JP2011177206A - Shoes equipped with cushioning members - Google Patents

Shoes equipped with cushioning members Download PDF

Info

Publication number
JP2011177206A
JP2011177206A JP2010041591A JP2010041591A JP2011177206A JP 2011177206 A JP2011177206 A JP 2011177206A JP 2010041591 A JP2010041591 A JP 2010041591A JP 2010041591 A JP2010041591 A JP 2010041591A JP 2011177206 A JP2011177206 A JP 2011177206A
Authority
JP
Japan
Prior art keywords
corrugated
buffer
corrugated plate
shoe
plate body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010041591A
Other languages
Japanese (ja)
Other versions
JP5564286B2 (en
Inventor
Manabu Mikuni
学 三國
Akihiro Okano
暁洋 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taika Corp
Original Assignee
Taika Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taika Corp filed Critical Taika Corp
Priority to JP2010041591A priority Critical patent/JP5564286B2/en
Publication of JP2011177206A publication Critical patent/JP2011177206A/en
Application granted granted Critical
Publication of JP5564286B2 publication Critical patent/JP5564286B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide shoes with cushioning members enhancing cushioning function and repulsion function especially of heel parts while holding feet in a stable state even in the thin type shoes. <P>SOLUTION: In the shoes or the like having cushioning members including viscoelastic bodies (a) and corrugated plate body (b), the viscoelastic bodies (a) have a hardness of 5 to 250 in penetration (JIS K2207) or 0 to 40 in Asker hardness (C type), the corrugated plate body (b) has higher hardness than that of the viscoelastic body (a) and elasticity extending and deforming in a corrugate continuous direction, all or a part of the corrugated plate body (b) is buried in the viscoelastic body (a) toward corrugated shape mountain top part in a pressure receiving direction of the cushioning member when landing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、緩衝部材を備えたシューズに関し、特にヒール部の緩衝機能を向上させた緩衝部材を備えたシューズに関する。   The present invention relates to a shoe provided with a buffer member, and more particularly to a shoe provided with a buffer member having an improved buffer function of a heel portion.

アスリート用スポーツシューズをはじめ、ウォーキングシューズからビジネスシューズに至る広い範囲で、履物、特にスポーツシューズには、軽量であることや、足を安定・快適な状態に保持するフィット感があること、その他に、着地の衝撃を吸収して緩和する緩衝機能が高いこと等が要求され、中でも最適な衝撃吸収の追求が求められている。
特にスポーツ用、ウォーキング用等のシューズにあっては、その用途に応じた最適な衝撃吸収の追求を図るべく、鋭意多くの研究開発がなされている。例えば、ゲル状素材等の柔軟な素材をソール部に組み込んで、緩衝機能を向上させ、着地時の足への負担軽減を両立させようとすることが行われている。この技術的追求は、シューズの目的に応じた使用者の挙動や、衝撃の実態分析等をふまえながら、素材そのものの開発から、緩衝部材の形状面の工夫等に及んでいる。
In a wide range from sports shoes for athletes to walking shoes to business shoes, footwear, especially sports shoes, is lightweight and has a fit that keeps the foot stable and comfortable, and others In addition, it is required to have a high buffering function for absorbing and relaxing the impact of landing, and in particular, the pursuit of optimal shock absorption is required.
Especially for shoes for sports, walking, etc., a lot of research and development has been conducted in order to pursue optimal shock absorption according to the application. For example, a flexible material such as a gel material is incorporated into the sole portion to improve the buffer function and to reduce the burden on the foot when landing. This technical pursuit extends from the development of the material itself to the design of the shape of the cushioning member, based on the behavior of the user according to the purpose of the shoe and the actual analysis of the impact.

このような要請に応えたものとして、例えば、本出願人が提案した発明が先行技術として存在する(特許文献1〜5参照。)。
これらの技術によって、高次元で緩衝性を発揮し、且つ視覚的にもその機能を確認することのできるシューズが市場に提供されている。
しかしながら、本出願人は、このような市場の高評価に甘んずることなく、更なる改良を試行し続けている。特に、例えば踵に対する衝撃の有り様も、単に上方からの圧縮荷重だけでなく、荷重による重心の安定性とつま先方向への荷重移動を望ましい方向に補正する誘導性に着目し、それに適した構造を究明すべく、鋭意開発を試みている。
As a response to such a request, for example, the invention proposed by the present applicant exists as a prior art (see Patent Documents 1 to 5).
With these technologies, shoes that provide a high level of cushioning and can visually confirm the function are provided on the market.
However, the Applicant continues to try further improvements without being relieved by such high evaluation of the market. In particular, for example, the impact on the heel is not only a compressive load from above, but also focusing on the stability of the center of gravity due to the load and the inductivity to correct the load movement in the toe direction in the desired direction, and a structure suitable for it In order to investigate, I am trying hard development.

すなわち従来は、靴のヒール部、つま先部等、比較的作用部位を大きくとらえ、例えばヒール部では、踵直下での着地衝撃を緩衝させることに専ら主眼が置かれ、より衝撃緩衝性の向上が追及されていたが、一般に緩衝性能を追及すると、緩衝部材は、柔らかくダンピング性に優れたものが適用されるため、柔らかいが故に受圧変形しやすいため足裏の重心点が不安定になり易く、また、受圧変形時の底付き防止の観点から、ある程度の厚みが必要であり、靴底が厚くなって、使用者の重心が高く、歩行(走行)しにくくなったり、靴が重くなるなどの弊害があった。一方、上記の弊害を回避するために、緩衝部材を硬くして反発機能を高めると、緩衝性能が損なわれるという、二律背反の関係にあり、着地時の重心安定性と衝撃緩衝性とを両立することは困難であった。
また、子供用シューズは、大人用シューズから相似的にシューズ自体小型化させるが、足の保護は、大人以上に配慮しなければならないため、実際にはミッドソールやその内部に入る緩衝部材を相似的に薄くすることは望ましくないので、結果として、シューズの全体高さに対して緩衝部材を厚くせざるを得ず、重心が高くなって、走行安定性が悪くなり、子供の足への負担が成人に比べて大きくなることが問題視される。他方、デザイン性の観点では、設計の自由度が制限されるため、従来より薄くて優れた緩衝性と重心安定性を確保できる緩衝部材が要望されていた。
最近では、緩衝機能等の諸機能に加え、着用者の運動能力を高めるための反発機能を備えた靴が提案されている(例えば、特許文献6参照。)が、緩衝性能は、緩衝材の厚みに依存しているため、依然として、子供用シューズなどに小型化して転用できるものではなかった。
In other words, conventionally, a relatively large area of action, such as the heel and toe of a shoe, is taken. For example, in the heel, the main focus has been on buffering the landing impact directly under the heel, improving the impact buffering ability. In general, when pursuing cushioning performance, a cushioning member that is soft and excellent in damping properties is applied, so it is easy to receive pressure deformation because it is soft, so the center of gravity of the sole tends to be unstable, In addition, from the viewpoint of preventing bottoming during pressure deformation, a certain amount of thickness is required, the shoe sole is thick, the center of gravity of the user is high, and it is difficult to walk (run), the shoes are heavy, etc. There was an evil. On the other hand, in order to avoid the above-mentioned adverse effects, if the buffer member is hardened and the resilience function is enhanced, the buffering performance is impaired, and there is a contradictory relationship, and both the stability of the center of gravity at the time of landing and the shock buffering property are compatible. It was difficult.
In addition, children's shoes are reduced in size from shoes for adults in a similar manner, but since foot protection must be taken into consideration more than adults, in reality the midsole and the cushioning material that enters it are similar. As a result, the cushioning member must be made thicker than the overall height of the shoe, resulting in a high center of gravity, poor running stability, and a burden on the child's feet. Is seen as a problem compared to adults. On the other hand, from the viewpoint of designability, the degree of freedom of design is limited, and therefore, a buffer member that is thinner than the conventional one and can secure excellent buffering property and stability of the center of gravity has been desired.
Recently, in addition to various functions such as a buffering function, shoes having a repulsive function for enhancing the wearer's athletic ability have been proposed (see, for example, Patent Document 6). Because it depends on the thickness, it was still not possible to divert it to children's shoes.

特開2006−288907号公報JP 2006-288907 A 特開2008−061853号公報JP 2008-061853 A 特開2007−319394号公報JP 2007-319394 A 特開2007−222545号公報JP 2007-222545 A 特開2009−022449号公報JP 2009-022449 A 国際公開WO2006/120749号International Publication No. WO2006 / 120749

本発明の目的は、上記従来技術の問題点に鑑み、薄型でも足を安定した状態で保持しつつ、特にヒール部の緩衝機能と反発機能を向上させた緩衝部材を備えたシューズを提供することにある。   An object of the present invention is to provide a shoe provided with a cushioning member that has improved the cushioning function and the resilience function of the heel part while maintaining a stable foot even in a thin shape, in view of the above-mentioned problems of the prior art. It is in.

本発明者らは、上記課題を解決すべく鋭意検討した結果、シューズのヒール部において、実際の緩衝部材の変形について考察すると、従来の緩衝部材は、受圧部分の厚み方向の集中的な変形による緩衝作用が支配的であり、特に、緩衝部材が柔軟になるほど、また、緩衝部材が薄くなるほど、前記のような受圧部集中型の緩衝作用が顕著となっていることがわかった。そして、受圧部とともに受圧部以外の部分も変形させて、緩衝部材全体に緩衝作用を発現させれば、素材の柔らかさを活かしつつ薄型化できる、と想到するに至り、さらに、緩衝部材の硬さや形状に焦点を当てて、弾性変形可能な素材である低硬度ゴムやゲルなどの粘弾性素材からなる緩衝部材中に、前記粘弾性素材とは異質の波板体を埋め込んだ構造とすることにより、受圧時に緩衝部材の内部に存在する波板体が、次第に波形状が潰れるように横方向へと延伸する動きを利用して、前記波板体に接する面の粘弾性素材を前記波板体の延伸に伴わさせて、粘弾性素材外部だけでなく内部からの変形をも、衝撃吸収へと置換する機能を発現させることができ、また、波板体の内在により、緩衝部材の厚み変形に適度な張り(コシ)が付加できるので、その結果、緩衝材全体で衝撃緩衝作用されて、従来行われていた緩衝機能向上として、緩衝素材を柔らかくしたり厚くすることなく、二律背反の関係にあった薄さや重心を低くし、安定性を確保することが可能となり、もって、緩衝機能の格段の向上と、重心安定性が向上したものになり、さらに、デザイン設計の自由度が得られることを見出した。そして、本発明は、これらの知見に基づき、完成するに至ったものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors consider the actual deformation of the shock-absorbing member in the heel portion of the shoe. The conventional shock-absorbing member is due to intensive deformation in the thickness direction of the pressure-receiving portion. It was found that the buffering action is dominant, and in particular, as the buffering member becomes more flexible and the buffering member becomes thinner, the pressure receiving part concentration type buffering action becomes more prominent. Then, if the parts other than the pressure receiving part are also deformed together with the pressure receiving part so that the entire buffer member exhibits a buffering action, it is conceived that the thickness can be reduced while taking advantage of the softness of the material. Focus on the sheath shape, and make a structure in which a corrugated body different from the viscoelastic material is embedded in a cushioning member made of a viscoelastic material such as low-hardness rubber or gel that is elastically deformable. Accordingly, the corrugated plate material existing on the inside of the buffer member at the time of pressure reception is used to move the viscoelastic material on the surface in contact with the corrugated plate member using the movement of extending in the lateral direction so that the wave shape gradually collapses. Along with the stretching of the body, the function of replacing not only the viscoelastic material but also the deformation from the inside into the shock absorption can be expressed, and the thickness deformation of the buffer member due to the presence of the corrugated plate body Appropriate tension can be added to So, as a result, the shock-absorbing action is exerted on the entire cushioning material, and as a conventional buffering function improvement, the cushioning material is not softened or thickened, and the thinness and center of gravity that are in a trade-off relationship are lowered and stable As a result, it has been found that the buffer function and the stability of the center of gravity are improved, and that the degree of freedom in design can be obtained. The present invention has been completed based on these findings.

