプリングし、当該ヒ素濃度が所定値以下になることで判断することが出来る。さらに、工程が安定していれば反応完了時間を定め、当該時間の経過を以て反応の終期と判断することも可能である。   The end of the scorodite production reaction can be determined, for example, by monitoring the arsenic concentration in the raw material solution or sampling every predetermined time, and when the arsenic concentration falls below a predetermined value. Furthermore, if the process is stable, it is possible to determine a reaction completion time and determine the end of the reaction with the passage of the time.

さらに所望により、当該スコロダイトの生成反応の後半期(全反応時間における後半の50%以後、またはヒ素濃度が70%以上低下した時)において原料溶液のpH値を当初より上昇させる新たな所定値へ再設定し、その後は、当該再設定された所定pH値の所定範囲内(所定pH値の±0.1)に保持するように制御してもよい。当該反応の後半期にpH値を再設定する構成を採ることで、生成するスコロダイトの結晶化が促進され、原料液中のヒ素が消費されることでヒ素濃度が低減する。   Further, if desired, the pH value of the raw material solution may be increased to a new predetermined value from the beginning in the latter half of the scorodite formation reaction (after the second half of the total reaction time, or when the arsenic concentration has decreased by 70% or more). After the resetting, control may be performed so as to maintain the reset within the predetermined range of the predetermined pH value (± 0.1 of the predetermined pH value). By adopting a configuration in which the pH value is reset in the latter half of the reaction, crystallization of the generated scorodite is promoted, and arsenic concentration is reduced by consuming arsenic in the raw material liquid.

一方、原料液中のヒ素の殆どが安定化され、3価鉄の殆どがヒ素の安定化の為に使用される。この結果、得られた反応後液は殆ど2価鉄の溶液となり、当該反応後液は新たな2価鉄源溶液として、再度、スコロダイトを生成させる工程に添加することが出来る。当該構成は、原料コストの削減の観点から好ましい構成である。   On the other hand, most of arsenic in the raw material liquid is stabilized, and most of trivalent iron is used for stabilizing arsenic. As a result, the obtained post-reaction solution is almost a divalent iron solution, and the post-reaction solution can be added again as a new divalent iron source solution to the step of generating scorodite. The said structure is a preferable structure from a viewpoint of reduction of raw material cost.

以上、詳細に説明したように本発明によれば、ヒ素と鉄とが溶液中に共存しているとき、所望も制御もされていないヒ素−鉄の自然発生的反応により、微細であったり、ヒ素の
溶出値が大きなものであったりする鉄−ヒ素化合物の沈殿物が生成することを抑制出来る。
そして、当該溶液中にヒ素と鉄とを共存的に溶解させたまま、当該溶液を安定的に保管することが出来る。
さらに所望時には、当該保管されていた溶液から、粒子径が大きく、ヒ素の溶出が少ない結晶性スコロダイトを生成させることが出来た。その上、当該生成する結晶性スコロダイト粒子は濾過性が良好であり、実操業上のハンドリングに優れるものであった。
As described above in detail, according to the present invention, when arsenic and iron coexist in the solution, the arsenic-iron spontaneous reaction, which is neither desired nor controlled, is fine, It is possible to suppress the formation of a precipitate of an iron-arsenic compound that has a large arsenic elution value.
The solution can be stably stored while arsenic and iron are dissolved in the solution coexistingly.
Furthermore, when desired, a crystalline scorodite having a large particle size and little arsenic elution could be produced from the stored solution. Moreover, the crystalline scorodite particles produced have good filterability and excellent handling in actual operation.

また、好ましいことに本発明の実施は、安価な薬剤と簡易な装置とで実施可能である。また本発明の実施過程で生成するヒ素含有溶液は、非常に簡便に保管出来る上、残さ等の二次的処理を要する生成物も発生しない。従って、酸化剤の添加によるヒ素と3価鉄とのヒ素−鉄反応の抑制効果は、工業的に大いに有益である。   Moreover, it is preferable that the present invention can be implemented with an inexpensive drug and a simple device. In addition, the arsenic-containing solution produced in the process of carrying out the present invention can be stored very easily and does not generate a product that requires secondary treatment such as residue. Therefore, the inhibitory effect of the arsenic-iron reaction between arsenic and trivalent iron due to the addition of the oxidizing agent is very useful industrially.

現実の工業的工程において、ヒ素含有溶液は、排液や残物である為、液組成を一定の品位に保つことが難しい。だからといって、ヒ素のみ、鉄のみ、の溶液として個別組成毎に管理・保管しようとすれば、組成毎の分離処理が必要になりコスト高になってしまう。
しかし、本発明の実施により、まず、ヒ素含有溶液の管理・保管の際は、含有されるヒ素と3価鉄との反応を抑制しておくことにより、コストは圧倒的に減額される。そして、所望の折に、当該管理・保管されているヒ素含有溶液へ、酸化剤、2価鉄、所望により3価鉄を添加することで、結晶粒子が大きく、ヒ素の溶解性の小さな結晶性スコロダイトの生成を可能にしたものである。
In an actual industrial process, since an arsenic-containing solution is a drainage or a residue, it is difficult to keep the liquid composition at a certain quality. However, if an attempt is made to manage and store arsenic-only and iron-only solutions for each individual composition, a separation process for each composition is required, resulting in high costs.
However, by implementing the present invention, first, when managing and storing the arsenic-containing solution, the cost is overwhelmingly reduced by suppressing the reaction between the contained arsenic and trivalent iron. When desired, by adding an oxidizer, divalent iron, and optionally trivalent iron to the arsenic-containing solution that is managed and stored, the crystallinity is large and the arsenic solubility is small. It enables the generation of scorodite.

以下、本発明に関し、実施例を参照しながら説明する。
(実施例1)
1)試験ユニットおよび試験規模
試験容器としては1Lビーカーを使用した。当該試験容器に設置する撹拌装置は、4枚邪魔板付き、2段タービン羽根、回転数600rpmのものを使用した。
尚、1バッチ当たりにおけるヒ素、鉄混合液の処理量は総量で650mLとした。当該実施例1を始め、いずれの実施例も大気圧(常圧)下、室温にて処理を行った。ビーカー等の容器においても圧力制御はしていない。
Hereinafter, the present invention will be described with reference to examples.
Example 1
1) Test unit and test scale A 1 L beaker was used as a test container. The stirring apparatus installed in the test vessel was a four-stage baffle plate, two-stage turbine blade, and a rotation speed of 600 rpm.
The total amount of arsenic and iron mixed solution per batch was 650 mL. In each of the examples including Example 1, the treatment was performed at room temperature under atmospheric pressure (normal pressure). Pressure control is not performed even in containers such as beakers.

2)3価鉄溶液の調製
試薬硫酸鉄(3価)n水和物(Fe品位として21.6%)1,815gを量り取り5Lビーカーに投入し、純水を加えて液量を1,900mLとした。そして、当該溶液を80℃に加温し、攪拌しながら当該硫酸鉄(3価)を溶解させた。
硫酸鉄(3価)溶解後、室温まで放冷し、液量が2,000mLになるように純水を補加し、実施例1および各実施例に係る3価鉄溶液を得た。
分析の結果、当該3価鉄溶液のFe濃度は196g/Lであることが判明した。
2) Preparation of trivalent iron solution
Reagent iron sulfate (trivalent) n hydrate (21.6% as Fe grade) 1,815 g was weighed and put into a 5 L beaker, and pure water was added to make the liquid volume 1,900 mL. And the said solution was heated at 80 degreeC and the said iron sulfate (trivalent) was dissolved, stirring.
After dissolution of iron sulfate (trivalent), the solution was allowed to cool to room temperature, and pure water was supplemented so that the liquid volume became 2,000 mL. Thus, trivalent iron solutions according to Example 1 and each Example were obtained.
As a result of the analysis, it was found that the Fe concentration of the trivalent iron solution was 196 g / L.

3)ヒ素、鉄混合溶液の調製
5価ヒ素として試薬60%砒酸溶液を準備した。
3価鉄として、上述した2)の3価鉄溶液を準備した。
ここで、5価ヒ素試薬60%砒酸溶液と3価鉄溶液と水とを混合して、3価鉄が5価ヒ素総モル量にたいして0.9倍当量(0.9倍モル)となるヒ素と鉄との混合溶液を製造した。
具体的には、試薬60%砒酸溶液32.5mLと、上述した2)の3価鉄溶液55.8mLとを混合し、さらに、水を加えて全量を650mLにした。
こうして得られたヒ素と鉄との混合溶液は、ヒ素濃度25.0g/L、3価鉄濃度16.8g/Lであった。
3) Preparation of Arsenic and Iron Mixed Solution A reagent 60% arsenic acid solution was prepared as pentavalent arsenic.
The trivalent iron solution of 2) described above was prepared as the trivalent iron.
Here, arsenic in which a pentavalent arsenic reagent 60% arsenic acid solution, a trivalent iron solution, and water are mixed to give 0.9 times equivalent (0.9 times mole) of trivalent iron to the total amount of pentavalent arsenic. A mixed solution of iron and iron was produced.
Specifically, 32.5 mL of the reagent 60% arsenic acid solution and 55.8 mL of the trivalent iron solution of 2) described above were mixed, and water was added to make the total amount 650 mL.
The mixed solution of arsenic and iron thus obtained had an arsenic concentration of 25.0 g / L and a trivalent iron concentration of 16.8 g / L.

4)pH調整剤
本実施例においては、pH調整剤としてキシダ化学株式会社製試薬、水酸化マグネシウムMg(OH)(assay min95%)を用いた。
4) pH adjuster In this example, a reagent manufactured by Kishida Chemical Co., Ltd., magnesium hydroxide Mg (OH) 2 (assay min 95%) was used as a pH adjuster.

5)酸化剤の添加
上述したヒ素と鉄との混合溶液を95℃へ加温する。このとき、95℃到達時点で混合溶液のpH値が1を超えないようにする為、加温中に混合溶液へ硫酸を添加した。そして、当該混合溶液の液温が95℃到達時点で、混合溶液のpH値が1となるように、添加する硫酸量を調整した。
混合溶液の液温が95℃、pH1であることを確認して酸化剤の添加を開始し、反応を開始した。酸化剤の添加は、酸素ガスを、反応開始から該溶液中に吹き込むことで行った。
具体的には、酸素ガスを、ガラス管を介してビーカー底部より1L/minで吹き込み、反応終了までの180分間、当該吹き込みを継続した。
5) Addition of oxidizing agent The above-mentioned mixed solution of arsenic and iron is heated to 95 ° C. At this time, in order to prevent the pH value of the mixed solution from exceeding 1 when reaching 95 ° C., sulfuric acid was added to the mixed solution during heating. Then, the amount of sulfuric acid to be added was adjusted so that the pH value of the mixed solution became 1 when the liquid temperature of the mixed solution reached 95 ° C.
After confirming that the liquid temperature of the mixed solution was 95 ° C. and pH 1, addition of the oxidizing agent was started and the reaction was started. The oxidant was added by blowing oxygen gas into the solution from the start of the reaction.
Specifically, oxygen gas was blown from the bottom of the beaker through a glass tube at 1 L / min, and the blowing was continued for 180 minutes until the end of the reaction.

6)反応
混合溶液のpH値は、反応開始当初は1.0であったが、pH調整剤としてMg(OH)を粉末のまま添加し、反応中の溶液のpH値を0.94〜0.98間にて制御した。反応終了後は反応生成物をろ過し、液体成分をICPにより分析した。
当該実施例1に係る反応当初のヒ素濃度および鉄濃度、反応終了後のヒ素濃度および鉄濃度の値、および、反応前後におけるヒ素濃度および鉄濃度の減少率を、表1に記載した。
6) Reaction Although the pH value of the mixed solution was 1.0 at the beginning of the reaction, Mg (OH) 2 was added as a pH adjuster in the form of powder, and the pH value of the solution during the reaction was adjusted to 0.94 to 0.94. Control between 0.98. After completion of the reaction, the reaction product was filtered and the liquid component was analyzed by ICP.
Table 1 shows the arsenic concentration and iron concentration at the beginning of the reaction, the values of arsenic concentration and iron concentration after the completion of the reaction, and the reduction rates of the arsenic concentration and iron concentration before and after the reaction according to Example 1.

(実施例2)
(3価鉄のモル数/5価ヒ素のモル数)の比を1.15とした以外は、実施例1と同様の操作を実施した。
当該実施例2に係る反応当初のヒ素濃度および鉄濃度、反応終了後のヒ素濃度および鉄濃度の値、および、反応前後におけるヒ素濃度および鉄濃度の減少率を、表1に記載した。
(Example 2)
The same operation as in Example 1 was performed except that the ratio of (number of moles of trivalent iron / number of moles of pentavalent arsenic) was 1.15.
Table 1 shows the arsenic concentration and iron concentration at the beginning of the reaction according to Example 2, the values of arsenic concentration and iron concentration after the completion of the reaction, and the reduction rates of the arsenic concentration and iron concentration before and after the reaction.

(比較例1)
酸素添加を行わない以外は、実施例1と同様の操作を実施した。
尚、撹拌は、溶液に大気が巻き込まれない程度の弱撹拌とした。
当該比較例1に係る反応当初のヒ素濃度および鉄濃度、反応終了後のヒ素濃度および鉄濃度の値、および、反応前後におけるヒ素濃度および鉄濃度の減少率を、表1に記載した。
(Comparative Example 1)
The same operation as in Example 1 was performed except that oxygen addition was not performed.
In addition, stirring was made weak stirring so that air | atmosphere might not be involved in a solution.
Table 1 shows the arsenic concentration and iron concentration at the beginning of the reaction according to Comparative Example 1, the values of arsenic concentration and iron concentration after the completion of the reaction, and the reduction rates of the arsenic concentration and iron concentration before and after the reaction.

Figure 2011177651
Figure 2011177651

表1の結果から、3価鉄を含有するヒ素含有溶液へ酸化剤を投入し、撹拌した場合のヒ素の減少率は10%未満であった。これに対し、3価鉄を含有するヒ素含有溶液を撹拌した場合は、弱撹拌であったにも拘らずヒ素の減少率は23%以上であった。
即ち、3価鉄を含有するヒ素含有溶液へ酸化剤を添加することで、ヒ素と3価鉄との反応を抑制出来ることが判明した。即ち、自然発生的なヒ素−鉄化合物の沈殿物が生成することを抑制しながら、当該3価鉄を含有するヒ素含有溶液を出来ることが判明した。
出来る。
From the results in Table 1, the arsenic reduction rate was less than 10% when the oxidant was added to the arsenic-containing solution containing trivalent iron and stirred. On the other hand, when the arsenic-containing solution containing trivalent iron was stirred, the reduction rate of arsenic was 23% or more despite the weak stirring.
That is, it has been found that the reaction between arsenic and trivalent iron can be suppressed by adding an oxidizing agent to the arsenic-containing solution containing trivalent iron. That is, it was found that an arsenic-containing solution containing the trivalent iron can be produced while suppressing the generation of a naturally occurring arsenic-iron compound precipitate.
I can do it.

(実施例3)
1)試験ユニット
ヒ素−鉄混合溶液の調製
5価ヒ素として試薬60%砒酸溶液を準備した。
3価鉄として、上述した2)の3価鉄溶液を準備した。
2価鉄として試薬硫酸鉄(2価)・7水和物を準備した。
(Example 3)
1) Preparation of test unit arsenic-iron mixed solution A reagent 60% arsenic acid solution was prepared as pentavalent arsenic.
The trivalent iron solution of 2) described above was prepared as the trivalent iron.
The reagent iron sulfate (divalent) heptahydrate was prepared as divalent iron.

ここで、5価ヒ素濃度が42g/Lであって、3価鉄が5価ヒ素総モル量に対して0.75倍当量(0.75倍モル)存在するヒ素と3価鉄との混合溶液を製造した。
具体的には、試薬60%砒酸溶液72mLと、上述した2)の3価鉄溶液103mLと、純水670mLとを混合した。
こうして得られた5価ヒ素と3価鉄との混合溶液は、ヒ素濃度42.6g/L、3価鉄濃度23.9g/Lであった。
次に、当該混合溶液へ、5価ヒ素総モル量にたいして0.75倍当量(0.75倍モル)の2価鉄を添加した。
具体的には、当該上記混合溶液に、試薬硫酸鉄(2価)・7水和物100gを添加し、完全に溶解させて混合した。
こうして得られた5価ヒ素と3価鉄と2価鉄との混合溶液は、5価ヒ素濃度40.4g/L、3価鉄濃度22.7g/L、2価鉄濃度22.6g/Lであった。当該5価ヒ素と3価鉄と2価鉄との混合溶液を、スコロダイト生成用の原料液とした。
Here, a mixture of arsenic and trivalent iron in which the concentration of pentavalent arsenic is 42 g / L and trivalent iron is present 0.75 times equivalent (0.75 times mol) to the total molar amount of pentavalent arsenic A solution was prepared.
Specifically, 72 mL of a 60% arsenic acid solution, 103 mL of the trivalent iron solution of 2) described above, and 670 mL of pure water were mixed.
The mixed solution of pentavalent arsenic and trivalent iron thus obtained had an arsenic concentration of 42.6 g / L and a trivalent iron concentration of 23.9 g / L.
Next, 0.75 times equivalent (0.75 times mol) of divalent iron was added to the mixed solution.
Specifically, 100 g of the reagent iron sulfate (divalent) heptahydrate was added to the mixed solution and completely dissolved and mixed.
The mixed solution of pentavalent arsenic, trivalent iron and divalent iron thus obtained has a pentavalent arsenic concentration of 40.4 g / L, a trivalent iron concentration of 22.7 g / L, and a divalent iron concentration of 22.6 g / L. Met. The mixed solution of pentavalent arsenic, trivalent iron and divalent iron was used as a raw material solution for producing scorodite.

pH調整剤
本実施例においては、pH調整剤としてキシダ化学株式会社製試薬、水酸化マグネシウムMg(OH)(assay min95%)を準備した。
pH adjuster In this example, a reagent manufactured by Kishida Chemical Co., Ltd., magnesium hydroxide Mg (OH) 2 (assay min 95%) was prepared as a pH adjuster.

2)スコロダイト生成反応
上述した原料液を95℃へ加温する。このとき、95℃到達時点で混合溶液のpH値を1とする為、加温中に原料液へpH調整剤(水酸化マグネシウム)を添加した。
2) Scorodite formation reaction
The raw material liquid mentioned above is heated to 95 ° C. At this time, in order to set the pH value of the mixed solution to 1 when reaching 95 ° C., a pH adjuster (magnesium hydroxide) was added to the raw material solution during heating.

原料液の液温が95℃、pH1であることを確認し、酸化剤の添加を開始しスコロダイト生成反応開始とした。尚、酸化剤には酸素ガスを用い、当該酸素ガスを、ガラス管を介しビーカー底部より1L/minで吹き込んだ。   After confirming that the liquid temperature of the raw material liquid was 95 ° C. and pH 1, the addition of the oxidizing agent was started to start the scorodite production reaction. Note that oxygen gas was used as the oxidizing agent, and the oxygen gas was blown through the glass tube from the bottom of the beaker at 1 L / min.

原料液のpH値は、反応開始当初は1.0であったが、反応中においてはpH調整剤(水酸化マグネシウム)を粉末のまま添加し、溶液のpH値を0.93〜0.99間にて制御した。次いで、反応開始から120分間後に溶液のpH値を2.0迄上昇させ、pH値を1.96〜2.0間にてさらに60分間制御した。結局、スコロダイト生成反応時間は、全体で3時間となった。
反応終了後は生成物を濾過し、反応後液と生成残さ(スコロダイト)とを得た。なお、本実施例において濾過は極めてスムーズに進行し、10秒間とかからず数秒間で完了した。
The pH value of the raw material liquid was 1.0 at the beginning of the reaction, but during the reaction, a pH adjuster (magnesium hydroxide) was added as a powder, and the pH value of the solution was adjusted to 0.93 to 0.99. Controlled in between. Then, 120 minutes after the start of the reaction, the pH value of the solution was raised to 2.0, and the pH value was controlled between 1.96 and 2.0 for an additional 60 minutes. Eventually, the scorodite production reaction time was 3 hours in total.
After completion of the reaction, the product was filtered to obtain a post-reaction solution and a product residue (scorodite). In this example, the filtration proceeded very smoothly and was completed in a few seconds instead of 10 seconds.

本例に係る液成分の反応時間毎における各元素の濃度と、原料液に対する反応後液における各元素の減少率とを表2に示す。

Figure 2011177651
Table 2 shows the concentration of each element for each reaction time of the liquid component according to this example and the decreasing rate of each element in the post-reaction liquid with respect to the raw material liquid.
Figure 2011177651

表2の結果から、本発明により当初のヒ素−鉄混合溶液中のヒ素の99%が安定化されたことが判明した。 また、当初のヒ素−鉄混合溶液中の3価鉄の99%が、ヒ素の安定化の為に使用されたことが判明した。これに対し、当初のヒ素−鉄混合溶液中の2価鉄は34%が使用されたことが判明した。
当該結果より、得られた反応後液は殆ど2価鉄の溶液であり、再度、当該反応後液は新たな2価鉄源溶液としてスコロダイトを生成させる工程に添加することが出来ることも判明した。
From the results of Table 2, it was found that 99% of arsenic in the original arsenic-iron mixed solution was stabilized by the present invention. It was also found that 99% of the trivalent iron in the original arsenic-iron mixed solution was used for arsenic stabilization. On the other hand, it was found that 34% of the divalent iron in the original arsenic-iron mixed solution was used.
From the results, it was also found that the obtained post-reaction solution is almost a divalent iron solution, and that the post-reaction solution can be added again to the step of generating scorodite as a new divalent iron source solution. .

3)生成したスコロダイトの評価
反応終了時点で得られた濾過物を純水洗浄した後、X線回折測定を行ってスコロダイト生成状況を評価した。当該X線回折結果より、反応終了時点での濾過物には、スコロダイト(FeAsO・2HO)の結晶を示すシャープなピークが、広い回折角の範囲で確認された。これから、得られた濾過物はスコロダイト結晶であると同定した。
尚、得られたスコロダイトの粒子径は20μmであった。
3) Evaluation of produced scorodite The filtrate obtained at the end of the reaction was washed with pure water and then subjected to X-ray diffraction measurement to evaluate the scorodite production status. From the X-ray diffraction results, a sharp peak indicating a scorodite (FeAsO 4 .2H 2 O) crystal was confirmed in a wide diffraction angle range in the filtrate at the end of the reaction. From this, the obtained filtrate was identified as scorodite crystals.
The obtained scorodite had a particle size of 20 μm.

Claims (7)

5価ヒ素と3価鉄とを含み大気圧下にある酸性のヒ素含有溶液へ、酸化剤を加えることを特徴とする、ヒ素含有溶液の処理方法。   A method for treating an arsenic-containing solution, which comprises adding an oxidizing agent to an acidic arsenic-containing solution containing pentavalent arsenic and trivalent iron at atmospheric pressure. 前記酸化剤を加える際に、前記ヒ素含有溶液のpH値を1以下とすることを特徴とする、請求項1に記載のヒ素含有溶液の処理方法。   The method for treating an arsenic-containing solution according to claim 1, wherein the pH value of the arsenic-containing solution is set to 1 or less when the oxidizing agent is added. 前記ヒ素含有溶液の(3価鉄のモル数/5価ヒ素のモル数)の値を1以上とすることを特徴とする、請求項1または2に記載のヒ素含有溶液の処理方法。   The method for treating an arsenic-containing solution according to claim 1 or 2, wherein the value of (number of moles of trivalent iron / number of moles of pentavalent arsenic) of the arsenic-containing solution is 1 or more. 5価砒素と3価鉄とを含み、大気圧下にある酸性のヒ素含有溶液へ酸化剤を加える工程と、
前記酸化剤を加えられたヒ素含有溶液へ、2価鉄と酸化剤とを投入する工程と、を有することを特徴とするヒ素含有溶液の処理方法。
Adding an oxidizing agent to an acidic arsenic-containing solution containing pentavalent arsenic and trivalent iron and under atmospheric pressure;
And a step of introducing divalent iron and an oxidizing agent into the arsenic-containing solution to which the oxidizing agent has been added.
前記5価砒素と3価鉄とを含み、大気圧下にある酸性のヒ素含有溶液へ酸化剤を加える工程を経たヒ素含有溶液を、所定期間保管した後、前記2価鉄と酸化剤とを投入する工程を実施することを特徴とする請求項4に記載のヒ素含有溶液の処理方法。   The arsenic-containing solution containing the pentavalent arsenic and the trivalent iron and subjected to the step of adding an oxidizing agent to the acidic arsenic-containing solution under atmospheric pressure is stored for a predetermined period, and then the divalent iron and the oxidizing agent are added. The method for treating an arsenic-containing solution according to claim 4, wherein a step of charging is performed. 前記2価鉄と酸化剤とを投入する工程で得られた反応後液を2価鉄源として、再度、2価鉄と酸化剤とを投入する工程にて添加する、ことを特徴とする請求項4または5に記載のヒ素含有溶液の処理方法。   The post-reaction liquid obtained in the step of adding the divalent iron and the oxidizing agent is added again in the step of adding the divalent iron and the oxidizing agent as a divalent iron source. Item 6. A method for treating an arsenic-containing solution according to Item 4 or 5. 前記酸化剤を加えることとは、酸素ガス、空気、酸素を含むガス、窒素等で希釈された空気、オゾンから選択される1種以上を前記ヒ素含有溶液へ吹き込むことであるか、または、過酸化水素水を前記ヒ素含有溶液へ添加することである、ことを特徴とする請求項1から6のいずれかに記載のヒ素含有溶液の処理方法。   Adding the oxidant means blowing at least one selected from oxygen gas, air, oxygen-containing gas, air diluted with nitrogen, etc., ozone into the arsenic-containing solution, or excess The method for treating an arsenic-containing solution according to claim 1, wherein hydrogen oxide water is added to the arsenic-containing solution.
JP2010044388A 2010-03-01 2010-03-01 Arsenic-containing solution treatment method Pending JP2011177651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010044388A JP2011177651A (en) 2010-03-01 2010-03-01 Arsenic-containing solution treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044388A JP2011177651A (en) 2010-03-01 2010-03-01 Arsenic-containing solution treatment method

Publications (1)

Publication Number Publication Date
JP2011177651A true JP2011177651A (en) 2011-09-15

Family

ID=44689787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044388A Pending JP2011177651A (en) 2010-03-01 2010-03-01 Arsenic-containing solution treatment method

Country Status (1)

Country Link
JP (1) JP2011177651A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820587A (en) * 2013-12-11 2014-05-28 昆明理工大学 Method for removing arsenic from arsenic-containing iron-rich slag by volatilization
US20140356261A1 (en) * 2013-05-29 2014-12-04 Barrick Gold Corporation Method for arsenic oxidation and removal from process and waste solutions
CN113755696A (en) * 2021-08-06 2021-12-07 衢州华友钴新材料有限公司 Method for selectively removing arsenic from arsenic-containing acidic solution
CN114235516A (en) * 2021-11-12 2022-03-25 福建傲农生物科技集团股份有限公司 Method for detecting total arsenic content in zeolite powder

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206080A (en) * 1993-01-12 1994-07-26 Akita Seiren Kk Removal of arsenic from acidic solution containing arsenic and iron
JP2008126104A (en) * 2006-11-17 2008-06-05 Dowa Metals & Mining Co Ltd Method of treating arsenic-containing liquid
JP2008231478A (en) * 2007-03-19 2008-10-02 Nikko Kinzoku Kk Method for producing scorodite
JP2008540824A (en) * 2005-05-03 2008-11-20 オウトテック オサケイティオ ユルキネン Method for recovering valuable metals and arsenic from solution
JP2009018978A (en) * 2007-07-13 2009-01-29 Dowa Metals & Mining Co Ltd Method for treating arsenic
JP2009018291A (en) * 2007-07-13 2009-01-29 Dowa Metals & Mining Co Ltd Method for treating arsenic, where seed crystals are added
JP2009022866A (en) * 2007-07-19 2009-02-05 Dowa Metals & Mining Co Ltd Iron-arsenic compound synthesizer
JP2009050769A (en) * 2007-08-24 2009-03-12 Dowa Metals & Mining Co Ltd Treatment method of arsenic-containing solution
JP2009079237A (en) * 2007-09-25 2009-04-16 Nikko Kinzoku Kk Process for producing scorodite, and process for recycling post-scorodite-synthesis solution
JP2010043359A (en) * 2009-10-26 2010-02-25 Nippon Mining & Metals Co Ltd Method for producing scorodite and method for recycling after-synthesis-solution of scorodite
WO2010094841A1 (en) * 2009-02-23 2010-08-26 Outotec Oyj Method for removing arsenic as scorodite

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206080A (en) * 1993-01-12 1994-07-26 Akita Seiren Kk Removal of arsenic from acidic solution containing arsenic and iron
JP2008540824A (en) * 2005-05-03 2008-11-20 オウトテック オサケイティオ ユルキネン Method for recovering valuable metals and arsenic from solution
JP2008126104A (en) * 2006-11-17 2008-06-05 Dowa Metals & Mining Co Ltd Method of treating arsenic-containing liquid
JP2008231478A (en) * 2007-03-19 2008-10-02 Nikko Kinzoku Kk Method for producing scorodite
JP2009018978A (en) * 2007-07-13 2009-01-29 Dowa Metals & Mining Co Ltd Method for treating arsenic
JP2009018291A (en) * 2007-07-13 2009-01-29 Dowa Metals & Mining Co Ltd Method for treating arsenic, where seed crystals are added
JP2009022866A (en) * 2007-07-19 2009-02-05 Dowa Metals & Mining Co Ltd Iron-arsenic compound synthesizer
JP2009050769A (en) * 2007-08-24 2009-03-12 Dowa Metals & Mining Co Ltd Treatment method of arsenic-containing solution
JP2009079237A (en) * 2007-09-25 2009-04-16 Nikko Kinzoku Kk Process for producing scorodite, and process for recycling post-scorodite-synthesis solution
WO2010094841A1 (en) * 2009-02-23 2010-08-26 Outotec Oyj Method for removing arsenic as scorodite
JP2010043359A (en) * 2009-10-26 2010-02-25 Nippon Mining & Metals Co Ltd Method for producing scorodite and method for recycling after-synthesis-solution of scorodite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140356261A1 (en) * 2013-05-29 2014-12-04 Barrick Gold Corporation Method for arsenic oxidation and removal from process and waste solutions
US10077487B2 (en) * 2013-05-29 2018-09-18 Barrick Gold Corporation Method for arsenic oxidation and removal from process and waste solutions
CN103820587A (en) * 2013-12-11 2014-05-28 昆明理工大学 Method for removing arsenic from arsenic-containing iron-rich slag by volatilization
CN103820587B (en) * 2013-12-11 2016-06-22 昆明理工大学 A kind of method containing dearsenization of volatilizing in arsenic richness scum
CN113755696A (en) * 2021-08-06 2021-12-07 衢州华友钴新材料有限公司 Method for selectively removing arsenic from arsenic-containing acidic solution
CN114235516A (en) * 2021-11-12 2022-03-25 福建傲农生物科技集团股份有限公司 Method for detecting total arsenic content in zeolite powder

Similar Documents

Publication Publication Date Title
US8110162B2 (en) Method of processing copper arsenic compound
US8092765B2 (en) Method of processing non-ferrous smelting intermediates containing arsenic
US8092764B2 (en) Method of processing non-ferrous smelting intermediate containing arsenic
WO2007125627A1 (en) Method of treating arsenic-containing solution
JP5694847B2 (en) Method for producing high purity calcium carbonate
WO2011132729A1 (en) Method for producing crystalline iron arsenate starting material liquid from smoke and ash
JP2008231478A (en) Method for producing scorodite
JP6286155B2 (en) Method for producing crystalline iron arsenate from a solution containing pentavalent arsenic
JP2011177651A (en) Arsenic-containing solution treatment method
JP5571517B2 (en) Separation of copper and arsenic from non-ferrous smelting intermediates containing copper and arsenic
JP2009018978A (en) Method for treating arsenic
JP5662036B2 (en) Method for producing crystalline iron arsenate from a solution containing arsenic
JP2010284581A (en) METHOD OF REMOVING Cu ION FROM ARSENIC ACID SOLUTION
JP4778111B1 (en) Magnesium hydroxide and method for producing the same
JP5070525B2 (en) Thallium-containing iron and arsenic compound, process for producing the same, and method for treating arsenic and thallium-containing aqueous solution
JP2016079078A (en) Producing method of crystalline ferrous arsenate from solution containing pentavalent arsenic
JP7044082B2 (en) Method for producing acidic slurry and method for recovering rare earth elements
JP4913649B2 (en) Method for producing pentavalent arsenic-containing liquid
JP6480237B2 (en) Method of manufacturing scorodite
JP7151916B2 (en) Method for producing acidic slurry and method for recovering rare earth elements
JP2952726B2 (en) Method for producing aqueous manganese bromide solution
JP2011038159A (en) Method for recovering molybdenum from waste water containing strong acid
JP6449706B2 (en) Method for producing scorodite
JP2014070011A (en) Production method of polyferric sulfate solution
KR20150076274A (en) Method for removing magnesium impurities in a manganese compound manufacturing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401