JP2011176000A - Method for preventing deterioration of characteristic - Google Patents

Method for preventing deterioration of characteristic Download PDF

Info

Publication number
JP2011176000A
JP2011176000A JP2010037098A JP2010037098A JP2011176000A JP 2011176000 A JP2011176000 A JP 2011176000A JP 2010037098 A JP2010037098 A JP 2010037098A JP 2010037098 A JP2010037098 A JP 2010037098A JP 2011176000 A JP2011176000 A JP 2011176000A
Authority
JP
Japan
Prior art keywords
superconductor
oxide film
reaction chamber
precursor
atomic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010037098A
Other languages
Japanese (ja)
Other versions
JP5571410B2 (en
Inventor
Yuichi Harada
裕一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010037098A priority Critical patent/JP5571410B2/en
Publication of JP2011176000A publication Critical patent/JP2011176000A/en
Application granted granted Critical
Publication of JP5571410B2 publication Critical patent/JP5571410B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the deterioration of characteristics of a superconductor to achieve ideal characteristics of the superconductor. <P>SOLUTION: An oxide film 13 is formed on the surface of a superconductor 12 using an atomic layer deposition method. A natural oxide film 15 is thereby removed, and a fine and uniform oxide film 13 is formed to prevent the deterioration of characteristics of the superconductor 12 in an electromagnetic field irradiation environment and to achieve ideal characteristics of the superconductor 12. The fine oxide film 13 prevents the aged deterioration of the superconductor 12 caused by oxygen in the atmosphere. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超伝導体の特性劣化を防止する技術に関する。   The present invention relates to a technique for preventing deterioration of characteristics of a superconductor.

超伝導体は、超伝導状態となる臨界温度以下においては、電気抵抗が零となり無損失で電流を流すことができ、マイスナー効果により超伝導体内部への磁場の侵入を許さないという特徴を有する。このような特徴により、大きな電流の貯蔵を可能としたり、非常に鋭いカットオフ特性を持つフィルターを作製することが可能である。   Superconductors have a characteristic that electric resistance becomes zero and current can flow without loss below the critical temperature at which a superconducting state is reached, and the magnetic field cannot be allowed to enter the superconductor due to the Meissner effect. . With such a feature, it is possible to store a large current or to produce a filter having a very sharp cutoff characteristic.

G. Ciovati, P. Kneisel, and A. Gurevich, "Measurement of the high-field Q drop in a high-purity large-grain niobium cavity for different oxidantion processes", Physical Review Special Topics - Accelerators and Beams, 2007, Vol. 10, 062002G. Ciovati, P. Kneisel, and A. Gurevich, "Measurement of the high-field Q drop in a high-purity large-grain niobium cavity for different oxidantion processes", Physical Review Special Topics-Accelerators and Beams, 2007, Vol . 10, 062002 R. Barends, H. L. Hortensius, T. Zijlstra, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, and T. M. Klapwijk, "Contribution of dielectrics to frequency and noise of NbTin superconducting resonators", Applied Physics Letters, 2008, Vol. 92, 223502R. Barends, H. L. Hortensius, T. Zijlstra, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, and T. M. Klapwijk, "Contribution of dielectrics to frequency and noise of NbTin superconducting resonators", Applied Physics Letters, 2008, Vol. 92, 223 Martin M. Frank, Yves J. Chabal, and Glen D. Wilk, "Nucleation and interface formation mechanisms in atomic layer deposition of gate oxides", Applied Physics Letters, 2003, Vol. 82, p.4758-4760Martin M. Frank, Yves J. Chabal, and Glen D. Wilk, "Nucleation and interface formation mechanisms in atomic layer deposition of gate oxides", Applied Physics Letters, 2003, Vol. 82, p.4758-4760 M. Milojevic, R. Contreras-Guerrero, M. Lopez-Lopez, J. Kim, and R. M. Wallace, "Characterization of the ``clean-up'' of the oxidized Ge(100) surface by atomic layer deposition", Applied Physics Letters, 2009, Vol. 95, 212902M. Milojevic, R. Contreras-Guerrero, M. Lopez-Lopez, J. Kim, and RM Wallace, "Characterization of the` `clean-up '' of the oxidized Ge (100) surface by atomic layer deposition", Applied Physics Letters, 2009, Vol. 95, 212902 Martin M. Frank, Glen D. Wilk, Dmitri Starodub, Torgny Gustafsson, Eric Garfunkel, Yves J. Chabal, John Grazul, and David A. Muller, "HfO2and Al2O3gate dielectrics on GaAs grown by atomic layer deposition", Applied Physics Letters, 2005, Vol. 86, 152904Martin M. Frank, Glen D. Wilk, Dmitri Starodub, Torgny Gustafsson, Eric Garfunkel, Yves J. Chabal, John Grazul, and David A. Muller, "HfO2and Al2O3gate dielectrics on GaAs grown by atomic layer deposition", Applied Physics Letters, 2005, Vol. 86, 152904 M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu and M. Hong, "Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3", Applied Physics Letters, 2005, Vol. 87, 252104ML Huang, YC Chang, CH Chang, YJ Lee, P. Chang, J. Kwo, TB Wu and M. Hong, "Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3", Applied Physics Letters , 2005, Vol. 87, 252104