すなわち、本発明の第1の発明によれば、粘弾性体(a)と波板体(b)からなる緩衝部材を備えたシューズであって、粘弾性体(a)は、針入度(JIS K2207)が5〜250又はアスカー硬度(C型)が0〜40の硬度を有するとともに、波板体(b)は、粘弾性体(a)より高い硬度と、波形連続方向に延伸変形する弾性とを有し、着地時の緩衝部材の受圧方向に波形山頂部へ向けて、粘弾性体(a)に、全体または全体の一部を埋設されてなることを特徴とする緩衝部材を備えたシューズが提供される。   That is, according to the first invention of the present invention, the shoe includes a cushioning member made of a viscoelastic body (a) and a corrugated body (b), and the viscoelastic body (a) has a penetration ( JIS K2207) has a hardness of 5 to 250 or Asker hardness (C type) of 0 to 40, and the corrugated body (b) has a higher hardness than the viscoelastic body (a) and is stretched and deformed in the waveform continuous direction. A buffer member characterized in that it is embedded in the viscoelastic body (a) in the pressure receiving direction of the buffer member at the time of landing toward the corrugated peak. Shoes are provided.

また、本発明の第2の発明によれば、第1の発明において、前記緩衝部材は、受圧変形する受圧緩衝部(A)とその周辺に受圧緩衝部(A)の変形に連動して変形する連動緩衝部(B)とを有する略板状体または略円柱体であって、波板体(b)の全部または一部が、受圧緩衝部(A)と連動緩衝部(B)を貫通するように、粘弾性体(a)に埋設された構成からなり、受圧緩衝部(A)の受圧変形に連動して、受圧緩衝部(A)を起点とした波板体(b)の延伸変形によって、連動緩衝部(B)が該延伸変形の方向に変形される緩衝作用と、波板体(b)の延伸変形しない方向の粘弾性体(a)の受圧変形による緩衝作用とが共動することを特徴とする緩衝部材を備えたシューズが提供される。
さらに、本発明の第3の発明によれば、第1又は2の発明において、波板体(b)は、さらに、撓み変形する可撓性を有し、及び粘弾性体(a)は、着地面側に波板体湾曲誘発部を設けることを特徴とする緩衝部材を備えたシューズが提供される。
According to the second invention of the present invention, in the first invention, the buffer member is deformed in conjunction with the deformation of the pressure receiving buffer portion (A) around the pressure receiving buffer portion (A) that receives pressure deformation. A substantially plate-like body or a substantially cylindrical body having an interlocking buffering portion (B) that passes through, and all or part of the corrugated plate body (b) penetrates the pressure receiving buffering portion (A) and the interlocking buffering portion (B). The wave plate body (b) extends from the pressure-receiving buffer portion (A) as a starting point in conjunction with the pressure-receiving deformation of the pressure-receiving buffer portion (A). The buffering action in which the interlocking buffer (B) is deformed in the direction of the stretching deformation by the deformation and the buffering action by the pressure receiving deformation of the viscoelastic body (a) in the direction in which the corrugated body (b) is not stretched and deformed are combined. A shoe is provided with a cushioning member characterized by movement.
Furthermore, according to the third invention of the present invention, in the first or second invention, the corrugated body (b) further has flexibility to bend and deform, and the viscoelastic body (a) There is provided a shoe provided with a cushioning member, characterized in that a corrugated plate curve inducing portion is provided on the landing side.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、波板体(b)の受圧下面側の凸型形状部の少なくとも一部に、粘弾性体(a)を介して、または直接隣接して、中空部分を有することを特徴とする緩衝部材を備えたシューズが提供される。
さらに、本発明の第5の発明によれば、第1〜4のいずれかの発明において、前記緩衝部材が長尺形状であり、及び波板体(b)は、波板体(b)の延伸変形の方向が緩衝部材の長尺方向に倣うように配置されてなることを特徴とする緩衝部材を備えたシューズが提供される。
According to the fourth invention of the present invention, in any one of the first to third inventions, the viscoelastic body (a ) Or directly adjacent to it, there is provided a shoe with a cushioning member characterized by having a hollow portion.
Furthermore, according to the fifth invention of the present invention, in any one of the first to fourth inventions, the buffer member has an elongated shape, and the corrugated plate body (b) is the corrugated plate body (b). A shoe provided with a buffer member is provided, wherein the shoe is arranged so that the direction of stretching deformation follows the longitudinal direction of the buffer member.

また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、波板体(b)は、材料が樹脂であり、波形が三角波または弦波であることを特徴とする緩衝部材を備えたシューズが提供される。
さらに、本発明の第7の発明によれば、第1〜6のいずれかの発明において、波板体(b)は、JIS K6385準拠による圧縮ばね定数が1×10〜1×10N/mであり、かつ前記粘弾性体(a)の圧縮ばね定数に対する波板体の圧縮ばね定数の比が0.1〜10であることを特徴とする緩衝部材を備えたシューズが提供される。
According to a sixth invention of the present invention, in any one of the first to fifth inventions, the corrugated plate (b) is characterized in that the material is a resin and the waveform is a triangular wave or a chord wave. A shoe with a cushioning member is provided.
Furthermore, according to the seventh invention of the present invention, in any one of the first to sixth inventions, the corrugated plate body (b) has a compression spring constant according to JIS K6385 of 1 × 10 3 to 1 × 10 6 N. / M, and a ratio of a compression spring constant of the corrugated plate body to a compression spring constant of the viscoelastic body (a) is 0.1 to 10, and a shoe having a buffer member is provided. .

また、本発明の第8の発明によれば、第1〜7のいずれかの発明において、波板体(b)は、アウトソール側が下方を向くように終了させることを特徴とする緩衝部材を備えたシューズが提供される。
さらに、本発明の第9の発明によれば、第1〜7のいずれかの発明において、波板体(b)は、両末端が一方を上方、他方を下方に向くように終了させることを特徴とする緩衝部材を備えたシューズが提供される。
According to the eighth invention of the present invention, in any one of the first to seventh inventions, the corrugated body (b) is a cushioning member that is terminated so that the outsole side faces downward. Provided shoes are provided.
Furthermore, according to the ninth invention of the present invention, in any one of the first to seventh inventions, the corrugated plate (b) is terminated so that both ends face one side upward and the other side downward. A shoe with a featured cushioning member is provided.

また、本発明の第10の発明によれば、第1〜9のいずれかの発明において、前記緩衝部材は、連結部を介して、第2の緩衝体と一体に構成された構造を有することを特徴とする緩衝部材を備えたシューズが提供される。
さらに、本発明の第11の発明によれば、第1〜10のいずれかの発明において、前記緩衝部材が着地部のミッドソールに配置されて、組込まれていることを特徴とする緩衝部材を備えたシューズが提供される。
According to a tenth invention of the present invention, in any one of the first to ninth inventions, the buffer member has a structure integrally formed with the second buffer via a connecting portion. A shoe including a cushioning member is provided.
Furthermore, according to an eleventh aspect of the present invention, in any one of the first to tenth aspects of the present invention, there is provided a cushioning member, wherein the cushioning member is arranged and incorporated in a midsole of a landing portion. Provided shoes are provided.

本発明は、上記した如く、粘弾性体(a)と波板体(b)からなる緩衝部材を備えたシューズなどに係るものであるが、その好ましい態様としては、次のものが包含される。
(1)第2の発明において、受圧緩衝部(A)における波板体(b)の振幅が小さく、連動緩衝部(B)における波板体(b)の振幅が大きいことを特徴とする緩衝部材を備えたシューズ(図10参照。)。
(2)第2の発明において、受圧緩衝部(A)における波板体(b)の振幅が大きく、連動緩衝部(B)における波板体(b)の振幅が小さいことを特徴とする緩衝部材を備えたシューズ。
(3)第2の発明において、受圧緩衝部(A)における波板体(b)の周期が大きく、連動緩衝部(B)における波板体(b)の周期が小さいことを特徴とする緩衝部材を備えたシューズ(図11参照。)。
(4)第2の発明において、受圧緩衝部(A)における波板体(b)の周期が小さく、連動緩衝部(B)における波板体(b)の周期が大きいことを特徴とする緩衝部材を備えたシューズ。
(5)第2の発明において、波板体(b)は、シューズ外側のコシ(剛性)がシューズ内側のコシ(剛性)より大きいことを特徴とする緩衝部材を備えたシューズ(図12参照。)。
(6)第2の発明において、波板体(b)は、各波の頂点線が平行または±30度迄の交互(ハの字状と逆ハの字状の連続)であることを特徴とする緩衝部材を備えたシューズ(図13参照。)。
(7)第2の発明において、前記略板状体は、形状が環形の一部(略扇状の一部)であり、前記波板体(b)も、形状が環形の一部(略扇状、周期は外側が大きく内側が小さい。)であることを特徴とする緩衝部材を備えたシューズ(図14参照。)。
(8)第2の発明において、波板体(b)は、前記略板状体内部の中央に配置されることを特徴とする緩衝部材を備えたシューズ(図7参照。)。
(9)第2の発明において、波板体(b)は、前記略板状体内部の中央より下部側に配置されることを特徴とする緩衝部材を備えたシューズ(図16参照。)。
(10)第2の発明において、波板体(b)は、前記略板状体内部のシューズ外側に配置されることを特徴とする緩衝部材を備えたシューズ(図16参照。)。
(11)第2の発明において、波板体(b)は、長尺両側のいずれか一方側に、変位し易い屈曲誘発部を有することを特徴とする緩衝部材を備えたシューズ(図17参照。)。
As described above, the present invention relates to a shoe provided with a buffer member composed of a viscoelastic body (a) and a corrugated body (b), and preferred embodiments include the following. .
(1) In the second invention, the wave plate (b) in the pressure receiving buffer (A) has a small amplitude and the wave plate (b) in the interlocking buffer (B) has a large amplitude. A shoe provided with members (see FIG. 10).
(2) In the second invention, the wave plate (b) in the pressure receiving buffer (A) has a large amplitude, and the wave plate (b) in the interlocking buffer (B) has a small amplitude. Shoes with members.
(3) In the second invention, the wave plate (b) in the pressure receiving buffer (A) has a large period, and the wave plate (b) in the interlocking buffer (B) has a small period. A shoe provided with members (see FIG. 11).
(4) In the second invention, the wave plate (b) in the pressure receiving buffer (A) has a small period and the wave plate (b) in the interlocking buffer (B) has a large period. Shoes with members.
(5) In the second invention, the corrugated plate body (b) is provided with a shock absorbing member characterized in that the stiffness (rigidity) on the outer side of the shoe is larger than the stiffness (rigidity) on the inner side of the shoe (see FIG. 12). ).
(6) In the second invention, the corrugated plate body (b) is characterized in that the peak lines of each wave are parallel or alternating up to ± 30 degrees (continuous of the C-shaped and reverse C-shaped). A shoe provided with a buffer member (see FIG. 13).
(7) In the second invention, the substantially plate-like body is a part of a ring shape (a part of a substantially fan shape), and the corrugated plate body (b) is also a part of a ring shape (a substantially fan shape). A shoe having a cushioning member (see FIG. 14), characterized in that the period is large on the outside and small on the inside.
(8) In the second invention, the corrugated plate (b) is a shoe provided with a buffer member (see FIG. 7), characterized in that the corrugated plate (b) is disposed at the center of the substantially plate-shaped body.
(9) In the second invention, the corrugated plate (b) is disposed on the lower side from the center inside the substantially plate-shaped body (see FIG. 16).
(10) In the second invention, the corrugated plate (b) is a shoe provided with a buffer member (see FIG. 16), characterized in that the corrugated plate (b) is disposed outside the shoe inside the substantially plate-like body.
(11) In the second invention, the corrugated plate body (b) has a shock-absorbing member that has a bending inducing portion that is easy to displace on either one of the long sides (see FIG. 17). .)

