JP2011176676A - Switch circuit, indoor power line, and method of improving transmission characteristic of the same - Google Patents

Switch circuit, indoor power line, and method of improving transmission characteristic of the same Download PDF

Info

Publication number
JP2011176676A
JP2011176676A JP2010040013A JP2010040013A JP2011176676A JP 2011176676 A JP2011176676 A JP 2011176676A JP 2010040013 A JP2010040013 A JP 2010040013A JP 2010040013 A JP2010040013 A JP 2010040013A JP 2011176676 A JP2011176676 A JP 2011176676A
Authority
JP
Japan
Prior art keywords
power line
line
terminal
wire
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010040013A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakai
和広 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010040013A priority Critical patent/JP2011176676A/en
Publication of JP2011176676A publication Critical patent/JP2011176676A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent degradation of communication quality by suppressing variation of a transmission characteristic of a branch power line due to state change of a switch arranged in one-side wire line of the branch power line, in power line carrier communication using an indoor power line. <P>SOLUTION: A switch circuit arranged in one-side wire line of a branch power line BL comprising a pair of wire lines WL1, WL2 branching from a core power line ML to supply power to a power load LD is formed with a parallel circuit of an opening-closing switch SW for switching turning-on/off of current between two terminals, and a capacitor C1 having capacitance of 1-100 nF. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基幹電力線から分岐して電力負荷に電力を供給する分岐電力線の一方側のワイヤ線路に設けられるスイッチ回路と、電力線搬送通信用のネットワークとして使用する屋内電力線、及び、その伝送特性改善方法に関する。   The present invention relates to a switch circuit provided on a wire line on one side of a branch power line that branches from a main power line and supplies power to a power load, an indoor power line used as a network for power line carrier communication, and improvement of transmission characteristics thereof Regarding the method.

電力線搬送通信では、既存の電力線を使用することにより容易にネットワークを構築し、通信を行うことができる。屋内配電系の電力線を使用した電力線搬送通信では、2つのモデム装置間における通信を確立するために、通常1対のワイヤ線路を用いて差動送信を行う。差動送信では、1対のワイヤ線路は、夫々位相の反転した2つの信号、つまり、両信号の信号出力の和がゼロとなる信号で各別に駆動される。差動送信は、1本のワイヤ線路を用いる送信方式と比べて幾つかの利点を有する。その1つに、ワイヤ線路が理想的な線路特性を有している場合に、放射エネルギがほぼ発生しない状態となる点である。しかしながら、実際の線路特性は決して理想的ではなく、線路対毎に線路インピーダンスが変化する。   In power line carrier communication, a network can be easily constructed and communicated by using an existing power line. In power line carrier communication using an indoor power distribution system power line, differential transmission is usually performed using a pair of wire lines in order to establish communication between two modem devices. In differential transmission, a pair of wire lines are driven separately by two signals with inverted phases, that is, signals with the sum of the signal outputs of both signals being zero. Differential transmission has several advantages over transmission schemes that use a single wire line. One of them is that when the wire line has ideal line characteristics, almost no radiant energy is generated. However, the actual line characteristics are never ideal, and the line impedance changes for each line pair.

1対のワイヤ線路間の平衡度が悪いと、通信線路上にコモンモード電流が発生する。コモンモード電流による漏洩電波を十分に抑制できないと、周辺機器への影響が問題となる。また、コモンモード電流を低減するために、使用するモデム装置において、インピーダンス適合を図る、或いは、差動送信信号電力を減衰させる等の種々の対策が提案されている。   If the balance between the pair of wire lines is poor, a common mode current is generated on the communication line. If leakage radio waves due to the common mode current cannot be sufficiently suppressed, the influence on peripheral devices becomes a problem. In order to reduce the common mode current, various countermeasures such as impedance matching or attenuation of differential transmission signal power have been proposed in the modem device to be used.

「高速電力線搬送通信に関する研究会」報告書、p.22、総務省、平成17年12月Report on "Study Group on High-Speed Power Line Carrier Communications" 22, Ministry of Internal Affairs and Communications, December 2005

屋内配電系の電力線において、1対のワイヤ線路間の平衡度低下の要因として、基幹電力線から分岐して照明装置、換気扇等の電力負荷に電力を供給する分岐電力線の一方側のワイヤ線路に開閉スイッチ(片切りスイッチ)が設けられている場合において、そのオンオフ状態で線路特性が変化する点が挙げられる。   In a power line of an indoor distribution system, as a factor of a decrease in the balance between a pair of wire lines, it opens and closes on one side of the branch power line that branches from the main power line and supplies power to a power load such as a lighting device or a ventilation fan In the case where a switch (one-sided switch) is provided, the line characteristics change in the on / off state.

図1を参照して、上記平衡度低下について説明する。図1(a)は、基幹電力線MLから分岐した分岐電力線BLの先端に照明装置等の電力負荷LDが設けられ、一方側のワイヤ線路WL1が途中(中間点M)で切断され、その1対の開放端から1対のワイヤ線路WL3,WL4が延長して、その先端に片切りスイッチSWが接続している分岐電力線回路の典型例を示している。基幹電力線MLから、基幹電力線MLから中間点Mまでのワイヤ線路WL1、ワイヤ線路WL3、片切りスイッチSW、ワイヤ線路WL4、中間点Mから電力負荷LDまでのワイヤ線路WL1、電力負荷LD、ワイヤ線路WL2を順番に経由して、基幹電力線MLに戻るループ状の電流経路が形成され、片切りスイッチSWのオンオフによって、当該電流経路の通電が制御される。ここで、ワイヤ線路WL2の線路長を“L”、基幹電力線MLから中間点Mまでのワイヤ線路WL1の線路長を“mL”(0<m<1)、中間点Mから電力負荷LDまでのワイヤ線路WL1の線路長を“(1−m)L”、ワイヤ線路WL3,WL4の線路長を“nL”(n>0)とする。   With reference to FIG. 1, the above-described decrease in the degree of balance will be described. In FIG. 1A, a power load LD such as a lighting device is provided at the tip of a branch power line BL branched from the main power line ML, and one wire line WL1 is cut halfway (intermediate point M). 2 shows a typical example of a branch power line circuit in which a pair of wire lines WL3 and WL4 extend from the open ends of the two and a cut-off switch SW is connected to the tip of the wire lines WL3 and WL4. Wire line WL1, wire line WL3, cut-off switch SW, wire line WL4 from core power line ML to intermediate point M, wire line WL1, intermediate line M to power load LD, power load LD, wire line A loop-shaped current path that returns to the main power line ML through the WL2 in order is formed, and energization of the current path is controlled by turning on and off the one-side switch SW. Here, the line length of the wire line WL2 is “L”, the line length of the wire line WL1 from the main power line ML to the intermediate point M is “mL” (0 <m <1), and the intermediate point M to the power load LD. The line length of the wire line WL1 is “(1-m) L”, and the line lengths of the wire lines WL3 and WL4 are “nL” (n> 0).

片切りスイッチSWがオフ時には、片切りスイッチSWが開放端となり、基幹電力線ML側から入射した信号波は片切りスイッチSWで反射する。この場合、図1(b)に示すように、基幹電力線MLから片切りスイッチSWまでの2つの経路の内、ワイヤ線路WL3を通過する経路Aの線路長は“(m+n)L”、一方、ワイヤ線路WL4を通過する経路Bの線路長は“(2−m+n)L”となり、経路Bの線路長の方が長くなり、その差は“(2−2m)L”となる。また、経路A側は電力負荷LDを通過しないが、経路B側は電力負荷LDを通過するという差がある。これに対して、片切りスイッチSWがオン時には、片切りスイッチSWが開放端とはならないため、基幹電力線ML側から入射した信号波は電力負荷LDで反射する。この場合、図1(c)に示すように、基幹電力線MLから電力負荷LDまでの2つの経路の内、ワイヤ線路WL3を通過する経路Aの線路長は“(1+2n)L”、一方、ワイヤ線路WL3を通過しない経路Bの線路長は“L”となり、逆に経路Aの線路長の方が長くなり、その差は“2nL”となる。従って、上記線路長の差の変化は、差動送信される信号波間の位相のずれの差となって現れ、1対のワイヤ線路間の非平衡度が変化する。また、当該非平衡度の変化は、ワイヤ線路WL1,WL2及びワイヤ線路WL3,WL4の線路長、中間点Mの位置に依存する。   When the cut-off switch SW is turned off, the cut-off switch SW becomes an open end, and the signal wave incident from the main power line ML side is reflected by the cut-off switch SW. In this case, as shown in FIG. 1B, the line length of the path A passing through the wire line WL3 among the two paths from the main power line ML to the one-sided switch SW is “(m + n) L”, The line length of the path B passing through the wire line WL4 is “(2-m + n) L”, the line length of the path B is longer, and the difference is “(2-2m) L”. The route A side does not pass through the power load LD, but the route B side passes through the power load LD. On the other hand, when the cut-off switch SW is on, the cut-off switch SW does not become an open end, so that the signal wave incident from the main power line ML is reflected by the power load LD. In this case, as shown in FIG. 1C, the line length of the path A passing through the wire line WL3 among the two paths from the main power line ML to the power load LD is “(1 + 2n) L”, whereas the wire The line length of the path B that does not pass through the line WL3 is “L”, and conversely, the line length of the path A is longer, and the difference is “2 nL”. Accordingly, the change in the line length difference appears as a difference in phase shift between the differentially transmitted signal waves, and the degree of unbalance between the pair of wire lines changes. Further, the change in the degree of unbalance depends on the line lengths of the wire lines WL1 and WL2 and the wire lines WL3 and WL4 and the position of the intermediate point M.

以上の問題点に関連して、「高速電力線搬送通信に関する研究会」の報告書(非特許文献1)の第5章、5.1.4「周波数特性に対するスイッチ分岐のON−OFF依存性」の項では、片切りスイッチのオンオフで漏洩電界の強度に差が生じる現象として報告されている。しかし、上記非特許文献1では、片切りスイッチのオンオフで漏洩電界の強度に差が生じる点の報告がなされているものの、具体的にどのような線路特性の変化として現れるのか、また、その解決方法については、何ら報告されていない。   In relation to the above problems, Chapter 5 and 5.1.4 “ON-OFF dependency of switch branching on frequency characteristics” of the “Study Group on High Speed Power Line Carrier Communication” (Non-Patent Document 1) In the section, it is reported as a phenomenon in which the intensity of the leakage electric field varies depending on whether the one-way switch is turned on or off. However, although the non-patent document 1 has reported that a difference occurs in the strength of the leakage electric field by turning on and off the one-way switch, what kind of line characteristic change appears and how to solve it? No method has been reported.

ここで、片切りスイッチのオンオフで線路特性が変化する問題点は、片切りスイッチを設けていることに起因するので、片切りスイッチを両切りスイッチに変更することで解消される。しかし、既設の片切りスイッチを両切りスイッチに変更するためには、片切りスイッチを両切りスイッチに交換した上で、片切りスイッチが設けられていない側のワイヤ線路(図1(a)では、ワイヤ線路WL2)を、両切りスイッチまで延長する配線工事が必要となる。また、新規に屋内電力線の敷設工事をするに当たっても、両切りスイッチを使用することでコスト高となる。   Here, the problem that the line characteristics change when the one-sided switch is turned on and off is due to the provision of the one-sided switch. Therefore, the problem is solved by changing the one-sided switch to a two-way switch. However, in order to change the existing single cut switch to the double cut switch, the single cut switch is replaced with a double cut switch, and the wire line on the side where the single cut switch is not provided (in FIG. Wiring work is required to extend the line WL2) to the double cut switch. In addition, even when constructing a new indoor power line, the use of the double switch increases the cost.

更に、廊下の両側、階段の上下等の複数箇所において、照明装置等の電力負荷を交互にオンオフするための3路スイッチ回路が設けられている場合がある。次に、図2を参照して、基幹電力線から分岐して照明装置等の電力負荷に電力を供給する分岐電力線の一方側のワイヤ線路に3路スイッチ回路が設けられている場合の1対のワイヤ線路間の非平衡度の変化について説明する。尚、以下に示す3路スイッチ回路に対しては、両切りスイッチに変更するという解消方法は、3路スイッチ回路を二重に構成する必要があり、現実的でない。   Further, there are cases where a three-way switch circuit for alternately turning on and off the power load of the lighting device or the like is provided at a plurality of locations such as both sides of the corridor and up and down the stairs. Next, referring to FIG. 2, a pair of switches in a case where a three-way switch circuit is provided on a wire line on one side of a branch power line that branches from the main power line and supplies power to a power load such as a lighting device. A change in the degree of unbalance between the wire lines will be described. For the three-way switch circuit shown below, the solution method of changing to the double switch is not practical because the three-way switch circuit needs to be configured in a double manner.

図2(a)は、基幹電力線MLから分岐した分岐電力線BLの先端に照明装置等の電力負荷LDが設けられ、一方側のワイヤ線路WL1が途中(中間点M,N)で切断され、中間点Mに第1の3路スイッチSW1の第1端子が接続し、中間点Nに第2の3路スイッチSW2の第1端子が夫々接続し、第1の3路スイッチSW1の第2及び第3端子と4路スイッチSW3の第1及び第2端子が夫々接続し、第2の3路スイッチSW1の第2及び第3端子と4路スイッチSW3の第3及び第4端子が夫々接続している、3路スイッチを用いた分岐電力線回路の典型例を示している。尚、本明細書では、2つの3路スイッチSW1,SW2を含む中間点M,N間の回路を3路スイッチ回路と称する。   In FIG. 2A, a power load LD such as a lighting device is provided at the tip of a branch power line BL branched from the main power line ML, and the wire line WL1 on one side is cut halfway (intermediate points M and N). The first terminal of the first three-way switch SW1 is connected to the point M, the first terminal of the second three-way switch SW2 is connected to the intermediate point N, and the second and second terminals of the first three-way switch SW1 are connected. The third terminal and the first and second terminals of the four-way switch SW3 are respectively connected, and the second and third terminals of the second three-way switch SW1 and the third and fourth terminals of the four-way switch SW3 are respectively connected. A typical example of a branch power line circuit using a three-way switch is shown. In this specification, a circuit between the intermediate points M and N including the two three-way switches SW1 and SW2 is referred to as a three-way switch circuit.

図2(a)の3路スイッチ回路では、スイッチSW1〜SW3の内の何れか1つのスイッチを切り替えるだけで、中間点M,N間の導通非道通が交互に切り替わる。ここで、3路スイッチSW1,SW2は、第1端子と第2端子間の導通非道通と前記第1端子と第3端子間の導通非道通を一方が導通で他方が非道通となるように切り替わり、4路スイッチSW3は、第1端子と第3端子間及び第2端子と第4端子間が導通の状態と、第1端子と第4端子間及び第2端子と第3端子間が導通の状態が、交互に切り替わる。3路スイッチ回路内に設ける4路スイッチSW3の個数は、0、または2以上でも構わない。基幹電力線MLから、基幹電力線MLから中間点Mまでのワイヤ線路WL1、3路スイッチSW1、4路スイッチSW3、3路スイッチSW2、中間点Nから電力負荷LDまでのワイヤ線路WL1、電力負荷LD、ワイヤ線路WL2を順番に経由して、基幹電力線MLに戻るループ状の電流経路が形成され、スイッチSW1〜SW3の切り替えによって、当該電流経路の通電が制御される。ここで、一例として、基幹電力線MLから中間点Mまでのワイヤ線路WL1の線路長と中間点Nから電力負荷LDまでのワイヤ線路WL1の線路長を夫々“L”、3路スイッチSW1から4路スイッチSW3を経由して3路スイッチSW2までの線路長を“mL”、ワイヤ線路WL2の線路長を“nL”とする。   In the three-way switch circuit shown in FIG. 2A, only one of the switches SW1 to SW3 is switched, so that conduction between the intermediate points M and N is alternately switched. Here, the three-way switches SW1 and SW2 are configured such that one is conductive while the other is non-conductive and the other is non-conductive between the first terminal and the third terminal. The four-way switch SW3 is switched between the first terminal and the third terminal, between the second terminal and the fourth terminal, and between the first terminal and the fourth terminal and between the second terminal and the third terminal. The state is switched alternately. The number of four-way switches SW3 provided in the three-way switch circuit may be 0 or 2 or more. Wire line WL1, from main power line ML to intermediate point M, three-way switch SW1, four-way switch SW3, three-way switch SW2, wire line WL1 from intermediate point N to power load LD, power load LD, A loop-like current path that returns to the main power line ML is formed via the wire line WL2 in order, and the energization of the current path is controlled by switching the switches SW1 to SW3. Here, as an example, the line length of the wire line WL1 from the main power line ML to the intermediate point M and the line length of the wire line WL1 from the intermediate point N to the power load LD are respectively “L”, and four lines from the three-way switch SW1. The line length from the switch SW3 to the three-way switch SW2 is “mL”, and the line length of the wire line WL2 is “nL”.

図2(a)に例示する回路構成では、スイッチSW1〜SW3の夫々で導通している側の端子対が、途中のワイヤ線路を介して連続すると、中間点M,N間が導通するが、スイッチSW1〜SW3の何れかで導通する端子対が切り替わると、基幹電力線MLから中間点Mを通過する経路Aは3路スイッチSW2の第2または第3端子で中間点Nと遮断され、基幹電力線MLからワイヤ線路WL2、電力負荷LD及び中間点Nを通過する経路Bは、3路スイッチSW1の第2または第3端子で中間点Mと遮断される。従って、スイッチSW1〜SW3の何れが切り替わっても、分岐電力線BLの開放端は中間点M,Nとなり、基幹電力線ML側から入射した信号波は中間点M,Nで反射する。この場合、図2(b)に示すように、基幹電力線MLから上記開放端までの2つの経路の内、経路Aの線路長は“(1+m)L”、一方、経路Bの線路長は“(1+m+n)L”となり、経路Bの線路長の方が長くなり、その差は“nL”となる。また、経路A側は電力負荷LDを通過しないが、経路B側は電力負荷LDを通過するという差がある。これに対して、中間点M,N間が導通している場合は、中間点M,N間が開放端とはならないため、基幹電力線ML側から入射した信号波は電力負荷LDで反射する。この場合、図2(c)に示すように、基幹電力線MLから電力負荷LDまでの2つの経路の内、スイッチSW1〜SW3を通過する経路Aの線路長は“(2+m)L”、一方、ワイヤ線路WL2を通過する経路Bの線路長は“nL”となり、(2+m)とnの大小関係に応じて、経路Aと経路Bの線路長の大小関係が定まり、その差は“|(2+m−n)L|”となる。従って、上記線路長の差の変化は、差動送信される信号波間の位相のずれの差となって現れ、1対のワイヤ線路間の非平衡度が変化する。また、当該非平衡度の変化は、ワイヤ線路WL1,WL2及び中間点M,N間の線路長、中間点M,Nの位置に依存する。   In the circuit configuration illustrated in FIG. 2A, when the terminal pair on the side that is conductive in each of the switches SW1 to SW3 is continuous through the intermediate wire line, the intermediate points M and N are electrically connected. When the terminal pair that is conducted by any of the switches SW1 to SW3 is switched, the path A passing through the intermediate point M from the main power line ML is cut off from the intermediate point N at the second or third terminal of the three-way switch SW2, and the main power line A path B that passes from ML through the wire line WL2, the power load LD, and the intermediate point N is disconnected from the intermediate point M at the second or third terminal of the three-way switch SW1. Therefore, regardless of which of the switches SW1 to SW3 is switched, the open end of the branch power line BL becomes the intermediate points M and N, and the signal wave incident from the main power line ML side is reflected at the intermediate points M and N. In this case, as shown in FIG. 2B, of the two routes from the main power line ML to the open end, the line length of the route A is “(1 + m) L”, while the line length of the route B is “ (1 + m + n) L ”, the line length of the path B becomes longer, and the difference is“ nL ”. The route A side does not pass through the power load LD, but the route B side passes through the power load LD. On the other hand, when the intermediate points M and N are conducting, the intermediate point M and N is not an open end, so that the signal wave incident from the main power line ML is reflected by the power load LD. In this case, as shown in FIG. 2C, the line length of the path A passing through the switches SW1 to SW3 among the two paths from the main power line ML to the power load LD is “(2 + m) L”, The line length of the path B passing through the wire line WL2 is “nL”, and the magnitude relation between the line lengths of the path A and the path B is determined according to the magnitude relation between (2 + m) and n, and the difference is “| (2 + m -N) L | " Accordingly, the change in the line length difference appears as a difference in phase shift between the differentially transmitted signal waves, and the degree of unbalance between the pair of wire lines changes. Further, the change in the degree of unbalance depends on the wire lengths between the wire lines WL1 and WL2 and the intermediate points M and N, and the positions of the intermediate points M and N.

以上より、基幹電力線から分岐して照明装置等の電力負荷に電力を供給する分岐電力線の一方側のワイヤ線路に片切りスイッチ或いは3路スイッチ等が設けられている場合、当該スイッチの状態に応じて、分岐電力線を構成する1対のワイヤ線路間の非平衡度が変化する。当該変化は、1対のワイヤ線路間の線路長の差と夫々に入射した信号波の搬送周波数の波長に応じて定まる位相のずれの差、即ち、分岐電力線の伝送特性の差となって現れる。当該伝送特性の差は、屋内電力線を使用した電力線搬送通信において、通信時の電気的特性が、分岐電力線に設けられたスイッチに状態に応じて変化することになり、平衡度が良い場合にモデム装置に設定した通信条件において、スイッチの状態変化で伝送路の平衡度が低下して、通信品質が劣化することが懸念される。   As described above, when a cut-off switch or a three-way switch is provided on a wire line on one side of a branch power line that branches from the main power line and supplies power to a power load such as a lighting device, depending on the state of the switch Thus, the unbalance between the pair of wire lines constituting the branch power line changes. The change appears as a difference in line length between the pair of wire lines and a difference in phase shift determined according to the wavelength of the carrier frequency of the incident signal wave, that is, a difference in transmission characteristics of the branch power line. . The difference in the transmission characteristics is that, in power line carrier communication using an indoor power line, the electrical characteristics during communication change depending on the state of the switch provided on the branch power line, and the modem has a good balance. Under communication conditions set in the device, there is a concern that the balance of the transmission path is lowered due to a change in the state of the switch and the communication quality is deteriorated.

本発明は、上記の問題点に鑑みてなされたもので、その目的は、屋内電力線を使用した電力線搬送通信において、分岐電力線の一方側のワイヤ線路に設けられスイッチの状態変化による分岐電力線の伝送特性の変化を抑制して、通信品質の低下を防止する点にある。   The present invention has been made in view of the above problems, and its purpose is to transmit a branch power line by changing the state of a switch provided on a wire line on one side of the branch power line in power line carrier communication using an indoor power line. It is in the point which suppresses the fall of communication quality by suppressing the change of a characteristic.

上記目的を達成するため、本発明は、基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線の一方側のワイヤ線路に設けられるスイッチ回路であって、2端子間の電流のオンオフを切り替える開閉スイッチと、前記2端子間に前記開閉スイッチと並列に接続されたコンデンサを備え、前記コンデンサの電気容量が1nF以上100nF以下であることを第1の特徴とするスイッチ回路を提供する。   In order to achieve the above object, the present invention is a switch circuit provided on a wire line on one side of a branch power line consisting of a pair of wire lines that branch from a main power line and supply power to a power load. A switch characterized by comprising an open / close switch for switching on / off of a current between the capacitor and a capacitor connected in parallel with the open / close switch between the two terminals, wherein the capacitor has an electric capacity of 1 nF to 100 nF Provide a circuit.

更に、本発明は、基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線の一方側のワイヤ線路に設けられるスイッチ回路であって、第1端子と第2端子間の電流のオンオフと前記第1端子と第3端子間の電流のオンオフを一方がオンで他方がオフとなるように切り替える3路スイッチと、前記第1端子と前記第2端子間に接続された第1コンデンサと、前記第1端子と前記第3端子間に接続された第2コンデンサを備え、前記第1及び第2コンデンサの電気容量が1nF以上100nF以下であることを第2の特徴とするスイッチ回路を提供する。   Furthermore, the present invention is a switch circuit provided in a wire line on one side of a branch power line made up of a pair of wire lines that branches from a main power line and supplies power to a power load, the first terminal and the second terminal Connected between the first terminal and the second terminal, and a three-way switch for switching on and off the current between the first terminal and the third terminal so that one is on and the other is off. A second capacitor connected between the first terminal and the third terminal, wherein the first and second capacitors have a capacitance of 1 nF to 100 nF. A switch circuit is provided.

更に、本発明は、電力線搬送通信用のネットワークとして使用する屋内電力線、または、その伝送特性改善方法であって、基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線の一方側のワイヤ線路に設けられた2端子間の電流のオンオフを切り替える開閉スイッチに対して、電気容量が1nF以上100nF以下のコンデンサを並列に接続することを第1の特徴とする屋内電力線またはその伝送特性改善方法を提供する。   Furthermore, the present invention is an indoor power line used as a network for power line carrier communications, or a method for improving the transmission characteristics thereof, comprising a pair of wire lines branched from a main power line and supplying power to a power load. An indoor power line characterized in that a capacitor having an electric capacity of 1 nF or more and 100 nF or less is connected in parallel to an open / close switch that switches on / off of a current between two terminals provided on a wire line on one side of the power line. Alternatively, a method for improving the transmission characteristics is provided.

更に、本発明は、電力線搬送通信用のネットワークとして使用する屋内電力線、または、その伝送特性改善方法であって、基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線の一方側のワイヤ線路に設けられた、第1端子と第2端子間の電流のオンオフと前記第1端子と第3端子間の電流のオンオフを一方がオンで他方がオフとなるように切り替える3路スイッチに対して、前記第1端子と前記第2端子間に、電気容量が1nF以上100nF以下の第1コンデンサを接続し、前記第1端子と前記第3端子間に、電気容量が1nF以上100nF以下の第2コンデンサを接続することを第2の特徴とする屋内電力線またはその伝送特性改善方法を提供する。   Furthermore, the present invention is an indoor power line used as a network for power line carrier communications, or a method for improving the transmission characteristics thereof, comprising a pair of wire lines branched from a main power line and supplying power to a power load. On / off of the current between the first terminal and the second terminal and the on / off of the current between the first terminal and the third terminal provided on the wire line on one side of the power line so that one is on and the other is off. For the three-way switch to be switched, a first capacitor having an electric capacity of 1 nF to 100 nF is connected between the first terminal and the second terminal, and an electric capacity is connected between the first terminal and the third terminal. Provided is an indoor power line characterized by connecting a second capacitor of 1 nF or more and 100 nF or less, or a transmission characteristic improving method thereof.

更に、上記第1または第2の特徴の屋内電力線またはその伝送特性改善方法は、前記電力線搬送通信に使用する搬送周波数における、前記基幹電力線から前記電力負荷に至る前記1対のワイヤ線路の一方側と他方側の線路長差による位相差を抑制する平衡化素子を、前記分岐電力線の他方側のワイヤ線路に直列に挿入することを第3の特徴とする。   Further, the indoor power line or the transmission characteristic improving method thereof according to the first or second feature is characterized in that one side of the pair of wire lines from the backbone power line to the power load at a carrier frequency used for the power line carrier communication. A third feature is that a balancing element that suppresses a phase difference caused by a difference in line length between the first and second sides is inserted in series into a wire line on the other side of the branch power line.

更に、上記第3の特徴の屋内電力線またはその伝送特性改善方法は、前記平衡化素子として、前記分岐電力線の一方側のワイヤ線路と同じ素材及び構造で、前記線路長の差と同じ長さのワイヤ線路を用いることを第4の特徴とする。   Further, the indoor power line of the third feature or the method for improving the transmission characteristics thereof has the same material and structure as the wire line on one side of the branch power line as the balancing element, and has the same length as the difference in the line length. The fourth feature is to use a wire line.

更に、上記第3の特徴の屋内電力線またはその伝送特性改善方法は、前記平衡化素子として、インダクタ素子を用いることを第5の特徴とする。   Further, the indoor power line or the transmission characteristic improving method thereof according to the third feature is characterized in that an inductor element is used as the balancing element.

更に、上記第3乃至第5の何れかの特徴の屋内電力線またはその伝送特性改善方法は、前記平衡化素子を、前記分岐電力線の他方側のワイヤ線路の前記電力負荷に近い側の端部または端部近傍に挿入することを第6の特徴とする。   Furthermore, in the indoor power line or the transmission characteristic improving method thereof according to any one of the third to fifth features, the balancing element is connected to the end of the wire line on the other side of the branch power line on the side close to the power load or It is a sixth feature that it is inserted in the vicinity of the end.

上記特徴のスイッチ回路、屋内電力線、或いは、屋内電力線の伝送特性改善方法によれば、HomePlugの1.0仕様或いはAV仕様等の高速電力線搬送通信に使用される高周波帯域(2MHz〜30MHz)以上の高周波信号波が、開閉スイッチ或いは3路スイッチに設けられた電気容量が1nF以上100nF以下のコンデンサを通過するため、開閉スイッチ或いは3路スイッチが開放端とならず、当該箇所での反射が生じないため、分岐電力線の一方側のワイヤ線路に設けられスイッチの状態変化による分岐電力線の伝送特性の変化が無くなるか、大幅に抑制され、当該分岐電力線の伝送特性の変化に起因する通信品質の低下を防止できる。また、電気容量が1nF以上100nF以下のコンデンサは、直流から商用交流電源周波数(50Hzまたは60Hz)の周波数帯域の通過を遮断するため、分岐電力線の一方側のワイヤ線路に設けられスイッチによって、基幹電力線から電力負荷への電力供給のオンオフは、コンデンサを設けない場合と同様に制御できる。   According to the above-described switch circuit, indoor power line, or indoor power line transmission characteristic improving method, the high frequency band (2 MHz to 30 MHz) or more used for high-speed power line carrier communication such as HomePlug 1.0 specification or AV specification Since the high-frequency signal wave passes through a capacitor having an electrical capacitance of 1 nF or more and 100 nF or less provided in the open / close switch or the 3-way switch, the open / close switch or the 3-way switch does not become an open end, and reflection does not occur at the location. Therefore, the change in the transmission characteristics of the branch power line due to the change in the state of the switch provided on the wire line on one side of the branch power line is eliminated or greatly suppressed, and the communication quality is reduced due to the change in the transmission characteristic of the branch power line. Can be prevented. In addition, a capacitor having an electric capacity of 1 nF or more and 100 nF or less is provided on a wire line on one side of the branch power line in order to block the passage of the frequency band from DC to the commercial AC power supply frequency (50 Hz or 60 Hz). ON / OFF of the power supply from the power supply to the power load can be controlled in the same manner as when no capacitor is provided.

更に、上記第3乃至第6の特徴の屋内電力線またはその伝送特性改善方法によれば、分岐電力線の開閉スイッチ或いは3路スイッチの設けられていない側のワイヤ線路に、平衡化素子を設けることで、基幹電力線から電力負荷へ至る1対のワイヤ線路間の平衡度が改善されるため、開閉スイッチ或いは3路スイッチの状態に関係なく、通信品質の向上が図れる。   Furthermore, according to the indoor power line of the third to sixth characteristics or the method for improving the transmission characteristics thereof, the balancing element is provided on the wire line on the side where the open / close switch of the branch power line or the three-way switch is not provided. Since the balance between the pair of wire lines from the main power line to the power load is improved, the communication quality can be improved regardless of the state of the open / close switch or the three-way switch.

屋内配電系の分岐電力線における片切りスイッチが平衡度低下に与える影響を説明する回路図と線路長の差を模式的に説明する図A schematic diagram explaining the difference between the line length and the circuit diagram explaining the effect of the cut-off switch on the branch power line of the indoor power distribution system on the decrease in balance 屋内配電系の分岐電力線における3路スイッチ回路が平衡度低下に与える影響を説明する回路図と線路長の差を模式的に説明する図A schematic diagram for explaining the difference between the line length and a circuit diagram for explaining the influence of the three-way switch circuit on the branch power line of the indoor power distribution system on the decrease in balance. 本発明の適用対象となる片切りスイッチを有する分岐電力線を備えた屋内電力線の典型例を模式的に示す回路図The circuit diagram which shows typically the typical example of the indoor power line provided with the branch power line which has the cut-off switch used as the application object of this invention 本発明の第1実施形態における片切りスイッチを有する分岐電力線を備えた屋内電力線を模式的に示す回路図と要部拡大図The circuit diagram and principal part enlarged view which show typically the indoor power line provided with the branch power line which has the cut-off switch in 1st Embodiment of this invention コンデンサの電気容量の選択範囲について検証したシミュレーション結果を示す図The figure which shows the simulation result which verified the selection range of the electric capacity of the capacitor 図4に示す屋内電力線、図3に示す屋内電力線、及び、比較用の片切りスイッチを有する分岐電力線を備えない屋内電力線を夫々モデル化した3種類の測定用回路を示す回路図4 is a circuit diagram showing three types of measurement circuits each modeling the indoor power line shown in FIG. 4, the indoor power line shown in FIG. 3, and an indoor power line that does not have a branching power line having a comparative cut-off switch. 図6及び図16に示す測定用回路の伝送特性を測定する測定回路の構成図Configuration diagram of a measurement circuit for measuring the transmission characteristics of the measurement circuit shown in FIGS. 図6及び図16に示す測定用回路のコモン電流を測定する測定回路の構成図Configuration diagram of a measurement circuit for measuring the common current of the measurement circuit shown in FIGS. 第1実施形態の対策を適用した測定用回路の反射特性(S11)を示すスミスチャートと減衰特性(S21)を片切りスイッチのオンオフ別に示す図The figure which shows the Smith chart and the attenuation | damping characteristic (S21) which show the reflection characteristic (S11) of the circuit for a measurement to which the countermeasure of 1st Embodiment is applied according to ON / OFF of a single cut-off switch. 第1実施形態の対策を適用していない測定用回路の反射特性(S11)を示すスミスチャートと減衰特性(S21)を片切りスイッチのオンオフ別に示す図The figure which shows the Smith chart which shows the reflective characteristic (S11) of the circuit for a measurement which does not apply the countermeasure of 1st Embodiment, and attenuation | damping characteristic (S21) according to ON / OFF of a one-way switch 第1実施形態の対策を適用した測定用回路のコモン電流測定結果を片切りスイッチのオンオフ別に示す図The figure which shows the common current measurement result of the circuit for a measurement which applied the countermeasure of 1st Embodiment according to ON / OFF of a single-sided switch 第1実施形態の対策を適用していない測定用回路のコモン電流測定結果を片切りスイッチのオンオフ別に示す図The figure which shows the common current measurement result of the circuit for a measurement which does not apply the countermeasure of 1st Embodiment according to ON / OFF of a cut-off switch 本発明の適用対象となる3路スイッチ回路を有する分岐電力線を備えた屋内電力線の典型例を模式的に示す回路図The circuit diagram which shows typically the typical example of the indoor power line provided with the branch power line which has the three-way switch circuit which becomes the application object of this invention 本発明の第2実施形態における3路スイッチ回路を有する分岐電力線を備えた屋内電力線を模式的に示す回路図と要部拡大図The circuit diagram and principal part enlarged view which show typically the indoor power line provided with the branch power line which has the three-way switch circuit in 2nd Embodiment of this invention 本発明の第3実施形態における片切りスイッチを有する分岐電力線を備えた屋内電力線を模式的に示す回路図The circuit diagram which shows typically the indoor power line provided with the branch power line which has the one-piece switch in 3rd Embodiment of this invention 図15に示す屋内電力線をモデル化した測定用回路を示す回路図The circuit diagram which shows the circuit for a measurement which modeled the indoor power line shown in FIG. 第1及び第3実施形態の対策を適用した測定用回路のコモン電流測定結果を片切りスイッチのオンオフ別に示す図The figure which shows the common current measurement result of the circuit for a measurement which applied the countermeasure of 1st and 3rd embodiment according to ON / OFF of a cut-off switch 本発明の第4実施形態における3路スイッチ回路を有する分岐電力線を備えた屋内電力線を模式的に示す回路図The circuit diagram which shows typically the indoor power line provided with the branch power line which has the three-way switch circuit in 4th Embodiment of this invention

本発明に係るスイッチ回路、屋内電力線、及び、屋内電力線の伝送特性改善方法の実施形態につき、図面を参照して説明する。   Embodiments of a switch circuit, an indoor power line, and a transmission characteristic improving method for an indoor power line according to the present invention will be described with reference to the drawings.

[第1実施形態]
図3に、本発明を適用する前の、即ち本発明の適用対象となる、屋内電力線1の典型例を模式的に示す。電力メータ(図示せず)から分電盤(図示せず)を経由して屋内に配線された基幹電力線MLの3か所から、分岐電力線BL1〜BL3が夫々分岐している。分岐電力線BL1,BL2の先端にはコンセントCT1,CT2が接続しており、未使用時は開放端となっており、使用時には電力負荷が接続される。各分岐電力線BL1,BL2を構成する1対のワイヤ線路には片切りスイッチ、3路スイッチ等は設けられていない。従って、分岐電力線BL1,BL2については、電力負荷の接続・非接続に関係なく、1対のワイヤ線路の基幹電力線MLからコンセントまたは電力負荷までの線路長は等しい。分岐電力線BL3の先端には電力負荷LD(例えば、照明装置、換気扇等)が接続しており、分岐電力線BL3を構成する1対のワイヤ線路WL1,WL2の一方側のワイヤ線路WL1が途中(中間点M)で切断され、その1対の開放端から1対のワイヤ線路WL3,WL4が延長して、その先端に片切りスイッチ(開閉スイッチ)SWが接続している。片切りスイッチSWが接続している分岐電力線BL3の詳細は、例えば、図1(a)で説明したものと同じになる。一典型例として、コンセントCT1,CT2は、夫々異なる部屋の壁に取り付けられ、電力負荷LDは、或る部屋の天井に取り付けられ、片切りスイッチSWは電力負荷LDと同じ部屋の壁に取り付けられている場合を想定する。これにより、コンセントCT1,CT2に夫々、市販されている高速電力線搬送通信用のPLC(Power Line Communication)アダプタ(モデム装置)を接続すれば、コンセントCT1,CT2間(2つの異なる部屋間)で高速電力線搬送通信が可能となる。また、基幹電力線MLは、一典型例として、単相3線200Vの商用交流電源の中性線と2本の電圧線の一方側を1対として構成される。
[First Embodiment]
FIG. 3 schematically shows a typical example of the indoor power line 1 before applying the present invention, that is, to which the present invention is applied. Branch power lines BL <b> 1 to BL <b> 3 are branched from three locations of the main power line ML that is wired indoors from a power meter (not shown) via a distribution board (not shown). Outlets CT1 and CT2 are connected to the ends of the branch power lines BL1 and BL2, open when not in use, and connected to a power load when in use. A pair of wire lines constituting each branch power line BL1, BL2 is not provided with a one-way switch, a three-way switch, or the like. Accordingly, the branch power lines BL1 and BL2 have the same line length from the main power line ML of the pair of wire lines to the outlet or the power load regardless of connection / disconnection of the power load. A power load LD (for example, a lighting device or a ventilation fan) is connected to the tip of the branch power line BL3, and the wire line WL1 on one side of the pair of wire lines WL1 and WL2 constituting the branch power line BL3 is in the middle (intermediate) A pair of wire lines WL3, WL4 extend from the pair of open ends, and a one-side switch (open / close switch) SW is connected to the tip. The details of the branch power line BL3 to which the one-side switch SW is connected are the same as those described with reference to FIG. As a typical example, the outlets CT1 and CT2 are attached to the walls of different rooms, the power load LD is attached to the ceiling of a room, and the cut-off switch SW is attached to the wall of the same room as the power load LD. Assuming that As a result, if a commercially available PLC (Power Line Communication) adapter (modem device) for high-speed power line carrier communication is connected to the outlets CT1 and CT2, respectively, the outlets CT1 and CT2 (between two different rooms) can be operated at high speed. Power line carrier communication is possible. In addition, as a typical example, the main power line ML is configured with a pair of a neutral line of a commercial AC power source of a single-phase three-wire 200V and two voltage lines.

次に、図3に示す屋内電力線1に対して、本発明を適用した屋内電力線2を、図4に示す。図3に示す屋内電力線1と図4に示す屋内電力線2の相違点は、図4(a)に示す屋内電力線2において、破線で囲って表示しているように、片切りスイッチSWの2つの端子間にスイッチSWと並列にコンデンサC1が接続されている点である。尚、図4(b)に、破線で囲った要部を拡大して表示する。ここで、片切りスイッチSWとコンデンサC1が並列接続したスイッチ回路3が、本発明に係るスイッチ回路に相当する。   Next, FIG. 4 shows an indoor power line 2 in which the present invention is applied to the indoor power line 1 shown in FIG. The difference between the indoor power line 1 shown in FIG. 3 and the indoor power line 2 shown in FIG. 4 is that the indoor power line 2 shown in FIG. The capacitor C1 is connected between the terminals in parallel with the switch SW. In FIG. 4B, the main part surrounded by a broken line is enlarged and displayed. Here, the switch circuit 3 in which the one-side switch SW and the capacitor C1 are connected in parallel corresponds to the switch circuit according to the present invention.

コンデンサC1は、スイッチSWの開放(オフ)時に、基幹電力線MLに供給される交流または直流電圧のピーク電圧が、その両端に印加されるため、当該ピーク電圧を越える耐電圧が必要であり、基幹電力線MLに供給される電源電圧が単相3線200Vの商用交流電源の場合には、250V以上の耐電圧、直流電源の場合には、例えば630V以上の耐電圧を有するものを使用する。また、高速電力線搬送通信の搬送周波数帯域として、2〜30MHzを想定した場合には、コンデンサC1のインピーダンスが、1/2πfc(fは搬送周波数、cはコンデンサC1の電気容量)で与えられるため、電気容量は、1nF以上100nF以下であることが好ましい。これにより、上記周波数帯域では、高速電力線搬送通信の信号波は通過するが、直流から60Hzまでの周波数帯域ではインピーダンスが高くなり、電源電圧の供給は遮断される。上記条件を満たすコンデンサとして、例えば、村田製作所製の中高耐圧セラミックコンデンサ(耐圧630V、電気容量10nF)等が使用できる。   The capacitor C1 is required to have a withstand voltage exceeding the peak voltage because the peak voltage of the AC or DC voltage supplied to the main power line ML is applied to both ends when the switch SW is opened (off). In the case of a commercial AC power supply with a single-phase three-wire 200V power supply voltage supplied to the power line ML, a withstand voltage of 250V or higher is used, and in the case of a DC power supply, for example, one having a withstand voltage of 630V or higher is used. In addition, when 2 to 30 MHz is assumed as the carrier frequency band of the high-speed power line carrier communication, the impedance of the capacitor C1 is given by 1 / 2πfc (f is the carrier frequency and c is the electric capacity of the capacitor C1). The electric capacity is preferably 1 nF or more and 100 nF or less. As a result, the signal wave of the high-speed power line carrier communication passes in the frequency band, but the impedance increases in the frequency band from DC to 60 Hz, and the supply of the power supply voltage is cut off. As a capacitor satisfying the above conditions, for example, a medium and high voltage ceramic capacitor (withstand voltage of 630 V, electric capacity of 10 nF) manufactured by Murata Manufacturing Co., Ltd. can be used.

図5に、コンデンサC1の電気容量の選択範囲について検証した回路シミュレーション結果を示す。基幹電力線MLに供給される電源電圧を振幅50Vの交流電源で周波数を10Hzから100MHzまで遷移させ、コンデンサC1の電気容量が、0.1nF,1nF,5nF,10nF,100nF,1000nFの6通りに対して、基幹電力線MLの寄生容量が0.5nF、電力負荷LDが100Ωの抵抗負荷の場合を想定して、電力負荷LDに流れる電流とコンデンサC1のインピーダンスを計算した。図5より、周波数が60HzでコンデンサC1の電気容量が100nFを超えると電流が増加するのが分かる。また、1nF以下では、インピーダンスの増加が顕著となり、2MHz以上において明らかな電流の減少が見られる。従って、コンデンサC1の電気容量としては、1nF以上100nF以下であることが好ましいが、2〜30MHzの高周波帯域に対するインピーダンスの増加を抑制するには、5nF以上100nF以下であることが、より好ましい。更に、商用交流電源周波数である60Hzでの電流の増加をより良く抑制するには、コンデンサC1の電気容量の上限は、100nFより小さくするのが好ましい。従って、より好適には、例えば、5nF〜50nF、更に好適には、5nF〜20nFの範囲で、コンデンサC1の電気容量を設定するのが良い。尚、基幹電力線MLに直流電源が供給される場合は、コンデンサC1の電気容量としては、100nF以上であっても良いが、スイッチ回路3としての汎用性を考慮すると、100nF以下であることが好ましい。   FIG. 5 shows a circuit simulation result verified with respect to the selection range of the capacitance of the capacitor C1. The power supply voltage supplied to the main power line ML is changed from 10 Hz to 100 MHz with an AC power supply having an amplitude of 50 V, and the electric capacity of the capacitor C1 is 6 types of 0.1 nF, 1 nF, 5 nF, 10 nF, 100 nF, and 1000 nF. Assuming the case where the parasitic capacitance of the main power line ML is 0.5 nF and the power load LD is a resistance load of 100Ω, the current flowing through the power load LD and the impedance of the capacitor C1 are calculated. FIG. 5 shows that the current increases when the frequency is 60 Hz and the capacitance of the capacitor C1 exceeds 100 nF. In addition, at 1 nF or less, the increase in impedance is significant, and a clear decrease in current is observed at 2 MHz or more. Therefore, the electric capacity of the capacitor C1 is preferably 1 nF or more and 100 nF or less, but more preferably 5 nF or more and 100 nF or less in order to suppress an increase in impedance with respect to a high frequency band of 2 to 30 MHz. Furthermore, in order to better suppress the increase in current at the commercial AC power supply frequency of 60 Hz, the upper limit of the electric capacity of the capacitor C1 is preferably set to be smaller than 100 nF. Therefore, more preferably, the electric capacity of the capacitor C1 is set in the range of, for example, 5 nF to 50 nF, and more preferably 5 nF to 20 nF. In the case where a DC power supply is supplied to the main power line ML, the electric capacity of the capacitor C1 may be 100 nF or more, but considering the versatility of the switch circuit 3, it is preferably 100 nF or less. .

ここで、図3に示す従来の屋内電力線1に対して、本発明を適用する場合、既存の片切りスイッチSWに並列にコンデンサC1を追加する方法と、既存の片切りスイッチSWを、片切りスイッチSWとコンデンサC1が並列接続したスイッチ回路3に置き換える方法の2通りがあり、何れの場合でも本発明の奏する効果は同じである。既存の屋内電力線1が無く、新たに本発明を適用した屋内電力線2を敷設する場合には、片切りスイッチとして、片切りスイッチSWとコンデンサC1が並列接続したスイッチ回路3を使用すれば良い。尚、この場合においても、片切りスイッチSWとコンデンサC1を個別に並列接続して、スイッチ回路3を現場で構成するようにしても構わない。   Here, when the present invention is applied to the conventional indoor power line 1 shown in FIG. 3, a method of adding a capacitor C1 in parallel to the existing cut-off switch SW, and the existing cut-off switch SW are cut into pieces. There are two methods of replacing the switch circuit 3 in which the switch SW and the capacitor C1 are connected in parallel. In any case, the effect of the present invention is the same. When there is no existing indoor power line 1 and an indoor power line 2 to which the present invention is newly applied is laid, a switch circuit 3 in which a cut-off switch SW and a capacitor C1 are connected in parallel may be used as the cut-off switch. Even in this case, the switch circuit 3 may be configured in the field by individually connecting the single-cut switch SW and the capacitor C1 in parallel.

次に、本発明を適用した場合の効果について、具体的な測定データに基づいて検証する。図6(a)〜(c)は、図3及び図4に示す屋内電力線1,2を実験用にモデル化した測定用回路(被測定回路)を示している。電力線PL1が、分岐電力線BL1,BL3間の基幹電力線MLと分岐電力線BL1を統合したもので、電力線PL2が、分岐電力線BL2,BL3間の基幹電力線MLと分岐電力線BL2を統合したもので、夫々の先端にコンセントCT1,CT2が接続してある。電力線PL1,PL2と分岐電力線BL3は夫々分岐点Pで並列に接続されている。図6(a)は、図4に示す本発明適用後の屋内電力線2に対応し、コンデンサC1の電気容量は10nFである。図6(b)は、図3に示す本発明適用前の屋内電力線1に対応し、片切りスイッチSWにはコンデンサは設けられていない。図6(c)は、分岐電力線BL3に片切りスイッチSW及びワイヤ線路WL3,WL4が設けられていない場合の比較例を参考に示している。図6(a)〜(c)の各測定用回路において、電力線PL1,PL2、分岐電力線BL3、及び、1対のワイヤ線路WL3,WL4に、昭和電線ケーブルシステム(株)製の2芯ビニル絶縁ビニルシースケーブル(平形2mm径)を用い、電力線PL1,PL2の線路長を夫々2m、分岐電力線BL3の分岐点Pから中間点Mまでの線路長と中間点Mから電力負荷LDまでの線路長、及び、中間点Mから片切りスイッチSWまでのワイヤ線路WL3,WL4の線路長を夫々3mとしている。尚、測定用回路に用いた上記ケーブルは、本発明の屋内電力線2を構成する基幹電力線や分岐電力線に使用するケーブルの仕様等を限定するものではない。   Next, the effect when the present invention is applied will be verified based on specific measurement data. FIGS. 6A to 6C show measurement circuits (circuits to be measured) in which the indoor power lines 1 and 2 shown in FIGS. 3 and 4 are modeled for experiments. The power line PL1 is obtained by integrating the main power line ML and the branch power line BL1 between the branch power lines BL1 and BL3, and the power line PL2 is obtained by integrating the main power line ML and the branch power line BL2 between the branch power lines BL2 and BL3. Outlets CT1 and CT2 are connected to the tip. Power lines PL1 and PL2 and branch power line BL3 are connected in parallel at branch point P, respectively. FIG. 6A corresponds to the indoor power line 2 after application of the present invention shown in FIG. 4, and the electric capacity of the capacitor C1 is 10 nF. FIG. 6B corresponds to the indoor power line 1 before application of the present invention shown in FIG. 3, and the cut-off switch SW is not provided with a capacitor. FIG. 6C shows a comparative example in the case where the cut-off switch SW and the wire lines WL3 and WL4 are not provided in the branch power line BL3. 6 (a) to 6 (c), two-core vinyl insulation manufactured by Showa Electric Cable System Co., Ltd. is connected to power lines PL1, PL2, branch power line BL3, and a pair of wire lines WL3, WL4. Using vinyl sheath cables (flat 2 mm diameter), the power lines PL1 and PL2 each have a line length of 2 m, the branch power line BL3 from the branch point P to the intermediate point M, the line length from the intermediate point M to the power load LD, and The line lengths of the wire lines WL3 and WL4 from the intermediate point M to the cut-off switch SW are each 3 m. In addition, the said cable used for the circuit for a measurement does not limit the specification etc. of the cable used for the main power line and branch power line which comprise the indoor power line 2 of this invention.

図7及び図8は、図6(a)〜(c)の各測定用回路におけるコンセントCT1,CT2間の伝送特性の測定回路の構成図を示す。図7は、コンセントCT1,CT2間を4端子回路網とした場合のSパラメータ(S11:反射特性、S21:減衰特性)の測定回路であり、図8は、コンセントCT1,CT2間のコモン電流の測定回路であり、夫々、図6(a)〜(c)に対して共通に使用される。図7に示す測定回路は、ネットワークアナライザ10の第1ポートP1とコンセントCT1を、100Ω−50Ωインピーダンス変換用バラン11を介して接続し、ネットワークアナライザ10の第2ポートP2とコンセントCT2を、100Ω−50Ωインピーダンス変換用バラン12を介して接続して構成される。図8に示す測定回路は、PLCアダプタ14を介して第1のパーソナルコンピュータ13とコンセントCT1を接続し、PLCアダプタ16を介して第2のパーソナルコンピュータ15とコンセントCT2を接続し、コンセントCT2の手前の測定点Pに電流プローブ17を設け、電流プローブ17をリアルタイムスペクトルアナライザ18の入力ポートP3に接続して構成される。第1のパーソナルコンピュータ13とPLCアダプタ14間、第2のパーソナルコンピュータ15とPLCアダプタ16間は、夫々イーサネット(イーサネットは登録商標)ケーブルで接続される。PLCアダプタ14,16は、HomePlugのAV仕様に準拠した出願人が市販しているものを使用した。尚、パーソナルコンピュータ13,15間のデータ送信には、UDP(User Datagram Protocol)スループット測定用の自作ソフトウェアを用いて、パーソナルコンピュータ13からパーソナルコンピュータ15に向けてデータ送信を行った。   7 and 8 show a configuration diagram of a measurement circuit for transmission characteristics between the outlets CT1 and CT2 in the respective measurement circuits of FIGS. 6 (a) to 6 (c). FIG. 7 is a measurement circuit of S parameters (S11: reflection characteristic, S21: attenuation characteristic) when the outlet CT1, CT2 is a four-terminal network, and FIG. 8 shows the common current between the outlets CT1, CT2. Each of the measurement circuits is commonly used for FIGS. 6 (a) to 6 (c). The measurement circuit shown in FIG. 7 connects the first port P1 of the network analyzer 10 and the outlet CT1 via a 100Ω-50Ω impedance conversion balun 11, and connects the second port P2 of the network analyzer 10 and the outlet CT2 to 100Ω−. It is configured to be connected via a 50Ω impedance conversion balun 12. The measurement circuit shown in FIG. 8 connects the first personal computer 13 and the outlet CT1 via the PLC adapter 14, and connects the second personal computer 15 and the outlet CT2 via the PLC adapter 16, and is in front of the outlet CT2. The current probe 17 is provided at the measurement point P, and the current probe 17 is connected to the input port P3 of the real-time spectrum analyzer 18. The first personal computer 13 and the PLC adapter 14 and the second personal computer 15 and the PLC adapter 16 are connected by an Ethernet (Ethernet is a registered trademark) cable, respectively. As the PLC adapters 14 and 16, those commercially available by the applicant based on the HomePlug AV specification were used. For data transmission between the personal computers 13 and 15, data was transmitted from the personal computer 13 to the personal computer 15 using self-made software for measuring UDP (User Datagram Protocol) throughput.

図9及び図10に、図6(a)及び図6(b)に示す測定用回路の片切りスイッチSWがオン時とオフ時のSパラメータ(S11:反射特性、S21:減衰特性)の測定結果を示す。図9が本発明を適用した場合(図6(a))、図10が本発明を適用していない場合(図6(b))の各特性を示し、各図(a)が、反射特性(S11)を示し、各図(b)が、減衰特性(S21)を示す。図10より、本発明適用前では、片切りスイッチSWのオン時とオフ時で、コンセントCT1,CT2間の反射特性及び減衰特性が、片切りスイッチSWを備えた分岐電力線BL3の影響で大きく異なっていることが分かる。これに対して、図9に示すように、片切りスイッチSWと並列にコンデンサC1を設けた本発明の場合、片切りスイッチSWのオン時とオフ時で、コンセントCT1,CT2間の反射特性及び減衰特性の差が大きく抑制され、両特性に殆ど差が無くなっている。   9 and 10 show the measurement of S parameters (S11: reflection characteristics, S21: attenuation characteristics) when the cut-off switch SW of the measurement circuit shown in FIGS. 6 (a) and 6 (b) is on and off. Results are shown. FIG. 9 shows the characteristics when the present invention is applied (FIG. 6A), FIG. 10 shows the characteristics when the present invention is not applied (FIG. 6B), and each figure (a) shows the reflection characteristics. (S11) is shown, and each figure (b) shows the attenuation characteristic (S21). From FIG. 10, before application of the present invention, the reflection characteristic and the attenuation characteristic between the outlets CT1 and CT2 are greatly different due to the influence of the branch power line BL3 provided with the cut-off switch SW when the cut-off switch SW is turned on and off. I understand that On the other hand, as shown in FIG. 9, in the case of the present invention in which the capacitor C1 is provided in parallel with the cut-off switch SW, the reflection characteristics between the outlets CT1 and CT2 are turned on and off when the cut-off switch SW is turned on and off. The difference between the attenuation characteristics is greatly suppressed, and there is almost no difference between the two characteristics.

図11及び図12に、図6(a)及び図6(b)に示す測定用回路の片切りスイッチSWがオン時とオフ時のコモン電流の測定結果を示す。尚、図11及び図12には、図6(c)に示す測定用回路のコモン電流の測定結果を比較例として併記する。図12より、本発明適用前では、片切りスイッチSWのオン時とオフ時で、周波数域によってコモン電流の測定結果に大きく差が生じているのが分かる。これに対して、図11に示すように、片切りスイッチSWと並列にコンデンサC1を設けた本発明の場合、片切りスイッチSWのオン時とオフ時で、コモン電流の測定結果の差が大きく抑制されていることが分かる。尚、図11と図12では、図6(c)に示す測定用回路のコモン電流の測定結果に差があるのは、2〜30MHzの高周波帯域でのSパラメータやコモン電流の測定は、同じ測定回路であっても周辺環境(ノイズ等)の影響を受け易いため、若干異なる結果となっているが、本発明を適用することの効果は明確に示している。   11 and 12 show the measurement results of the common current when the cut-off switch SW of the measurement circuit shown in FIGS. 6A and 6B is on and off. In addition, in FIG.11 and FIG.12, the measurement result of the common current of the circuit for a measurement shown in FIG.6 (c) is written together as a comparative example. From FIG. 12, it can be seen that there is a large difference in the measurement result of the common current depending on the frequency range between when the cut-off switch SW is turned on and when the cut-off switch SW is turned on. On the other hand, as shown in FIG. 11, in the case of the present invention in which the capacitor C1 is provided in parallel with the cut-off switch SW, the difference in the measurement result of the common current is large when the cut-off switch SW is turned on and off. It turns out that it is suppressed. In FIG. 11 and FIG. 12, the difference in the measurement result of the common current of the measurement circuit shown in FIG. 6C is the same as the measurement of the S parameter and the common current in the high frequency band of 2 to 30 MHz. Even the measurement circuit is susceptible to the influence of the surrounding environment (noise, etc.), so the results are slightly different, but the effect of applying the present invention is clearly shown.

[第2実施形態]
図13に、本発明を適用する前の、即ち本発明の適用対象となる、屋内電力線4の典型例を模式的に示す。電力メータ(図示せず)から分電盤(図示せず)を経由して屋内に配線された基幹電力線MLの3か所から、分岐電力線BL1〜BL3が夫々分岐している。分岐電力線BL1,BL2の先端にはコンセントCT1,CT2が接続しており、未使用時は開放端となっており、使用時には電力負荷が接続される。各分岐電力線BL1,BL2を構成する1対のワイヤ線路には片切りスイッチ、3路スイッチ等は設けられていない。従って、分岐電力線BL1,BL2については、電力負荷の接続・非接続に関係なく、1対のワイヤ線路の基幹電力線MLからコンセントまたは電力負荷までの線路長は等しい。分岐電力線BL3の先端には電力負荷LD(例えば、照明装置、換気扇等)が接続しており、分岐電力線BL3を構成する1対のワイヤ線路WL1,WL2の一方側のワイヤ線路WL1の途中の区間(中間点M,N間)に、2つの3路スイッチSW1,SW2と1対のワイヤ線路WL3,WL4が設けられている。中間点Mに第1の3路スイッチSW1の第1端子が接続し、中間点Nに第2の3路スイッチSW2の第1端子が夫々接続し、第1の3路スイッチSW1の第2端子と第2の3路スイッチSW2の第2端子がワイヤ線路WL3の両端に夫々接続し、第1の3路スイッチSW1の第3端子と第2の3路スイッチSW2の第3端子がワイヤ線路WL4の両端に夫々接続している。3路スイッチSW1,SW2は、第1端子と第2端子間の導通非道通と前記第1端子と第3端子間の導通非道通を一方が導通で他方が非道通となるように切り替わる。1対のワイヤ線路WL3,WL4の途中には、図2(a)に示すように、4路スイッチを設けることも可能であるが、ここでは説明の簡単のため、4路スイッチが無い場合を想定する。中間点M,N間が導通する場合は、1対のワイヤ線路WL3,WL4の一方側だけが使用される。2つの3路スイッチSW1,SW2が接続している分岐電力線BL3の詳細は、例えば、図2(a)で説明したものと同様である。一典型例として、コンセントCT1,CT2は、夫々異なる部屋の壁に取り付けられ、電力負荷LDは、階段や廊下の天井に取り付けられ、3路スイッチSW1,SW2は階段や廊下の互いに離れた位置の壁に取り付けられている場合を想定する。これにより、コンセントCT1,CT2に夫々、市販されている高速電力線搬送通信用のPLCアダプタ(モデム装置)を接続すれば、コンセントCT1,CT2間(2つの異なる部屋間)で高速電力線搬送通信が可能となる。尚、本第2実施形態では、図13に示す屋内電力線4において、基幹電力線MLから電力負荷LDに至る分岐電力線BL3の1対のワイヤ線路は、ワイヤ線路WL1を通過する側の線路長が、ワイヤ線路WL2の線路長より長い場合を想定する。
[Second Embodiment]
FIG. 13 schematically shows a typical example of the indoor power line 4 before applying the present invention, that is, to which the present invention is applied. Branch power lines BL <b> 1 to BL <b> 3 are branched from three locations of the main power line ML that is wired indoors from a power meter (not shown) via a distribution board (not shown). Outlets CT1 and CT2 are connected to the ends of the branch power lines BL1 and BL2, open when not in use, and connected to a power load when in use. A pair of wire lines constituting each branch power line BL1, BL2 is not provided with a one-way switch, a three-way switch, or the like. Accordingly, the branch power lines BL1 and BL2 have the same line length from the main power line ML of the pair of wire lines to the outlet or the power load regardless of connection / disconnection of the power load. A power load LD (for example, a lighting device or a ventilation fan) is connected to the tip of the branch power line BL3, and a section in the middle of the wire line WL1 on one side of the pair of wire lines WL1 and WL2 constituting the branch power line BL3. Two intermediate three-way switches SW1 and SW2 and a pair of wire lines WL3 and WL4 are provided (between the intermediate points M and N). The first terminal of the first three-way switch SW1 is connected to the intermediate point M, the first terminal of the second three-way switch SW2 is connected to the intermediate point N, and the second terminal of the first three-way switch SW1. And the second terminal of the second three-way switch SW2 are connected to both ends of the wire line WL3, respectively, and the third terminal of the first three-way switch SW1 and the third terminal of the second three-way switch SW2 are connected to the wire line WL4. Are connected to both ends. The three-way switches SW1 and SW2 are switched so that one is conductive while the other is non-conductive and the conductive non-conductive between the first terminal and the second terminal and the non-conductive between the first terminal and the third terminal. A four-way switch can be provided in the middle of the pair of wire lines WL3 and WL4 as shown in FIG. 2 (a). Suppose. When the intermediate points M and N are conductive, only one side of the pair of wire lines WL3 and WL4 is used. The details of the branch power line BL3 to which the two three-way switches SW1 and SW2 are connected are the same as those described with reference to FIG. As a typical example, the outlets CT1 and CT2 are attached to the walls of different rooms, the power load LD is attached to the ceiling of the staircase or the hallway, and the three-way switches SW1 and SW2 are located at positions separated from each other on the staircase or the hallway. Assume that it is attached to a wall. This enables high-speed power line communication between outlets CT1 and CT2 (between two different rooms) by connecting commercially available PLC adapters (modem devices) for high-speed power line communication to outlets CT1 and CT2, respectively. It becomes. In the second embodiment, in the indoor power line 4 shown in FIG. 13, the pair of wire lines of the branch power line BL3 extending from the main power line ML to the power load LD has a line length on the side passing through the wire line WL1. Assume that the wire length is longer than the wire length of the wire line WL2.

次に、図13に示す屋内電力線4に対して、本発明を適用した屋内電力線5を、図14に示す。図13に示す屋内電力線4と図14に示す屋内電力線5の相違点は、図14(a)に示す屋内電力線5において、破線で囲って表示しているように、一方の3路スイッチSW1の第1及び第2端子間と第1及び第3端子間にコンデンサC2,C3が夫々並列に接続されている点である。尚、図14(b)に、破線で囲った要部を拡大して表示する。ここで、3路スイッチSW1と第1及び第2端子間と第1及び第3端子間に接続したコンデンサC2,C3からなるスイッチ回路6が、本発明に係るスイッチ回路に相当する。尚、コンデンサC2,C3を追加する3路スイッチは、中間点N側の第2の3路スイッチSW2であっても良い。2つの3路スイッチSW1,SW2の何れか一方に、コンデンサC2,C3が接続されていれば十分である。これは、中間点M,Nの両方で開放となっている3路スイッチSW1,SW2の何れか一方の2端子間をコンデンサで接続すれば、上記高周波帯域の信号に対して中間点M,Nが開放端とならないためである。以上のことは、2つの3路スイッチSW1,SW2の間に4路スイッチが追加されていても同様であり、4路スイッチに、3路スイッチSW1と同様にコンデンサを追加する必要はない。   Next, FIG. 14 shows an indoor power line 5 to which the present invention is applied to the indoor power line 4 shown in FIG. The difference between the indoor power line 4 shown in FIG. 13 and the indoor power line 5 shown in FIG. 14 is that the indoor power line 5 shown in FIG. Capacitors C2 and C3 are connected in parallel between the first and second terminals and between the first and third terminals, respectively. In FIG. 14B, the main part surrounded by a broken line is enlarged and displayed. Here, the switch circuit 6 including the three-way switch SW1, the capacitors C2 and C3 connected between the first and second terminals and between the first and third terminals corresponds to the switch circuit according to the present invention. The three-way switch to which the capacitors C2 and C3 are added may be the second three-way switch SW2 on the intermediate point N side. It is sufficient if the capacitors C2 and C3 are connected to one of the two three-way switches SW1 and SW2. This is because the intermediate points M and N with respect to the signal in the high frequency band can be obtained by connecting a capacitor between any two terminals of the three-way switches SW1 and SW2 that are open at both the intermediate points M and N. This is because is not an open end. The above is the same even if a four-way switch is added between the two three-way switches SW1 and SW2, and it is not necessary to add a capacitor to the four-way switch as in the case of the three-way switch SW1.

コンデンサC2,C3は、第1実施形態で説明したコンデンサC1と同様の仕様のものを使用する。従って、夫々の電気容量は、1nF以上100nF以下であることが好ましく、より好適には、例えば、5nF〜50nF、更に好適には、5nF〜20nFの範囲で、コンデンサC2,C3の電気容量を設定するのが良い。   Capacitors C2 and C3 have the same specifications as the capacitor C1 described in the first embodiment. Therefore, each capacitance is preferably 1 nF or more and 100 nF or less, more preferably, for example, the capacitance of the capacitors C2 and C3 is set in the range of 5 nF to 50 nF, and more preferably 5 nF to 20 nF. Good to do.

ここで、図13に示す従来の屋内電力線4に対して、本発明を適用する場合、既存の3路スイッチSW1にコンデンサC2,C3を追加する方法と、既存の3路スイッチSW1を、3路スイッチSW1にコンデンサC2,C3を接続したスイッチ回路6に置き換える方法の2通りがあり、何れの場合でも本発明の奏する効果は同じである。既存の屋内電力線4が無く、新たに本発明を適用した屋内電力線5を敷設する場合には、片切りスイッチとして、3路スイッチSW1にコンデンサC2,C3を接続したスイッチ回路6を使用すれば良い。尚、この場合においても、3路スイッチSW1にコンデンサC2,C3を個別に並列接続して、スイッチ回路6を現場で構成するようにしても構わない。   Here, when the present invention is applied to the conventional indoor power line 4 shown in FIG. 13, a method of adding capacitors C2 and C3 to the existing three-way switch SW1, and the existing three-way switch SW1 to three There are two methods of replacing the switch circuit 6 in which the capacitors C2 and C3 are connected to the switch SW1, and the effect exhibited by the present invention is the same in any case. When there is no existing indoor power line 4 and a new indoor power line 5 to which the present invention is applied is laid, a switch circuit 6 in which capacitors C2 and C3 are connected to a three-way switch SW1 may be used as a single-cut switch. . In this case as well, the switch circuit 6 may be configured on-site by individually connecting the capacitors C2 and C3 in parallel to the three-way switch SW1.

本発明を適用した場合の効果については、第1実施形態と同様であるので、具体的な測定データに基づく検証及び説明は割愛する。   Since the effect when the present invention is applied is the same as that of the first embodiment, verification and explanation based on specific measurement data are omitted.

[第3実施形態]
上記第1実施形態では、片切りスイッチSWの2つの端子間にコンデンサC1を並列に接続し、片切りスイッチSWのオン時とオフ時の屋内電力線の伝送特性の差を抑制することを実現した。しかし、片切りスイッチSWを設けた分岐電力線では、片切りスイッチSWのオン時においても、基幹電力線MLから電力負荷LDに至る1対のワイヤ線路間の線路長に差が生じ、平衡度が低下する可能性のあることは、図1を用いて説明した通りである。従って、上記第1実施形態で示した本発明のスイッチ回路3は、片切りスイッチSWのオン時とオフ時の屋内電力線の伝送特性の差を抑制するには有効であるが、片切りスイッチSWがオン時における平衡度の低下を抑制するには、十分ではない。第3実施形態では、当該平衡度の低下を改善するための対策を施す。
[Third Embodiment]
In the first embodiment, the capacitor C1 is connected in parallel between the two terminals of the cut-off switch SW, and the difference in the transmission characteristics of the indoor power line when the cut-off switch SW is turned on and off is realized. . However, in the branch power line provided with the cut-off switch SW, even when the cut-off switch SW is turned on, a difference occurs in the line length between the pair of wire lines from the main power line ML to the power load LD, and the balance is lowered. The possibility of this is as described with reference to FIG. Therefore, the switch circuit 3 of the present invention shown in the first embodiment is effective in suppressing the difference in the transmission characteristics of the indoor power line when the cut-off switch SW is turned on and off. Is not sufficient to suppress a decrease in the balance when the is on. In the third embodiment, measures are taken to improve the decrease in the balance.

図15に、図4に示す本発明を適用した屋内電力線2に対して、平衡度の改善対策を施した屋内電力線7を示す。図4に示す屋内電力線2と図15に示す屋内電力線7の相違点は、図15に示す屋内電力線7において、分岐電力線BL3の1対のワイヤ線路WL3,WL4が接続していない側のワイヤ線路WL2を途中(中間点Q)で切断した開放端に平衡化素子8を接続している点である。本第3実施形態では、平衡化素子8として、ワイヤ線路WL3,WL4と同じ素材及び構造のケーブルで同じ長さの1対のワイヤ線路WL5,WL6の先端を短絡したものを使用する。これにより、分岐電力線BL3の1対のワイヤ線路は、一方側がワイヤ線路BL1,BL3,BL4で構成され、他方側がワイヤ線路BL2,BL5,BL6で構成され、夫々の線路長が等しくなり、線路長の差に起因する平衡度の低下は抑制される。   FIG. 15 shows an indoor power line 7 in which a measure for improving the balance is applied to the indoor power line 2 to which the present invention shown in FIG. 4 is applied. The difference between the indoor power line 2 shown in FIG. 4 and the indoor power line 7 shown in FIG. 15 is that the pair of wire lines WL3 and WL4 of the branch power line BL3 are not connected to the indoor power line 7 shown in FIG. This is the point that the balancing element 8 is connected to the open end where WL2 is cut halfway (intermediate point Q). In the third embodiment, as the balancing element 8, a cable having the same material and structure as the wire lines WL 3 and WL 4 and having the short ends of the pair of wire lines WL 5 and WL 6 having the same length is used. As a result, the pair of wire lines of the branch power line BL3 has one side constituted by the wire lines BL1, BL3, BL4 and the other side constituted by the wire lines BL2, BL5, BL6, and the respective line lengths are equal. A decrease in the balance due to the difference between the two is suppressed.

ワイヤ線路WL2上の中間点Qの位置に関係なく、他方側のワイヤ線路BL2,BL5,BL6の線路長は同じであるため、中間点Qの位置は、電力負荷LDの近傍、或いは、ワイヤ線路WL2の電力負荷LD側の末端としても良い。この場合、平衡化素子8を中間点Qに接続する作業が、電力負荷LDを取り付けている天井や壁面から容易に行えるという利点がある。   Regardless of the position of the intermediate point Q on the wire line WL2, the line lengths of the other wire lines BL2, BL5, BL6 are the same, so the position of the intermediate point Q is near the power load LD or the wire line The end of the power load LD side of WL2 may be used. In this case, there is an advantage that the operation of connecting the balancing element 8 to the intermediate point Q can be easily performed from the ceiling or wall surface to which the power load LD is attached.

次に、平衡化素子8を中間点Qに接続した場合の効果について、具体的な測定データに基づいて検証する。図16は、図15に示す屋内電力線7を実験用にモデル化した測定用回路を示している。コンデンサC1の電気容量は10nFである。電力線PL1,PL2は、図6に示す測定用回路と同様であるので、重複する説明は割愛する。図17に、図16に示す測定用回路の片切りスイッチSWがオン時とオフ時のコモン電流の測定結果を示す。尚、図17には、図6(c)に示す測定用回路のコモン電流の測定結果を比較例として併記する。   Next, the effect when the balancing element 8 is connected to the intermediate point Q will be verified based on specific measurement data. FIG. 16 shows a measurement circuit in which the indoor power line 7 shown in FIG. 15 is modeled for an experiment. The electric capacity of the capacitor C1 is 10 nF. Since power lines PL1 and PL2 are the same as the measurement circuit shown in FIG. 6, overlapping description is omitted. FIG. 17 shows the measurement results of the common current when the cut-off switch SW of the measurement circuit shown in FIG. 16 is on and off. In FIG. 17, the measurement result of the common current of the measurement circuit shown in FIG. 6C is also shown as a comparative example.

図11に示す第1実施形態でのコモン電流の測定結果と、図17に示す第3実施形態でのコモン電流の測定結果を比較すると、平衡化素子8を中間点Qに接続したことによって、片切りスイッチSWがオン時とオフ時の何れの場合も、図16に示す測定用回路のコモン電流の測定結果が、片切りスイッチSWを設けていない図6(c)に示す測定用回路のコモン電流の測定結果により近似していることが分かる。これより、片切りスイッチSWと並列にコンデンサC1を設け、更に、平衡化素子8を中間点Qに接続することで、平衡度が改善されることが分かる。   When the measurement result of the common current in the first embodiment shown in FIG. 11 and the measurement result of the common current in the third embodiment shown in FIG. 17 are compared, by connecting the balancing element 8 to the intermediate point Q, In both cases where the cut-off switch SW is turned on and off, the measurement result of the common current of the measurement circuit shown in FIG. 16 shows that the measurement circuit shown in FIG. It can be seen that the approximation is based on the measurement result of the common current. From this, it can be seen that the balance is improved by providing the capacitor C1 in parallel with the cut-off switch SW and further connecting the balancing element 8 to the intermediate point Q.

尚、本第3実施形態では、平衡化素子8として、ワイヤ線路WL3,WL4と同じ素材及び構造のケーブルで同じ長さの1対のワイヤ線路WL5,WL6の先端を短絡したものを使用したが、平衡化素子8を接続する目的は、線路長の差に起因する位相のずれを補償することにあるので、接続することで位相のずれが生じ、且つ、直流電流も通電可能なインダクタ素子を平衡化素子8として使用することも可能である。ところで、線路長の差に起因する位相のずれは、実際に線路長の差、及び、搬送周波数に依存して変化するため、現場において、コモン電流の測定結果等が改善されるように、予め準備した数種類のインダクタンスのインダクタ素子の1以上を直列または並列に組み合わせて、平衡化素子8として使用するようにするのも好ましい。   In the third embodiment, the balancing element 8 is a cable having the same material and structure as that of the wire lines WL3 and WL4 and having a pair of wire lines WL5 and WL6 having the same length short-circuited. The purpose of connecting the balancing element 8 is to compensate for the phase shift caused by the difference in the line length. Therefore, an inductor element capable of causing a phase shift by being connected and also allowing direct current to flow therethrough is provided. It can also be used as the balancing element 8. By the way, since the phase shift due to the difference in line length actually changes depending on the difference in line length and the carrier frequency, in order to improve the measurement result of the common current in the field in advance, It is also preferable to use one or more of the prepared several types of inductor elements having different inductances in series or in parallel as the balancing element 8.

[第4実施形態]
上記第2実施形態では、3路スイッチSW1またはSW2の第1及び第2端子間と第1及び第3端子間に夫々コンデンサC2とコンデンサC3を接続し、中間点M,N間の導通時と非道通時の屋内電力線の伝送特性の差を抑制することを実現した。しかし、3路スイッチSW1,SW2を設けた分岐電力線では、中間点M,N間の導通時においても、基幹電力線MLから電力負荷LDに至る1対のワイヤ線路間の線路長に差が生じ、平衡度が低下する可能性のあることは、図2を用いて説明した通りである。従って、上記第2実施形態で示した本発明のスイッチ回路6は、中間点M,N間の導通時と非道通時の屋内電力線の伝送特性の差を抑制するには有効であるが、中間点M,N間の導通時における平衡度の低下を抑制するには、十分ではない。第4実施形態では、当該平衡度の低下を改善するための対策を施す。
[Fourth Embodiment]
In the second embodiment, the capacitor C2 and the capacitor C3 are connected between the first and second terminals of the three-way switch SW1 or SW2 and between the first and third terminals, respectively, and when the intermediate points M and N are in conduction. It was possible to suppress the difference in the transmission characteristics of indoor power lines when out of traffic. However, in the branch power line provided with the three-way switches SW1 and SW2, a difference occurs in the line length between the pair of wire lines from the main power line ML to the power load LD even when the intermediate points M and N are conductive. As described with reference to FIG. 2, the degree of balance may be lowered. Therefore, the switch circuit 6 of the present invention shown in the second embodiment is effective for suppressing the difference in the transmission characteristics of the indoor power line between the intermediate points M and N during conduction and non-communication. It is not sufficient to suppress a decrease in the degree of balance during conduction between points M and N. In the fourth embodiment, measures are taken to improve the decrease in the balance.

図18に、図14に示す本発明を適用した屋内電力線5に対して、平衡度の改善対策を施した屋内電力線9を示す。図14に示す屋内電力線5と図18に示す屋内電力線9の相違点は、図18に示す屋内電力線9において、分岐電力線BL3の3路スイッチSW1,SW2が接続していない側のワイヤ線路WL2を途中(中間点Q)で切断した開放端に平衡化素子8を接続している点である。本第4実施形態では、平衡化素子8として、ワイヤ線路WL1,WL3,WL4と同じ素材及び構造の1対のワイヤ線路WL5,WL6の先端を短絡したものを使用する。1対のワイヤ線路WL5,WL6の長さは、ワイヤ線路WL1の線路長と1対のワイヤ線路WL3,WL4のケーブル長の合計から、ワイヤ線路WL2の線路長を引いた差の2分の1とする。これにより、分岐電力線BL3の1対のワイヤ線路は、一方側がワイヤ線路BL1とワイヤ線路BL3またはBL4で構成され、他方側がワイヤ線路BL2,BL5,BL6で構成され、夫々の線路長が等しくなり、線路長の差に起因する平衡度の低下は抑制される。   FIG. 18 shows an indoor power line 9 in which a measure for improving the balance is applied to the indoor power line 5 to which the present invention shown in FIG. 14 is applied. The difference between the indoor power line 5 shown in FIG. 14 and the indoor power line 9 shown in FIG. 18 is that in the indoor power line 9 shown in FIG. 18, the wire line WL2 on the side where the three-way switches SW1 and SW2 of the branch power line BL3 are not connected. The balancing element 8 is connected to the open end cut along the way (intermediate point Q). In the fourth embodiment, as the balancing element 8, a pair of wire lines WL5, WL6 having the same material and structure as the wire lines WL1, WL3, WL4 is short-circuited. The length of the pair of wire lines WL5 and WL6 is a half of the difference obtained by subtracting the line length of the wire line WL2 from the total length of the wire line WL1 and the cable length of the pair of wire lines WL3 and WL4. And Thereby, a pair of wire lines of the branch power line BL3, one side is constituted by the wire line BL1 and the wire line BL3 or BL4, the other side is constituted by the wire lines BL2, BL5, BL6, and the respective line lengths are equal. A decrease in the balance due to the difference in line length is suppressed.

平衡化素子8を中間点Qに接続した場合の効果については、第3実施形態と同様であるので、具体的な測定データに基づく検証及び説明は割愛する。また、本第4実施形態では、平衡化素子8として、ワイヤ線路WL3,WL4と同じ素材及び構造の1対のワイヤ線路WL5,WL6の先端を短絡したものを使用したが、平衡化素子8を接続する目的は、線路長の差に起因する位相のずれを補償することにあるので、接続することで位相のずれが生じ、且つ、直流電流も通電可能なインダクタ素子を平衡化素子8として使用することも可能である。ところで、線路長の差に起因する位相のずれは、実際に線路長の差、及び、搬送周波数に依存して変化するため、現場において、コモン電流の測定結果等が改善されるように、予め準備した数種類のインダクタンスのインダクタ素子の1以上を直列または並列に組み合わせて、平衡化素子8として使用するようにするのも好ましい。   Since the effect when the balancing element 8 is connected to the intermediate point Q is the same as that of the third embodiment, verification and explanation based on specific measurement data are omitted. In the fourth embodiment, as the balancing element 8, the same material and the same structure as the wire lines WL 3 and WL 4 are used, but the tips of the pair of wire lines WL 5 and WL 6 are short-circuited. The purpose of connection is to compensate for the phase shift caused by the difference in the line length, so that an inductor element that causes a phase shift by connection and that can also carry DC current is used as the balancing element 8. It is also possible to do. By the way, since the phase shift due to the difference in line length actually changes depending on the difference in line length and the carrier frequency, in order to improve the measurement result of the common current in the field in advance, It is also preferable to use one or more of the prepared several types of inductor elements having different inductances in series or in parallel as the balancing element 8.

[別実施形態]
上記第1及び第3実施形態では、基幹電力線MLから分岐して電力負荷LDに電力供給する分岐電力線として、1対のワイヤ線路の一方側に片切りスイッチSWが設けられた場合(第1のタイプ)を想定し、上記第2及び第4実施形態では、基幹電力線MLから分岐して電力負荷LDに電力供給する分岐電力線として、1対のワイヤ線路の一方側に3路スイッチSW1、SW2が設けられた場合(第2のタイプ)を想定したが、基幹電力線MLから分岐して電力負荷LDに電力供給する分岐電力線としては、第1または第2のタイプの分岐電力線が一本に限定されるものではなく、第1または第2のタイプの分岐電力線を任意に組み合わせた複数の分岐電力線が基幹電力線MLから各別に分岐する構成であっても良く、その場合、夫々の分岐電力線に対して、第1のタイプの分岐電力線に対しては、上記第1または第3実施形態で示した本発明を適用し、第2のタイプの分岐電力線に対しては、上記第2または第4実施形態で示した本発明を適用すれば良い。また、第1または第2タイプの分岐電力線が複数の場合に、全ての当該分岐電力線に対して、上記タイプに応じた本発明を適用するのが好ましいが、一部の当該分岐電力線に対して本発明を適用しても、伝送特性の改善は図られる。
[Another embodiment]
In the first and third embodiments described above, when a cut-off switch SW is provided on one side of a pair of wire lines as a branch power line that branches from the main power line ML and supplies power to the power load LD (first In the second and fourth embodiments, three-way switches SW1 and SW2 are provided on one side of a pair of wire lines as branch power lines that branch from the main power line ML and supply power to the power load LD. Although assumed to be provided (second type), the branch power line that branches from the main power line ML and supplies power to the power load LD is limited to one or two branch power lines of the first or second type. Instead of this, a configuration may be adopted in which a plurality of branch power lines arbitrarily combining the first or second type of branch power lines are branched from the main power line ML. The present invention shown in the first or third embodiment is applied to the power line, the first type branch power line, and the second type branch power line. Alternatively, the present invention shown in the fourth embodiment may be applied. In addition, when there are a plurality of first or second type branch power lines, it is preferable to apply the present invention according to the above type to all the branch power lines, but for some of the branch power lines. Even if the present invention is applied, the transmission characteristics can be improved.

また、上記各実施形態では、特に明示しなかったが、片切りスイッチSW、3路スイッチSW1,SW2等は、オンオフ或いは導通経路を手動で切り替える手動式スイッチを想定したが、電磁式の遠隔操作可能なスイッチ、タイマ式のスイッチ、センサの検知信号に応じて切り替わるセンサ式スイッチ等の非手動式のスイッチであっても構わない。   In each of the above embodiments, although not clearly indicated, the one-way switch SW, the three-way switch SW1, SW2, and the like are assumed to be manual switches for manually switching on / off or conduction paths. It may be a non-manual switch such as a possible switch, a timer-type switch, or a sensor-type switch that switches according to the detection signal of the sensor.

また、上記第3及び第4実施形態では、分岐電力線BL3の基幹電力線MLから電力負荷LDまでのワイヤ線路WL1を通過する線路長とワイヤ線路WL2を通過する線路長では、ワイヤ線路WL1側の線路長が長い場合を想定し、平衡化素子8をワイヤ線路WL2側に設ける場合を説明したが、ワイヤ線路WL2側の線路長が長い場合には、平衡化素子8をワイヤ線路WL1側に設けるようにしても良い。   In the third and fourth embodiments, the line length on the wire line WL1 side is the line length passing through the wire line WL1 and the line length passing through the wire line WL2 from the main power line ML to the power load LD of the branch power line BL3. The case where the balancing element 8 is provided on the wire line WL2 side has been described on the assumption that the length is long. However, when the line length on the wire line WL2 side is long, the balancing element 8 is provided on the wire line WL1 side. Anyway.

1,4: 従来の屋内電力線
2,5,7,9: 本発明に係る屋内電力線
3,6: 本発明に係るスイッチ回路
8: 平衡化素子
10: ネットワークアナライザ
11,12: インピーダンス変換用バラン
13,15: パーソナルコンピュータ
14,16: PLCアダプタ
17: 電流プローブ
18: リアルタイムスペクトルアナライザ
A,B: 経路
BL: 分岐電力線
BL1〜BL3: 分岐電力線
C1〜C3: コンデンサ
CT1,CT2: コンセント
LD: 電力負荷
ML: 基幹電力線
M,N,Q: 中間点
P: 分岐点
P1,P2: ネットワークアナライザのポート
P3: リアルタイムスペクトルアナライザのポート
PL1,PL2: 電力線
SW: 片切りスイッチ(開閉スイッチ)
SW1,SW2: 3路スイッチ
SW3: 4路スイッチ
WL1〜WL6: ワイヤ線路
DESCRIPTION OF SYMBOLS 1,4: Conventional indoor power line 2,5,7,9: Indoor power line which concerns on this invention 3,6: Switch circuit which concerns on this invention 8: Balancing element 10: Network analyzer 11,12: Balun for impedance conversion 13 , 15: Personal computer 14, 16: PLC adapter 17: Current probe 18: Real-time spectrum analyzer A, B: Path BL: Branch power line BL1-BL3: Branch power line C1-C3: Capacitor CT1, CT2: Outlet LD: Power load ML : Core power line M, N, Q: Intermediate point P: Branch point P1, P2: Network analyzer port P3: Real-time spectrum analyzer port PL1, PL2: Power line SW: Cut-off switch (open / close switch)
SW1, SW2: 3-way switch SW3: 4-way switch WL1-WL6: Wire line

Claims (14)

基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線の一方側のワイヤ線路に設けられるスイッチ回路であって、
2端子間の電流のオンオフを切り替える開閉スイッチと、前記2端子間に前記開閉スイッチと並列に接続されたコンデンサを備え、
前記コンデンサの電気容量が1nF以上100nF以下であることを特徴とするスイッチ回路。
A switch circuit provided on a wire line on one side of a branch power line made up of a pair of wire lines that branch from a main power line and supply power to a power load,
An on / off switch for switching on / off of current between two terminals, and a capacitor connected in parallel with the on / off switch between the two terminals,
A switch circuit, wherein the capacitor has an electric capacitance of 1 nF to 100 nF.
基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線の一方側のワイヤ線路に設けられるスイッチ回路であって、
第1端子と第2端子間の電流のオンオフと前記第1端子と第3端子間の電流のオンオフを一方がオンで他方がオフとなるように切り替える3路スイッチと、前記第1端子と前記第2端子間に接続された第1コンデンサと、前記第1端子と前記第3端子間に接続された第2コンデンサを備え、
前記第1及び第2コンデンサの電気容量が1nF以上100nF以下であることを特徴とするスイッチ回路。
A switch circuit provided on a wire line on one side of a branch power line made up of a pair of wire lines that branch from a main power line and supply power to a power load,
A three-way switch for switching on / off of current between the first terminal and the second terminal and on / off of current between the first terminal and the third terminal so that one is on and the other is off; the first terminal; A first capacitor connected between the second terminals; a second capacitor connected between the first terminal and the third terminal;
A switch circuit, wherein the first and second capacitors have an electric capacitance of 1 nF to 100 nF.
電力線搬送通信用のネットワークとして使用する屋内電力線の伝送特性改善方法であって、
基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線の一方側のワイヤ線路に設けられた2端子間の電流のオンオフを切り替える開閉スイッチに対して、電気容量が1nF以上100nF以下のコンデンサを並列に接続することを特徴とする伝送特性改善方法。
A method for improving the transmission characteristics of an indoor power line used as a network for power line carrier communication,
For the open / close switch that switches on and off the current between the two terminals provided on the wire line on one side of the branch power line that is branched from the main power line and supplies power to the power load, the electric capacity is A method for improving transmission characteristics, wherein capacitors of 1 nF to 100 nF are connected in parallel.
電力線搬送通信用のネットワークとして使用する屋内電力線の伝送特性改善方法であって、
基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線の一方側のワイヤ線路に設けられた、第1端子と第2端子間の電流のオンオフと前記第1端子と第3端子間の電流のオンオフを一方がオンで他方がオフとなるように切り替える3路スイッチに対して、前記第1端子と前記第2端子間に、電気容量が1nF以上100nF以下の第1コンデンサを接続し、前記第1端子と前記第3端子間に、電気容量が1nF以上100nF以下の第2コンデンサを接続することを特徴とする伝送特性改善方法。
A method for improving the transmission characteristics of an indoor power line used as a network for power line carrier communication,
On / off of current between the first terminal and the second terminal and the first terminal provided on a wire line on one side of a branch power line that is branched from the main power line and supplies power to the power load. And a third terminal for switching the current between the first terminal and the third terminal so that one is on and the other is off. A method of improving transmission characteristics, comprising: connecting one capacitor; and connecting a second capacitor having an electric capacity of 1 nF to 100 nF between the first terminal and the third terminal.
前記電力線搬送通信に使用する搬送周波数における、前記基幹電力線から前記電力負荷に至る前記1対のワイヤ線路の一方側と他方側の線路長差による位相差を抑制する平衡化素子を、前記分岐電力線の他方側のワイヤ線路に直列に挿入することを特徴とする請求項3または4に記載の伝送特性改善方法。   A balancing element that suppresses a phase difference due to a line length difference between one side and the other side of the pair of wire lines from the main power line to the power load at a carrier frequency used for the power line carrier communication, the branch power line The transmission characteristic improving method according to claim 3 or 4, wherein the transmission line is inserted in series with the other wire line. 前記平衡化素子として、前記分岐電力線の一方側のワイヤ線路と同じ素材及び構造で、前記線路長の差と同じ長さのワイヤ線路を用いることを特徴とする請求項5に記載の伝送特性改善方法。   6. The transmission characteristic improvement according to claim 5, wherein a wire line having the same material and structure as a wire line on one side of the branch power line and having the same length as the difference in the line length is used as the balancing element. Method. 前記平衡化素子として、インダクタ素子を用いることを特徴とする請求項5に記載の伝送特性改善方法。   6. The transmission characteristic improving method according to claim 5, wherein an inductor element is used as the balancing element. 前記平衡化素子を、前記分岐電力線の他方側のワイヤ線路の前記電力負荷に近い側の端部または端部近傍に挿入することを特徴とする請求項5〜7の何れか1項に記載の伝送特性改善方法。   The said balancing element is inserted in the edge part near the said power load of the wire line of the other side of the said branch power line, or the edge part vicinity, The any one of Claims 5-7 characterized by the above-mentioned. Transmission characteristics improvement method. 電力線搬送通信用のネットワークとして使用する屋内電力線であって、
基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線の一方側のワイヤ線路に設けられた2端子間の電流のオンオフを切り替える開閉スイッチに対して、電気容量が1nF以上100nF以下のコンデンサが並列に接続していることを特徴とする屋内電力線。
An indoor power line used as a network for power line carrier communication,
For the open / close switch that switches on and off the current between the two terminals provided on the wire line on one side of the branch power line that is branched from the main power line and supplies power to the power load, the electric capacity is An indoor power line, wherein capacitors of 1 nF to 100 nF are connected in parallel.
電力線搬送通信用のネットワークとして使用する屋内電力線であって、
基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線の一方側のワイヤ線路に設けられた、第1端子と第2端子間の電流のオンオフと前記第1端子と第3端子間の電流のオンオフを一方がオンで他方がオフとなるように切り替える3路スイッチに対して、前記第1端子と前記第2端子間に、電気容量が1nF以上100nF以下の第1コンデンサが接続し、前記第1端子と前記第3端子間に、電気容量が1nF以上100nF以下の第2コンデンサが接続していることを特徴とする屋内電力線。
An indoor power line used as a network for power line carrier communication,
On / off of current between the first terminal and the second terminal and the first terminal provided on a wire line on one side of a branch power line that is branched from the main power line and supplies power to the power load. And a third terminal for switching the current between the first terminal and the third terminal so that one is on and the other is off. An indoor power line, wherein one capacitor is connected, and a second capacitor having an electric capacity of 1 nF to 100 nF is connected between the first terminal and the third terminal.
前記電力線搬送通信に使用する搬送周波数における、前記基幹電力線から前記電力負荷に至る前記1対のワイヤ線路の一方側と他方側の線路長差による位相差を抑制する平衡化素子が、前記分岐電力線の他方側のワイヤ線路に直列に挿入されていることを特徴とする請求項9または10に記載の屋内電力線。   A balancing element that suppresses a phase difference due to a line length difference between one side and the other side of the pair of wire lines from the main power line to the power load at a carrier frequency used for the power line carrier communication is the branch power line The indoor power line according to claim 9 or 10, wherein the indoor power line is inserted in series in a wire line on the other side. 前記平衡化素子として、前記分岐電力線の一方側のワイヤ線路と同じ素材及び構造で、前記線路長の差と同じ長さのワイヤ線路が用いられていることを特徴とする請求項11に記載の屋内電力線。   The wire material having the same material and structure as the wire line on one side of the branch power line and having the same length as the difference in the line length is used as the balancing element. Indoor power line. 前記平衡化素子として、インダクタ素子が用いられていることを特徴とする請求項11に記載の屋内電力線。   The indoor power line according to claim 11, wherein an inductor element is used as the balancing element. 前記平衡化素子が、前記分岐電力線の他方側のワイヤ線路の前記電力負荷に近い側の端部または端部近傍に挿入されていることを特徴とする請求項11〜13の何れか1項に記載の屋内電力線。
14. The balance element according to any one of claims 11 to 13, wherein the balancing element is inserted in an end portion of the wire line on the other side of the branch power line on the side close to the power load or in the vicinity of the end portion. Indoor power line as described.
JP2010040013A 2010-02-25 2010-02-25 Switch circuit, indoor power line, and method of improving transmission characteristic of the same Pending JP2011176676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040013A JP2011176676A (en) 2010-02-25 2010-02-25 Switch circuit, indoor power line, and method of improving transmission characteristic of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040013A JP2011176676A (en) 2010-02-25 2010-02-25 Switch circuit, indoor power line, and method of improving transmission characteristic of the same

Publications (1)

Publication Number Publication Date
JP2011176676A true JP2011176676A (en) 2011-09-08

Family

ID=44689109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040013A Pending JP2011176676A (en) 2010-02-25 2010-02-25 Switch circuit, indoor power line, and method of improving transmission characteristic of the same

Country Status (1)

Country Link
JP (1) JP2011176676A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227885A (en) * 2007-03-13 2008-09-25 Yamaha Corp Transmission line structure for power line communication and power line opener/closer
JP2011176675A (en) * 2010-02-25 2011-09-08 Sharp Corp Indoor power line, and method of improving transmission characteristic of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227885A (en) * 2007-03-13 2008-09-25 Yamaha Corp Transmission line structure for power line communication and power line opener/closer
JP2011176675A (en) * 2010-02-25 2011-09-08 Sharp Corp Indoor power line, and method of improving transmission characteristic of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013025250; 牟田幸一、佐々木伸一、福田隆良、宇都宮裕一、池松光、川鍋健太郎: '屋内電力線を用いたHome-LANの検討 -スイッチ分岐部の特性改善-' 2005年電子情報通信学会講演論文集 通信1, 20050307, 第421項, 電子情報通信学会 *
JPN7013001934; 高速電力線搬送通信に関する研究会 報告書 , 200512, 第19,22頁, [online] *

Similar Documents

Publication Publication Date Title
RU2488961C2 (en) Device for determination of in-phase signal within network of hf communication via power transmission line
Banwell et al. A new approach to the modeling of the transfer function of the power line channel
Papadopoulos et al. Narrowband power line communication: Medium voltage cable modeling and laboratory experimental results
JP2008245202A (en) Bridge circuit for power line carrier communication, and network system therefor
JPWO2011129104A1 (en) Impedance stabilization device
Papadopoulos et al. Low-voltage distribution line performance evaluation for PLC signal transmission
Galli et al. Modeling the indoor power line channel: new results and modem design considerations
US7333003B1 (en) Power line coupler adapted for use with multiple electric power meters
JP2011176675A (en) Indoor power line, and method of improving transmission characteristic of the same
US7356086B1 (en) Power line coupler adapted for use with multiple service panels
JP2011176676A (en) Switch circuit, indoor power line, and method of improving transmission characteristic of the same
JP4284317B2 (en) Power line communication method
Tsuzuki et al. Measurement of Japanese indoor power-line channel
Kikkert Modeling power transformers for the design of swer line coupling networks.
Kim et al. Characteristic impedances in low-voltage distribution systems for power line communication
D'Innocenzo et al. Domestic electrical standard system for power line communication tests
JP2010147520A (en) Filter for distribution switchboard, distribution switchboard, and distribution switchboard power line communication system
JP4486386B2 (en) Power line carrier communication system
Mulangu et al. Modelling of broadband powerline communication channels
JP4956411B2 (en) PLC signal gate device for single-phase three-wire AC power line, and distribution board and wattmeter equipped with PLC signal gate device for single-phase three-wire AC power line
Papagiannis et al. A PLC based energy consumption management system. Power line performance analysis: Field tests and simulation results
JP2006191351A (en) Terminating circuit, terminating device, outlet and arrangement method of terminating circuit
La Manna CHARACTERISATION OF COMMUNICATION CHANNEL ON HIGH VOLTAGE ENERGY TRANSPORT AND DISTRIBUTION SYSTEMS
Chelangat Power line communication impedance profiling and matching for broadband applications.
Guezgouz et al. Electromagnetic compatibility between power line communication and powers converters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Effective date: 20130521

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001