しかしながら、上記の特徴は、理想的な状況における話である。現実には、図5に示すように、超伝導体12の表面に自然酸化膜15が形成され、その自然酸化膜15による影響から理想的な特性とはならないことが報告されている。例えば、超伝導空洞共振器においては、弱い磁場によるQ値の低下が報告されている。また、表面酸化膜を緻密にすることでQ値の低下を抑えられることが報告されている(非特許文献1)。超伝導共振器においては、人工的に酸化膜を堆積させた時の状況を検討し、表面酸化膜との界面が雑音の原因となることが指摘されている(非特許文献2)。   However, the above feature is a story in an ideal situation. In reality, as shown in FIG. 5, it is reported that a natural oxide film 15 is formed on the surface of the superconductor 12, and the ideal characteristics are not obtained due to the influence of the natural oxide film 15. For example, in a superconducting cavity resonator, a decrease in Q value due to a weak magnetic field has been reported. Further, it has been reported that a decrease in the Q value can be suppressed by making the surface oxide film dense (Non-patent Document 1). In a superconducting resonator, the situation when an oxide film is artificially deposited is examined, and it has been pointed out that the interface with the surface oxide film causes noise (Non-patent Document 2).

本発明は、上記に鑑みてなされたものであり、超伝導体の特性劣化を防ぎ、超伝導体の理想的な特性を実現することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to prevent deterioration of characteristics of a superconductor and realize ideal characteristics of the superconductor.

本発明に係る特性劣化防止方法は、超伝導体の特性劣化防止方法であって、前記超伝導体の表面に原子層堆積法を用いて酸化膜を形成することを特徴とする。   The method for preventing property deterioration according to the present invention is a method for preventing property deterioration of a superconductor, characterized in that an oxide film is formed on the surface of the superconductor using an atomic layer deposition method.

上記特性劣化防止方法において、前記超伝導体を格納した反応チャンバ内にキャリアガスに乗せて前駆体と酸化剤を交互に供給するステップを有し、前記前駆体を供給するステップの後、及び前記酸化剤を供給するステップの後に、前記反応チャンバ内に前記キャリアガスのみを供給することを特徴とする。   In the method for preventing deterioration of characteristics, the method includes a step of alternately supplying a precursor and an oxidant on a carrier gas in a reaction chamber storing the superconductor, after the step of supplying the precursor, and After the step of supplying the oxidizing agent, only the carrier gas is supplied into the reaction chamber.

上記特性劣化防止方法において、前記超伝導体は、ニオブ、鉛、チタン、ガリウム、窒化ニオブのいずれかであることを特徴とする。   In the characteristic deterioration prevention method, the superconductor is any one of niobium, lead, titanium, gallium, and niobium nitride.

上記特性劣化防止方法において、前記酸化膜は、アルミナ、ハフニア、ハフニウムアルミネートのいずれかであることを特徴とする。   In the characteristic deterioration prevention method, the oxide film is any one of alumina, hafnia, and hafnium aluminate.

上記特性劣化防止方法において、前記超伝導体はニオブであって、150℃以上250℃以下の基板温度で、前記前駆体としてトリメチルアルミニウムを、前記酸化剤として水を前記反応チャンバ内に供給することを特徴とする。   In the method for preventing deterioration of characteristics, the superconductor is niobium, and trimethylaluminum as the precursor and water as the oxidant are supplied into the reaction chamber at a substrate temperature of 150 ° C. to 250 ° C. It is characterized by.

本発明によれば、超伝導体の特性劣化を防ぎ、超伝導体の理想的な特性を実現することができる。   According to the present invention, it is possible to prevent deterioration of the characteristics of the superconductor and realize ideal characteristics of the superconductor.

本実施の形態における特性劣化防止方法を適用した超伝導体装置の例を示す断面図である。It is sectional drawing which shows the example of the superconductor apparatus to which the characteristic degradation prevention method in this Embodiment is applied. 本実施の形態における特性劣化防止方法に使用される原子層堆積装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the atomic layer deposition apparatus used for the characteristic degradation prevention method in this Embodiment. 本実施の形態における特性劣化防止方法のプロセスを説明するためのグラフである。It is a graph for demonstrating the process of the characteristic degradation prevention method in this Embodiment. 超伝導共振器の構成を示す平面図である。It is a top view which shows the structure of a superconducting resonator. 従来の超伝導体装置の例を示す断面図である。It is sectional drawing which shows the example of the conventional superconductor device.

以下、本発明の実施の形態について図面を用いて説明する。本発明は、超伝導体表面に形成された自然酸化膜を取り除き、代わりに緻密な酸化膜による保護膜を形成することで、超伝導体の特性劣化を防ぎ、超伝導体の理想的な特性を実現する特性劣化防止方法である。超伝導体表面の自然酸化膜を取り除き、超伝導体の表面に酸化膜を形成する方法として原子層堆積法(Atomic Layer Deposition:ALD)を用いた。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention eliminates the natural oxide film formed on the surface of the superconductor, and instead forms a protective film with a dense oxide film, thereby preventing the deterioration of the superconductor characteristics and the ideal characteristics of the superconductor. Is a method for preventing characteristic deterioration. As a method for removing the natural oxide film on the surface of the superconductor and forming an oxide film on the surface of the superconductor, atomic layer deposition (ALD) was used.

図1は、本実施の形態における特性劣化防止方法を適用した超伝導体装置の例を示す断面図である。同図に示す超伝導体装置10は、基板11の上に超伝導体12を形成したものであり、原子層堆積法を用いて図5に示すような自然酸化膜15を除去し、代わりに酸化膜13を超伝導体12の表面に成長させたものである。原子層堆積法で形成する酸化膜13の厚さは、3nmから10nm必要であり、5nm程度が最適である。   FIG. 1 is a cross-sectional view showing an example of a superconductor device to which the characteristic deterioration prevention method according to the present embodiment is applied. A superconductor device 10 shown in FIG. 1 is obtained by forming a superconductor 12 on a substrate 11 and removing a natural oxide film 15 as shown in FIG. 5 by using an atomic layer deposition method. The oxide film 13 is grown on the surface of the superconductor 12. The thickness of the oxide film 13 formed by the atomic layer deposition method needs to be 3 nm to 10 nm, and about 5 nm is optimal.

超伝導体12としては、ニオブ(Nb)、鉛(Pb)、チタン(Ti)、ガリウム(Ga)、および窒化ニオブ(NbN)が考えられる。原子層堆積法により形成する酸化膜13としては、アルミナ(Al)、ハフニア(HfO)、およびハフニウムアルミネート(HfAlO)が考えられる。アルミナの酸化膜13は、トリメチルアルミニウム(TMA)(原子式:(CHAl)と水(HO)から生成する。ハフニアの酸化膜13は、テトラキスエチルメチルアミノハフニウム(TEMAH)(原子式:Hf[N(CH)(C)])と水(HO)から生成する。ハフニウムアルミネートの酸化膜は、TMAとTEMAHを交互に供給することで成長させることができる。 As the superconductor 12, niobium (Nb), lead (Pb), titanium (Ti), gallium (Ga), and niobium nitride (NbN) can be considered. As the oxide film 13 formed by the atomic layer deposition method, alumina (Al 2 O 3 ), hafnia (HfO 2 ), and hafnium aluminate (HfAlO x ) can be considered. The alumina oxide film 13 is formed from trimethylaluminum (TMA) (atomic formula: (CH 3 ) 3 Al) and water (H 2 O). The hafnia oxide film 13 is formed from tetrakisethylmethylaminohafnium (TEMAH) (atomic formula: Hf [N (CH 3 ) (C 2 H 5 )] 4 ) and water (H 2 O). The hafnium aluminate oxide film can be grown by alternately supplying TMA and TEMAH.

次に、本実施の形態における特性劣化防止方法に用いる原子層堆積装置100について説明する。   Next, the atomic layer deposition apparatus 100 used for the characteristic deterioration prevention method in the present embodiment will be described.

本特性劣化防止方法は、例えば図2に示す原子層堆積装置100を用いて実行される。同図に示す原子層堆積装置100は、パルシングバルブ102,103、反応チャンバ104、およびドライポンプ105が配管106により接続されたものである。反応チャンバ104の中に試料(超伝導体装置10)が配置される。反応チャンバ104には、配管106を介してキャリアガス101が常に導入される。前駆体20は、パルシングバルブ102を開くことで配管106に導入され、キャリアガス101により反応チャンバ104に到達する。酸化剤30は、パルシングバルブ103を開くことで配管106に導入され、キャリアガス101により反応チャンバ104に到達する。パルシングバルブ102,103は、所望の時間だけ開閉できる構造を持ち、それぞれのパルシングバルブ102,103が同時に開くことはない。ドライポンプ105は、キャリアガス101や余分な前駆体20や反応生成物等を反応チャンバ104から外部へ排気する。   This characteristic deterioration prevention method is executed using, for example, the atomic layer deposition apparatus 100 shown in FIG. In the atomic layer deposition apparatus 100 shown in the figure, pulsing valves 102 and 103, a reaction chamber 104, and a dry pump 105 are connected by a pipe 106. A sample (superconductor device 10) is placed in the reaction chamber 104. The carrier gas 101 is always introduced into the reaction chamber 104 via the pipe 106. The precursor 20 is introduced into the pipe 106 by opening the pulsing valve 102, and reaches the reaction chamber 104 by the carrier gas 101. The oxidant 30 is introduced into the pipe 106 by opening the pulsing valve 103, and reaches the reaction chamber 104 by the carrier gas 101. The pulsing valves 102 and 103 have a structure that can be opened and closed for a desired time, and the pulsing valves 102 and 103 do not open at the same time. The dry pump 105 exhausts the carrier gas 101, excess precursor 20, reaction products, and the like from the reaction chamber 104 to the outside.

次に、本実施の形態における特性劣化防止方法のプロセスについて説明する。   Next, the process of the characteristic deterioration prevention method in this embodiment will be described.

本特性劣化防止方法は、まず、金属化合物からなる前駆体20をキャリアガス101に乗せて反応チャンバ104にパルス状に導入した後、キャリアガス101のみを反応チャンバ104に供給する。その後、酸化剤30をキャリアガス101に乗せて反応チャンバ104にパルス状に導入して、最初に導入された前駆体20と酸化剤30を反応させて酸化物を形成する。本特性劣化防止方法の特徴としては、試料(超伝導体12)表面の自然酸化膜15が取り除かれる点、前駆体20並びに酸化剤30自身の持つ自己制限機構により酸化膜13が原子レベルで一層ずつ成長していく点、さらに、酸化膜13が超伝導体12のすべての表面に均一に成長する点が上げられる。以下、図を用いて本特性劣化防止方法のプロセスを具体的に説明する。   In this characteristic deterioration prevention method, first, the precursor 20 made of a metal compound is placed on the carrier gas 101 and introduced into the reaction chamber 104 in a pulsed manner, and then only the carrier gas 101 is supplied to the reaction chamber 104. Thereafter, the oxidant 30 is placed on the carrier gas 101 and introduced into the reaction chamber 104 in a pulsed manner, and the precursor 20 introduced first and the oxidant 30 are reacted to form an oxide. The characteristic deterioration preventing method is characterized in that the natural oxide film 15 on the surface of the sample (superconductor 12) is removed, and the oxide film 13 is further increased at the atomic level by the self-limiting mechanism of the precursor 20 and the oxidant 30 itself. In addition, the oxide film 13 grows uniformly on all surfaces of the superconductor 12. Hereinafter, the process of this characteristic deterioration prevention method will be specifically described with reference to the drawings.

図3は、本特性劣化防止方法における反応チャンバ104内の圧力と時間の関係を示すグラフである。縦軸に反応チャンバ104内の圧力を示し、横軸に時間を示している。   FIG. 3 is a graph showing the relationship between the pressure in the reaction chamber 104 and time in the method for preventing characteristic deterioration. The vertical axis represents the pressure in the reaction chamber 104, and the horizontal axis represents time.

まず、試料を反応チャンバ104に格納する。試料は、例えば、図5に示すように自然酸化膜15が形成された超伝導体装置50である。反応チャンバ104内の温度を50℃から350℃程度に保ち、反応チャンバ104内にキャリアガス101を導入する。キャリアガス101には、窒素(N)あるいはヘリウム(He)を用いる。キャリアガス101の圧力Pは、3から6hPa程度とする。 First, the sample is stored in the reaction chamber 104. The sample is, for example, a superconductor device 50 in which a natural oxide film 15 is formed as shown in FIG. The temperature in the reaction chamber 104 is kept at about 50 ° C. to 350 ° C., and the carrier gas 101 is introduced into the reaction chamber 104. Nitrogen (N 2 ) or helium (He) is used for the carrier gas 101. The pressure Pc of the carrier gas 101 is about 3 to 6 hPa.

成長開始時間tになると、前駆体20のパルシングバルブ102を時間t1Pだけ開く。前駆体20はキャリアガス101により反応チャンバ104内に搬送され、試料表面に吸着される。前駆体20の圧力Pは、7から10hPa程度とする。 It becomes a growth start time t 0, opening the pulsing valve 102 of the precursor 20 by time t 1P. The precursor 20 is transported into the reaction chamber 104 by the carrier gas 101 and is adsorbed on the sample surface. The pressure P 1 of the precursor 20 is about 7 to 10 hPa.

その後、パルシングバルブ102を閉じ、キャリアガス101のみを反応チャンバ104に供給する。反応チャンバ104内の余分な前駆体20並びに前駆体20の吸着時に生成された反応生成物は、この前駆体パージ時間t1Mの間にドライポンプ105により排気される。 Thereafter, the pulsing valve 102 is closed, and only the carrier gas 101 is supplied to the reaction chamber 104. The excess precursor 20 in the reaction chamber 104 and the reaction product generated during the adsorption of the precursor 20 are exhausted by the dry pump 105 during the precursor purge time t 1M .

続いて、酸化剤30のパルシングバルブ103を時間t0Pだけ開く。酸化剤30はキャリアガス101により反応チャンバ104内に搬送され、試料表面に吸着した前駆体20と反応して1原子層分の酸化膜13を形成する。酸化剤30の圧力Pは、7から12hPa程度とする。 Subsequently, the pulsing valve 103 of the oxidant 30 is opened for a time t 0P . The oxidant 30 is transported into the reaction chamber 104 by the carrier gas 101 and reacts with the precursor 20 adsorbed on the sample surface to form the oxide film 13 for one atomic layer. The pressure P 2 of the oxidant 30 may be set to be approximately 12hPa 7.

そして、パルシングバルブ103を閉じ、キャリアガス101のみを反応チャンバ104に供給する。反応チャンバ104内の余分な酸化剤30並びに前駆体20との反応で生成された反応生成物は、この酸化剤パージ時間t0Mの間にドライポンプ105により排気される。 Then, the pulsing valve 103 is closed and only the carrier gas 101 is supplied to the reaction chamber 104. The excess oxidant 30 in the reaction chamber 104 and the reaction product produced by the reaction with the precursor 20 are exhausted by the dry pump 105 during the oxidant purge time t 0M .

その後、再び前駆体20のパルシングバルブ102を開き、上記のプロセスを繰り返す。図3で示すように、1原子層成長時間tcycleは、tcycle=t1P+t1M+t0P+t0Mとなる。 Thereafter, the pulsing valve 102 of the precursor 20 is opened again, and the above process is repeated. As shown in FIG. 3, the atomic layer growth time t cycle is t cycle = t 1P + t 1M + t 0P + t 0M .

本実施の形態における特性劣化防止方法は、自然酸化膜の除去、形成した酸化膜による外部からの酸素侵入を防ぐ保護膜効果、および酸化膜と超伝導体との良好な界面状態の以下に示す3つの主な効果が挙げられる。   The characteristic deterioration prevention method according to the present embodiment is described below for the removal of a natural oxide film, the protective film effect for preventing oxygen from entering from the formed oxide film, and the good interface state between the oxide film and the superconductor. There are three main effects.

原子層堆積法による自然酸化膜の除去に関しては、シリコン(Si)基板、ゲルマニウム(Ge)基板、および化合物半導体(GaAs,InGaAs)基板においては既に報告されている(非特許文献3,4,5,および6)。原子層堆積法で、最初に基板表面に供給される前駆体(主として有機金属化合物)が非常に酸化されやすいため、基板表面の酸素原子が前駆体側に吸収されて、基板表面の酸化膜が取り除かれる。発明者らの実験では、超伝導体の場合にも同様に自然酸化膜が取り除かれることがわかった。   The removal of a natural oxide film by atomic layer deposition has already been reported for silicon (Si) substrates, germanium (Ge) substrates, and compound semiconductor (GaAs, InGaAs) substrates (Non-Patent Documents 3, 4, and 5). , And 6). In the atomic layer deposition method, the precursor (mainly organometallic compound) initially supplied to the substrate surface is very easily oxidized, so oxygen atoms on the substrate surface are absorbed on the precursor side, and the oxide film on the substrate surface is removed. It is. In the experiments by the inventors, it was found that the natural oxide film was similarly removed in the case of the superconductor.

また、原子層堆積法で形成された酸化膜は緻密でかつ欠陥が非常に少ない酸化膜であることがわかっている。このため、外界から酸化膜中に酸素が吸着されることがない。つまり、超伝導体12が再度酸化されることがない。また、本特性劣化防止方法で形成された酸化膜13は熱平衡的条件下で形成されたために非常に安定で、この酸化膜13自体から酸素を超伝導体12に供給することは、温度を400℃以上に上げない限り起こらない。   Further, it has been found that an oxide film formed by an atomic layer deposition method is a dense oxide film with very few defects. For this reason, oxygen is not adsorbed in the oxide film from the outside. That is, the superconductor 12 is not oxidized again. In addition, the oxide film 13 formed by this characteristic deterioration prevention method is very stable because it is formed under a thermal equilibrium condition. Supplying oxygen from the oxide film 13 itself to the superconductor 12 has a temperature of 400. Does not happen unless raised above ℃.

さらに、超伝導体12の自然酸化膜15が除去された後に本特性劣化防止方法による酸化膜13が形成されるために、界面が非常にはっきりしている。このため界面の不均一性に起因する電磁場の分布による問題が排除される。   Furthermore, since the oxide film 13 is formed by this characteristic deterioration prevention method after the natural oxide film 15 of the superconductor 12 is removed, the interface is very clear. This eliminates problems due to electromagnetic field distribution due to non-uniform interface.

酸化膜の成長方法としては、原子層堆積法以外に、化学気相成長(CVD)法や分子線エピタキシー(MBE)法などもある。化学気相成長法は、基本的に原子層堆積法よりも温度が高い状態において成膜が行われる。このため、膜自体が熱平衡ではないことから、再度超伝導体表面を酸化させる可能性は必ずしも零ではない。また、化学気相成長法は、表面状態に敏感な成長法ではないので、表面反応はあまり期待できない。分子線エピタキシー法は、表面の状態に非常に敏感であるがために、もともとの自然酸化膜を除去してから成膜を行う必要がある。また、方式自体が工業化には適していないという問題もある。したがって、原子層堆積法による酸化膜形成が最も適していると考えられる。また、原子層堆積法は、三次元構造にも一様な酸化膜を形成することができるために、どのような立体構造物においても適用することが可能である。例えば、図1に示す超伝導体装置10は、超伝導体12の側壁にも上面と同様の厚さの酸化膜13Aが形成されている。このような酸化膜成長は、化学気相成長法や分子線エピタキシー法では不可能である。   As an oxide film growth method, there are a chemical vapor deposition (CVD) method and a molecular beam epitaxy (MBE) method in addition to the atomic layer deposition method. In the chemical vapor deposition method, film formation is basically performed at a higher temperature than the atomic layer deposition method. For this reason, since the film itself is not in thermal equilibrium, the possibility of oxidizing the superconductor surface again is not necessarily zero. In addition, since chemical vapor deposition is not a growth method sensitive to the surface state, surface reaction cannot be expected so much. Since the molecular beam epitaxy method is very sensitive to the surface state, it is necessary to perform film formation after removing the original natural oxide film. There is also a problem that the method itself is not suitable for industrialization. Therefore, it is considered that the oxide film formation by the atomic layer deposition method is most suitable. In addition, since the atomic layer deposition method can form a uniform oxide film in a three-dimensional structure, it can be applied to any three-dimensional structure. For example, in the superconductor device 10 shown in FIG. 1, an oxide film 13 </ b> A having the same thickness as that of the upper surface is formed on the side wall of the superconductor 12. Such oxide film growth is impossible by chemical vapor deposition or molecular beam epitaxy.

[実施例]
図4に示すような超伝導共振器を超伝導材料であるニオブを用いてサファイア基板上に作製し、本特性劣化防止方法を施した超伝導共振器とそのままのもの、つまり、ニオブ表面にニオブ酸化膜が存在する超伝導共振器の特性の温度依存性を測定した。
[Example]
A superconducting resonator as shown in FIG. 4 is fabricated on a sapphire substrate using niobium, which is a superconducting material, and is the same as the superconducting resonator that has been subjected to this property deterioration prevention method, that is, niobium on the niobium surface. The temperature dependence of the characteristics of a superconducting resonator with an oxide film was measured.

図4に示す超伝導共振器40は、メアンダラインと呼ばれるジグザグのインダクタ41とインターデジタルキャパシタと呼ばれる櫛形を2つ交互に合わせた形状のキャパシタンス42で構成される。作製した超伝導共振器40は、ニオブ膜厚が100nmで5から6ギガヘルツに共振周波数を持つように設計されている。本特性劣化防止方法を施した超伝導共振器40は、キャパシタンス42の部分にAl膜を20nm堆積させた。堆積時の条件として、基板温度は150℃から250℃が良い。ニオブの表面酸化膜は130℃以上で酸素が抜けやすい条件となり、更に高温である350℃以上では表面の粗い酸化膜が緻密な膜になる。このため、ニオブ表面の酸化膜から酸素を除去するためには、基板温度は150℃以上250℃以下が適当である。また、前駆体20としてトリメチルアルミニウム(TMA)、酸化剤30として水(HO)を用いる。TMAは、他の材料よりも酸素を奪う力が強い材料である。材料供給のタイミングは、例えばt1P=0.1秒、t1M=4.0秒、t0P=0.1秒、t0M=4.0秒が典型的な値である。 The superconducting resonator 40 shown in FIG. 4 includes a zigzag inductor 41 called a meander line and a capacitance 42 formed by alternately combining two comb shapes called interdigital capacitors. The manufactured superconducting resonator 40 is designed so that the niobium film thickness is 100 nm and the resonance frequency is 5 to 6 gigahertz. In the superconducting resonator 40 subjected to this characteristic deterioration prevention method, an Al 2 O 3 film having a thickness of 20 nm was deposited on the capacitance 42. As a condition during deposition, the substrate temperature is preferably 150 ° C. to 250 ° C. The surface oxide film of niobium is in a condition where oxygen is easily released at 130 ° C. or higher, and the oxide film having a rough surface becomes a dense film at a higher temperature of 350 ° C. or higher. Therefore, in order to remove oxygen from the oxide film on the niobium surface, the substrate temperature is suitably 150 ° C. or higher and 250 ° C. or lower. Further, trimethylaluminum (TMA) is used as the precursor 20, and water (H 2 O) is used as the oxidant 30. TMA is a material that has a stronger ability to deprive oxygen than other materials. Typical material supply timings are, for example, t 1P = 0.1 seconds, t 1M = 4.0 seconds, t 0P = 0.1 seconds, and t 0M = 4.0 seconds.

2つの超伝導共振器40の特性評価は、温度T=3Kから300mKで行った。超伝導共振器40の共振周波数の温度依存性は、超伝導体の伝導度とキャパシタンス42の誘電率の変化で記述できる(非特許文献2)。温度が高い領域では、超伝導体中には熱的に励起された準粒子が多数存在するために伝導度が変化するが、物質が超伝導性を発現する温度である臨界温度の約15%以下の温度では、準粒子の数が指数関数的に減少するためにほぼ一定となる。このような領域においては、二準位ゆらぎに基づく誘電率の変化が支配的となる。二準位ゆらぎとは、原子ないしは分子が量子力学的に二つの準位の間をゆらぐことに起因する現象で、量子的なコヒーレンスが保たれる極低温において顕著となる。高温領域では2つの超伝導共振器40とも同じ振る舞いを示したが、低温領域、すなわち二準位ゆらぎが支配的となる領域では異なる振る舞いを示した。二準位ゆらぎの大きさは、欠陥準位の数に比例することがわかっている。実験結果の解析から、本特性劣化防止方法でAlを堆積した超伝導共振器40の方が、そのままの超伝導共振器40よりも欠陥準位が2桁少ないことがわかった。 The characteristic evaluation of the two superconducting resonators 40 was performed at a temperature T = 3K to 300 mK. The temperature dependence of the resonance frequency of the superconducting resonator 40 can be described by the change in the conductivity of the superconductor and the dielectric constant of the capacitance 42 (Non-Patent Document 2). In the high temperature region, the conductivity changes due to the presence of many thermally excited quasiparticles in the superconductor, but about 15% of the critical temperature at which the material exhibits superconductivity. At the following temperatures, the number of quasiparticles decreases exponentially and becomes almost constant. In such a region, the change in the dielectric constant based on the two-level fluctuation is dominant. The two-level fluctuation is a phenomenon caused by an atom or molecule that fluctuates between two levels in a quantum mechanical manner, and becomes remarkable at an extremely low temperature where quantum coherence is maintained. The two superconducting resonators 40 showed the same behavior in the high temperature region, but showed different behaviors in the low temperature region, that is, the region where the two-level fluctuation was dominant. It has been found that the magnitude of the two-level fluctuation is proportional to the number of defect levels. From the analysis of the experimental results, it was found that the superconducting resonator 40 on which Al 2 O 3 was deposited by this characteristic deterioration prevention method had two orders of magnitude fewer defect levels than the intact superconducting resonator 40.

超伝導空洞共振器は、加速器実験においては欠かせない装置であり、加速電圧の増加のためには更にQ値の高い超伝導空洞共振器が望ましい。また、超伝導共振器は、超伝導量子ビットと組み合わされた応用が期待されており、フォトンひとつずつの応答をみるためには、Q値の更なる増加が望まれる。本発明は、比較的安価な方法で、超伝導空洞共振器や超伝導共振器のQ値を上げ、更に大気中の酸素による経年劣化を防ぐことが可能である。   A superconducting cavity is an indispensable device in an accelerator experiment, and a superconducting cavity having a higher Q value is desirable for increasing the acceleration voltage. The superconducting resonator is expected to be applied in combination with the superconducting qubit, and in order to see the response of each photon one by one, a further increase in the Q value is desired. The present invention can raise the Q value of a superconducting cavity resonator or a superconducting resonator by a relatively inexpensive method, and further prevent aged deterioration due to oxygen in the atmosphere.

以上説明したように、本実施の形態によれば、原子層堆積法を用いて超伝導体12の表面に酸化膜13を形成することで、自然酸化膜15を除去し、緻密で均一な酸化膜13が形成されるので、超伝導体12の電磁場照射環境での特性劣化を防ぎ、超伝導体12の理想的な特性を実現することができる。また、緻密な酸化膜13により、大気中の酸素による超伝導体12の経年劣化を防止できる。   As described above, according to the present embodiment, the oxide film 13 is formed on the surface of the superconductor 12 using the atomic layer deposition method, so that the natural oxide film 15 is removed and a dense and uniform oxidation is performed. Since the film 13 is formed, it is possible to prevent deterioration of the characteristics of the superconductor 12 in the electromagnetic field irradiation environment and realize ideal characteristics of the superconductor 12. In addition, the dense oxide film 13 can prevent the superconductor 12 from aging due to oxygen in the atmosphere.

10,50…超伝導体装置
11…基板
12…超伝導体
13,13A…酸化膜
15…自然酸化膜
100…原子層堆積装置
101…キャリアガス
102,103…パルシングバルブ
104…反応チャンバ
105…ドライポンプ
106…配管
20…前駆体
30…酸化剤
40…超伝導共振器
41…インダクタ
42…キャパシタンス
DESCRIPTION OF SYMBOLS 10,50 ... Superconductor apparatus 11 ... Substrate 12 ... Superconductor 13, 13A ... Oxide film 15 ... Natural oxide film 100 ... Atomic layer deposition apparatus 101 ... Carrier gas 102, 103 ... Pulsing valve 104 ... Reaction chamber 105 ... Dry pump 106 ... Piping 20 ... Precursor 30 ... Oxidant 40 ... Superconducting resonator 41 ... Inductor 42 ... Capacitance

Claims (5)

超伝導体の特性劣化防止方法であって、
前記超伝導体の表面に原子層堆積法を用いて酸化膜を形成することを特徴とする特性劣化防止方法。
A method for preventing deterioration of characteristics of a superconductor,
A method for preventing deterioration of characteristics, wherein an oxide film is formed on the surface of the superconductor using an atomic layer deposition method.
前記超伝導体を格納した反応チャンバ内にキャリアガスに乗せて前駆体と酸化剤を交互に供給するステップを有し、
前記前駆体を供給するステップの後、及び前記酸化剤を供給するステップの後に、前記反応チャンバ内に前記キャリアガスのみを供給すること
を特徴とする請求項1記載の特性劣化防止方法。
Supplying a precursor and an oxidant alternately in a carrier gas in a reaction chamber containing the superconductor;
The method for preventing deterioration of characteristics according to claim 1, wherein only the carrier gas is supplied into the reaction chamber after the step of supplying the precursor and the step of supplying the oxidant.
前記超伝導体は、ニオブ、鉛、チタン、ガリウム、窒化ニオブのいずれかであることを特徴とする請求項1又は2記載の特性劣化防止方法。   3. The method for preventing deterioration of characteristics according to claim 1, wherein the superconductor is any one of niobium, lead, titanium, gallium, and niobium nitride. 前記酸化膜は、アルミナ、ハフニア、ハフニウムアルミネートのいずれかであることを特徴とする請求項1乃至3のいずれかに記載の特性劣化防止方法。   4. The method for preventing deterioration of characteristics according to claim 1, wherein the oxide film is any one of alumina, hafnia, and hafnium aluminate. 前記超伝導体はニオブであって、
150℃以上250℃以下の基板温度で、前記前駆体としてトリメチルアルミニウムを、前記酸化剤として水を前記反応チャンバ内に供給することを特徴とする請求項2記載の特性劣化防止方法。
The superconductor is niobium,
The method for preventing deterioration of characteristics according to claim 2, wherein trimethylaluminum as the precursor and water as the oxidant are supplied into the reaction chamber at a substrate temperature of 150 ° C or higher and 250 ° C or lower.
JP2010037098A 2010-02-23 2010-02-23 Characteristics degradation prevention method Expired - Fee Related JP5571410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037098A JP5571410B2 (en) 2010-02-23 2010-02-23 Characteristics degradation prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037098A JP5571410B2 (en) 2010-02-23 2010-02-23 Characteristics degradation prevention method

Publications (2)

Publication Number Publication Date
JP2011176000A true JP2011176000A (en) 2011-09-08
JP5571410B2 JP5571410B2 (en) 2014-08-13

Family

ID=44688641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037098A Expired - Fee Related JP5571410B2 (en) 2010-02-23 2010-02-23 Characteristics degradation prevention method

Country Status (1)

Country Link
JP (1) JP5571410B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206741A (en) * 2018-05-30 2019-12-05 株式会社デンソー Surface coated member and manufacturing method thereof
CN115835768A (en) * 2023-02-10 2023-03-21 材料科学姑苏实验室 Protective layer for preparing superconducting quantum chip and superconducting quantum chip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278181A (en) * 1985-06-03 1986-12-09 Agency Of Ind Science & Technol Formation of josephson element
WO2006088062A1 (en) * 2005-02-17 2006-08-24 Hitachi Kokusai Electric Inc. Production method for semiconductor device and substrate processing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278181A (en) * 1985-06-03 1986-12-09 Agency Of Ind Science & Technol Formation of josephson element
WO2006088062A1 (en) * 2005-02-17 2006-08-24 Hitachi Kokusai Electric Inc. Production method for semiconductor device and substrate processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206741A (en) * 2018-05-30 2019-12-05 株式会社デンソー Surface coated member and manufacturing method thereof
JP7059810B2 (en) 2018-05-30 2022-04-26 株式会社デンソー Surface covering member and its manufacturing method
CN115835768A (en) * 2023-02-10 2023-03-21 材料科学姑苏实验室 Protective layer for preparing superconducting quantum chip and superconducting quantum chip

Also Published As

Publication number Publication date
JP5571410B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
KR101034014B1 (en) Tunnel magnetoresistance device
TW511232B (en) Semiconductor structure and process for fabricating same
KR100714378B1 (en) Method for fabricating a semiconductor structure including a metal oxide interface with silicon
Kim et al. Characteristics of ZrO2 gate dielectric deposited using Zr t–butoxide and Zr (NEt2) 4 precursors by plasma enhanced atomic layer deposition method
US20150179916A1 (en) Catalytic Growth of Josephson Junction Tunnel Barrier
Ahadi et al. Ultra low density of interfacial traps with mixed thermal and plasma enhanced ALD of high-κ gate dielectrics
Wang et al. Scalable synthesis of monolayer hexagonal boron nitride on graphene with giant bandgap renormalization
Liang et al. Demonstration of Highly Robust 5 nm Hf0. 5Zr0. 5O₂ Ultra-Thin Ferroelectric Capacitor by Improving Interface Quality
Kim et al. Fabrication and properties of A1N film on GaN substrate by using remote plasma atomic layer deposition method
JP5571410B2 (en) Characteristics degradation prevention method
US8063452B2 (en) Semiconductor device and method for manufacturing the same
Shih et al. Investigations of GaN metal-oxide-semiconductor capacitors with sputtered HfO2 gate dielectrics
JP2011124371A (en) Film forming method
JP5581464B2 (en) Semiconductor structure having a film containing germanium oxide on a germanium layer and method for manufacturing the same
RU2739459C1 (en) Method of forming a thin film of europium monoxide on a silicon substrate to obtain an epitaxial heterostructure euo/si
Nigro et al. Effects of deposition temperature on the microstructural and electrical properties of praseodymium oxide-based films
KR20030036668A (en) Epitaxial wafer apparatus
Irokawa et al. Comparison of hydrogen-induced oxide charges among GaN metal-oxide-semiconductor capacitors with Al2O3, HfO2, or Hf0. 57Si0. 43Ox gate dielectrics
Suh et al. The effect of NH3 on the interface of HfO2 and Al2O3 films on GaAs (100) surfaces
Milojevic et al. Interfacial chemistry of oxides on III-V compound semiconductors
Sologub et al. Increasing the specularity of surface scattering of conduction electrons caused by adsorption of a hydrogen monolayer on the W (110) surface
Demkov et al. Emerging physics of oxide heterostructures
Fujisaki et al. Al 2 O 3/Si 3 N 4 stacked insulators for 0.1 μm gate metal–oxide–semiconductor transistors realized by high-density Si 3 N 4 buffer layers
Toriumi et al. Material Engineering of High‐k Gate Dielectrics
Lin Atomic layer deposition of epitaxial perovskites for electronic and photonic applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R150 Certificate of patent or registration of utility model

Ref document number: 5571410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees