JP2011174904A - Method for quickly predicting hydrolysis - Google Patents

Method for quickly predicting hydrolysis Download PDF

Info

Publication number
JP2011174904A
JP2011174904A JP2010041209A JP2010041209A JP2011174904A JP 2011174904 A JP2011174904 A JP 2011174904A JP 2010041209 A JP2010041209 A JP 2010041209A JP 2010041209 A JP2010041209 A JP 2010041209A JP 2011174904 A JP2011174904 A JP 2011174904A
Authority
JP
Japan
Prior art keywords
temperature
gas
heating furnace
sample
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010041209A
Other languages
Japanese (ja)
Inventor
Akinori Goto
晃範 後藤
Hirotoshi Mori
浩俊 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyorin Pharmaceutical Co Ltd
Original Assignee
Kyorin Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyorin Pharmaceutical Co Ltd filed Critical Kyorin Pharmaceutical Co Ltd
Priority to JP2010041209A priority Critical patent/JP2011174904A/en
Publication of JP2011174904A publication Critical patent/JP2011174904A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for heating gas to a high temperature of 80°C, preferably 100°C or higher to perform hydrolytic reaction because evaluation under a high temperature is needed for quickly evaluating hydrolytic reaction. <P>SOLUTION: Gas having passed through water of a temperature from a room temperature to 35°C is introduced to the reactor of a thermal decomposition apparatus to superheat, which enables the gas to heat to a high temperature around 130°C to quickly evaluate the hydrolytic reaction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は製剤中の化学物質の安定性を、迅速に評価する方法に関する。     The present invention relates to a method for rapidly evaluating the stability of chemical substances in a preparation.

一般に医薬品の安定性試験は、加速条件(40℃/75%RH)で6ヶ月、長期保存条件(25℃/60%RH)で24ヶ月という非常に長期に渡る試験が行われている。また、製剤の安定性改善やスケールアップに伴い数種の候補処方が検討されると、安定性試験が多数並行して行われることになり、開発費用が多大に発生するため、製剤処方開発の初期段階で安定性予測をすることが重要となる。   In general, the stability test of pharmaceuticals has been conducted for a very long period of 6 months under accelerated conditions (40 ° C./75% RH) and 24 months under long-term storage conditions (25 ° C./60% RH). In addition, when several types of candidate formulations are studied along with the improvement and scale-up of the formulation, many stability tests will be conducted in parallel, resulting in significant development costs. It is important to predict stability at an early stage.

製剤処方開発の初期段階における安定性予測に応用できる方法として、熱測定装置を用いた安定性予測法が報告されている(特許文献1、2)。一般的に、熱測定装置を用いて加水分解反応の評価を行う場合には、湿度制御装置を用いて、熱測定装置の加熱炉内湿度を制御しつつ、加温することが知られている。   As a method that can be applied to the stability prediction in the initial stage of formulation formulation development, a stability prediction method using a thermal measurement device has been reported (Patent Documents 1 and 2). In general, when a hydrolysis reaction is evaluated using a heat measurement device, it is known to use a humidity control device to heat while controlling the humidity in the heating furnace of the heat measurement device. .

特開平8−145918公報JP-A-8-145918 特開2000−074809公報JP 2000-074809 A

本発明が解決しようとする一つの課題は、高温で加水分解反応を行うことを可能にし、化学物質の安定性を迅速に評価する方法を確立することにある。
従来報告されていた、湿度制御装置を用いて湿度制御をしつつ熱測定装置を用いて安定性を測定する場合には、排気部分の結露のため、80℃程度までしか昇温できなかった。しかし、より迅速に加水分解反応を評価するためには、より高温下で評価する必要があった。そのため、より高温下、好ましくは100℃より高い温度まで昇温し、加水分解反応を行える方法を確立することが課題であった。
One problem to be solved by the present invention is to establish a method for allowing a hydrolysis reaction to be performed at a high temperature and for quickly evaluating the stability of a chemical substance.
In the case of measuring the stability using a heat measuring device while controlling the humidity using a humidity control device, which has been reported in the past, the temperature could only be raised to about 80 ° C. due to condensation on the exhaust part. However, in order to evaluate the hydrolysis reaction more quickly, it was necessary to evaluate at a higher temperature. Therefore, it has been a problem to establish a method capable of performing the hydrolysis reaction by raising the temperature at a higher temperature, preferably higher than 100 ° C.

本発明者らは、より高温下で加水分解反応を行うために、熱測定装置を用いた安定性予測方法を検討した。その結果、湿度制御装置を用いることなく、室温から35℃の水温の水を通過させたガスを熱測定装置の加熱炉に導入し加熱することにより、100℃より高い温度にすることができ、より迅速に加水分解反応を評価することが出来ることを見出し、本発明を完成した。
In order to perform the hydrolysis reaction at a higher temperature, the present inventors examined a stability prediction method using a heat measurement device. As a result, without using a humidity control device, by introducing a gas through which water having a water temperature of room temperature to 35 ° C. has been passed into a heating furnace of the heat measurement device and heating it, the temperature can be made higher than 100 ° C., The present inventors have found that the hydrolysis reaction can be evaluated more quickly and completed the present invention.

すなわち、本発明は、以下の発明を包含する。
[1] 100℃より高い温度での加水分解反応の測定法であって、以下の工程からなる方法。
(工程1)室温から35℃の水温の水を通過させたガスを、熱測定装置の反応炉に導入する。
(工程2)80℃、90%RHの条件で24時間分解させた時の組成物中での分解物の量が3%未満である化合物を含有する組成物を、熱測定装置の加熱炉に設置し、熱測定装置の加熱炉内温度を100℃より高い設定温度に加熱して分解反応をさせる。
(工程3)加熱炉から試料を取り出し、分解物量を定量する。
That is, the present invention includes the following inventions.
[1] A method for measuring a hydrolysis reaction at a temperature higher than 100 ° C., comprising the following steps.
(Step 1) Gas through which water having a water temperature of 35 ° C. from room temperature is passed is introduced into the reactor of the heat measuring device.
(Step 2) A composition containing a compound in which the amount of decomposition product in the composition when decomposed for 24 hours under the conditions of 80 ° C. and 90% RH is less than 3% is used in a heating furnace of a heat measuring device. It is installed, and the temperature inside the heating furnace of the heat measuring device is heated to a set temperature higher than 100 ° C. to cause a decomposition reaction.
(Step 3) A sample is taken out from the heating furnace, and the amount of decomposition product is quantified.

[2]工程1におけるガスが窒素ガスである、[1]に記載の方法。
[3]工程1における水温が25℃から35℃である、[1]または[2]に記載の方法。
[2] The method according to [1], wherein the gas in step 1 is nitrogen gas.
[3] The method according to [1] or [2], wherein the water temperature in Step 1 is 25 ° C. to 35 ° C.

[4]工程2における組成物が、原薬と添加剤のみからなる組成物である、[1]から[3]の何れかに記載の方法。
[5]原薬と添加剤の重量比が、1:1から1:50である、[4]に記載の方法。
[4] The method according to any one of [1] to [3], wherein the composition in step 2 is a composition consisting only of the drug substance and additives.
[5] The method according to [4], wherein the weight ratio between the drug substance and the additive is 1: 1 to 1:50.

[6] 化合物の残存率を予測する方法であって、以下の工程からなる方法。
(工程1)室温から35℃の水温の水を通過させたガスを、熱測定装置の反応炉に導入する。
(工程2)80℃、90%RHの条件で24時間分解させた時の分解物の量が3%未満である化合物を含有する組成物を、熱分析装置の加熱炉に設置し、熱分析装置の加熱炉内温度を100℃より高い設定温度に加熱して分解反応をさせる。
(工程3)加熱炉から試料を取り出し、分解物量を定量することにより残存率を計算する。
(工程4)異なる加熱炉内温度で、工程2および工程3を3回以上繰り返す。
(工程5)得られた複数の残存率を用いて反応速度式および/または反応速度定数を算出する。
(工程6)アレニウスプロットにより回帰直線および/または回帰直線式を得て、残存率を予測する。
[6] A method for predicting the residual ratio of a compound, the method comprising the following steps.
(Step 1) Gas through which water having a water temperature of 35 ° C. from room temperature is passed is introduced into the reactor of the heat measuring device.
(Step 2) A composition containing a compound having a decomposition amount of less than 3% when decomposed for 24 hours under the conditions of 80 ° C. and 90% RH is placed in a heating furnace of a thermal analyzer, and subjected to thermal analysis. The temperature in the furnace of the apparatus is heated to a set temperature higher than 100 ° C. to cause a decomposition reaction.
(Step 3) A sample is taken out from the heating furnace, and the residual rate is calculated by quantifying the amount of decomposition products.
(Step 4) Steps 2 and 3 are repeated three or more times at different furnace temperatures.
(Step 5) A reaction rate equation and / or a reaction rate constant is calculated using the obtained plurality of remaining rates.
(Step 6) A regression line and / or regression line equation is obtained from the Arrhenius plot, and the residual rate is predicted.

[7] 工程1におけるガスが窒素ガスである、[6]に記載の方法。
[8] 工程1における水温が25℃から35℃である、[6]または[7]に記載の方法。
[9]工程6において予測する残存率が、加速条件下または長期保存条件下における残存率である、[6]から[8]の何れか一つに記載の方法。
[7] The method according to [6], wherein the gas in step 1 is nitrogen gas.
[8] The method according to [6] or [7], wherein the water temperature in step 1 is 25 ° C to 35 ° C.
[9] The method according to any one of [6] to [8], wherein the remaining rate predicted in step 6 is a remaining rate under accelerated conditions or long-term storage conditions.

[10]工程2における組成物が、原薬と添加剤のみからなる組成物である、[6]から[9]の何れかに記載の方法。
[11]原薬と添加剤の重量比が、1:1から1:50である、[10]に記載の方法。
[10] The method according to any one of [6] to [9], wherein the composition in step 2 is a composition consisting only of the drug substance and an additive.
[11] The method according to [10], wherein the weight ratio of the drug substance and the additive is 1: 1 to 1:50.

本発明により、加湿下で熱測定装置の加熱炉内温度を高温にすることができ、化学物質の加水分解の評価をより迅速に行うことができるようになった。また、湿度制御装置等の特別な装置も必要なく、操作も簡便である。本発明の方法では、高温下での相対湿度は低いが、驚くべきことに、相対湿度に依存せず、加水分解反応を評価することができる。したがって、本発明の方法によれば、迅速に組成物中の原薬の安定性が評価でき、医薬組成物開発初期における添加剤の配合適格性が判断できる。   According to the present invention, the temperature inside the heating furnace of the heat measuring device can be increased under humidification, and the chemical hydrolysis can be evaluated more rapidly. Further, no special device such as a humidity control device is required, and the operation is simple. In the method of the present invention, the relative humidity at high temperature is low, but surprisingly, the hydrolysis reaction can be evaluated without depending on the relative humidity. Therefore, according to the method of the present invention, the stability of the drug substance in the composition can be quickly evaluated, and the compounding eligibility of the additive at the early stage of development of the pharmaceutical composition can be determined.


本発明に係る装置の概略図Schematic diagram of the device according to the invention 参考例1における熱分析の結果Results of thermal analysis in Reference Example 1 実施例4において作成した回帰直線Regression line created in Example 4

本明細書において「雰囲気ガス」とは、窒素ガス、アルゴンガスなどの不活性ガス、または空気を意味する。本発明は加水分解反応による分解物を測定する方法であるから、副反応を防止する観点から、窒素ガスまたはアルゴンガスなどの不活性ガスが好ましく、更に好ましくは窒素ガスである。   In this specification, “atmosphere gas” means an inert gas such as nitrogen gas or argon gas, or air. Since the present invention is a method for measuring a decomposition product by a hydrolysis reaction, from the viewpoint of preventing side reactions, an inert gas such as nitrogen gas or argon gas is preferable, and nitrogen gas is more preferable.

本明細書において「熱測定装置」とは、試料を所望の温度に保温する機能と試料の温度、試料の熱吸収・放出の変化、重量変化を精度よく測定できる装置を意味する。さらに、加熱炉に水蒸気や窒素ガスなどの所望の雰囲気ガスを流すことができ、熱分析測定が精度よく行える装置であればなおよい。具体的には、例えば示差走査熱量計、熱量計、微少熱量計、示差熱測定装置、示差熱−熱重量同時測定装置、熱重量分析装置、熱機械測定装置、動的熱機械測定装置などをあげることができる。   In the present specification, the “thermal measurement device” means a device that can accurately measure the function of keeping a sample at a desired temperature, the temperature of the sample, changes in heat absorption / release of the sample, and changes in weight. Furthermore, it is more preferable if a desired atmospheric gas such as water vapor or nitrogen gas can be allowed to flow through the heating furnace so that thermal analysis measurement can be performed with high accuracy. Specifically, for example, a differential scanning calorimeter, a calorimeter, a microcalorimeter, a differential calorimeter, a differential thermal-thermogravimetric measuring device, a thermogravimetric analyzer, a thermomechanical measuring device, a dynamic thermomechanical measuring device, etc. I can give you.

本明細書において「熱測定装置の加熱炉」とは、試料を加熱する炉のことであり、任意の雰囲気ガスを流せる炉を意味する。
本明細書において「80℃、90%RHの条件で24時間分解させた時の組成物中での分解物の量が3%未満の化合物」とは、現存の調湿できる熱測定装置の上限温度及び湿度で分解させた時に安定性予測に最適な分解率の下限まで分解できない化合物を意味する。
In this specification, the “heating furnace of the heat measuring device” refers to a furnace that heats a sample, and means a furnace that can flow an arbitrary atmospheric gas.
In the present specification, “a compound in which the amount of decomposition product in the composition when decomposed for 24 hours under the conditions of 80 ° C. and 90% RH is less than 3%” means the upper limit of an existing heat measuring apparatus capable of conditioning the humidity. It means a compound that cannot be decomposed to the lower limit of the optimal decomposition rate for stability prediction when decomposed at temperature and humidity.

本明細書において「100℃より高い設定温度」の「設定温度」は、試料により上限温度がある。その上限温度までの間で、任意に設定できる。操作の簡便性を考慮すると、10℃ごと、或いは5℃ごとに設定するのが好ましい。なお、上限温度については、下記の方法により、試料ごとに測定する。   In this specification, “set temperature” of “set temperature higher than 100 ° C.” has an upper limit temperature depending on the sample. It can be arbitrarily set up to the upper limit temperature. Considering the simplicity of operation, it is preferable to set every 10 ° C. or every 5 ° C. In addition, about an upper limit temperature, it measures for every sample with the following method.

本明細書において「加速条件」とは、医薬品の安定性試験のために汎用されている、40℃/75%RHの条件を意味する。
本明細書において「長期保存条件」とは、医薬品の安定性試験のために汎用されている、25℃/60%RHの条件を意味する。
In the present specification, the “accelerated condition” means a condition of 40 ° C./75% RH, which is widely used for the stability test of pharmaceutical products.
As used herein, “long-term storage conditions” means conditions of 25 ° C./60% RH, which are widely used for stability testing of pharmaceutical products.

本明細書において「反応速度式」および「反応速度定数」とは、分解率が時間の関数で表される数式を意味する。
本明細書において「アレニウスプロット」とは、温度を絶対温度Tに換算してその逆数をX軸に取り、反応速度定数の自然対数をY軸にとってプロットしたものを意味する。
In the present specification, the “reaction rate equation” and “reaction rate constant” mean a mathematical expression in which the decomposition rate is expressed as a function of time.
In the present specification, the “Arrhenius plot” means a temperature plotted as an absolute temperature T and its reciprocal taken on the X axis and the natural logarithm of the reaction rate constant plotted on the Y axis.

本明細書において「回帰直線」および「回帰直線式」とは、最小二乗法により一次の式に近似したものを意味し、回帰直線式とは近似した直線を表す数式を意味する。
本明細書において「原薬」とは、医薬品の活性成分を意味する。
In this specification, “regression line” and “regression line expression” mean an approximation to a linear expression by the least square method, and the regression line expression means an expression representing the approximated line.
In the present specification, the “active drug substance” means an active ingredient of a pharmaceutical product.

(加熱温度の上限の決定)
本発明における加熱温度は、外挿したい温度と同じ分解反応が起きている温度である必要がある。すなわち、本発明の目的の一つは、加速条件や長期保存条件における組成物中の残存率を予測することにあるので、高温下でのみ起こり、室温付近では起こらないような分解反応は避ける必要がある。したがって、TG(熱重量分析)において急激な増量又は減量、DTA(示差熱分析)において急激な発熱又は吸熱が生じる温度を確認し、その温度未満で分解させる必要がある。
(Determination of upper limit of heating temperature)
The heating temperature in the present invention needs to be a temperature at which the same decomposition reaction as the temperature to be extrapolated occurs. That is, one of the objects of the present invention is to predict the residual ratio in the composition under accelerated conditions and long-term storage conditions, so it is necessary to avoid decomposition reactions that occur only at high temperatures and do not occur near room temperature. There is. Therefore, it is necessary to confirm the temperature at which sudden increase or decrease in TG (thermogravimetric analysis) and rapid exotherm or endotherm occur in DTA (differential thermal analysis), and to decompose below that temperature.

(分解物量の測定法)
本発明における、100℃より高い温度での加水分解による分解物量の測定法は、以下の工程からなる。
(Measurement method of degradation amount)
The method for measuring the amount of decomposition product by hydrolysis at a temperature higher than 100 ° C. in the present invention comprises the following steps.

(工程1)室温から35℃の水温の水を通過させたガスを、熱測定装置の加熱炉に導入する。
(工程2)80℃、90%RHの条件で24時間分解させた時の組成物中での分解物の量が3%未満である化合物を含有する組成物を、熱測定装置の加熱炉に設置し、熱測定装置の加熱炉内温度を100℃より高い設定温度に加熱して分解反応をさせる。
(工程3)加熱炉から試料を取り出し、分解物量を定量する。
(Step 1) Gas through which water having a water temperature of 35 ° C. from room temperature is passed is introduced into a heating furnace of a heat measuring device.
(Step 2) A composition containing a compound in which the amount of decomposition product in the composition when decomposed for 24 hours under the conditions of 80 ° C. and 90% RH is less than 3% is used in a heating furnace of a heat measuring device. It is installed, and the temperature inside the heating furnace of the heat measuring device is heated to a set temperature higher than 100 ° C. to cause a decomposition reaction.
(Step 3) A sample is taken out from the heating furnace, and the amount of decomposition product is quantified.

工程1は、水分を含んだガスを熱測定装置の加熱炉に導入する工程である。
本工程においては、通常の雰囲気ガス流路中にガス洗浄瓶などを組み込み、雰囲気ガスを水に通すことにより加湿する。このガス洗浄瓶等は、水浴中で室温から35℃に加温して一定温度に保つ。水浴の温度は、25℃から35℃であることが好ましく、30℃であることが更に好ましい。
Step 1 is a step of introducing a gas containing moisture into the heating furnace of the heat measuring device.
In this step, a gas cleaning bottle or the like is incorporated into a normal atmosphere gas flow path, and humidification is performed by passing the atmosphere gas through water. The gas washing bottle is heated from room temperature to 35 ° C. in a water bath and kept at a constant temperature. The temperature of the water bath is preferably 25 ° C. to 35 ° C., more preferably 30 ° C.

工程2は、試料を熱分解装置の加熱炉内で分解させる工程である。
試料を熱測定装置内で保温するときに使用する試料容器の材質は、試料と化学反応せず、しかも測定する温度範囲内で変質しないものがよく、例えば、金属、ガラス、テフロン(登録商標)、グラファイトなどがあげられる。熱伝導率の高い材質が好ましく、例えばアルミニウム製の試料容器が好ましい。また、試料の反応性が高い場合は、例えば白金製の試料容器を用いるとよい。試料容器の形状は、試料の保温に用いる熱測定装置に使用できるものであればよい。試料容器へ量り込む試料の量は、使用する熱測定装置の試料容器の大きさによるが、操作性を考慮すると通常1mgから100mgであり、熱伝導率の誤差を考えると通常5mgから20mgが好ましい。
Step 2 is a step of decomposing the sample in the heating furnace of the thermal decomposition apparatus.
The material of the sample container used when the sample is kept warm in the heat measuring apparatus should be a material that does not chemically react with the sample and does not change within the temperature range to be measured. For example, metal, glass, Teflon (registered trademark) And graphite. A material having high thermal conductivity is preferable, for example, an aluminum sample container is preferable. If the sample has high reactivity, for example, a platinum sample container may be used. The shape of the sample container may be any shape that can be used in a heat measurement device used for keeping a sample warm. The amount of sample to be weighed into the sample container depends on the size of the sample container of the heat measuring device to be used, but is usually 1 mg to 100 mg in consideration of operability, and is preferably 5 mg to 20 mg in consideration of errors in thermal conductivity. .

本発明の方法では、まず、試料を量り込んだ上記のような試料容器を熱測定装置内に置き、試料の温度を測定しながら試料を保温する。熱測定装置により、試料の温度に加えて、試料の熱吸収・放出、重量などの変化を経時的に測定しながら保温することが好ましい。 In the method of the present invention, first, the sample container as described above in which a sample is weighed is placed in a heat measurement apparatus, and the sample is kept warm while measuring the temperature of the sample. In addition to the temperature of the sample, it is preferable to keep the temperature while measuring changes in the heat absorption / release, weight, etc. of the sample over time by a thermometer.

各温度における試料の保温時間は、分解率Y(%)が、3%<Y<50%の範囲となるよう設定する。具体的には、熱測定装置内の条件が平衡に達し試料が一定温度になるまでの時間や保温時間の測定誤差等を考慮すると、保温時間は2時間以上であることが好ましい。保温時間を2時間以下にする必要がある場合には、熱測定装置の加熱炉を予め保温温度に保持しておき、該加熱炉へ試料の入った試料容器を入れるとよい。 The incubation time of the sample at each temperature is set so that the decomposition rate Y (%) is in the range of 3% <Y <50%. Specifically, in consideration of the time until the condition in the heat measurement apparatus reaches equilibrium and the sample reaches a constant temperature, measurement error of the heat retention time, etc., the heat retention time is preferably 2 hours or more. When it is necessary to keep the heat retention time at 2 hours or less, the heating furnace of the heat measuring device is preferably held at the heat retention temperature in advance, and the sample container containing the sample is put into the heating furnace.

工程3は、分解物量を測定する工程である。
このようにして試料を保温した後、該試料中の目的物質を定量する。定量法としては正確かつ精度の高い方法であればよく、試料の性質により適宜選択できる。具体的には各種のクロマトグラフ法、電気泳動法、分光分析法、滴定法などをあげることができる。
Step 3 is a step of measuring the amount of decomposition products.
After the sample is kept warm in this way, the target substance in the sample is quantified. Any quantitative and quantitative method may be used as long as it is accurate and accurate, and can be appropriately selected depending on the properties of the sample. Specific examples include various chromatographic methods, electrophoresis methods, spectroscopic analysis methods, and titration methods.

(化合物の残存率を予測する方法)
加速条件または長期保存条件における化合物の残存率を予測する方法は、以下の工程からなる。
(Method for predicting the residual ratio of compounds)
A method for predicting the residual ratio of a compound under accelerated conditions or long-term storage conditions includes the following steps.

(工程1)室温から35℃の水温の水を通過させたガスを、熱測定装置の加熱炉に導入する
(工程2)80℃、90%RHの条件で24時間分解させた時の分解物の量が3%未満である化合物を含有する組成物を、熱測定装置の加熱炉に設置し、熱測定装置の加熱炉内温度を100℃より高い設定温度に加熱して分解反応をさせる
(工程3)試料を取り出して分解物量を定量することにより、残存率を計算する
(工程4)異なる加熱炉内温度で、工程2および工程3を一定温度下で3回以上繰り返す。温度も3点以上の一定温度で繰り返す。
(工程5)得られた複数の残存率を用いて反応速度式を選択し、反応速度定数を算出する
(工程6)アレニウスプロットにより回帰直線および/または回帰直線式を得て、残存率を予測する。
(Step 1) Gas through which water having a water temperature of 35 ° C. from room temperature is passed into the heating furnace of the heat measuring device (Step 2) Decomposed product when decomposed for 24 hours at 80 ° C. and 90% RH A composition containing a compound having an amount of less than 3% is placed in a heating furnace of a heat measuring device, and the temperature in the heating furnace of the heat measuring device is heated to a set temperature higher than 100 ° C. to cause a decomposition reaction ( Step 3) Taking out a sample and quantifying the amount of decomposition product to calculate the residual rate (Step 4) Repeating Step 2 and Step 3 three or more times at a constant temperature at different furnace temperatures. Repeat the temperature at a constant temperature of 3 or more points.
(Step 5) A reaction rate equation is selected using the obtained plurality of remaining rates, and a reaction rate constant is calculated. (Step 6) A regression line and / or regression line equation is obtained from the Arrhenius plot, and the remaining rate is predicted. To do.

工程1から工程3までは、上記の「分解物量の測定法」とほぼ同様である。工程3において、分解物量から残存率を計算する点のみ異なる。
なお、化合物残存率予測に際しては、別の温度における化合物残存率を複数測定する必要があるため、工程2および工程3を、温度を変更して繰り返す必要がある(工程4)。かかる測定は、該温度の範囲を広く取るほど、また、数多くの温度において実施するほど残存率の予測の精度を高めることができる。このような試料の保温と温度等の測定は各温度における各分解時間について1回以上行い、繰り返し行なうと、残存率の予測の精度を更に高めることができる。
Steps 1 to 3 are substantially the same as the above-described “method for measuring the amount of decomposition product”. In step 3, the only difference is that the residual rate is calculated from the amount of decomposition products.
In addition, since it is necessary to measure a plurality of compound residual ratios at different temperatures when predicting the compound residual ratio, it is necessary to repeat Step 2 and Step 3 while changing the temperature (Step 4). Such measurement can increase the accuracy of the prediction of the remaining rate as the temperature range is widened and the temperature is increased. Such measurement of the temperature and temperature of the sample is performed at least once for each decomposition time at each temperature, and when repeated, the accuracy of prediction of the remaining rate can be further increased.

工程5は、反応速度式および反応速度定数を算出する工程である。
反応速度式としては、例えばn次反応速度式(nは、0以上の実数)、Janderの式、Weibullの式、拡散律速の式、Avramiの式、Prout-Tompkinsの速度式などがあり、個々の試料中の目的物質の分解に最も良く合う式を選択することができる。選択した速度式から各温度における反応速度定数を算出する。
Step 5 is a step of calculating a reaction rate equation and a reaction rate constant.
Examples of reaction rate equations include nth order reaction rate equation (n is a real number greater than or equal to 0), Jander equation, Weibull equation, diffusion rate equation, Avrami equation, Prout-Tompkins rate equation, etc. The formula that best suits the decomposition of the target substance in the sample can be selected. The reaction rate constant at each temperature is calculated from the selected rate equation.

工程6は、回帰直線式を得て、残存率を予測する工程である。
保温中の試料の温度を絶対温度Tに換算してその逆数を横軸にとり、該温度における反応速度定数kの自然対数を縦軸にとって各点をプロットする。このプロットより最小二乗法等で回帰分析を行い、回帰直線を得る。
得られた回帰直線式より予測したい温度(例えば、加速条件であれば40℃、長期保存条件であれば25℃)へ外挿し、目的の温度での反応速度定数を求める。その後、工程6で選択した反応速度式に反応速度定数、目的の分解率又は保存期間を代入して予測する。
Step 6 is a step of obtaining a regression linear equation and predicting the remaining rate.
Each temperature is plotted by converting the temperature of the sample being kept into an absolute temperature T and taking the reciprocal on the horizontal axis and taking the natural logarithm of the reaction rate constant k at that temperature on the vertical axis. From this plot, regression analysis is performed by the least square method or the like to obtain a regression line.
Extrapolate from the obtained regression linear equation to the temperature to be predicted (for example, 40 ° C. for acceleration conditions and 25 ° C. for long-term storage conditions) to determine the reaction rate constant at the target temperature. After that, the reaction rate constant, the target decomposition rate, or the storage period is substituted into the reaction rate equation selected in Step 6 for prediction.

(配合適格性の評価方法)
原薬と添加剤の配合適格性を評価する場合には、原薬と添加剤のみからなる混合物を、上記の(分解物量の測定方法)や(化合物の残存率の予測方法)に従って、評価する。
本工程において、添加剤の量は原薬によって適宜選択でき、原薬と添加剤の重量比は1:1〜1:50であることが好ましい。
(Method for evaluating compounding eligibility)
When evaluating the compounding eligibility of the drug substance and additives, evaluate the mixture consisting only of the drug substance and additives according to the above (Method for measuring the amount of degradation products) and (Method for predicting the residual ratio of compounds). .
In this step, the amount of the additive can be appropriately selected depending on the drug substance, and the weight ratio of the drug substance and the additive is preferably 1: 1 to 1:50.

(実施例)
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
(Example)
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

(参考例1)
熱測定装置(TG-DTA、セイコーインスツルメンツ製、TG/DTA6200)の雰囲気ガス流路中の流量計とTG-DTA装置の間にガス洗浄瓶を組み込み、ガス洗浄瓶の中には水を入れた。このガス洗浄瓶は水浴で30℃に保温した(図1)。
(Reference Example 1)
A gas cleaning bottle was installed between the flow meter in the atmospheric gas flow path of the thermal measurement device (TG-DTA, Seiko Instruments, TG / DTA6200) and the TG-DTA device, and water was put in the gas cleaning bottle. . This gas washing bottle was kept at 30 ° C. in a water bath (FIG. 1).

ファモチジンと結晶セルロースを1:9の割合で混合し、試料として用いた。試料を上記の熱測定装置により、測定条件1の条件で100℃〜150℃の範囲で10℃毎、3時間ずつ加温した。結果を図2に示す。この温度範囲においてDTA曲線に吸熱もしくは発熱の反応は認められなかったが、150℃においてTG曲線に減少傾向が認められた。これは急激な分解反応によるものだと考えられるが、通常の温度範囲では起こりえない反応の可能性があるので、試料を分解させる温度の上限を140℃に設定した。 Famotidine and crystalline cellulose were mixed at a ratio of 1: 9 and used as a sample. The sample was heated by the above-described heat measurement apparatus under the condition of measurement condition 1 every 10 ° C. for 3 hours in the range of 100 ° C. to 150 ° C. The results are shown in FIG. In this temperature range, no endothermic or exothermic reaction was observed on the DTA curve, but a decreasing trend was observed on the TG curve at 150 ° C. Although this is thought to be due to a rapid decomposition reaction, there is a possibility of a reaction that cannot occur in the normal temperature range, so the upper limit of the temperature at which the sample is decomposed was set to 140 ° C.

<測定条件1>
試料容器:オープン型アルミパン
雰囲気ガス:加湿窒素
雰囲気ガス流量:100mL/分
温度プログラム:階段状昇温法(試料温度を100℃で3時間保持したのち、50℃/分で10℃昇温しては一定温度に3時間保温するステップを150℃に達するまで繰り返した後、100℃に降温して3時間保温した。)
<Measurement condition 1>
Sample container: Open type aluminum pan atmosphere gas: Humidified nitrogen atmosphere Gas flow rate: 100 mL / min Temperature program: Stepwise temperature rising method (holding the sample temperature at 100 ° C. for 3 hours, then increasing the temperature by 10 ° C. at 50 ° C./min) In this case, the step of keeping the temperature at a constant temperature for 3 hours was repeated until reaching 150 ° C., then the temperature was lowered to 100 ° C. and kept for 3 hours.

熱分析装置(TG-DTA、セイコーインスツルメンツ製、TG/DTA6200)の雰囲気ガス流路中の流量計とTG-DTA装置の間にガス洗浄瓶を組み込み、ガス洗浄瓶の中には水を入れた。このガス洗浄瓶は水浴で30℃に保温した(図1)。
ファモチジンと結晶セルロースを1:9の割合で混合し、試料として用いた。試料を本発明による熱分析装置により、測定条件2の条件で120℃に加温した。加温時間は15、20、25時間とした。加温中にTGもしくはDTAに有意な変化は認めなかった。加温後の試料を測定条件3の条件で高速液体クロマトグラフィーにより定量した。その結果を表2に示す。
A gas cleaning bottle was installed between the flow meter in the ambient gas flow path of the thermal analyzer (TG-DTA, Seiko Instruments, TG / DTA6200) and the TG-DTA device, and water was put in the gas cleaning bottle. . This gas washing bottle was kept at 30 ° C. in a water bath (FIG. 1).
Famotidine and crystalline cellulose were mixed at a ratio of 1: 9 and used as a sample. The sample was heated to 120 ° C. under the measurement condition 2 by the thermal analyzer according to the present invention. The heating time was 15, 20, and 25 hours. There was no significant change in TG or DTA during warming. The heated sample was quantified by high performance liquid chromatography under the condition of measurement condition 3. The results are shown in Table 2.

<測定条件2>
試料容器:オープン型アルミパン
雰囲気ガス:加湿窒素
雰囲気ガス流量:100mL/分
温度プログラム:室温から120℃まで50℃/分で昇温し、120℃を加温時間だけ保持した。
<Measurement condition 2>
Sample container: Open type aluminum pan atmosphere gas: Humidified nitrogen atmosphere Gas flow rate: 100 mL / min Temperature program: Temperature was raised from room temperature to 120 ° C. at 50 ° C./min, and 120 ° C. was maintained for the heating time.

<測定条件3>
移動相A:20mMリン酸二水素ナトリウム溶液
移動相B:液体クロマトグラフィー用メタノール
移動相の送液:移動相A及びBの混合比を表1のように変え,濃度勾配制御した

Figure 2011174904
<Measurement condition 3>
Mobile phase A: 20 mM sodium dihydrogen phosphate solution Mobile phase B: Methanol mobile phase for liquid chromatography Liquid feed: Mixing ratio of mobile phases A and B was changed as shown in Table 1, and the concentration gradient was controlled.

Figure 2011174904

実施例1で用いたものと同様の熱分析装置により、実施例1で用いたものと同様の試料を用いて、測定条件4の条件で130℃に加温した。加温時間は10、15、20時間とした。加温中にTGもしくはDTAに有意な変化は認めなかった。以下実施例1と同様に高速液体クロマトグラフィーにより定量した。その結果を表2に示す。 Using the same thermal analyzer as that used in Example 1, the same sample as that used in Example 1 was used, and the sample was heated to 130 ° C. under the measurement condition 4. The heating time was 10, 15, and 20 hours. There was no significant change in TG or DTA during warming. Thereafter, the amount was quantified by high performance liquid chromatography in the same manner as in Example 1. The results are shown in Table 2.

<測定条件4>
試料容器:オープン型アルミパン
雰囲気ガス:加湿窒素
雰囲気ガス流量:100mL/分
温度プログラム:室温から130℃まで50℃/分で昇温し、130℃を加温時間だけ保持した。
<Measurement condition 4>
Sample container: open type aluminum pan atmosphere gas: humidified nitrogen atmosphere gas flow rate: 100 mL / min Temperature program: The temperature was raised from room temperature to 130 ° C. at 50 ° C./min, and 130 ° C. was maintained for the heating time.

実施例1で用いたものと同様の熱分析装置により、実施例1で用いたものと同様の試料を用いて、測定条件5の条件で140℃に加温した。加温時間は3、4.5、6時間とした。加温中にTGもしくはDTAに有意な変化は認めなかった。以下実施例1と同様に高速液体クロマトグラフィーにより定量した。その結果を表2に示す。 Using the same thermal analyzer as that used in Example 1, a sample similar to that used in Example 1 was used and heated to 140 ° C. under the condition of measurement condition 5. The heating time was 3, 4.5 and 6 hours. There was no significant change in TG or DTA during warming. Thereafter, the amount was quantified by high performance liquid chromatography in the same manner as in Example 1. The results are shown in Table 2.

<測定条件4>
試料容器:オープン型アルミパン
雰囲気ガス:加湿窒素
雰囲気ガス流量:100mL/分
温度プログラム:室温から140℃まで50℃/分で昇温し、140℃を加温時間だけ保持した。

Figure 2011174904

<Measurement condition 4>
Sample container: Open type aluminum pan atmosphere gas: humidified nitrogen atmosphere gas flow rate: 100 mL / min Temperature program: Temperature was raised from room temperature to 140 ° C. at 50 ° C./min, and 140 ° C. was maintained for the heating time.

Figure 2011174904

高速液体クロマトグラフィーにより求めた残存率を各反応速度式に代入し、相関係数が最も1に近く、y切片が0に近い一次反応式を反応速度式として採用した。一次反応式から反応速度定数を算出し、アレニウスプロット(絶対温度Tの逆数を1000倍した値を横軸に取り、各温度における反応速度定数の自然対数lnkを縦軸にとってプロットした)により回帰直線(図3)及び回帰直線式(式1:y=−7.51x+6.1367)を得た。得られた式1より40℃における反応速度式を算出し、4週間保存した時の残存率を算出すると95.6%であった。

(比較例1)
The residual rate determined by high performance liquid chromatography was substituted into each reaction rate equation, and a first order reaction equation with a correlation coefficient closest to 1 and a y-intercept close to 0 was adopted as the reaction rate equation. The reaction rate constant was calculated from the first-order reaction equation, and the regression line was obtained by the Arrhenius plot (the value obtained by multiplying the reciprocal of the absolute temperature T by 1000 on the horizontal axis and the natural logarithm 1nk of the reaction rate constant at each temperature on the vertical axis). (FIG. 3) and a regression line equation (formula 1: y = −7.51x + 6.1367) were obtained. The reaction rate formula at 40 ° C. was calculated from the obtained formula 1, and the residual ratio when stored for 4 weeks was 95.6%.

(Comparative Example 1)

試料を褐色ガラス瓶に入れ、40℃/75%RHで蓋をせずに4週間保存した。以下実施例1と同様に高速液体クロマトグラフィーにより定量した。その結果、残存率は95.7%であった。 The sample was placed in a brown glass bottle and stored at 40 ° C./75% RH for 4 weeks without a lid. Thereafter, the amount was quantified by high performance liquid chromatography in the same manner as in Example 1. As a result, the residual rate was 95.7%.

比較例1の結果は実施例4で得られた数値と実質的に同一であり、本件発明の方法により、短時間で加水分解反応の予測をすることが可能であることが分かった。
The result of Comparative Example 1 was substantially the same as the numerical value obtained in Example 4, and it was found that the hydrolysis reaction can be predicted in a short time by the method of the present invention.

(比較例2)
塩化カリウム飽和援用液をデシケーターの底に入れ、そのデシケーター内に試料を入れて80℃で保存した。塩化カリウム飽和援用液は相対湿度90%である。保存時間は24、48、72時間とし、以下実施例1と同様に高速液体クロマトグラフィーにより定量した。その結果を表3に示す。

Figure 2011174904





(Comparative Example 2)
Potassium chloride saturation support solution was placed in the bottom of the desiccator, and the sample was placed in the desiccator and stored at 80 ° C. The potassium chloride saturation aid is 90% relative humidity. The storage time was 24, 48, 72 hours, and quantified by high performance liquid chromatography in the same manner as in Example 1. The results are shown in Table 3.

Figure 2011174904





比較例2の結果から、80℃における加水分解反応は分解があまり進まず、適切な分解率である3%以上の分解をさせるにはかなりの時間を要し、加速条件下での分解を迅速に予測することはできなかった。
From the results of Comparative Example 2, the hydrolysis reaction at 80 ° C. did not progress so much, and it took a considerable time to achieve an appropriate decomposition rate of 3% or more, and the decomposition under accelerated conditions was rapid. Could not be predicted.

本発明は、医薬品製剤における化合物の安定性を、迅速且つ簡便に評価する方法であり、産業上有用である。 The present invention is a method for quickly and simply evaluating the stability of a compound in a pharmaceutical preparation, and is industrially useful.

Claims (11)

100℃より高い温度での加水分解反応の測定法であって、以下の工程からなる方法。
(工程1)室温から35℃の水温の水を通過させたガスを、熱測定装置の反応炉に導入する
(工程2)80℃、90%RHの条件で24時間分解させた時の組成物中での分解物の量が3%未満である化合物を含有する組成物を、熱測定装置の加熱炉に設置し、熱測定装置の加熱炉内温度を100℃より高い設定温度に加熱して分解反応をさせる
(工程3)加熱炉から試料を取り出し、分解物量を定量する
A method for measuring a hydrolysis reaction at a temperature higher than 100 ° C., comprising the following steps.
(Step 1) Gas through which water having a water temperature from room temperature to 35 ° C. has been passed is introduced into the reaction furnace of the heat measuring device (Step 2) Composition when decomposed for 24 hours at 80 ° C. and 90% RH A composition containing a compound whose decomposition product is less than 3% is placed in a heating furnace of a heat measuring device, and the temperature in the heating furnace of the heat measuring device is heated to a set temperature higher than 100 ° C. Perform decomposition reaction (Step 3) Remove the sample from the furnace and quantify the amount of decomposition product
工程1におけるガスが窒素ガスである、請求項1に記載の方法 The method of claim 1, wherein the gas in step 1 is nitrogen gas. 工程1における水温が25℃から35℃である、請求項1または2に記載の方法 The method according to claim 1 or 2, wherein the water temperature in step 1 is 25 ° C to 35 ° C. 工程2における組成物が、原薬と添加剤のみからなる組成物である、請求項1から3の何れか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the composition in step 2 is a composition consisting only of an active ingredient and an additive. 原薬と添加剤の重量比が、1:1から1:50である、請求項4に記載の方法。 5. The method of claim 4, wherein the weight ratio of drug substance to additive is from 1: 1 to 1:50. 化合物の残存率を予測する方法であって、以下の工程からなる方法。
(工程1)室温から35℃の水温の水を通過させたガスを、熱測定装置の反応炉に導入する
(工程2)80℃、90%RHの条件で24時間分解させた時の分解物の量が3%未満である化合物を含有する組成物を、熱分析装置の加熱炉に設置し、熱分析装置の加熱炉内温度を100℃より高い設定温度に加熱して分解反応をさせる
(工程3)加熱炉から試料を取り出し、分解物量を定量することにより残存率を計算する
(工程4)異なる加熱炉内温度で、工程2および工程3を3回以上繰り返す。
(工程5)得られた複数の残存率を用いて反応速度式および/または反応速度定数を算出する
(工程6)アレニウスプロットにより回帰直線および/または回帰直線式を得て、残存率を予測する。
A method for predicting the residual ratio of a compound, comprising the following steps.
(Step 1) Gas through which water having a temperature of 35 ° C. through room temperature is introduced into the reactor of the heat measuring device (Step 2) Decomposed product when decomposed for 24 hours at 80 ° C. and 90% RH A composition containing a compound with an amount of less than 3% is placed in a heating furnace of a thermal analyzer, and the temperature in the heating furnace of the thermal analyzer is heated to a set temperature higher than 100 ° C. to cause a decomposition reaction ( Step 3) A sample is taken out from the heating furnace, and the residual rate is calculated by quantifying the amount of decomposition products (Step 4). Steps 2 and 3 are repeated three or more times at different heating furnace temperatures.
(Step 5) A reaction rate equation and / or reaction rate constant is calculated using the obtained plurality of remaining rates. (Step 6) A regression line and / or regression line equation is obtained from the Arrhenius plot, and the remaining rate is predicted. .
工程1におけるガスが窒素ガスである、請求項6に記載の方法 The method of claim 6, wherein the gas in step 1 is nitrogen gas. 工程1における水温が25℃から35℃である、請求項6または7に記載の方法 The method according to claim 6 or 7, wherein the water temperature in step 1 is 25 ° C to 35 ° C. 工程6において予測する残存率が、加速条件下または長期保存条件下における残存率である、請求項6から8の何れか一項に記載の方法。 The method according to any one of claims 6 to 8, wherein the survival rate predicted in step 6 is a survival rate under accelerated conditions or long-term storage conditions. 工程2における組成物が、原薬と添加剤のみからなる組成物である、請求項6から9の何れか一項に記載の方法。 The method according to any one of claims 6 to 9, wherein the composition in Step 2 is a composition consisting only of an active ingredient and an additive. 原薬と添加剤の重量比が、1:1から1:50である、請求項10に記載の方法。 11. The method of claim 10, wherein the weight ratio of drug substance to additive is 1: 1 to 1:50.
JP2010041209A 2010-02-26 2010-02-26 Method for quickly predicting hydrolysis Pending JP2011174904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010041209A JP2011174904A (en) 2010-02-26 2010-02-26 Method for quickly predicting hydrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010041209A JP2011174904A (en) 2010-02-26 2010-02-26 Method for quickly predicting hydrolysis

Publications (1)

Publication Number Publication Date
JP2011174904A true JP2011174904A (en) 2011-09-08

Family

ID=44687872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041209A Pending JP2011174904A (en) 2010-02-26 2010-02-26 Method for quickly predicting hydrolysis

Country Status (1)

Country Link
JP (1) JP2011174904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189643A (en) * 2017-04-28 2018-11-29 大塚化学株式会社 Method for estimating decomposition rate
CN112504908A (en) * 2020-12-26 2021-03-16 四川普锐特药业有限公司 Method for detecting content of microcrystalline cellulose in mometasone furoate nasal spray

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190933A (en) * 1989-12-20 1991-08-20 Shin Etsu Chem Co Ltd Production of organic silazane polymer and ceramics using the same polymer
JPH09205012A (en) * 1996-01-24 1997-08-05 Kao Corp Method for manufacturing metal magnetic powder
JPH10208997A (en) * 1997-01-16 1998-08-07 Fujitsu Ltd Method and apparatus forming pattern of resist film
JP2000074809A (en) * 1998-06-15 2000-03-14 Sumitomo Chem Co Ltd Prediction method for survival rate of chemical substance
JP2007051181A (en) * 2005-08-16 2007-03-01 Jfe R & D Corp Method for recovering sensible heat of coke oven gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190933A (en) * 1989-12-20 1991-08-20 Shin Etsu Chem Co Ltd Production of organic silazane polymer and ceramics using the same polymer
JPH09205012A (en) * 1996-01-24 1997-08-05 Kao Corp Method for manufacturing metal magnetic powder
JPH10208997A (en) * 1997-01-16 1998-08-07 Fujitsu Ltd Method and apparatus forming pattern of resist film
JP2000074809A (en) * 1998-06-15 2000-03-14 Sumitomo Chem Co Ltd Prediction method for survival rate of chemical substance
JP2007051181A (en) * 2005-08-16 2007-03-01 Jfe R & D Corp Method for recovering sensible heat of coke oven gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189643A (en) * 2017-04-28 2018-11-29 大塚化学株式会社 Method for estimating decomposition rate
CN112504908A (en) * 2020-12-26 2021-03-16 四川普锐特药业有限公司 Method for detecting content of microcrystalline cellulose in mometasone furoate nasal spray

Similar Documents

Publication Publication Date Title
Kumełan et al. Solubility of CO2 in the ionic liquid [hmim][Tf2N]
JP6153660B2 (en) Fully automatic dynamic moisture analysis climate chamber for tobacco leaves
Verevkin et al. Express thermo-gravimetric method for the vaporization enthalpies appraisal for very low volatile molecular and ionic compounds
Howard-Reed et al. Diffusion-controlled reference material for volatile organic compound emissions testing: Pilot inter-laboratory study
Heym et al. Determination of vapor pressure and thermal decomposition using thermogravimetrical analysis
Barkan et al. Calibration of δ17O and 17Oexcess values of three international standards: IAEA‐603, NBS19 and NBS18
De Rooij et al. Porous iron pellets for AMS 14C analysis of small samples down to ultra-microscale size (10–25 μgC)
Scrivens et al. Strategies for improving the reliability of accelerated predictive stability (APS) studies
JP2011174904A (en) Method for quickly predicting hydrolysis
Wylie et al. Molecular interaction of water vapor and air
Guo et al. A static analytical apparatus for vapour pressures and (vapour+ liquid) phase equilibrium measurements with an internal stirrer and view windows
Brewer et al. Gaseous reference standards of formaldehyde from trioxane
Haloua et al. Traceable measurement and uncertainty analysis of the gross calorific value of methane determined by isoperibolic calorimetry
Sairanen et al. Validation of a calibration set-up for radiosondes to fulfil GRUAN requirements
Domańska et al. Thermodynamics of binary mixtures of N-methyl-2-pyrrolidinone and ketone. Experimental results and modelling of the (solid+ liquid) equilibrium and the (vapour+ liquid) equilibrium. The modified UNIFAC (Do) model characterization
Nagamachi et al. Measurement and correlation of excess molar enthalpy HmE for (1, 2-propanediol, or 1, 3-propanediol, or 1, 4-butanediol+ water) at the temperatures (298.15, 323.15, and 343.15) K
Lu et al. Measurement and prediction of densities, viscosities, and surface tensions for aqueous solutions of potassium citrate
Letyanina et al. Excess molar enthalpies for binary mixtures of n-propanol, acetic acid, and n-propyl acetate at 313.15 K and atmospheric pressure
Blanco The correctness of Cp measurements by DSC, actions to do and not to do
Malardier-Jugroot et al. Separable cooperative and localized translational motions of water confined by a chemically heterogeneous environment
Jin et al. Solubility of o-tolidine in pure and modified supercritical carbon dioxide
JP3322242B2 (en) How to predict the survival rate of chemical substances
Strunk et al. Microkinetic modeling of CO TPD spectra using coverage dependent microcalorimetric heats of adsorption
Pimenova et al. Thermodynamic properties of 1, 3, 3-trimethylcyclopropene
Krüger et al. Towards a better comparability during GMP assessment–Identifying the main parameters that influence the loss of volatile organic compounds from silicone elastomers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140826