本発明の緩衝部材を備えたシューズは、低弾性ゴムやゲルなどの粘弾性体(a)からなる緩衝部材に、受圧/除圧に対応して延伸/復元する波板体(b)を埋設することにより、厚みが薄くても、緩衝機能と重心安定性が格段と向上し、さらに、両機能を両立させたものである。本発明によれば、特に、過剰な変形外力に対して、緩衝部材全体に応力を分散させて、高い緩衝性を確保しつつ、ヒール着地時の重心点も安定するので、理想的な重心移動が可能なシューズを提供できる。また、薄くても、上記の優れた作用効果が得られるので、上記作用効果を有した子供用シューズを提供することができる。さらに、靴底の薄型化にも貢献するので、靴の軽量化や多様なデザイン設計が可能となる。   In a shoe equipped with a buffer member of the present invention, a corrugated plate body (b) that is stretched / restored in response to pressure reception / decompression is embedded in a buffer member made of a viscoelastic body (a) such as low elastic rubber or gel. By doing so, even if the thickness is thin, the buffer function and the stability of the center of gravity are remarkably improved, and furthermore, both functions are compatible. According to the present invention, the center of gravity point at the time of landing on the heel is stabilized while distributing the stress to the entire buffer member to ensure high buffering property, especially against excessive deformation external force. Can provide shoes that can. Moreover, even if it is thin, the above-described excellent operational effects can be obtained, so that a child's shoe having the above-described operational effects can be provided. Furthermore, it contributes to the thinning of the shoe sole, which makes it possible to reduce the weight of the shoe and design various designs.

本発明の緩衝部材を備えたシューズを説明する斜視図である。It is a perspective view explaining the shoes provided with the buffer member of the present invention. 本発明の緩衝部材を備えたシューズの底面を説明する平面図である。It is a top view explaining the bottom face of shoes provided with the buffer member of the present invention. 本発明に係る緩衝部材を説明する模式図である。It is a mimetic diagram explaining a buffer member concerning the present invention. 本発明に係る緩衝部材の別の形態を説明する模式図である。It is a schematic diagram explaining another form of the buffer member which concerns on this invention. 本発明に係る緩衝部材を説明する模式図である。It is a mimetic diagram explaining a buffer member concerning the present invention. 本発明の緩衝部材を備えたシューズの後面を説明する模式図である。It is a mimetic diagram explaining the back of shoes provided with the buffer member of the present invention. 本発明に係る緩衝部材の応力の分散を説明する模式図である。It is a schematic diagram explaining the dispersion | distribution of the stress of the buffer member which concerns on this invention. 本発明の第1または2の発明の一態様を説明する模式図である。It is a schematic diagram explaining 1 aspect of 1st or 2nd invention of this invention. 本発明の第6の発明の一態様を説明する模式図である。It is a schematic diagram explaining 1 aspect of the 6th invention of this invention. 本発明の別の態様(その1)を説明する模式図である。It is a schematic diagram explaining another aspect (the 1) of this invention. 本発明の別の態様(その2)を説明する模式図である。It is a schematic diagram explaining another aspect (the 2) of this invention. 本発明の別の態様(その3)を説明する模式図である。It is a schematic diagram explaining another aspect (the 3) of this invention. 本発明の別の態様(その4)を説明する模式図である。It is a schematic diagram explaining another aspect (the 4) of this invention. 本発明の別の態様(その5)を説明する模式図である。It is a schematic diagram explaining another aspect (the 5) of this invention. 本発明の第8または9の発明の一態様を説明する模式図である。It is a schematic diagram explaining 1 aspect of the 8th or 9th invention of this invention. 本発明の別の態様(その6)を説明する模式図である。It is a schematic diagram explaining another aspect (the 6) of this invention. 本発明の別の態様(その7)を説明する模式図である。It is a schematic diagram explaining another aspect (the 7) of this invention. 本発明の第4の発明の態様例を説明する模式図である。It is a schematic diagram explaining the example of an aspect of the 4th invention of this invention. 波板体3のバネ変形作用を説明する模式図である。FIG. 5 is a schematic diagram for explaining a spring deformation action of the corrugated plate body 3. 本発明の別の態様(その9)を説明する模式図である。It is a schematic diagram explaining another aspect (the 9) of this invention. 本発明の第3の発明の受圧時の応力の分散を説明する模式図である。It is a schematic diagram explaining dispersion | distribution of the stress at the time of the pressure receiving of 3rd invention of this invention.

本発明の緩衝部材を備えたシューズを、以下の実施例により、先ず緩衝部材について説明し、続いてこの緩衝部材を備えたシューズについて、図面を用いて説明する。
なお、以下の実施例に対して、本発明の技術的思想の範囲内において、適宜変更を加えることも可能である。
The shoe provided with the buffer member according to the present invention will be described first with reference to the buffer member according to the following embodiment, and then the shoe provided with the buffer member will be described with reference to the drawings.
It should be noted that the following embodiments can be appropriately modified within the scope of the technical idea of the present invention.

先ず、本発明に係る緩衝部材1について説明すると、緩衝部材1は、例えば、図3に示すように、弾性変形可能な素材である粘弾性材料(または粘弾性体とも称する。)からなる略板状体2または図4に示すように略円柱状体8の内部に、粘弾性材料より弾性率が大きい波板体3が封入されたものである。   First, the shock-absorbing member 1 according to the present invention will be described. The shock-absorbing member 1 is, as shown in FIG. 3, for example, a substantially plate made of a viscoelastic material (or also referred to as a viscoelastic body) that is an elastically deformable material. As shown in FIG. 4 or FIG. 4, a corrugated body 3 having a larger elastic modulus than a viscoelastic material is enclosed in a substantially cylindrical body 8.

前記緩衝部材は、弾性変形可能な粘弾性体からなり、その粘弾性体は、硬度がアスカーC硬度で20〜40である。ここで、「アスカーC硬度」とは、SRIS0101(日本ゴム協会標準規格)に規定されているスプリング式アスカーC型のデュロメータを使用して測定した硬度を意味する。
前記粘弾性材料としては、低硬度ゴムやゲルが好ましく、シリコーン、ウレタン、ポリエチレン、アクリル、アクリルウレタン、ブタジエン、イソプレン、ブチル、スチレンブタジエン、エチレン酢酸ビニル共重合体、エチレン−プロピレン−ジエン三元共重合体、フッ素等の各種の低高度ゴムやゲル素材を適用することができるが、優れた緩衝性の観点からゲル素材が好ましい。また、波板体の延伸変形に追従し易すく過度の変形でも破断しにくい素材として、引っ張り伸び率(JIS K6251準拠)が500%以上の熱可塑性エラストマーも好適である。具体的には、例えば、シリコーンゲルとして、東レ・ダウコーニング社製CF5056(硬度:SRIS0101準拠 アスカーC 30)を、また、熱可塑性エラストマーとして、コスモ計器社製コスモゲルなどを、用いることができる。
また、粘弾性体は、発泡体でもよく、連泡または独泡構造の発泡体や、粘弾性素材に中空フィラーを添加したものを適用してもよい。
また、硬さの異なる異種素材を複合したり、積層構造として用いたり、着色剤やラメ素材、フィラー材等を混入するようにしてもよい。
The buffer member is made of an elastically deformable viscoelastic body, and the viscoelastic body has an Asker C hardness of 20 to 40. Here, “Asker C hardness” means hardness measured using a spring-type Asker C type durometer defined in SRIS0101 (Japan Rubber Association Standard).
The viscoelastic material is preferably a low-hardness rubber or gel. Silicone, urethane, polyethylene, acrylic, acrylic urethane, butadiene, isoprene, butyl, styrene butadiene, ethylene vinyl acetate copolymer, ethylene-propylene-diene ternary copolymer. Various low-altitude rubbers such as polymers and fluorine and gel materials can be applied, but gel materials are preferred from the viewpoint of excellent buffering properties. A thermoplastic elastomer having a tensile elongation (conforming to JIS K6251) of 500% or more is also suitable as a material that easily follows the stretching deformation of the corrugated body and is not easily broken even by excessive deformation. Specifically, for example, CF5056 (hardness: SRIS0101-compliant Asker C 30) manufactured by Toray Dow Corning Co., Ltd. can be used as the silicone gel, and Cosmo Gel manufactured by Cosmo Keiki Co., Ltd. can be used as the thermoplastic elastomer.
In addition, the viscoelastic body may be a foam, or may be a foam having an open cell or closed cell structure, or a viscoelastic material with a hollow filler added thereto.
Further, different materials having different hardnesses may be combined, used as a laminated structure, or mixed with a colorant, a lame material, a filler material, or the like.

以下、粘弾性材料として、シリコーンゲルを適用した例にて説明する。
前記緩衝部材は、図6や図8に示すように、長尺形状が好ましく、受圧緩衝部(A)4とその周辺に連動緩衝部(B)5を有する。前記連動緩衝部5は、受圧緩衝部(A)の受圧変形に連動して変形させられて緩衝作用を発揮する。そして、受圧緩衝部(A)4と連動緩衝部(B)5を貫通するように、シリコーンゲルからなる前記緩衝部材内部に、シリコーンゲルより硬い(または剛性がある)波板体3が介在し、前記波板体3の波打ち方向が前記略板状体2の長尺方向となるように配置される。
前記波板体3は、図19(a)〜(c)のように、波板体の上面からの加圧に対して、波うち方向に対して、前記波板体の波形状の振幅が小さく、周期が長くなるように延伸しながら変形し、除圧されると同(d)のように収縮変形を経て(e)のように元の形状に復元するバネ性を有するものである。
Hereinafter, an example in which silicone gel is applied as a viscoelastic material will be described.
As shown in FIGS. 6 and 8, the buffer member preferably has a long shape, and has a pressure receiving buffer portion (A) 4 and an interlocking buffer portion (B) 5 in the vicinity thereof. The interlocking buffer portion 5 is deformed in conjunction with the pressure receiving deformation of the pressure receiving buffer portion (A) and exhibits a buffering action. And the corrugated body 3 harder (or more rigid) than the silicone gel is interposed inside the buffer member made of silicone gel so as to penetrate the pressure receiving buffer (A) 4 and the interlocking buffer (B) 5. The corrugated direction of the corrugated plate body 3 is arranged so as to be the longitudinal direction of the substantially plate-shaped body 2.
As shown in FIGS. 19A to 19C, the corrugated plate body 3 has an amplitude of the corrugated shape of the corrugated plate body with respect to the wave-out direction with respect to pressurization from the upper surface of the corrugated plate body. It is small and deforms while extending so as to have a long period, and when it is depressurized, it has a spring property that undergoes contraction deformation as in (d) and restores its original shape as in (e).

そして、前記波板体3が緩衝部材の内部に介在することにより、図7に示すように、受圧緩衝部(A)4に、応力または圧力を受けると、受圧緩衝部(A)4のシリコーンゲルの変形に次いで(もしくはほぼ同時に)、内部の波板体3が、受圧部を起点に長尺へ延伸変形し、前記延伸変形に追従させながら、波板体の周りのシリコーンゲル全体を変形させるように作用するので、波板体3の前記伸縮変形しない方向(受圧面の短尺方向)のシリコーンゲル自体の変形との共働によって、受圧緩衝部(A)4で受けた応力を、連動緩衝部(B)5の変形として分散させて吸収することができるから、従来の受圧部での一箇所集中変形に比べて緩衝機能が向上するとともに、波板体の剛性によって、反発機能も向上し、その結果、本発明の緩衝部材は、高い緩衝機能と反発機能を兼ね備えた優れた作用効果を発揮する。   When the corrugated plate 3 is interposed in the buffer member, as shown in FIG. 7, when the pressure receiving buffer (A) 4 receives stress or pressure, the silicone of the pressure receiving buffer (A) 4 Subsequent to (or almost simultaneously with) the gel deformation, the internal corrugated plate body 3 is stretched and deformed from the pressure receiving portion to a long length, and the entire silicone gel around the corrugated plate body is deformed while following the stretching deformation. Therefore, the stress received by the pressure receiving buffer portion (A) 4 is interlocked with the deformation of the silicone gel itself in the direction in which the corrugated body 3 is not stretched and deformed (short direction of the pressure receiving surface). Since it can be dispersed and absorbed as a deformation of the buffer part (B) 5, the buffer function is improved as compared with the concentrated deformation at one place in the conventional pressure receiving part, and the resilience function is also improved by the rigidity of the corrugated plate body. As a result, the buffer portion of the present invention Exhibits an excellent function and effect which combines high cushioning function and the resilience function.

さらに、前記略板状体2の別の形態として、波板体下側の凸形状部の少なくとも一部に、シリコーンゲルを介して/もしくは直接隣接して、中空部7を形成してもよい。これにより、受圧時に波板体が、より変形し易くなり、上記の作用が発現しやすくなるとともに、緩衝部材の軽量化にも寄与する。なお、前記中空部は、閉空間としてもよいし、緩衝部材外部に連通開放されていてもよい。前記中空部の形状は、受圧時の変形挙動に合わせて適宜調整でき、前記凸形状部ごとに異ならせてもよい。また、図18(d)や(e)のように、波板体下面を浮かす構造としてもよく、この構造とすると、ヒール接地の受圧開直後には、シリコーンゲルの変形と波板体の撓みによって衝撃緩衝性を効かし、次いで、厚み方向の受圧変形が進んで、波板体が受圧面の裏側に当たる以降に波板の延伸変形を発動させて緩衝部材全体で緩衝させるようにして、柔らかな(抵抗感の少ない)接地開始感触を確保しつつ、緩衝部材全体での衝撃緩衝作用を発揮させることができる。   Furthermore, as another form of the substantially plate-like body 2, the hollow portion 7 may be formed at least part of the convex shape portion on the lower side of the corrugated plate body via a silicone gel or directly adjacent thereto. . Thereby, the corrugated plate body is more easily deformed during pressure reception, and the above-described action is easily exhibited, and also contributes to the weight reduction of the buffer member. The hollow portion may be a closed space or may be open to the outside of the buffer member. The shape of the hollow portion can be appropriately adjusted according to the deformation behavior at the time of pressure reception, and may be different for each convex shape portion. Further, as shown in FIGS. 18D and 18E, the bottom surface of the corrugated plate body may be floated. With this structure, the deformation of the silicone gel and the flexure of the corrugated plate body immediately after the heel contact pressure is released. Then, the shock absorbing property is applied, and then the pressure receiving deformation in the thickness direction advances, and after the corrugated plate hits the back side of the pressure receiving surface, the stretching deformation of the corrugated plate is activated and the entire buffer member is buffered. It is possible to exert an impact buffering effect on the entire buffer member while ensuring a feeling of ground contact start (less resistance).

また、波板体の下側(受圧する面の裏側)に受圧によって波板体を下に凹型に撓み変形させる波板体湾曲誘発部9を設けた構造としてもよく、このようにすることによって、例えば図21のように、受圧の際に、受圧緩衝部分の波板体が、撓み変形して踵部着地部を包み込んだ後(図21(b))、次いで波板体の延伸変形に連動した緩衝作用が働く(図21(c))ので、着地時の重心安定性を確保しながら優れた緩衝効果が得られる。前記波板体湾曲誘発部9は空隙部としてもよいし、緩衝部材を構成する粘弾性体よりもさらに柔らかい第二の粘弾性体としてもよく、さらにそれらを複合して用いてもよい。また、前記波板体湾曲誘発部は、図21の例では、波板体の中央部分に設けているが、波板体を撓ませる部分に配置すればよく、少なくとも受圧緩衝部分を含むものである。   Moreover, it is good also as a structure which provided the corrugated body curve induction | guidance | derivation induction | guidance | derivation part 9 which bends and deform | transforms a corrugated sheet body into a concave shape by receiving pressure under the corrugated sheet body (behind the pressure receiving surface). For example, as shown in FIG. 21, after receiving the pressure, the corrugated body of the pressure-receiving buffer portion is bent and deformed so as to wrap the collar landing portion (FIG. 21 (b)). Since the interlocking buffering action works (FIG. 21C), an excellent buffering effect can be obtained while ensuring the stability of the center of gravity at the time of landing. The corrugated body bending inducing section 9 may be a gap, a second viscoelastic body that is softer than the viscoelastic body constituting the buffer member, or a combination thereof. Further, in the example of FIG. 21, the corrugated body bending inducing portion is provided at the center portion of the corrugated body, but it may be disposed at a portion where the corrugated body is bent, and includes at least a pressure receiving buffer portion.

さらに、前記緩衝部材の別の形態として、図20のように、波板体の一部をシリコーンゲルから表出させる構造としてもよい。このような構造とすることで、波板体の伸縮変形がさらに容易となり、ゲルを長尺方向に容易に変形せしめることができる。また、図20(f)のように、波板体よりもシリコーンゲルが先に受圧する構成とすれば、図18(d)や(e)と同様に、柔らかな(抵抗感の少ない)接地開始感触を確保しつつ、緩衝部材全体での衝撃緩衝作用を発揮させることもできる。   Furthermore, as another form of the buffer member, as shown in FIG. 20, a part of the corrugated plate body may be exposed from the silicone gel. By setting it as such a structure, the expansion-contraction deformation | transformation of a corrugated sheet body becomes still easier, and a gel can be easily changed to a elongate direction. Also, as shown in FIG. 20 (f), if the silicone gel is configured to receive pressure earlier than the corrugated plate body, as in FIGS. 18 (d) and 18 (e), a soft ground (less resistance) is provided. It is also possible to exert an impact buffering effect on the entire buffer member while ensuring a start feeling.

前記波板体3は、上記の作用を発揮するならば、どのような波でもよいが、図9に示すように、1.5周期以上の三角波または弦波であることが好ましい。また、波板体の材料は、樹脂であることが好ましい。
また、前記波板体3を構成する樹脂材料としては、所望の形状を付与し得るものであれば、特に限定されるものではなく、一般にプラスチックと称される既知の合成樹脂を適宜選択して用いることができ、具体的に、例えば、ポリスチレン、ポリビニルアルコール、ABS樹脂、ポリビニルホルマール、AS樹脂(SAN)、ポリビニルプチラール、ポリオレフィン、アセチルセルロース、塩化ビニリレン樹脂、セルロースエーテル、酢酸ビニル樹脂、メタアクリル樹脂、ポリアミド(ナイロン)、ポリエチレンテレフタレート、ポリアセタール、シリコーン樹脂(珪素樹脂)、ポリカーボネイト及びフッ素樹脂などの熱可塑性樹脂や、フェノール樹脂、エポキシ樹脂、ユリア樹脂、アニリン樹脂、メラミン樹脂、フラン樹脂、ジアリルフタレート樹脂、ポリウレタン、不飽和ポリエステル樹脂などの熱硬化性樹脂を挙げることができる。
The corrugated plate 3 may be any wave as long as it exhibits the above action, but as shown in FIG. 9, it is preferably a triangular wave or a string wave having a period of 1.5 cycles or more. Moreover, it is preferable that the material of a corrugated body is resin.
Further, the resin material constituting the corrugated body 3 is not particularly limited as long as it can give a desired shape, and a known synthetic resin generally called plastic is appropriately selected. Specifically, for example, polystyrene, polyvinyl alcohol, ABS resin, polyvinyl formal, AS resin (SAN), polyvinyl petital, polyolefin, acetyl cellulose, vinylylene chloride resin, cellulose ether, vinyl acetate resin, methacryl Thermoplastic resins such as resin, polyamide (nylon), polyethylene terephthalate, polyacetal, silicone resin (silicon resin), polycarbonate and fluororesin, phenol resin, epoxy resin, urea resin, aniline resin, melamine resin, furan resin, diallyl phthalate It can be exemplified over preparative resin, polyurethane, a thermosetting resin such as unsaturated polyester resin.

前記波板体は、JIS K6385準拠による圧縮ばね定数が1×10〜1×10N/mが好ましい。波板体の圧縮ばね定数が1×10N/mよりも小さいと、波板体が容易に変形しすぎて、衝撃が加わったときの緩衝部材の厚み変形に対して適度な張り(コシ)が付加できず、一方、1×10N/mよりも大きいと、波板体の剛性が大き過ぎて波板体の延伸変形が起こりにくく、また緩衝部材全体の緩衝性も損なわれるので好ましくない。
また、波板体の圧縮ばね定数は、粘弾性体の圧縮ばね定数(JIS K6385準拠)よりも大きいことを必須条件として、緩衝材部材の性能に応じて前記圧縮ばね定数の範囲で設定されるが、前記粘弾性体の圧縮ばね定数に対する波板体の圧縮ばね定数の比が0.1〜10であることが好ましい。前記の比が0.1未満の場合には、波板体による粘弾性体を幅方向に伸張変形させる作用が小さくなり好ましくなく、一方、10を超えると、波板体の変形作用が支配的になり、本発明における波板体と粘弾性体との相乗効果が得られなくなるので好ましくない。
ここで、前記圧縮ばね定数は、静的なばね定数であって、初期厚みに対して厚み方向に30%変形させたとき(30%圧縮)のものである。また、本発明では、緩衝部材を構成する実形状の圧縮ばね定数が重要であるので、波板体および波板体を組み込む粘弾性体の圧縮ばね定数は、標準試験片による測定値ではなく、実形状におけるものであり、厚み方向(波板体において波の振幅方向)に圧縮変形させたときの測定から求められる値である。
The corrugated plate body preferably has a compression spring constant according to JIS K6385 of 1 × 10 3 to 1 × 10 6 N / m. If the compression spring constant of the corrugated body is smaller than 1 × 10 3 N / m, the corrugated body easily deforms too much, and an appropriate tension against the thickness deformation of the shock-absorbing member when an impact is applied (the stiffness) ) Cannot be added. On the other hand, if it is larger than 1 × 10 6 N / m, the rigidity of the corrugated sheet body is too high, and the corrugated sheet body is hardly stretched and deformed. It is not preferable.
Further, the compression spring constant of the corrugated plate body is set in the range of the compression spring constant according to the performance of the cushioning member, on the condition that the compression spring constant of the corrugated elastic body is larger than the compression spring constant of the viscoelastic body (based on JIS K6385). However, it is preferable that the ratio of the compression spring constant of the corrugated plate body to the compression spring constant of the viscoelastic body is 0.1 to 10. When the ratio is less than 0.1, the action of stretching and deforming the viscoelastic body by the corrugated sheet in the width direction is unfavorable. On the other hand, when the ratio exceeds 10, the deforming action of the corrugated sheet is dominant. This is not preferable because the synergistic effect of the corrugated body and the viscoelastic body in the present invention cannot be obtained.
Here, the compression spring constant is a static spring constant when 30% of the initial thickness is deformed in the thickness direction (30% compression). In the present invention, since the compression spring constant of the actual shape constituting the buffer member is important, the compression spring constant of the corrugated plate body and the viscoelastic body incorporating the corrugated plate body is not a value measured by a standard test piece, It is an actual shape, and is a value obtained from measurement when it is compressed and deformed in the thickness direction (wave amplitude direction in the corrugated plate body).

さらに、前記波板体3は、装着者のタイプにより、適宜、波板体の波(例えば、弦波)の振幅や周期を変更することができる。波板体の振幅や周期や形状を変えることによって、波板体の剛性や受圧時の変形挙動(波板体の変形伸縮)や反発力、さらには重心を所望の方向へ誘導するなどを、全体もしくは部分的に自由に設定できる調整できるので、良好な緩衝性を図りつつ、重心の偏りを強制するように良好な重心移動方向へ誘導できるようになる。例えば、図10に示すように、受圧緩衝部(A)における波板体の波の振幅が小さく、連動緩衝部(B)における波板体の波の振幅が大きくでき、逆に、受圧緩衝部(A)における波板体の波の振幅が大きく、連動緩衝部(B)における波板体の波の振幅が小さくできる。また、図11に示すように、受圧緩衝部(A)における波板体の波の周期(P1)が大きく、連動緩衝部(B)における波板体の波の周期(P2)が小さくでき、逆に、受圧緩衝部(A)における波板体の波の周期が小さく、連動緩衝部(B)における波板体の波の周期が大きくできる。   Further, the corrugated plate body 3 can appropriately change the amplitude and period of the wave of the corrugated plate body (for example, a chord wave) depending on the type of the wearer. By changing the amplitude, period, and shape of the corrugated body, the rigidity of the corrugated body, the deformation behavior during pressure reception (deformation expansion and contraction of the corrugated sheet body), the repulsive force, and the center of gravity are guided in the desired direction. Since the adjustment can be freely set as a whole or a part, it is possible to guide in a good direction of movement of the center of gravity so as to force the bias of the center of gravity while achieving good buffering properties. For example, as shown in FIG. 10, the wave amplitude of the corrugated plate body in the pressure receiving buffer portion (A) can be reduced, and the wave amplitude of the corrugated plate body in the interlocking buffer portion (B) can be increased. The wave amplitude of the wave plate body in (A) is large, and the wave amplitude of the wave plate body in the interlocking buffer (B) can be reduced. Further, as shown in FIG. 11, the wave period (P1) of the corrugated plate body in the pressure receiving buffer (A) is large, and the wave period (P2) of the corrugated sheet in the interlocking buffer (B) can be reduced. On the contrary, the wave period of the wave plate body in the pressure receiving buffer part (A) is small, and the wave period of the wave plate body in the interlocking buffer part (B) can be increased.

また、前記波板体3の別の態様として、装着者のタイプにより、前記波板体3は、例えば、図12に示すように、シューズ外側のコシ(剛性)がシューズ内側のコシ(剛性)より大きくすることができる。図面により説明すると、図12(a)の例では、波板体の厚さをシューズ外側(t2)がシューズ内側(t1)より厚くしたもの(t2>t1)であり、また、図12(b)の例では、波板体をシューズ外側では2枚重ね(t2)、シューズ内側(t1)より厚くしたもの(t2>t1)であり、さらに、図12(c)の例では、シューズ内側の波板体にスリットを入れて、シューズ外側のコシ(剛性)がシューズ内側のコシ(剛性)より大きくしたものである。
この様態によれば、ヒール接地時の重心点は、剛性が大きい側から小さい側に偏るように作動するので、所望の重心移動方向に誘導することができる。
Further, as another aspect of the corrugated plate body 3, depending on the type of wearer, for example, as shown in FIG. Can be larger. Referring to the drawings, in the example of FIG. 12A, the thickness of the corrugated plate body is such that the shoe outer side (t2) is thicker than the shoe inner side (t1) (t2> t1), and FIG. In the example of FIG. 12 (c), the corrugated plate body is overlapped on the outer side of the shoe (t2) and thicker than the inner side of the shoe (t1) (t2> t1). Further, in the example of FIG. A slit is made in the corrugated plate body so that the stiffness (rigidity) on the outside of the shoe is larger than the stiffness (rigidity) on the inside of the shoe.
According to this aspect, the center of gravity at the time of heel contact operates so as to deviate from the side with high rigidity to the side with low rigidity, so that it can be guided in a desired direction of movement of the center of gravity.

さらに、同様の効果を目的に、前記波板体3の別の態様として、前記波板体3は、例えば、各波の頂点線が平行にすることもできるし、或いは、図13に示すように、±30度迄の交互(ハの字状と逆ハの字状の連続)にすることもできる。   Furthermore, for the purpose of the same effect, as another embodiment of the corrugated plate body 3, for example, the corrugated plate body 3 can have the vertex lines of each wave parallel or as shown in FIG. In addition, it can be alternated up to ± 30 degrees (continuous of C-shaped and inverted C-shaped).

また、上述したように、前記緩衝部材は、形状が環形の一部(略扇状の一部)であるから、前記波板体も、図14に示すように、形状が環形の一部(略扇状、周期は外側(P1)が大きく内側(P2)が小さい。)にすることもできる。   Further, as described above, since the buffer member has a ring-shaped part (substantially fan-shaped part), the corrugated plate body also has a ring-shaped part (substantially substantially) as shown in FIG. The fan shape and the period can be set to the outside (P1) and the inside (P2) is small).

さらに、前記波板体3は、波板体の末端(波形状の終点)が下向きの場合には、波板体が延伸変形する際に僅かでも上側にゲルを押し上げるように両端側から作用し、逆に、波板体の末端が上向きの場合には、波板体の末端が前記延伸変形時に斜め下にシリコーンゲルを押すようにして作用するので、緩衝部材の波板体の変形挙動を調整するための別の形態として、図15(a)に示すように、両末端が下方を向くように終了させることもでき、特にアウトソール方向に両末端を下向きとすることにより、波板体が延伸変形する際に僅かでも上側にゲルを押し上げるように両端側から作用して、着地緩衝時のフィット感や安定性を持たせることができる。また、特に、人体は、足裏の外側から着地する傾向があるので、足裏の外側のほうが少しでも上側に押し上げて足を支える(密着させる)ように、アウターソールの外側の波板体末端を下向きとして、着地の状態に応じて緩衝時の安定性をさらに向上させることができる。
また、図15(b)に示すように、両末端が一方を上方、他方を下方に向くように終了させることもでき、一方にフィット感や安定性を持たせつつ、一方に踏ん張り感を付与でき、例えばトラック競技のように一方向へ周回する運動の場合、トラックのインコース側の足裏の外側(トラックに対して最内周側)とアウトコース側の足裏の内側に一定の荷重移動が多く働くので、インコース側のシューズは、内側の波板体末端が下向きで外側が上向き、さらにアウトコース側のシューズは、内側の波板体末端が上向きで外側が下向き、となる構成としてもよい。
また、別の態様として、図15(c)に示すように、末端は、角を丸くすることもでき、或いは図15(d)に示すように、末端は、角を球状にすることもできる。
Further, when the end of the corrugated body (the end point of the corrugated shape) faces downward, the corrugated body 3 acts from both ends so as to push up the gel slightly upward when the corrugated body is stretched and deformed. On the contrary, when the end of the corrugated plate is upward, the end of the corrugated plate acts to push the silicone gel diagonally downward during the stretching deformation, so the deformation behavior of the corrugated plate of the buffer member As another form for adjustment, as shown in FIG. 15 (a), it is possible to terminate the both ends to face downward, and in particular, by making both ends downward in the outsole direction, the corrugated plate body When the material is stretched and deformed, it acts from both ends so as to push up the gel slightly upward, and it is possible to provide a fit and stability at the time of landing buffering. In particular, since the human body tends to land from the outside of the sole, the end of the corrugated body on the outside of the outer sole is supported so that the outside of the sole is pushed upward slightly to support (adhere) the foot. The stability at the time of buffering can be further improved according to the landing state.
Also, as shown in FIG. 15 (b), both ends can be terminated so that one end is facing upward and the other is facing downward. Yes, for example, in the case of a movement that circulates in one direction as in a track competition, a constant load is applied to the outside of the sole on the in-course side of the track (the innermost circumference with respect to the track) and the inside of the sole on the out-course side Since the movement works a lot, the in-course side shoes have the inner corrugated plate end facing down and the outside facing up, and the out-course shoes have the corrugated plate end facing up and the outside facing down. It is good.
As another embodiment, as shown in FIG. 15 (c), the end can have rounded corners, or as shown in FIG. 15 (d), the end can have rounded corners. .

また、前記波板体3は、通常、図7に示すように、前記緩衝部材内部の中央に配置されるが、別の態様として、図16(a)に示すように、前記波板体3は、前記緩衝部材内部の中央より下部側に配置されることもできる。さらに、図16(b)に示すように、前記波板体3は、前記緩衝部材内部のシューズ外側に配置されることもできる。
また、重心移動方向を調整するために、前記略板状態の長尺および/または受圧面の短尺方向に傾斜するように配置されてもよい。
Moreover, although the said corrugated sheet body 3 is normally arrange | positioned in the center inside the said buffer member as shown in FIG. 7, as shown in FIG. May be arranged on the lower side from the center inside the buffer member. Furthermore, as shown in FIG. 16 (b), the corrugated plate body 3 may be disposed outside the shoe inside the cushioning member.
Moreover, in order to adjust the gravity center moving direction, it may be arranged so as to incline in the long direction of the substantially plate state and / or the short direction of the pressure receiving surface.

さらに、前記波板体3は、受圧の際に、変形し易くするために、図17に示すように、長尺両側のいずれか一方側に、変位し易い屈曲誘発部を有することもできる。具体的には、例えば、図17(a)、(b)に示すように、いずれか一方側の厚さを薄くして、変位し易い屈曲誘発部を有することも、或いは長尺両側のいずれか一方側に、スリットを入れて、変位し易い屈曲誘発部を有することも、できる。   Furthermore, the corrugated body 3 may have a bending inducing portion that is easy to be displaced on either one of the long sides as shown in FIG. 17 in order to facilitate deformation during pressure reception. Specifically, for example, as shown in FIGS. 17 (a) and 17 (b), either one of the thicknesses can be reduced to have a bending inducing portion that is easy to be displaced, It is also possible to have a bending inducing portion that is easily displaced by inserting a slit on either side.

また、緩衝部材1は、略板状体2または略円柱状体を接地緩衝部10として、さらに図5に示すように、目的形状に成型された第2の緩衝部材と前記接地緩衝部とを連結部13によって一体的に連結して成るものとすることがより好ましい。例えば、ヒール部へ適用した場合には、第2の緩衝部材は、踵緩衝部11として機能し、この様態によれば、前記接地緩衝部で接地直後の衝撃を緩衝した後に、前記接地緩衝部から連結部13を経て踵緩衝部11に向かって、衝撃緩衝しながら重心を安定に移動させて、着地開始からヒール部着地までの歩行性を向上させることができる。また、前記連結部13は、板バネとしても作用して、爪先側へ重心移行した後は、前記接地緩衝部側が、踵S側に押し付けられ踵Sへフィットさせる効果がある。
前記踵緩衝部11は、連結部13上に突出した円錐台状に形成されるものであり、後述するようにシューズ6に組み付けられた状態で、装着者の踵Sの直下に位置するように設置されるものである。一例として、図1や図5に示すように、平面視で扇形状となるように一体成形される。
In addition, the buffer member 1 includes a substantially plate-like body 2 or a substantially cylindrical body as a grounding buffer portion 10, and further, as shown in FIG. 5, a second buffer member molded into a target shape and the grounding buffer portion. More preferably, they are integrally connected by the connecting portion 13. For example, when applied to the heel portion, the second buffer member functions as the heel buffer portion 11, and according to this aspect, after the shock immediately after grounding is buffered by the ground buffer portion, the ground buffer portion Then, the center of gravity can be stably moved while shock-absorbing toward the heel buffer portion 11 via the connecting portion 13, and the walking performance from the landing start to the heel portion landing can be improved. Further, the connecting portion 13 also acts as a leaf spring, and after the center of gravity shifts to the toe side, the grounding buffer portion side is pressed against the heel S side and has an effect of fitting to the heel S.
The heel buffering portion 11 is formed in a truncated cone shape protruding on the connecting portion 13 and is positioned directly below the wearer's heel S in a state assembled to the shoe 6 as will be described later. It will be installed. As an example, as shown in FIG. 1 and FIG. 5, it is integrally formed so as to have a fan shape in plan view.

ここで前記踵緩衝部11及び連結部13の素材について説明すると、良好な緩衝性が得られるものであれば、適宜のゴム素材やゲル素材を採用できるが、例えばシリコーン系(一例として、東レ・ダウコーニング社製CF5058)、ウレタン系(一例として、日本ミラクトン社製:ミラクトランE375)、スチレン系(一例として、旭化成ケミカルズ社製:アサプレンT436)、アクリル系(一例として、日本ゼオン社製ニポールAR)等のゴム素材を、射出成型、押出成型、ブロー成型等により無垢状態で硬化させたものを用いることができる。因みに、量産性を考慮した場合、射出成型によるのが好ましい。
また、前記ゴム素材に、発泡剤や中空フィラーを混入するなどして、踵緩衝部11または連結部13の全部または一部を、発泡倍率0.1〜1.5程度の発泡状態とさせて、緩衝性と合わせて軽量化を図る構成と、してもよい。
なおこの場合、前記中空フィラーとしては、日本フィライト社製の「エクスパンセル(登録商標)551DE」等が採用されゴム素材100重量部に対して1〜3重量部程度の配合割合で用いられる。
Here, the material of the heel buffer portion 11 and the connecting portion 13 will be described. Any suitable rubber material or gel material can be adopted as long as good buffering properties can be obtained. For example, silicone-based materials (for example, Toray CF5058 manufactured by Dow Corning), urethane system (for example, manufactured by Nippon Milactone Co., Ltd .: Miractolan E375), styrene system (for example, manufactured by Asahi Kasei Chemicals Co., Ltd .: Asaprene T436), acrylic system (for example, Nipol AR manufactured by Nippon Zeon Co., Ltd.) A rubber material such as a rubber material such as injection molded, extruded or blow molded can be used. Incidentally, when considering mass productivity, it is preferable to use injection molding.
In addition, by mixing a foaming agent or a hollow filler into the rubber material, all or a part of the heel buffer part 11 or the connecting part 13 is made to be in a foamed state with an expansion ratio of about 0.1 to 1.5. Further, it may be configured to reduce the weight together with the buffering property.
In this case, as the hollow filler, “Expancel (registered trademark) 551DE” manufactured by Nippon Philite Co., Ltd. is adopted and used at a blending ratio of about 1 to 3 parts by weight with respect to 100 parts by weight of the rubber material.

また、前記接地緩衝部と連結部13とは、L字状乃至T字状に連結されるものであり、ここでL字状とは、連結部13の底面が接地緩衝部の底面と連続した状態となり、接地緩衝部と連結部13との断面がL字状となる状態を意味するものである。また、前記T字状とは、連結部13の端部が接地緩衝部の高さ寸法の中心に接続された状態となり、接地緩衝部と連結部13との断面がT字状となる状態を意味するものである。
前記連結部13は、前記接地緩衝部からの重心移動を受けて変形して衝撃緩衝するとともに、踵緩衝部へ重心を安定して誘導する役目を有し、後述するように歩行時または走行時の着地の際に、接地緩衝部の変形が顕著になるとともに、後述するような連結部13を介した接地緩衝部と踵緩衝部11との共動作用を得ることができる。連結部13と接地緩衝部との接続個所は、シューズへの組み込み場所や、歩行(走行)時の重心移動のさせ方によって、適宜調整できるが、上記作用効果をより効果的に発現させるためには、接地緩衝部の最下部から高さ寸法の中心までの部分に連結とすることが好ましい。
In addition, the ground buffer portion and the connecting portion 13 are connected in an L shape or a T shape, where the bottom surface of the connecting portion 13 is continuous with the bottom surface of the ground buffer portion. This means a state in which the ground buffer portion and the connecting portion 13 are L-shaped in cross section. Further, the T-shape is a state in which the end of the connecting portion 13 is connected to the center of the height of the grounding buffer portion, and the cross-section of the grounding buffer portion and the connecting portion 13 is T-shaped. That means.
The connecting part 13 receives the movement of the center of gravity from the grounding buffer part and deforms and cushions the shock, and has a role of stably guiding the center of gravity to the bag buffer part. In the landing, the deformation of the grounding buffering portion becomes remarkable, and it is possible to obtain the joint operation of the grounding buffering portion and the heel buffering portion 11 through the connecting portion 13 as described later. The connection part between the connecting part 13 and the grounding buffer part can be adjusted as appropriate depending on the place where the shoe is incorporated into the shoe and the way of moving the center of gravity during walking (running), but in order to express the above-mentioned effects more effectively. Is preferably connected to a portion from the bottom of the grounding buffer to the center of the height dimension.

本発明に係る緩衝部材において、前記略板状体2または円柱状体の中に、波板体3を介在させる方法は、特に限定されないが、例えば、金型内で波板体を未硬化のシリコーンゲルとともにインモールド成形する方法や、波板の嵌め込み部が形成されたシリコーンゲル部品に波板体を嵌め込んで、さらにシリコーンゲルで封止する組立てる方法などが挙げられる。   In the buffer member according to the present invention, the method of interposing the corrugated body 3 in the substantially plate-shaped body 2 or the cylindrical body is not particularly limited. For example, the corrugated body is uncured in a mold. Examples thereof include a method of in-mold molding with a silicone gel, and an assembly method in which a corrugated plate body is fitted into a silicone gel component in which a corrugated portion of the corrugated plate is formed and then sealed with a silicone gel.

次に、接地緩衝部10と連結部13と踵緩衝部11とからなる前記緩衝部材1を例にして、前記緩衝部材1が組み込まれるシューズ6について説明する。
図1中、符号6で示すものがシューズの一例であるスポーツシューズであって、接地部材であるソール21に対してアッパー22が組み付けられて成るものである。
そして前記ソール21に対してヒール部21a(装着者が歩行時・走行時に最先に接地する部位の上方)に、ヒール部21aの最後端から踵直下部周辺にかけてくり抜かれるように受入空間23が形成されるものであり、この受入空間23に、緩衝部材1と踵緩衝部11と連結部13が組み込まれた状態で、ソール21とアッパー22とが組み付けられる。
なお、前記ソール21は、一般的に複数のパーツを積層状態に組み合わせて構成されるものであり、前記緩衝部材1の組み付け個所すなわち受入空間23の形成個所は、アウトソール、ミッドソールあるいはインソールとするなど、適宜の部位を選択することができる。
Next, the shoe 6 in which the cushioning member 1 is incorporated will be described by taking the cushioning member 1 including the ground cushioning portion 10, the connecting portion 13, and the heel cushioning portion 11 as an example.
In FIG. 1, what is shown by the code | symbol 6 is the sport shoes which are an example of shoes, Comprising: Upper 22 is assembled | attached with respect to the sole 21 which is a grounding member.
Then, the receiving space 23 is hollowed out from the rear end of the heel portion 21a to the vicinity of the lower part of the heel portion 21a (above the portion where the wearer contacts the earliest when walking or running) with respect to the sole 21. The sole 21 and the upper 22 are assembled in the receiving space 23 in a state in which the cushioning member 1, the bag cushioning portion 11, and the coupling portion 13 are assembled.
The sole 21 is generally configured by combining a plurality of parts in a stacked state, and an assembly portion of the buffer member 1, that is, a formation portion of the receiving space 23 is an outsole, a midsole, or an insole. An appropriate site can be selected, such as.

本発明の緩衝部材を備えたシューズは、一例として上述したように構成されるものであるが、シューズへの組込み位置や所望の特性(緩衝性と反発性とのバランス、さらには重心誘導性等)に応じて、上述の各種形態の緩衝部材を適宜適用することができる。   The shoe provided with the shock-absorbing member of the present invention is configured as described above as an example. However, the position of incorporation into the shoe and desired characteristics (balance between shock-absorbing and resilience, and center-of-gravity inductiveness, etc.) ), The above-described various types of buffer members can be appropriately applied.

続いて、使用時の挙動について説明する。
〔着地前の状態〕
シューズ6の装着者が歩行または走行している状態において、着地前の状態では、踵緩衝部11は、特に圧力が加わっていないため、変形は生じない。また、緩衝部材1についても、特に圧力が加わっていないため、変形は生じない。
Next, behavior during use will be described.
[State before landing]
In the state where the wearer of the shoes 6 is walking or running, in the state before landing, the bag cushioning portion 11 is not deformed because no pressure is applied. Further, the buffer member 1 is not deformed because no pressure is applied.

〔着地の瞬間の状態〕
次に、着地の瞬間の状態を考察すると、図6、7に示すように、緩衝部材1の受圧部(A)4(接地緩衝部)には、装着者の体重及び接地の衝撃が加わるため、接地緩衝部が変形して接地衝撃を緩衝することになる。その際に、接地緩衝部中のシリコーンゲル2と波板体3の働きにより、変形の受圧部が一箇所に集中していたのを、内部から波板体を介在して、周囲ゲル全体に広がることによって、変形が一箇所集中から分散状態になり、その結果、緩衝機能が格段と向上し、さらに、反発性能も高いので、重心の安定性にも優れたものになる。また、図10〜18のような部分的に波板体の変形挙動を異ならせた形態の緩衝部材を適用した場合には、接地時の重心点を目的の重心移動経路に矯正するように誘導される。さらに、図18(e)や図20(f)のような構造を有する緩衝部材を適用した場合には、シリコーンゲル特有の柔らかさを活かした柔らかな感覚で着地し、波板体の凹型の撓み変形部に重心を誘導しつつ、次いで、波板体の延伸変形とシリコーンゲルの変形との共動による優れた緩衝効果が得られるとともに、波板体の反発性により重心の安定化が図られる。
[State at the moment of landing]
Next, considering the state at the moment of landing, as shown in FIGS. 6 and 7, the pressure receiving part (A) 4 (grounding buffer part) of the buffer member 1 is subjected to the weight of the wearer and the impact of the grounding. Then, the grounding buffer part is deformed to buffer the grounding shock. At this time, the deformation pressure receiving portion was concentrated in one place by the action of the silicone gel 2 and the corrugated plate body 3 in the ground buffer portion, and the entire surrounding gel was interposed through the corrugated plate body from the inside. By spreading, the deformation changes from being concentrated at one place to a dispersed state. As a result, the shock absorbing function is remarkably improved and the resilience performance is also high, so that the stability of the center of gravity is also excellent. In addition, when a buffer member having a form in which the deformation behavior of the corrugated plate body is partially different as shown in FIGS. 10 to 18 is applied, the center of gravity at the time of grounding is guided to be corrected to the target center of gravity movement path. Is done. Further, when the buffer member having the structure as shown in FIG. 18 (e) or FIG. 20 (f) is applied, the landing is made with a soft feeling utilizing the softness peculiar to the silicone gel, and the corrugated body has a concave shape. While guiding the center of gravity to the flexural deformation part, it is possible to obtain an excellent buffering effect by co-operation of the stretching deformation of the corrugated sheet and the deformation of the silicone gel, and the center of gravity is stabilized by the resilience of the corrugated sheet. It is done.

〔着地後の状態〕
次に、着地後の状態を考察すると、接地緩衝部は、着地からの歩行重心移動に連動して形状復元し、衝撃緩衝しながら重心を踵緩衝部11へスムーズに誘導するよう作用する。
この状態では、踵緩衝部11には、装着者の体重及び接地の衝撃が加わることとなるため変形が生じるが、緩衝部材1の十分な反発性により重心点の移動方向が安定確保されているので、接地緩衝部10と踵緩衝部11とが連結部13を介在させて共動することにより、重心点の安定を確保しながら衝撃を効果的に逃がすこととなる。
また、接地緩衝部は、爪先方向への重心移動に伴い、踵緩衝部11の衝撃緩衝状態と連動、共動してさらに形状が復元し、シリコーンゲルと波板体3の反発力により、爪先方向への円滑な重心移動を実現することができる。
更に、爪先側へ重心移行した後は、踵緩衝部11と連結部13とは、L字状乃至T字状に連結されているため、接地緩衝部は、連結部13の弾性により、踵S側に押し付けられ踵Sへフィットするように作用し、再度接地緩衝部が着地するタイミングや着地部位の再現性を向上させて、歩行衝撃緩衝挙動を安定化することで、衝撃緩衝性と良好な歩行性を両立させる効果を奏する。
[State after landing]
Next, considering the state after landing, the grounding buffering portion restores its shape in conjunction with the movement of the walking center of gravity from the landing, and acts to smoothly guide the center of gravity to the heel buffering portion 11 while buffering the impact.
In this state, the weight of the wearer 11 is deformed because the weight of the wearer and the impact of the grounding are applied to the heel buffer 11, but the movement direction of the center of gravity is stably ensured by the sufficient resilience of the buffer member 1. Therefore, the grounding buffer 10 and the heel buffer 11 co-operate with the connecting part 13 interposed therebetween, so that the impact is effectively released while ensuring the stability of the center of gravity.
In addition, the ground buffer portion is moved in conjunction with the shock buffering state of the heel buffer portion 11 in conjunction with the movement of the center of gravity in the toe direction, and the shape is further restored. Smooth center of gravity movement in the direction can be realized.
Further, after the center of gravity shifts to the toe side, the heel buffer portion 11 and the connecting portion 13 are connected in an L shape or a T shape. It is pushed to the side and works to fit the heel S, improving the reproducibility of the landing buffering portion and the landing part again, and stabilizing the walking shock buffering behavior, so that the shock buffering and good There is an effect to achieve both walking ability.

なお、実施例1においては、緩衝部材1をヒール部の着地開始部分に適用した様態であるが、ヒール部分の側面やつま先部の母子丘付近に、単独もしくは複数配置した様態としてもよい。   In the first embodiment, the cushioning member 1 is applied to the landing start portion of the heel portion. However, the cushioning member 1 may be provided singly or in a plurality in the vicinity of the side surface of the heel portion or the mother-child hill of the toe portion.

本発明の効果を検証するために、実施例1のシューズと、比較例として実施例1において、シリコーンゲルに、波板体を封入しない以外は、実施例1と同様に、シューズ用緩衝部材とそれを組み込んだシューズを作製し、被験者10名に実履きしてもらい、緩衝性と歩行性および走行性について官能試験とした結果、比較例に比べて実施例1のほうが全ての評価において優れていた。   In order to verify the effect of the present invention, in the shoe of Example 1 and in Example 1 as a comparative example, in the same manner as in Example 1 except that the corrugated plate body is not encapsulated in the silicone gel, As a result of making a shoe incorporating it and having 10 subjects actually wear it, and as a result of sensory tests on buffering, walking and running, Example 1 was superior in all evaluations compared to the comparative example. It was.

本発明の緩衝部材を備えたシューズは、粘弾性体内部に、波板体を配置した緩衝部材を備えているため、優れた衝撃緩衝性を維持しつつ緩衝部材の薄型化が可能であり、また、特にヒール部の緩衝機能と重心安定性を向上させているため、アスリート用スポーツシューズをはじめ、ウォーキングシューズからビジネスシューズ、さらには、子供向けシューズに至る広い範囲で、適用できる。   Since the shoe provided with the cushioning member of the present invention includes the cushioning member in which the corrugated plate body is disposed inside the viscoelastic body, the cushioning member can be thinned while maintaining excellent shock buffering properties. In particular, since the buffer function and the stability of the center of gravity of the heel portion are improved, it can be applied in a wide range from sports shoes for athletes to walking shoes, business shoes, and shoes for children.

1 緩衝部材
2 略板状体
3 波板体
4 受圧緩衝部(A)
5 連動緩衝部(B)
6 シューズ
7 中空部
8 略円柱状体
9 波板体湾曲誘発部
10 接地緩衝部
11 踵緩衝部
13 連結部
21 ソール
22 アッパー
23 受入空間
24 アウターソール
DESCRIPTION OF SYMBOLS 1 Buffer member 2 Substantially plate-shaped body 3 Corrugated plate body 4 Pressure receiving buffer part (A)
5 Interlocking buffer (B)
6 Shoes 7 Hollow part 8 Substantially cylindrical body 9 Corrugated plate curve inducing part 10 Grounding buffer part 11 Kite buffer part 13 Connection part 21 Sole 22 Upper 23 Receiving space 24 Outer sole

Claims (11)

粘弾性体(a)と波板体(b)からなる緩衝部材を備えたシューズであって、
粘弾性体(a)は、針入度(JIS K2207)が5〜250又はアスカー硬度(C型)が0〜40の硬度を有するとともに、
波板体(b)は、粘弾性体(a)より高い硬度と、波形連続方向に延伸変形する弾性とを有し、着地時の緩衝部材の受圧方向に波形山頂部へ向けて、粘弾性体(a)に、全体または全体の一部を埋設されてなることを特徴とする緩衝部材を備えたシューズ。
A shoe comprising a buffer member comprising a viscoelastic body (a) and a corrugated body (b),
The viscoelastic body (a) has a penetration of JIS K2207 of 5 to 250 or Asker hardness (C type) of 0 to 40,
The corrugated plate body (b) has a higher hardness than the viscoelastic body (a) and elasticity that stretches and deforms in the corrugated continuous direction, and is viscoelastic toward the corrugated peak in the pressure receiving direction of the buffer member at the time of landing. A shoe comprising a cushioning member, wherein the body (a) is entirely or partially embedded in the body (a).
前記緩衝部材は、受圧変形する受圧緩衝部(A)とその周辺に受圧緩衝部(A)の変形に連動して変形する連動緩衝部(B)とを有する略板状体または略円柱体であって、
波板体(b)の全部または一部が、受圧緩衝部(A)と連動緩衝部(B)を貫通するように、粘弾性体(a)に埋設された構成からなり、
受圧緩衝部(A)の受圧変形に連動して、受圧緩衝部(A)を起点とした波板体(b)の延伸変形によって、連動緩衝部(B)が該延伸変形の方向に変形される緩衝作用と、波板体(b)の延伸変形しない方向の粘弾性体(a)の受圧変形による緩衝作用とが共動することを特徴とする請求項1に記載の緩衝部材を備えたシューズ。
The buffer member is a substantially plate-like body or a substantially cylindrical body having a pressure-receiving buffer portion (A) that undergoes pressure-receiving deformation and an interlocking buffer portion (B) that deforms in conjunction with the deformation of the pressure-receiving buffer portion (A) in the vicinity thereof. There,
The corrugated plate body (b) has a configuration in which all or part of the corrugated plate body (b) is embedded in the viscoelastic body (a) so as to penetrate the pressure receiving buffer section (A) and the interlocking buffer section (B).
In conjunction with the pressure-receiving deformation of the pressure-receiving buffer portion (A), the interlocking buffer portion (B) is deformed in the direction of the stretching deformation by the stretching deformation of the corrugated plate body (b) starting from the pressure-receiving buffer portion (A). The cushioning member according to claim 1, wherein the cushioning action of the corrugated plate body (b) and the cushioning action of the viscoelastic body (a) in the direction in which the corrugated body (b) is not stretched and deformed co-operate. shoes.
波板体(b)は、さらに、撓み変形する可撓性を有し、及び
粘弾性体(a)は、着地面側に波板体湾曲誘発部を設けることを特徴とする請求項1又は2に記載の緩衝部材を備えたシューズ。
The corrugated body (b) further has flexibility to bend and deform, and the viscoelastic body (a) is provided with a corrugated body bending induction part on the landing side. A shoe comprising the cushioning member according to 2.
波板体(b)の受圧下面側の凸型形状部の少なくとも一部に、粘弾性体(a)を介して、または直接隣接して、中空部分を有することを特徴とする請求項1〜3のいずれかに記載の緩衝部材を備えたシューズ。   The corrugated plate (b) has a hollow portion at least part of the convex shape portion on the pressure-receiving lower surface side through the viscoelastic body (a) or directly adjacent thereto. A shoe comprising the cushioning member according to any one of 3 above. 前記緩衝部材が長尺形状であり、及び
波板体(b)は、波板体(b)の延伸変形の方向が緩衝部材の長尺方向に倣うように配置されてなることを特徴とする請求項1〜4のいずれかに記載の緩衝部材を備えたシューズ。
The buffer member has a long shape, and the corrugated body (b) is arranged such that the direction of stretching deformation of the corrugated body (b) follows the longitudinal direction of the buffer member. A shoe comprising the cushioning member according to claim 1.
波板体(b)は、材料が樹脂であり、波形が三角波または弦波であることを特徴とする請求項1〜5のいずれかに記載の緩衝部材を備えたシューズ。   The corrugated plate (b) is made of resin, and the waveform thereof is a triangular wave or a chord wave. The shoe with a cushioning member according to any one of claims 1 to 5, 波板体(b)は、JIS K6385準拠による圧縮ばね定数が1×10〜1×10N/mであり、かつ前記粘弾性体(a)の圧縮ばね定数に対する波板体の圧縮ばね定数の比が0.1〜10であることを特徴とする請求項1〜6のいずれかに記載の緩衝部材を備えたシューズ。 The corrugated plate body (b) has a compression spring constant according to JIS K6385 of 1 × 10 3 to 1 × 10 6 N / m, and the corrugated plate body compression spring with respect to the compression spring constant of the viscoelastic body (a) The shoes with the cushioning member according to claim 1, wherein the ratio of the constants is 0.1 to 10. 波板体(b)は、アウトソール側が下方を向くように終了させることを特徴とする請求項1〜7のいずれかに記載の緩衝部材を備えたシューズ。   The corrugated plate body (b) is finished so that the outsole side faces downward, and the shoe provided with the buffer member according to any one of claims 1 to 7. 波板体(b)は、両末端が一方を上方、他方を下方に向くように終了させることを特徴とする請求項1〜7のいずれかに記載の緩衝部材を備えたシューズ。   The corrugated body (b) is finished with the shock absorbing member according to any one of claims 1 to 7, wherein both ends of the corrugated plate body are finished so that one of the ends faces upward and the other faces downward. 前記緩衝部材は、連結部を介して、第2の緩衝体と一体に構成された構造を有することを特徴とする請求項1〜9のいずれかに記載の緩衝部材を備えたシューズ。   The shoe with a buffer member according to any one of claims 1 to 9, wherein the buffer member has a structure integrally formed with the second buffer body via a connecting portion. 前記緩衝部材が着地部のミッドソールに配置されて、組込まれていることを特徴とする請求項1〜10のいずれかに記載の緩衝部材を備えたシューズ。   The shoe with a cushioning member according to any one of claims 1 to 10, wherein the cushioning member is arranged and incorporated in a midsole of a landing portion.
JP2010041591A 2010-02-26 2010-02-26 Shoes with cushioning members Expired - Fee Related JP5564286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010041591A JP5564286B2 (en) 2010-02-26 2010-02-26 Shoes with cushioning members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010041591A JP5564286B2 (en) 2010-02-26 2010-02-26 Shoes with cushioning members

Publications (2)

Publication Number Publication Date
JP2011177206A true JP2011177206A (en) 2011-09-15
JP5564286B2 JP5564286B2 (en) 2014-07-30

Family

ID=44689450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041591A Expired - Fee Related JP5564286B2 (en) 2010-02-26 2010-02-26 Shoes with cushioning members

Country Status (1)

Country Link
JP (1) JP5564286B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141467A1 (en) * 2013-03-15 2014-09-18 株式会社アシックス Midsole having a laminated structure
WO2018070045A1 (en) * 2016-10-14 2018-04-19 株式会社アシックス Shoe
CN107934216A (en) * 2017-11-30 2018-04-20 广东美的制冷设备有限公司 Air-conditioner outdoor unit with packaging structure
CN109751501A (en) * 2017-11-04 2019-05-14 李佳伟 A kind of retractable curved corrugated plating
CN110339067A (en) * 2019-07-18 2019-10-18 成都贝酷科技有限公司 A kind of infant intelligent feeding bottle base and control method
JP2021516114A (en) * 2018-04-27 2021-07-01 プーマ エス イーPuma Se Shoes, especially athletic shoes
USD944504S1 (en) 2020-04-27 2022-03-01 Puma SE Shoe
US11291273B2 (en) 2017-08-11 2022-04-05 Puma SE Method for producing a shoe
USD953709S1 (en) 1985-08-29 2022-06-07 Puma SE Shoe
USD953710S1 (en) 2017-09-14 2022-06-07 Puma SE Shoe
USD960541S1 (en) 2017-01-17 2022-08-16 Puma SE Shoe
USD975417S1 (en) 2017-09-14 2023-01-17 Puma SE Shoe
KR102514840B1 (en) * 2022-10-20 2023-03-27 배재형 functional slippers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10631591B2 (en) 2017-05-23 2020-04-28 Nike, Inc. Sole structure for an article of footwear with undulating sole plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448805U (en) * 1990-08-30 1992-04-24
JPH11221104A (en) * 1998-02-05 1999-08-17 Asahi Intecc Co Ltd Shock absorbing material
JP2005253578A (en) * 2004-03-10 2005-09-22 Mizuno Corp Sole structure of shoe
JP2009022449A (en) * 2007-07-18 2009-02-05 Taika:Kk Shoe with cushioning part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448805U (en) * 1990-08-30 1992-04-24
JPH11221104A (en) * 1998-02-05 1999-08-17 Asahi Intecc Co Ltd Shock absorbing material
JP2005253578A (en) * 2004-03-10 2005-09-22 Mizuno Corp Sole structure of shoe
JP2009022449A (en) * 2007-07-18 2009-02-05 Taika:Kk Shoe with cushioning part

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD953709S1 (en) 1985-08-29 2022-06-07 Puma SE Shoe
JP5887463B2 (en) * 2013-03-15 2016-03-16 株式会社アシックス Midsole with laminated structure
US9763493B2 (en) 2013-03-15 2017-09-19 Asics Corporation Mid sole having layered structure
WO2014141467A1 (en) * 2013-03-15 2014-09-18 株式会社アシックス Midsole having a laminated structure
US11051580B2 (en) 2016-10-14 2021-07-06 Asics Corporation Shoe having cushioning structure
WO2018070045A1 (en) * 2016-10-14 2018-04-19 株式会社アシックス Shoe
USD960541S1 (en) 2017-01-17 2022-08-16 Puma SE Shoe
US11291273B2 (en) 2017-08-11 2022-04-05 Puma SE Method for producing a shoe
USD953710S1 (en) 2017-09-14 2022-06-07 Puma SE Shoe
USD975417S1 (en) 2017-09-14 2023-01-17 Puma SE Shoe
CN109751501A (en) * 2017-11-04 2019-05-14 李佳伟 A kind of retractable curved corrugated plating
CN107934216A (en) * 2017-11-30 2018-04-20 广东美的制冷设备有限公司 Air-conditioner outdoor unit with packaging structure
CN107934216B (en) * 2017-11-30 2024-01-23 广东美的制冷设备有限公司 Air conditioner outdoor unit with packaging structure
JP2021516114A (en) * 2018-04-27 2021-07-01 プーマ エス イーPuma Se Shoes, especially athletic shoes
US11832684B2 (en) 2018-04-27 2023-12-05 Puma SE Shoe, in particular a sports shoe
JP7447010B2 (en) 2018-04-27 2024-03-11 プーマ エス イー shoes, especially athletic shoes
CN110339067A (en) * 2019-07-18 2019-10-18 成都贝酷科技有限公司 A kind of infant intelligent feeding bottle base and control method
USD944504S1 (en) 2020-04-27 2022-03-01 Puma SE Shoe
KR102514840B1 (en) * 2022-10-20 2023-03-27 배재형 functional slippers

Also Published As

Publication number Publication date
JP5564286B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5564286B2 (en) Shoes with cushioning members
US10426222B2 (en) Sole structure for an article of footwear
US10595588B2 (en) Sole structure for an article of footwear
EP2023760B1 (en) Impact-attenuation members with lateral and shear force stability and products containing such members
US6487796B1 (en) Footwear with lateral stabilizing sole
JP4886774B2 (en) Sole with reinforced structure and sole with shock absorbing structure
WO2019220621A1 (en) Shoe sole including laminate-structured midsole
KR20190003005U (en) Shoe bottom structure
US9456657B2 (en) Article of footwear with support assembly having tubular members
US20110289799A1 (en) Shoe outsole having tubes
WO2006038357A1 (en) Cushioning device for shoe bottom
US20100281711A1 (en) Article of Footwear Having a Support Structure
US20050252038A1 (en) Outsole
WO2015059744A1 (en) Shock-absorbing structure for sole side surface and shoes implementing same
JPWO2006120749A1 (en) Shoe sole shock absorber
JP2009142705A (en) Shoe sole with reinforcing structure and shoe sole with buffer structure
JP7413457B2 (en) Shock-absorbing member for shoe soles and shoes equipped with the same
JP2009056007A (en) Cushioning part for sole and shoe equipped with the same
WO2017163741A1 (en) Shoe sole structure and shoe using same
JP6722709B2 (en) Sole structure and shoes
KR20070093375A (en) The footwear&#39;s sole free bent
JP4989933B2 (en) shoes
KR101418672B1 (en) Shoes soles
JP3229584U (en) Shoe sole
JP7115860B2 (en) Shoe sole shock absorbing member and shoe provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5564286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees