JP2011174175A - Method and apparatus for removing coating layer - Google Patents

Method and apparatus for removing coating layer Download PDF

Info

Publication number
JP2011174175A
JP2011174175A JP2011014274A JP2011014274A JP2011174175A JP 2011174175 A JP2011174175 A JP 2011174175A JP 2011014274 A JP2011014274 A JP 2011014274A JP 2011014274 A JP2011014274 A JP 2011014274A JP 2011174175 A JP2011174175 A JP 2011174175A
Authority
JP
Japan
Prior art keywords
coating layer
heating
copper member
copper
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011014274A
Other languages
Japanese (ja)
Inventor
Takeshi Hirayama
毅 平山
Shinichi Taguchi
信一 田口
Akifumi Nakajima
章文 中嶋
Toshiro Abe
俊郎 阿部
Hajime Kanazawa
肇 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2011014274A priority Critical patent/JP2011174175A/en
Publication of JP2011174175A publication Critical patent/JP2011174175A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method and an apparatus for removing a coating layer in which the removal rate of the coating layer can be improved irrespective of the shape of a copper member on which the coating layer is formed or the quality of a resin material. <P>SOLUTION: A heating furnace 28 provided with a heater 30 is provided in a heating device 14, and a coating member 12 charged from a feeder 20 is conveyed to the heating furnace 28 by a conveyance member 24. The coating member 12 has a chip shape, and has a copper member and an enamel coating layer formed on the surface of the copper member. Nitrogen gas or superheated steam is allowed to flow into the heating furnace 28 from a gas flowing part 26 to heat the copper member of the coating member 12 to about 900°C to carbonize the enamel coating layer. After the heating, the coating member 12 is charged into cooling water 17 in a cooling device 16 from an outlet port 44A to rapidly cool the coating member 12. Subsequently, the coating member 12 is stirred in the cooling water in a peeling device to allow the carbonized enamel coating layers to collide with each other to thereby peel the enamel coating layer from the surface of the copper member. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、表面に被覆層が形成された銅部材から被覆層を除去する被覆層除去方法及び被覆層除去装置に関する。   The present invention relates to a coating layer removing method and a coating layer removing apparatus for removing a coating layer from a copper member having a coating layer formed on the surface thereof.

従来、被覆導線から被覆部分を除去する方法が提案されている。   Conventionally, a method for removing a coated portion from a coated conductor has been proposed.

下記特許文献1には、合成樹脂被覆を金属導線の表面に接着した被覆導線の一部を100℃〜400℃に加熱し、被覆導線を直ちに寒剤に投入して、脆化した被覆部分を除去する方法が開示されている。   In Patent Document 1 below, a part of a coated conductor in which a synthetic resin coating is bonded to the surface of a metal conductor is heated to 100 ° C. to 400 ° C., and the coated conductor is immediately put into a cryogen to remove an embrittled coating portion. A method is disclosed.

下記特許文献2には、金属系の基線に有機化合物系の被覆層が積層されてなる線材を不活性ガス雰囲気下で加熱して被覆層を蒸発させ、被覆層が蒸発した基線を不活性ガス雰囲気下で冷却することにより、基線の表面に酸化皮膜を形成することなく被覆層を除去する方法が開示されている。   In Patent Document 2 below, a wire obtained by laminating an organic compound-based coating layer on a metal-based baseline is heated in an inert gas atmosphere to evaporate the coating layer, and the baseline in which the coating layer has evaporated is defined as an inert gas. A method of removing a coating layer without forming an oxide film on the surface of the base line by cooling in an atmosphere is disclosed.

下記特許文献3には、あらかじめ粗切断された原料となる油付き電線を含む廃電線をロータリーキルンにいれて過熱蒸気を用いて加熱することにより、金属以外の部分を炭化させた後、その廃電線を破砕して炭化物を主体とする粉体とそれ以外の金属類からなる粒状物とにして分離する方法が開示されている。   In Patent Document 3 below, a waste wire including an oil-filled wire, which is a raw material roughly cut in advance, is placed in a rotary kiln and heated using superheated steam to carbonize a portion other than the metal, and then the waste wire. Has been disclosed to separate the powder into a powder mainly composed of carbide and a granular material made of other metals.

特開昭57−20110号公報JP-A-57-20110 特開2001−275222号公報JP 2001-275222 A 特開2009−249665号公報JP 2009-249665 A

しかしながら、上記特許文献1では、線材からなる被覆導線を対象としており、被覆導線の脆化した被覆部分を機械的に引っ張るか又は擦るかして除去する。この方法をチップ形状又はナゲット形状の被覆導体に適用する場合、被覆部分を引っ張り又は擦ることが困難であり、改善の余地がある。また、100℃〜400℃の加熱温度では、本願発明者らが検討しているような被覆部分の炭化は困難であり、被覆部分の除去率が低下する可能性がある。   However, in the above-mentioned Patent Document 1, the covered conductor made of a wire is targeted, and the embrittled covered portion of the covered conductor is removed by mechanically pulling or rubbing. When this method is applied to a chip-shaped or nugget-shaped coated conductor, it is difficult to pull or rub the coated portion, and there is room for improvement. Further, at a heating temperature of 100 ° C. to 400 ° C., carbonization of the coating portion as examined by the present inventors is difficult, and the removal rate of the coating portion may be reduced.

また、上記特許文献2では、有機化合物系の被覆層が積層されてなる線材を不活性ガス雰囲気下で加熱して被覆層を蒸発させるため、加熱温度や被覆層の種類が限定されると共に、装置コストが上昇するという問題がある。また、加熱時の被覆層の蒸発が十分でないと、被覆層の除去率が低下する可能性がある。   Further, in Patent Document 2, the wire formed by laminating an organic compound-based coating layer is heated in an inert gas atmosphere to evaporate the coating layer, so that the heating temperature and the type of the coating layer are limited, There is a problem that the device cost increases. Further, if the coating layer is not sufficiently evaporated during heating, the removal rate of the coating layer may be reduced.

また、上記特許文献3に示される被覆層除去の方法および温度条件(350℃〜800℃)では、金属の種類によっては被覆導体の金属表面と金属表面に付着した炭化物の界面の破壊が完全ではなく、回収できる金属の品質に問題があった。また、炭化させた廃電線を破砕し、金属の粒状物と粉末の炭化物とを磁気選別するという工程上、装置の大規模化や、装置の可動および維持にコストがかかるという問題もあった。   In addition, in the method and temperature condition (350 ° C. to 800 ° C.) for removing the coating layer disclosed in Patent Document 3, the metal surface of the coated conductor and the carbide interface adhered to the metal surface are not completely destroyed depending on the type of metal. And there was a problem with the quality of the metal that could be recovered. In addition, there is a problem in that the scale of the apparatus and the movement and maintenance of the apparatus are costly in the process of crushing the carbonized waste wire and magnetically sorting the metal particulates and the powdered carbide.

本発明は、上記事実を考慮し、その課題を解決することを目的としている。すなわち、比較的安価な方法によって、被覆層が形成された銅部材の形状だけでなく、樹脂材の材質にも無関係に被覆層の除去率を向上できる被覆層除去方法及び被覆層除去装置を提供することが本発明の目的である。   The present invention has been made in view of the above-mentioned facts and aims to solve the problems. That is, by a relatively inexpensive method, a coating layer removal method and a coating layer removal apparatus that can improve the removal rate of the coating layer regardless of the shape of the copper member on which the coating layer is formed and the material of the resin material are provided. It is an object of the present invention.

前述した被覆層の除去率を向上させるという課題を解決するために、発明者らは、被覆導体の金属表面と金属表面に付着した炭化物の界面の破壊を促進させることに着目した。そして試行を重ねることで、被覆導体を急加熱・急冷すること、および従来の方法で実施されている温度よりも高温で加熱保持することによって炭化した被覆層の除去率を向上できることを見出した。   In order to solve the above-described problem of improving the removal rate of the coating layer, the inventors focused on promoting the destruction of the interface between the metal surface of the coated conductor and the carbide adhering to the metal surface. And by repeating trials, it has been found that the removal rate of the carbonized coating layer can be improved by rapid heating / cooling of the coated conductor and heating and holding at a temperature higher than that performed by the conventional method.

請求項1の発明に係る被覆層除去方法は、銅部材の表面に被覆層が形成された被覆部材を、不活性ガス雰囲気下または過熱蒸気下で、前記被覆層を炭化する温度且つ前記銅部材が溶融しない温度まで加熱する加熱工程と、前記被覆部材を冷却する冷却工程と、前記銅部材の表面から前記被覆層を剥離する剥離工程と、を有している。   According to a first aspect of the present invention, there is provided a method for removing a coating layer, wherein the coating member having the coating layer formed on the surface of the copper member is carbonized at a temperature at which the coating layer is carbonized in an inert gas atmosphere or superheated steam. A heating step for heating to a temperature at which the coating member does not melt, a cooling step for cooling the covering member, and a peeling step for peeling the covering layer from the surface of the copper member.

上記の発明によれば、加熱工程により被覆部材を不活性ガス雰囲気下または過熱蒸気下で、被覆層を炭化する温度且つ前記銅部材が溶融しない温度まで加熱する。被覆部材の加熱により、被覆層内部の銅部材表面を活性化させると共に、被覆層を炭化させることで、銅部材と被覆層との界面(酸化膜など)が破壊されやすくなる。その後、冷却工程で被覆部材を冷却し、剥離工程で銅部材の表面から被覆層を剥離することで、銅部材から被覆層が高い除去率で除去される。   According to said invention, a coating member is heated to the temperature which carbonizes a coating layer, and the said copper member does not fuse | melt in an inert gas atmosphere or superheated steam by a heating process. By heating the coating member, the surface of the copper member inside the coating layer is activated and the coating layer is carbonized, whereby the interface (such as an oxide film) between the copper member and the coating layer is easily destroyed. Then, a coating member is cooled at a cooling process, and a coating layer is removed from a copper member with a high removal rate by peeling a coating layer from the surface of a copper member at a peeling process.

請求項2の発明に係る被覆層除去方法は、請求項1に記載の発明において、前記加熱工程で前記銅部材の温度が700℃〜1000℃になるまで加熱するものとする。   In the invention according to claim 1, the coating layer removing method according to claim 2 is heated until the temperature of the copper member reaches 700 ° C. to 1000 ° C. in the heating step.

上記の発明によれば、加熱工程で銅部材の温度が銅の融点(1083℃)よりも低い700℃〜1000℃になるまで加熱することにより、被覆層内部の銅部材表面を活性化させると共に、被覆層を炭化させる。これにより、銅部材と被覆層との界面が破壊されやすくなり、被覆層を高い除去率で除去することが可能となる。   According to said invention, while heating the temperature of a copper member to 700 to 1000 degreeC lower than melting | fusing point (1083 degreeC) of copper by a heating process, while activating the copper member surface inside a coating layer, The coating layer is carbonized. Thereby, the interface between the copper member and the coating layer is easily broken, and the coating layer can be removed with a high removal rate.

請求項3の発明に係る被覆層除去方法は、請求項1又は請求項2に記載の発明において、前記加熱工程で前記銅部材の温度が900℃以上になるまで加熱し、前記被覆層の炭化が完了した後、さらに前記銅部材の温度を900℃以上で少なくとも3分間保持するものとする。   According to a third aspect of the present invention, there is provided a coating layer removing method according to the first or second aspect of the invention, wherein the heating step is performed until the temperature of the copper member reaches 900 ° C. or more, and the carbonization of the coating layer Is completed, the temperature of the copper member is further maintained at 900 ° C. or higher for at least 3 minutes.

上記の発明によれば、加熱工程で銅部材の温度が900℃以上になるまで加熱し、被覆層の炭化が完了した後、さらに銅部材の温度を900℃以上で少なくとも3分間保持することにより、炭化した被覆層の内部の銅部材表面が活性化し、炭化した被覆層と銅部材との界面とをより確実に破壊させることができる。   According to said invention, by heating until the temperature of a copper member becomes 900 degreeC or more by a heating process, and carbonization of a coating layer is completed, the temperature of a copper member is further hold | maintained at 900 degreeC or more for at least 3 minutes. The surface of the copper member inside the carbonized coating layer is activated, and the interface between the carbonized coating layer and the copper member can be more reliably destroyed.

請求項4の発明に係る被覆層除去方法は、請求項1から請求項3までのいずれか1項に記載の発明において、前記加熱工程で、前記銅部材が加熱開始時の温度から、前記被覆層を炭化する温度且つ前記銅部材が溶融しない温度に到達するまでの時間を5分以内とするものとする。   According to a fourth aspect of the present invention, there is provided a coating layer removing method according to any one of the first to third aspects, wherein, in the heating step, the copper member is heated from a temperature at the start of heating. The time until the temperature at which the layer is carbonized and the temperature at which the copper member does not melt is reached within 5 minutes.

上記の発明によれば、加熱を始めて銅部材が、被覆層を炭化する温度且つ銅部材が溶融しない温度に到達するまでの時間を5分以内とすることにより、被覆層の内部に含まれる樹脂成分が銅と反応する前に気化し、銅部材と被覆層との界面がより一層破壊されやすくなる。このため、被覆層をより高い除去率で除去することが可能となる。   According to said invention, the resin contained in the inside of a coating layer is made into less than 5 minutes until it reaches the temperature which a copper member starts heating and carbonizes a coating layer, and the temperature which a copper member does not fuse | melt. The component is vaporized before reacting with copper, and the interface between the copper member and the coating layer is more easily broken. For this reason, it becomes possible to remove a coating layer with a higher removal rate.

請求項5の発明に係る被覆層除去方法は、請求項1から請求項4までのいずれか1項に記載の発明において、前記冷却工程で前記被覆部材を冷却液で冷却するものとする。   According to a fifth aspect of the present invention, in the method for removing a coating layer according to any one of the first to fourth aspects, the coating member is cooled with a cooling liquid in the cooling step.

上記の発明によれば、被覆部材を冷却液で冷却することにより、被覆部材を急冷することができる。これにより、銅部材と被覆層の熱膨張係数の差より銅部材から被覆層が剥離されやすくなり、被覆層を高い除去率で除去することが可能となる。   According to said invention, a coating | coated member can be rapidly cooled by cooling a coating | coated member with a cooling fluid. Thereby, a coating layer becomes easy to peel from a copper member from the difference of the thermal expansion coefficient of a copper member and a coating layer, and it becomes possible to remove a coating layer with a high removal rate.

請求項6の発明に係る被覆層除去方法は、請求項1から請求項5までのいずれか1項に記載の発明において、前記剥離工程で前記被覆部材を液体中で攪拌し、前記被覆部材の前記被覆層同士を衝突させて前記銅部材の表面から前記被覆層を剥離するものとする。   The method for removing a coating layer according to the invention of claim 6 is the invention according to any one of claims 1 to 5, wherein the coating member is stirred in a liquid in the peeling step, and the coating member is removed. The coating layers are made to collide with each other to peel the coating layers from the surface of the copper member.

上記の発明によれば、剥離工程で被覆部材を液体中で攪拌し、被覆部材の被覆層同士を衝突させることにより、銅部材の表面にアンカー効果や分子間力で付着している被覆層が剥離されやすくなる。このため、被覆層をより一層高い除去率で除去することが可能となる。   According to the above invention, the coating member adhering to the surface of the copper member by the anchor effect or intermolecular force is obtained by stirring the coating member in the liquid in the peeling step and causing the coating layers of the coating member to collide with each other. It becomes easy to peel. For this reason, it becomes possible to remove a coating layer with a still higher removal rate.

請求項7の発明に係る被覆層除去方法は、請求項1から請求項6までのいずれか1項に記載の発明において、前記加熱工程で用いられる加熱装置の内面に突起部を取付け、前記銅部材又は前記被覆部材が接触する面積を広げることにより前記銅部材の温度上昇を促進させるものとする。   According to a seventh aspect of the present invention, there is provided a coating layer removing method according to any one of the first to sixth aspects, wherein a protrusion is attached to an inner surface of a heating device used in the heating step, and the copper is removed. It is assumed that the temperature rise of the copper member is promoted by expanding the area that the member or the covering member contacts.

上記の発明によれば、銅部材又は被覆部材が突起部に接触する面積を広げることにより、銅部材の温度上昇を促進させ、加熱装置内で銅部材全体又は被覆部材をより早く高温状態に到達させることができる。   According to the above invention, by increasing the area where the copper member or the covering member contacts the protrusion, the temperature rise of the copper member is promoted, and the entire copper member or the covering member reaches the high temperature state earlier in the heating device. Can be made.

請求項8の発明に係る被覆層除去方法は、請求項1から請求項7までのいずれか1項に記載の発明において、前記加熱工程で用いられる加熱装置内の前記突起部の先端に金属製構造物を設け、加熱装置内の熱量を大きくするものである。   According to an eighth aspect of the present invention, there is provided a method for removing a coating layer according to any one of the first to seventh aspects, wherein a metal is formed at a tip of the protrusion in the heating device used in the heating step. A structure is provided to increase the amount of heat in the heating device.

上記の発明によれば、突起部の先端に加熱装置内の熱量を大きくするための金属製構造物を設けることで、加熱装置内の温度を保持することができ、加熱装置内で銅部材全体又は被覆部材をより早く高温状態に到達させることができる。   According to said invention, the temperature in a heating apparatus can be hold | maintained by providing the metal structure for enlarging the calorie | heat amount in a heating apparatus in the front-end | tip of a projection part, and the whole copper member in a heating apparatus Or a covering member can be made to reach a high temperature state earlier.

請求項9の発明に係る被覆層除去方法は、請求項1から請求項8までのいずれか1項に記載の発明において、前記加熱工程で用いられる加熱装置内に予め加熱した金属体を配置して、前記銅部材の温度上昇を促進させるものである。   According to a ninth aspect of the present invention, there is provided the coating layer removing method according to any one of the first to eighth aspects, wherein a preheated metal body is disposed in a heating device used in the heating step. Thus, the temperature rise of the copper member is promoted.

上記の発明によれば、加熱装置内に金属体を予め加熱して配置しておくことで、銅部材全体又は被覆部材の温度上昇を促進させることができ、加熱装置内で銅部材全体又は被覆部材をより早く高温状態に到達させることができる。   According to the above invention, by preheating and arranging the metal body in the heating device, the temperature rise of the entire copper member or the covering member can be promoted, and the entire copper member or the covering is covered in the heating device. The member can reach the high temperature state sooner.

請求項10の発明に係る被覆層除去方法は、請求項1から請求項9までのいずれか1項に記載の発明において、前記加熱工程で用いられる加熱装置内に、前記加熱装置内へ投入済で所定の温度まで加熱されている一部の前記銅部材を前記加熱装置内に滞留させるためのストッパーを設けたものである。   A covering layer removing method according to a tenth aspect of the present invention is the method according to any one of the first to ninth aspects, wherein the heating device used in the heating step is put into the heating device. A stopper for retaining a part of the copper member heated to a predetermined temperature in the heating device is provided.

上記の発明によれば、加熱装置内にストッパーを設けることで、加熱装置内へ投入済で所定の温度まで加熱されている一部の銅部材を加熱装置内に滞留させることができる。このため、加熱装置内へ新たに投入された被覆部材の温度上昇を促進させ、加熱装置内で銅部材全体又は被覆部材をより早く高温状態に到達させることができる。   According to said invention, by providing a stopper in a heating apparatus, the one part copper member already thrown into the heating apparatus and heated to predetermined temperature can be made to stay in a heating apparatus. For this reason, the temperature rise of the covering member newly thrown into the heating device can be promoted, and the entire copper member or the covering member can reach the high temperature state earlier in the heating device.

請求項11の発明に係る被覆層除去装置は、請求項1から請求項6までのいずれか1項に記載の被覆層除去方法が適用される被覆層除去装置であって、被覆部材の被覆層を炭化する温度且つ銅が溶融しない温度まで加熱する加熱装置と、前記加熱装置内に不活性ガスまたは過熱蒸気を流入させるガス流入装置と、前記加熱装置内の気体を排気する排気部と、前記加熱装置から排出された前記被覆部材が投入され、前記被覆部材を冷却液で冷却する冷却装置と、前記冷却装置から排出された前記被覆部材が投入され、前記被覆部材を液体中で攪拌し、前記被覆層同士を衝突させて前記被覆層を剥離する剥離装置と、を有する被覆層除去装置である。   A covering layer removing apparatus according to an eleventh aspect of the present invention is a covering layer removing apparatus to which the covering layer removing method according to any one of claims 1 to 6 is applied, wherein the covering layer of the covering member is applied. A heating device for heating to a temperature at which carbon is heated and a temperature at which copper does not melt, a gas inflow device for allowing an inert gas or superheated steam to flow into the heating device, an exhaust unit for exhausting the gas in the heating device, The covering member discharged from the heating device is charged, a cooling device for cooling the covering member with a cooling liquid, and the covering member discharged from the cooling device is charged, and the covering member is stirred in the liquid, And a peeling device that peels the coating layer by causing the coating layers to collide with each other.

上記の発明によれば、加熱装置内にガス流入装置により不活性ガスまたは過熱蒸気を流入し、不活性ガス雰囲気下または過熱蒸気下で被覆部材を、被覆層を炭化する温度且つ銅が溶融しない温度まで加熱する。加熱により被覆層の内部の銅部材表面を活性化させると共に、被覆層を炭化させることで、銅部材と被覆層との界面が破壊されやすくなる。加熱装置内で被覆部材の加熱時に発生した気体は排気部から外部に排気される。加熱後に加熱装置から排出された被覆部材は冷却装置に投入され、冷却液で急冷される。さらに、被覆部材は剥離装置に投入され、被覆部材を液体中で攪拌して被覆層同士を衝突させることにより、銅部材の表面から被覆層を剥離する。これによって、銅部材から被覆層が高い除去率で除去される。   According to the above invention, an inert gas or superheated steam flows into the heating device by the gas inflow device, the temperature of carbonizing the coating member in the inert gas atmosphere or under the superheated steam, and copper does not melt. Heat to temperature. While heating the copper member surface inside a coating layer by heating and carbonizing a coating layer, the interface of a copper member and a coating layer becomes easy to be destroyed. The gas generated when the covering member is heated in the heating device is exhausted to the outside from the exhaust part. The covering member discharged from the heating device after heating is put into a cooling device and rapidly cooled with a coolant. Further, the covering member is put into a peeling device, and the covering layer is peeled from the surface of the copper member by stirring the covering member in the liquid and causing the covering layers to collide with each other. Thereby, the coating layer is removed from the copper member with a high removal rate.

請求項12の発明に係る被覆層除去装置は、請求項11に記載の発明において、前記加熱装置の内面に、突起部が設けられている被覆層除去装置である。   A coating layer removing apparatus according to a twelfth aspect of the invention is the coating layer removing apparatus according to the eleventh aspect of the invention, wherein a projection is provided on the inner surface of the heating device.

上記の発明によれば、加熱装置の内面の長手方向に突起部が取付けられており、銅部材又は被覆部材が接触する面積を広げることにより、銅部材の温度上昇を促進させ、加熱装置内で銅部材全体又は被覆部材をより早く高温状態に到達させることができる。   According to said invention, the protrusion part is attached to the longitudinal direction of the inner surface of a heating apparatus, and the temperature rise of a copper member is accelerated | stimulated by expanding the area which a copper member or a covering member contacts, The entire copper member or the covering member can reach the high temperature state sooner.

請求項13の発明に係る被覆層除去装置は、請求項12に記載の発明において、前記突起部の先端に金属製構造物が設けられている被覆層除去装置である。   A covering layer removing apparatus according to a thirteenth aspect of the present invention is the covering layer removing apparatus according to the twelfth aspect of the present invention, wherein a metal structure is provided at the tip of the protrusion.

上記の発明によれば、突起部の先端に加熱炉内の熱量を大きくするための金属製構造物を設けることで、加熱装置内の温度を保持することができ、加熱装置内で銅部材全体又は被覆部材をより早く高温状態に到達させることができる。   According to said invention, the temperature in a heating apparatus can be hold | maintained by providing the metal structure for enlarging the calorie | heat amount in a heating furnace in the front-end | tip of a projection part, and the whole copper member in a heating apparatus Or a covering member can be made to reach a high temperature state earlier.

請求項14の発明に係る被覆層除去装置は、請求項11から請求項13までのいずれか1項に記載の発明において、前記加熱装置内に、予め加熱された金属体が配置されている被覆層除去装置である。   A coating layer removing apparatus according to a fourteenth aspect of the present invention is the coating according to any one of the eleventh to thirteenth aspects, wherein a preheated metal body is disposed in the heating apparatus. It is a layer removal apparatus.

上記の発明によれば、加熱装置内に金属体を予め加熱して配置しておくことで、銅部材又は被覆部材の温度上昇を促進させることができる。   According to said invention, the temperature rise of a copper member or a coating | coated member can be promoted by heating and arrange | positioning a metal body beforehand in a heating apparatus.

請求項15の発明に係る被覆層除去装置は、請求項11から請求項14までのいずれか1項に記載の発明において、前記加熱装置内には、前記加熱装置内へ投入済で所定の温度まで加熱されている一部の前記銅部材を前記加熱装置内の上流側に滞留させるためのストッパーが設けられているものとする。   The coating layer removing apparatus according to a fifteenth aspect of the invention is the invention according to any one of the eleventh to fourteenth aspects, wherein the heating device is already put into the heating device and has a predetermined temperature. It is assumed that a stopper is provided for retaining a part of the copper member heated up to the upstream side in the heating device.

上記の発明によれば、加熱装置内にストッパーを設けることで、加熱装置内へ投入済で所定の温度まで加熱されている一部の銅部材を加熱装置内の上流側に滞留させることができる。このため、加熱装置内へ新たに投入された被覆部材の温度上昇を促進させ、加熱装置内で銅部材全体又は被覆部材をより早く高温状態に到達させることができる。   According to the above invention, by providing the stopper in the heating device, a part of the copper member that has been charged into the heating device and heated to a predetermined temperature can be retained upstream in the heating device. . For this reason, the temperature rise of the covering member newly thrown into the heating device can be promoted, and the entire copper member or the covering member can reach the high temperature state earlier in the heating device.

本発明に係る被覆層除去方法又は被覆層除去装置によれば、被覆層が形成された銅部材の形状及び樹脂材の材質にかかわらず、比較的安価な方法によって、銅部材の表面から被覆層を高い除去率で除去することができる。   According to the coating layer removing method or the coating layer removing apparatus according to the present invention, the coating layer is formed from the surface of the copper member by a relatively inexpensive method regardless of the shape of the copper member on which the coating layer is formed and the material of the resin material. Can be removed at a high removal rate.

本発明の第1実施形態である被覆層除去方法が適用される被覆層除去装置の加熱装置及び冷却装置を示す構成図である。It is a block diagram which shows the heating apparatus and cooling device of a coating layer removal apparatus to which the coating layer removal method which is 1st Embodiment of this invention is applied. 本発明の第1実施形態である被覆層除去方法が適用される被覆層除去装置の加熱装置の第1の実施例を示す構成図である。It is a block diagram which shows the 1st Example of the heating apparatus of the coating layer removal apparatus with which the coating layer removal method which is 1st Embodiment of this invention is applied. 本発明の第1実施形態である被覆層除去方法が適用される被覆層除去装置の加熱装置の第2の実施例を示す構成図である。It is a block diagram which shows the 2nd Example of the heating apparatus of the coating layer removal apparatus with which the coating layer removal method which is 1st Embodiment of this invention is applied. 本発明の第1実施形態である被覆層除去方法が適用される被覆層除去装置の加熱装置の第3の実施例を示す構成図である。It is a block diagram which shows the 3rd Example of the heating apparatus of the coating layer removal apparatus with which the coating layer removal method which is 1st Embodiment of this invention is applied. 本発明の第1実施形態である被覆層除去方法が適用される被覆層除去装置の剥離装置を示す構成図である。It is a block diagram which shows the peeling apparatus of the coating layer removal apparatus with which the coating layer removal method which is 1st Embodiment of this invention is applied. 被覆部材の加熱中におけるエナメル被覆層の示差熱−熱重量同時測定(TG−DTA)を行った結果を示すグラフである。It is a graph which shows the result of having performed the differential thermal-thermogravimetric simultaneous measurement (TG-DTA) of the enamel coating layer during the heating of a coating member. 赤外分光法を用いて被覆部材の加熱前のエナメル被覆層を測定した赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum which measured the enamel coating layer before the heating of a coating | coated member using an infrared spectroscopy. 赤外分光法を用いて被覆部材の加熱後のエナメル被覆層を測定した赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum which measured the enamel coating layer after the heating of a coating | coated member using an infrared spectroscopy. 処理前の被覆部材の総量に占めるエナメル被覆層の重量の割合を示すグラフである。It is a graph which shows the ratio of the weight of the enamel coating layer to the total amount of the coating | coated member before a process. 処理後の被覆部材の総量に占めるエナメル被覆層の除去量の割合を示すグラフである。It is a graph which shows the ratio of the removal amount of the enamel coating layer to the total amount of the coating | coated member after a process. ラマン分光法を用いて、加熱により炭化させたエナメル被覆層を測定したスペクトルを示す図である。It is a figure which shows the spectrum which measured the enamel coating layer carbonized by heating using the Raman spectroscopy. 本発明の第2実施形態である被覆層除去方法が適用される被覆層除去装置の加熱装置及び冷却装置を示す構成図である。It is a block diagram which shows the heating apparatus and cooling device of a coating layer removal apparatus to which the coating layer removal method which is 2nd Embodiment of this invention is applied. 本発明の第2実施形態である被覆層除去方法が適用される被覆層除去装置の剥離装置を示す平面図である。It is a top view which shows the peeling apparatus of the coating layer removal apparatus with which the coating layer removal method which is 2nd Embodiment of this invention is applied. 本発明の第2実施形態である被覆層除去方法が適用される被覆層除去装置の剥離装置を示す側面図である。It is a side view which shows the peeling apparatus of the coating layer removal apparatus with which the coating layer removal method which is 2nd Embodiment of this invention is applied. 本発明の第3実施形態である被覆層除去方法が適用される被覆層除去装置の加熱装置及び冷却装置を示す構成図である。It is a block diagram which shows the heating apparatus and cooling device of a coating layer removal apparatus to which the coating layer removal method which is 3rd Embodiment of this invention is applied. 処理後の銅部材を溶融させる溶融炉を示す構成図である。It is a block diagram which shows the melting furnace which melts the copper member after a process.

以下、図1−1〜図8を用いて、本発明の第1実施形態である被覆層除去方法が適用される被覆層除去装置について説明する。   Hereinafter, the coating layer removing apparatus to which the coating layer removing method according to the first embodiment of the present invention is applied will be described with reference to FIGS.

図1−1には、本実施形態の被覆層除去装置に用いられる加熱装置及び冷却装置が示されている。また、図1−2には、本実施形態の被覆層除去装置に用いられる加熱装置の第1の実施例が示されている。図1−3には、本実施形態の被覆層除去装置に用いられる加熱装置の第2の実施例が示されている。図1−4には、本実施形態の被覆層除去装置に用いられる加熱装置の第3の実施例が示されている。また、図2には、本実施形態の被覆層除去装置に用いられる剥離装置が示されている。   FIG. 1-1 shows a heating device and a cooling device used in the coating layer removing apparatus of the present embodiment. Moreover, the 1st Example of the heating apparatus used for the coating layer removal apparatus of this embodiment is shown by FIGS. 1-2. 1-3 shows a second example of the heating device used in the coating layer removing apparatus of the present embodiment. 1-4 shows a third example of the heating device used in the coating layer removing apparatus of the present embodiment. Moreover, the peeling apparatus used for the coating layer removal apparatus of this embodiment is shown by FIG.

図1−1に示されるように、被覆層除去装置10は、被覆部材12を不活性ガス雰囲気下で加熱する加熱装置14と、加熱後に被覆部材12を急冷する冷却装置16と、を備えている。被覆部材12は、銅部材の表面にエナメル被覆層が形成されたものであり、エナメル線を予め粉砕機等で細かく切断することにより複数のチップ形状(又はナゲット形状)とされている。   As shown in FIG. 1-1, the coating layer removing apparatus 10 includes a heating device 14 that heats the coating member 12 in an inert gas atmosphere, and a cooling device 16 that rapidly cools the coating member 12 after heating. Yes. The covering member 12 has an enamel coating layer formed on the surface of a copper member, and is formed into a plurality of chip shapes (or nugget shapes) by finely cutting the enamel wire with a pulverizer or the like in advance.

加熱装置14は、被覆部材12が投入されるフィーダ20と、フィーダ20の下部に連結された筒状部22内で被覆部材12を回転により軸方向に搬送する搬送部材24と、筒状部22の搬送方向下流側に連結されてキャリアガスが流入されるガス流入部26と、ガス流入部26の搬送方向下流側に連結された円筒状の加熱炉28と、を備えている。加熱炉28の周囲には、加熱炉28内を加熱するヒータ30が設けられている。   The heating device 14 includes a feeder 20 into which the covering member 12 is charged, a transport member 24 that transports the covering member 12 in the axial direction by rotation within the tubular portion 22 connected to the lower portion of the feeder 20, and the tubular portion 22. And a cylindrical heating furnace 28 connected to the downstream side of the gas inflow portion 26 in the transport direction. A heater 30 for heating the inside of the heating furnace 28 is provided around the heating furnace 28.

加熱炉28はロータリーキルンに似た構成であり、加熱装置14には加熱炉28を周方向に回転させる回転装置32が配設されている。回転装置32は、加熱炉28の長手方向一端部にギア34を備えており、モータ36に連結されたギア38がギア34に噛合され、モータ36の駆動により加熱炉28が回転する。加熱炉28の長手方向のギア34と反対側の端部にはフランジ部40が設けられ、支持体43に支持されたローラ42にフランジ部40が当接している。加熱炉28はある一定の傾きを持ち、回転数に合わせ被覆部材12を軸方向に搬送させる。   The heating furnace 28 has a configuration similar to a rotary kiln, and the heating device 14 is provided with a rotating device 32 that rotates the heating furnace 28 in the circumferential direction. The rotating device 32 includes a gear 34 at one end in the longitudinal direction of the heating furnace 28, a gear 38 connected to the motor 36 is engaged with the gear 34, and the heating furnace 28 is rotated by driving the motor 36. A flange portion 40 is provided at the end of the heating furnace 28 opposite to the gear 34 in the longitudinal direction, and the flange portion 40 is in contact with the roller 42 supported by the support body 43. The heating furnace 28 has a certain inclination and conveys the covering member 12 in the axial direction in accordance with the rotational speed.

また、加熱装置14には、加熱炉28の搬送方向下流側に排出部44が設けられており、排出部44の下部に形成された取出し口44Aから加熱後の被覆部材12が排出される。取出し口44Aの下方側には、上部が開口した箱状の冷却装置16が配設されており、冷却装置16の内部に冷却水17が溜められている。排出部44の上部には、気体が排気される排気口48が設けられている。   Further, the heating device 14 is provided with a discharge portion 44 on the downstream side in the conveying direction of the heating furnace 28, and the heated covering member 12 is discharged from an extraction port 44 </ b> A formed in the lower portion of the discharge portion 44. A box-shaped cooling device 16 having an upper opening is disposed below the outlet 44 </ b> A, and cooling water 17 is stored inside the cooling device 16. An exhaust port 48 through which gas is exhausted is provided at the upper portion of the discharge unit 44.

本実施形態では、ガス流入部26の上部に形成された流入口26Aから矢印方向にキャリアガスとして窒素ガスを流入している。なお、窒素ガスに代えて希ガスなどの不活性ガスや加熱蒸気を流入してもよい。不活性ガスを流入することで、ガス流入部26から加熱炉28を通って排出部44で排出されるまで被覆部材12を大気に触れることなく不活性ガス雰囲気下で処理する構成となっている。   In the present embodiment, nitrogen gas is introduced as a carrier gas in the direction of the arrow from an inlet 26A formed at the upper part of the gas inflow portion 26. Note that an inert gas such as a rare gas or heated steam may flow in place of the nitrogen gas. By flowing in the inert gas, the coating member 12 is processed in an inert gas atmosphere without being exposed to the atmosphere until it is discharged from the gas inflow portion 26 through the heating furnace 28 and discharged at the discharge portion 44. .

加熱炉28では、ヒータ30によって内部の雰囲気温度を銅の融点(1083℃)よりも低く、且つ900℃より高い温度になるように加熱している。この雰囲気温度は、被覆部材12のエナメル被覆層を炭化する温度且つ銅部材が溶融しない温度である。本実施形態では、900℃以上の加熱炉28内で被覆部材12を約30分以上加熱することにより、銅部材の表面を活性化させると共に、エナメル被覆層を炭化させる。例えば、被覆部材12の銅部材自体の温度を900℃以上になるまで加熱し、エナメル被覆層の化学反応が完了した後(エナメル被覆層が炭化した後)、さらに銅部材の温度を900℃以上で少なくとも3分間保持することにより、銅部材とエナメル被覆層との界面を破壊、すなわち銅部材とエナメル被覆層との界面の密着を分解することができる。   In the heating furnace 28, the heater 30 is heated so that the internal atmospheric temperature is lower than the melting point of copper (1083 ° C.) and higher than 900 ° C. This ambient temperature is a temperature at which the enamel coating layer of the coating member 12 is carbonized and a temperature at which the copper member does not melt. In this embodiment, the surface of the copper member is activated and the enamel coating layer is carbonized by heating the covering member 12 in the heating furnace 28 at 900 ° C. or more for about 30 minutes or more. For example, after the temperature of the copper member itself of the covering member 12 is heated to 900 ° C. or higher and the chemical reaction of the enamel coating layer is completed (after the enamel coating layer is carbonized), the temperature of the copper member is further 900 ° C. or higher. By holding for at least 3 minutes, the interface between the copper member and the enamel coating layer can be broken, that is, the adhesion at the interface between the copper member and the enamel coating layer can be decomposed.

被覆部材12の銅部材の温度は、700℃〜1000℃に加熱することが好ましく、800℃〜1000℃に加熱することがより好ましく、900℃〜1000℃に加熱することが更に好ましい。被覆部材12の銅部材の温度が、700℃以上で銅の融点以下の温度であれば、多種類のエナメル被覆層に対応できる。また、被覆部材12のエナメル被覆層の内部に含まれる樹脂成分が銅と反応する前に気化するように、加熱を始めてから約5分以内に銅部材全体を約900℃まで加熱することが望ましい。   The temperature of the copper member of the covering member 12 is preferably heated to 700 ° C to 1000 ° C, more preferably 800 ° C to 1000 ° C, and still more preferably 900 ° C to 1000 ° C. If the temperature of the copper member of the covering member 12 is 700 ° C. or more and not more than the melting point of copper, it can correspond to various kinds of enamel coating layers. Further, it is desirable that the entire copper member is heated to about 900 ° C. within about 5 minutes from the start of heating so that the resin component contained in the enamel coating layer of the covering member 12 is vaporized before reacting with copper. .

回転装置32で加熱炉28を周方向に回転させることにより、加熱炉28内の被覆部材12にほぼ均一に熱を加える。エナメル線を細かく切断したチップ形状の被覆部材12を用いることにより、加熱炉28への導入が容易となり、また、チップ形状の被覆部材12同士が接触し、熱が伝わりやすくなる。   By rotating the heating furnace 28 in the circumferential direction by the rotating device 32, heat is applied to the covering member 12 in the heating furnace 28 almost uniformly. By using the chip-shaped covering member 12 obtained by finely cutting the enameled wire, introduction into the heating furnace 28 is facilitated, and the chip-shaped covering members 12 come into contact with each other and heat is easily transmitted.

また、被覆部材12を酸素が介在する領域で加熱すると、燃焼が起こり、エナメル被覆層と銅が化学反応(酸化)を起こし、密着するため、不活性ガス雰囲気下または過熱蒸気下でエナメル被覆層を炭化させる。これによって、燃焼反応が起こらず、エナメル被覆層と銅部材の界面が破壊されやすくなる。   Further, when the covering member 12 is heated in a region where oxygen intervenes, combustion occurs, and the enamel coating layer and copper undergo a chemical reaction (oxidation) and adhere to each other, so that the enamel coating layer is in an inert gas atmosphere or under superheated steam. Is carbonized. As a result, the combustion reaction does not occur, and the interface between the enamel coating layer and the copper member is easily broken.

図1−2に示されるように、加熱炉28において、銅部材全体がより早く高温状態に達するように、加熱炉28の内周面の長手方向に沿って突起部202を設け、加熱炉内に銅部材(又は被覆部材12)が接触する面積を広げることにより、銅部材の温度上昇を促進させる構造にするのもよい。この突起部202は、加熱炉28が周方向に回転することにより、銅部材を加熱しながら攪拌を行う機能も有している。これにより、突起部202から落下した銅部材に衝撃を与えることができるため、銅部材表面に付着している炭化したエナメル被覆層の剥離を促す効果もある。この突起部202は、加熱炉内面に別体として取り付けても良いし、加熱炉内面に一体に形成しても良い。また、この突起部202の形状は、加熱炉内面から突出していれば特に限定されず、棒状の突起部であっても良いし、加熱炉28の内周面の長手方向に伸びる板状の突起部であっても良い。すなわち、銅部材(又は被覆部材12)が接触する面積を増やし、銅部材の攪拌を行うことができればその形状を問わない。   As shown in FIG. 1-2, in the heating furnace 28, a protrusion 202 is provided along the longitudinal direction of the inner peripheral surface of the heating furnace 28 so that the entire copper member reaches a high temperature state earlier, and the inside of the heating furnace It is good also as a structure which accelerates | stimulates the temperature rise of a copper member by expanding the area which a copper member (or covering member 12) contacts. The protrusion 202 also has a function of stirring the copper member while the heating furnace 28 rotates in the circumferential direction. Thereby, since the impact can be given to the copper member dropped from the protrusion 202, there is also an effect of promoting peeling of the carbonized enamel coating layer adhering to the surface of the copper member. This protrusion 202 may be attached as a separate body to the inner surface of the heating furnace, or may be formed integrally with the inner surface of the heating furnace. The shape of the protrusion 202 is not particularly limited as long as it protrudes from the inner surface of the heating furnace, and may be a rod-shaped protrusion, or a plate-like protrusion extending in the longitudinal direction of the inner peripheral surface of the heating furnace 28. May be part. That is, the shape of the copper member (or the covering member 12) is not limited as long as the contact area can be increased and the copper member can be stirred.

また、図1−2に示されるように、常温の銅部材(被覆部材12)が加熱炉28内に投入されても、加熱炉28内の温度を強固に保持するために、突起部202の先端に熱量を保持するための構造物204を設けてもよい。構造物204は、例えば金属製で、突起部202の長手方向のほぼ全長に設けることが好ましい。構造物204は、突起部202に別体として取り付けても良いし、一体として形成しても良い。また、構造物204の形状は適宜変更することができる。本例では、突起部202は板状の突起部であり、構造物204は円柱状部材で構成されている。   In addition, as shown in FIG. 1B, in order to firmly maintain the temperature in the heating furnace 28 even if a room temperature copper member (covering member 12) is put into the heating furnace 28, A structure 204 for holding the amount of heat may be provided at the tip. The structure 204 is preferably made of, for example, a metal and is provided over substantially the entire length of the protrusion 202 in the longitudinal direction. The structure 204 may be attached to the protrusion 202 as a separate body, or may be formed integrally. Further, the shape of the structure 204 can be changed as appropriate. In this example, the projecting portion 202 is a plate-shaped projecting portion, and the structure 204 is formed of a columnar member.

図1−3に示されるように、銅部材の温度上昇を促進させるものとして、金属体の一例である金属球206をあらかじめ加熱炉28内で加熱しておき、投入した銅部材(被覆部材12)と接触させるようにしてもよい。この金属球206が銅部材とともに加熱炉28の排出口より排出されないようにすることはいうまでもない。また、金属体としては、金属球206の代わりに、例えば金属棒を用いてもよい。さらに、装置内部の構造に適合するように、金属体の形状を適宜変更しても良い。   As shown in FIG. 1C, as a means for promoting the temperature rise of the copper member, a metal ball 206, which is an example of a metal body, is preheated in a heating furnace 28, and the introduced copper member (covering member 12) is used. ). It goes without saying that the metal balls 206 are not discharged from the discharge port of the heating furnace 28 together with the copper member. Further, as the metal body, for example, a metal rod may be used instead of the metal sphere 206. Furthermore, the shape of the metal body may be appropriately changed so as to match the structure inside the apparatus.

または、図1−4に示されるように、すでに加熱炉28内へ投入済で所定の温度まで加熱されている一部の銅部材(被覆部材12)を加熱炉28内の移動方向へしばらく滞留させるためのストッパー208を設けて熱量を増加させるのもよい。すなわち、筒状部22から加熱炉28内に投入された直後の銅部材(被覆部材12)はほとんど加熱されていないが、銅部材(被覆部材12)が矢印方向に移動して、ストッパー208により滞留された所定の温度まで加熱されている一部の銅部材(被覆部材12)と接触する。これによって、加熱炉28内へ新たに投入された銅部材(被覆部材12)の温度上昇を促進させ、加熱炉28内で銅部材全体をより早く高温状態に到達させることができる。   Alternatively, as shown in FIG. 1-4, a part of the copper member (cover member 12) that has already been put into the heating furnace 28 and heated to a predetermined temperature stays in the moving direction in the heating furnace 28 for a while. It is also possible to increase the amount of heat by providing a stopper 208. That is, the copper member (covering member 12) immediately after being introduced into the heating furnace 28 from the cylindrical portion 22 is hardly heated, but the copper member (covering member 12) moves in the direction of the arrow and is stopped by the stopper 208. It comes into contact with a part of the copper member (covering member 12) heated to a predetermined temperature. As a result, the temperature rise of the copper member (covering member 12) newly introduced into the heating furnace 28 can be promoted, and the entire copper member can be quickly reached a high temperature state in the heating furnace 28.

上記の突起部202、およびストッパー208の材質は、加熱炉28と同じ材質、もしくは、加熱炉28内に容易に固定することが出来る材質であって、熱伝導効率がよく、加熱温度に耐えることのできる材質であればよい。例えばステンレスや鉄鋼材などを用いるのがよい。   The material of the protrusion 202 and the stopper 208 is the same material as that of the heating furnace 28 or a material that can be easily fixed in the heating furnace 28, has high heat conduction efficiency, and can withstand the heating temperature. Any material can be used. For example, stainless steel or steel material may be used.

上記の金属球206、および、構造物204の材質は、単位体積あたりの熱量が高くて、かつ、加熱処理中にその材質の一部が微粉体となり加熱炉28内に不純物として混入したとしても排除が比較的容易な材質が良い。例えば銅材は混入しても排除の必要がないし、炭素鋼材などは比較的排除が容易であるので、これらを用いるのが好ましい。
なお、図1−2〜図1−4では、加熱炉28の構成をわかりやすくするため、被覆部材12が球状で模式的に示されているが、実際には被覆部材12はチップ形状(又はナゲット形状)で不揃いの形状である。
Even if the material of the metal sphere 206 and the structure 204 has a high amount of heat per unit volume and a part of the material becomes a fine powder during the heat treatment, it is mixed as an impurity in the heating furnace 28. Materials that are relatively easy to exclude are good. For example, it is not necessary to exclude copper materials even if they are mixed, and it is preferable to use carbon steel materials because they are relatively easy to exclude.
In FIGS. 1-2 to 1-4, in order to make the configuration of the heating furnace 28 easy to understand, the covering member 12 is schematically shown in a spherical shape. Nugget shape) and irregular shape.

さらに、図1−2〜図1−4に記載した加熱炉内の構造は、それぞれ組み合わせて用いることができる。   Furthermore, the structures in the heating furnace described in FIGS. 1-2 to 1-4 can be used in combination.

被覆部材12の加熱後、被覆部材12を冷却装置16の内部の冷却水17で急冷することで、収縮力(銅部材とエナメル被覆層の線膨張係数の差)を利用して銅部材表面からエナメル被覆層を剥離することができる。冷却水17中で被覆部材12を冷却することで、エナメル被覆層(炭化物)が飛散せず、また銅部材を洗浄することができる。   After the coating member 12 is heated, the coating member 12 is rapidly cooled with the cooling water 17 inside the cooling device 16, so that the contraction force (difference in linear expansion coefficient between the copper member and the enamel coating layer) is utilized to remove the coating member 12 The enamel coating layer can be peeled off. By cooling the covering member 12 in the cooling water 17, the enamel coating layer (carbide) is not scattered and the copper member can be washed.

図2に示されるように、被覆層除去装置10は、被覆部材12の冷却後に銅部材表面のエナメル被覆層を剥離する剥離装置50を備えている。剥離装置50は、基台52に立設された柱状部材54の先端の支持部55に支持されたホッパー56を備えている。ホッパー56は断面が略六角形に形成され、略六角形の角部が略上下方向に沿って配置されており、ホッパー56の斜め上部に開口部56Aが設けられている。ホッパー56の底部56Bには冷却水57が溜められている。   As shown in FIG. 2, the coating layer removing apparatus 10 includes a peeling device 50 that peels the enamel coating layer on the surface of the copper member after the coating member 12 is cooled. The peeling device 50 includes a hopper 56 supported by a support portion 55 at the tip of a columnar member 54 erected on a base 52. The cross section of the hopper 56 is formed in a substantially hexagonal shape, corners of the substantially hexagonal shape are arranged along the substantially vertical direction, and an opening 56 </ b> A is provided at an oblique upper portion of the hopper 56. Cooling water 57 is stored at the bottom 56 </ b> B of the hopper 56.

開口部56Aからホッパー56の底部56B側には、攪拌棒58が斜め方向に挿入されており、底部56Bと対向する攪拌棒58の先端部に羽根部58Aが設けられている。攪拌棒58の上部にはモータ60が図示しない支持部材により固定支持されており、モータ60の駆動により攪拌棒58が回転する。攪拌棒58の回転により、冷却水57中の被覆部材12が攪拌され、被覆部材12のエナメル被覆層同士が衝突し、エナメル被覆層が剥離されるようになっている。   A stirring bar 58 is inserted in an oblique direction on the bottom 56B side of the hopper 56 from the opening 56A, and a blade part 58A is provided at the tip of the stirring bar 58 facing the bottom 56B. A motor 60 is fixedly supported on the upper portion of the stirring rod 58 by a support member (not shown), and the stirring rod 58 is rotated by driving the motor 60. By rotation of the stirring rod 58, the covering member 12 in the cooling water 57 is stirred, the enamel covering layers of the covering member 12 collide with each other, and the enamel covering layer is peeled off.

次に、被覆層除去装置10の作用であって、本発明の第1実施形態である被覆層除去方法について説明する。   Next, an operation of the coating layer removing apparatus 10 and a coating layer removing method according to the first embodiment of the present invention will be described.

図1−1に示されるように、チップ形状の複数の被覆部材12がフィーダ20に投入され、被覆部材12が筒状部22内を搬送部材24の回転により搬送され、加熱炉28に導入される。加熱炉28には、ガス流入部26の流入口26Aから不活性ガス(本実施形態では窒素ガス)が流入されており、不活性ガス雰囲気下で被覆部材12が約900℃の温度で30分以上加熱される。これによって、被覆部材12のエナメル被覆層の内部の銅部材自体の温度を約900℃まで加熱し、エナメル被覆層内部の銅部材表面を活性化させると共に、エナメル被覆層を炭化させる。エナメル被覆層の炭化が完了した後、銅部材自体の温度を約900℃に少なくとも3分間保持する。これによって、炭化したエナメル被覆層と銅部材との界面が破壊されやすくなる。この現象をより具体的に説明すると、被覆部材12のエナメル被覆層は加熱により外層が炭化し、それと同時に銅部材と接する内部の粘着層が軟化する。この内部に含まれる粘着層は外層に取り込まれ、外層と同様に炭化する。これによって、銅部材とエナメル被覆層との界面が分解される。   As shown in FIG. 1-1, a plurality of chip-shaped covering members 12 are put into the feeder 20, and the covering member 12 is transported through the cylindrical portion 22 by the rotation of the transport member 24 and introduced into the heating furnace 28. The An inert gas (nitrogen gas in this embodiment) is introduced into the heating furnace 28 from the inlet 26A of the gas inflow portion 26, and the covering member 12 is heated at a temperature of about 900 ° C. for 30 minutes in an inert gas atmosphere. Heated above. Thereby, the temperature of the copper member itself inside the enamel coating layer of the coating member 12 is heated to about 900 ° C., the surface of the copper member inside the enamel coating layer is activated, and the enamel coating layer is carbonized. After carbonization of the enamel coating layer is complete, the temperature of the copper member itself is held at about 900 ° C. for at least 3 minutes. Thereby, the interface between the carbonized enamel coating layer and the copper member is easily broken. To explain this phenomenon more specifically, the outer layer of the enamel coating layer of the coating member 12 is carbonized by heating, and at the same time, the internal adhesive layer in contact with the copper member is softened. The adhesive layer contained inside is taken into the outer layer and carbonized in the same manner as the outer layer. Thereby, the interface between the copper member and the enamel coating layer is decomposed.

加熱後、被覆部材12は図示しない搬送部材により排出部44に搬送され、取出し口44Aから被覆部材12が冷却装置16の内部の冷却水17中に落下する。冷却水17で被覆部材12を急冷することにより、収縮力(銅部材とエナメル被覆層の線膨張係数の差)を利用して銅部材表面からエナメル被覆層を剥離する。   After the heating, the covering member 12 is conveyed to the discharge portion 44 by a conveying member (not shown), and the covering member 12 falls into the cooling water 17 inside the cooling device 16 from the outlet 44A. By rapidly cooling the covering member 12 with the cooling water 17, the enamel coating layer is peeled from the surface of the copper member by using the shrinkage force (difference in linear expansion coefficient between the copper member and the enamel coating layer).

冷却装置16による被覆部材12の急冷後、図2に示されるように、被覆部材12を剥離装置50のホッパー56内に開口部56Aから投入する。そして、ホッパー56内で攪拌棒58を回転させ、冷却水57中の被覆部材12を攪拌することにより、被覆部材12のエナメル被覆層同士を衝突させる。これによって、銅部材表面にアンカー効果や分子間力で付着しているエナメル被覆層が剥離(分離)され、銅部材表面からエナメル被覆層を高い除去率で除去することができる。   After the covering member 12 is rapidly cooled by the cooling device 16, the covering member 12 is put into the hopper 56 of the peeling device 50 from the opening 56A as shown in FIG. And the enamel coating layer of the coating | coated member 12 is made to collide by rotating the stirring rod 58 within the hopper 56, and stirring the coating | coated member 12 in the cooling water 57. FIG. As a result, the enamel coating layer adhering to the copper member surface due to the anchor effect or intermolecular force is peeled (separated), and the enamel coating layer can be removed from the copper member surface with a high removal rate.

線状の被覆部材であれば、加熱、冷却後にブラシなどで擦ることで、エナメル被覆層を剥離することができるが、本実施形態のようなチップ形状の被覆部材12ではブラシなどで擦ることは困難である。このため、冷却水57中で攪拌して被覆部材12のエナメル被覆層同士を衝突させることで、銅部材表面の凹凸中まで入り込んだエナメル被覆層(炭化物)を剥離することができる。
なお、本実施形態では、加熱炉28は連続式であるが、バッチ式の加熱炉を用いてもよい。
In the case of a linear covering member, the enamel coating layer can be peeled off by rubbing with a brush or the like after heating and cooling. Have difficulty. For this reason, the enamel coating layer (carbide) which penetrated into the unevenness | corrugation of the copper member surface can be peeled by stirring in the cooling water 57 and making the enamel coating layers of the coating member 12 collide.
In the present embodiment, the heating furnace 28 is a continuous type, but a batch type heating furnace may be used.

攪拌後に冷却水57の中に入っている銅と炭化物を分離するため、網目の細かいフィルターに通して、銅と炭化物を分離する。または、乾燥させ、重量の軽い炭化物のみを飛ばすか吸い取るようにしても良い。   In order to separate copper and carbide contained in the cooling water 57 after stirring, the copper and carbide are separated by passing through a fine mesh filter. Alternatively, it may be dried so that only a lighter weight carbide is blown or sucked.

上記実施形態では、被覆部材12を冷却水17の中に入れて冷却したが、この方法以外に、被覆部材12を液体窒素に入れ冷却することで被覆除去を行うことができる。液体窒素を用いることで、後工程において乾燥させる手間を省くことができる効果がある。   In the said embodiment, although the coating | coated member 12 was put and cooled in the cooling water 17, coating | coated removal can be performed by putting the coating | coated member 12 in liquid nitrogen and cooling other than this method. By using liquid nitrogen, there is an effect that the labor of drying in the subsequent process can be saved.

ここで、本実施形態の被覆層除去方法による効果を確認するために、加熱によるエナメル被覆層の各種分析及び銅部材表面からのエナメル被覆層の除去率の評価を行った。   Here, in order to confirm the effect by the coating layer removal method of this embodiment, various analyzes of the enamel coating layer by heating and evaluation of the removal rate of the enamel coating layer from the copper member surface were performed.

まず、被覆部材12の加熱中におけるエナメル被覆層の熱分解挙動を調査した。図3には、被覆部材12の加熱中におけるエナメル被覆層の示差熱−熱重量同時測定(TG−DTA)を行った結果が示されている。熱重量測定(TG)は、雰囲気温度の上昇によるエナメル被覆層の重量変化を、時間及び温度に対して記録したものであり、図3中のTG曲線で示されている。示差熱分析(DTA)は、温度変化に伴い、エナメル被覆層が反応したときに基準物質との温度差が変化するため、その温度差を検出したものであり、図3中のDTA曲線で示されている。また、図3中には、時間に対するエナメル被覆層の温度変化が示されている。   First, the thermal decomposition behavior of the enamel coating layer during the heating of the coating member 12 was investigated. FIG. 3 shows the result of differential thermal-thermogravimetric measurement (TG-DTA) of the enamel coating layer during heating of the covering member 12. Thermogravimetry (TG) is a recording of the change in weight of the enamel coating layer with respect to time and temperature due to an increase in ambient temperature, and is shown by the TG curve in FIG. In differential thermal analysis (DTA), the temperature difference with the reference material changes when the enamel coating layer reacts with the change in temperature, and the temperature difference is detected. This is shown by the DTA curve in FIG. Has been. FIG. 3 shows the temperature change of the enamel coating layer with respect to time.

図3中のTG曲線及びDTA曲線に示されるように、エナメル被覆層は、300℃〜500℃の範囲で急激に反応が起こり、エナメル被覆材料が気化又は液化し、残留物が炭化する。また、エナメル被覆層は、500℃以上においても反応が起こり続け、エナメル被覆層の重量は減る。また、エナメル被覆層の反応は炭化現象であり、発熱反応や吸熱反応は起こらない。   As shown in the TG curve and DTA curve in FIG. 3, the enamel coating layer reacts rapidly in the range of 300 ° C. to 500 ° C., and the enamel coating material is vaporized or liquefied, and the residue is carbonized. Further, the enamel coating layer continues to react even at 500 ° C. or higher, and the weight of the enamel coating layer decreases. The reaction of the enamel coating layer is a carbonization phenomenon, and no exothermic reaction or endothermic reaction occurs.

次に、被覆部材12の加熱前後のエナメル被覆層に含まれる有機物の分析を行った。図4には、赤外分光法(IR)を用いて加熱前のエナメル被覆層の一例を測定した赤外吸収スペクトルが示されている。図5には、赤外分光法(IR)を用いて加熱後のエナメル被覆層を測定した赤外吸収スペクトルが示されている。図5に示されるように、加熱後には、エナメル被覆層は完全に炭化し、エナメル被覆層に有機物は含まれない結果が得られた。図4はエナメル被覆層の一例であるが、本実施形態は、多数のエナメル被覆層に対応できる被覆層除去方法である。   Next, the organic substance contained in the enamel coating layer before and after heating the covering member 12 was analyzed. FIG. 4 shows an infrared absorption spectrum obtained by measuring an example of the enamel coating layer before heating using infrared spectroscopy (IR). FIG. 5 shows an infrared absorption spectrum obtained by measuring the enamel coating layer after heating using infrared spectroscopy (IR). As shown in FIG. 5, after heating, the enamel coating layer was completely carbonized, and the enamel coating layer contained no organic matter. FIG. 4 shows an example of the enamel coating layer, but this embodiment is a coating layer removing method that can handle a large number of enamel coating layers.

次に、被覆部材12の処理前のエナメル被覆層の重量及び処理後のエナメル被覆層の除去量を測定した。図6には、処理前(加熱、冷却、剥離処理前)の被覆部材12の総量に占めるエナメル被覆層の重量の割合(%)が示されている。図7には、処理後(加熱、冷却、剥離処理後)の被覆部材12の総量に占めるエナメル被覆層の除去量の割合(%)が示されている。   Next, the weight of the enamel coating layer before the treatment of the covering member 12 and the removal amount of the enamel coating layer after the treatment were measured. FIG. 6 shows the ratio (%) of the weight of the enamel coating layer to the total amount of the coating member 12 before processing (before heating, cooling, and peeling treatment). FIG. 7 shows the ratio (%) of the removal amount of the enamel coating layer to the total amount of the coating member 12 after the treatment (after heating, cooling, and peeling treatment).

この実験では、被覆部材12を加熱炉28に導入した後、5分以内に銅部材の温度を900℃まで加熱し、その温度に10分間保持し、その後30秒以内に冷却水で冷却した。実験は3回行ってそれぞれについて処理前のエナメル被覆層の重量と処理後の銅部材の重量を測定した。処理前の100gの被覆部材12に含まれるエナメル被覆層の重量は、銅部材を含めた被覆部材12の総重量の1.37%(3回の平均)であった。処理後に取り出した銅部材の重量を測定したところ、エナメル被覆層の被覆除去率は1.34%(3回の平均)であり、処理後の銅部材に含まれるエナメル被覆層(炭化物)の残留量は0.03%(3回の平均)となった。これにより、本実施形態では、被覆部材12を構成する銅部材表面のエナメル被覆層を高い除去率で除去できることが分かる。   In this experiment, after the covering member 12 was introduced into the heating furnace 28, the temperature of the copper member was heated to 900 ° C. within 5 minutes, held at that temperature for 10 minutes, and then cooled with cooling water within 30 seconds. The experiment was performed three times, and the weight of the enamel coating layer before treatment and the weight of the copper member after treatment were measured for each. The weight of the enamel coating layer contained in 100 g of the covering member 12 before the treatment was 1.37% (average of three times) of the total weight of the covering member 12 including the copper member. When the weight of the copper member taken out after the treatment was measured, the coating removal rate of the enamel coating layer was 1.34% (average of 3 times), and the enamel coating layer (carbide) remaining in the copper member after the treatment remained The amount was 0.03% (average of 3 times). Thereby, in this embodiment, it turns out that the enamel coating layer of the copper member surface which comprises the coating member 12 can be removed with a high removal rate.

次に、被覆部材12の加熱により炭化させたエナメル被覆層の構造を分析した。図8には、ラマン分光法を用いて被覆部材12の加熱後のエナメル被覆層を測定したスペクトルが示されている。図8に示されるように、加熱により炭化させたエナメル被覆層の構造は、活性炭に類似した多孔質の構造を持つことが分かる。   Next, the structure of the enamel coating layer carbonized by heating the coating member 12 was analyzed. FIG. 8 shows a spectrum obtained by measuring the enamel coating layer after the coating member 12 is heated using Raman spectroscopy. As shown in FIG. 8, it can be seen that the structure of the enamel coating layer carbonized by heating has a porous structure similar to activated carbon.

上記のような加熱後のエナメル被覆層の構造の分析結果やエナメル被覆層の除去率の測定結果等により、本実施形態の被覆層除去方法によれば、チップ形状の被覆部材12を用いた場合でも加熱によりエナメル被覆層を炭化させることで、銅部材からエナメル被覆層を高い除去率で除去することができる。   When the chip-shaped coating member 12 is used according to the coating layer removal method of the present embodiment, based on the analysis result of the structure of the enamel coating layer after heating, the measurement result of the removal rate of the enamel coating layer, etc. However, the enamel coating layer can be removed from the copper member with a high removal rate by carbonizing the enamel coating layer by heating.

次に、図9及び図10を用いて、本発明の第2実施形態である被覆層除去方法が適用される被覆層除去装置について説明する。なお、第1実施形態と同一の部材には同一の符号を付し、重複した説明は省略する。   Next, a coating layer removing apparatus to which the coating layer removing method according to the second embodiment of the present invention is applied will be described with reference to FIGS. 9 and 10. In addition, the same code | symbol is attached | subjected to the member same as 1st Embodiment, and the overlapping description is abbreviate | omitted.

図9に示されるように、被覆層除去装置70は、被覆部材12を不活性ガス雰囲気下で加熱する加熱装置72と、加熱後に被覆部材12を急冷する冷却装置16と、を備えている。加熱装置72は、第1実施形態の加熱炉28に代えて、中心部にガラス管76を備えた円筒状の加熱炉74を備えている。この加熱装置72では、被覆部材12を投入するフィーダと、被覆部材12を搬送する搬送部材は第1実施形態と同じであるので、図示を省略している。   As shown in FIG. 9, the coating layer removing device 70 includes a heating device 72 that heats the coating member 12 in an inert gas atmosphere, and a cooling device 16 that rapidly cools the coating member 12 after heating. The heating device 72 includes a cylindrical heating furnace 74 having a glass tube 76 at the center instead of the heating furnace 28 of the first embodiment. In this heating device 72, since the feeder into which the covering member 12 is charged and the conveying member that conveys the covering member 12 are the same as those in the first embodiment, illustration is omitted.

加熱炉74の壁部74Aの内側には、円筒状のガラス管76の周囲を囲むようにランプ78が配設されており、ランプ78を発光させることにより、ガラス管76の内部に導入された被覆部材12を加熱する。加熱炉74はバッチ式であり、加熱炉74の長手方向下流側の端部74Bには、加熱炉74を傾斜させてガラス管76内の被覆部材12を冷却装置16に投入する回転装置80が設けられている。回転装置80は、基台82に立設された一対の支持体84と、支持体84に架け渡されて加熱炉74を回転可能に支持する軸部86と、を備えており、加熱炉74での被覆部材12の加熱後に軸部86を中心に加熱炉74の長手方向上流側を上方に回転させるように構成されている。加熱炉74の回転時には、ガラス管76の下流側端部76Aが冷却装置16に溜められた冷却水17の上方側に移動し、ガラス管76内の被覆部材12が冷却水17中に落下する。   A lamp 78 is disposed inside the wall portion 74 </ b> A of the heating furnace 74 so as to surround the cylindrical glass tube 76. The lamp 78 emits light and is introduced into the glass tube 76. The covering member 12 is heated. The heating furnace 74 is a batch type, and a rotating device 80 for inclining the heating furnace 74 and putting the coating member 12 in the glass tube 76 into the cooling device 16 is provided at an end 74B on the downstream side in the longitudinal direction of the heating furnace 74. Is provided. The rotating device 80 includes a pair of supports 84 erected on the base 82, and a shaft portion 86 that spans the support 84 and rotatably supports the heating furnace 74. After the heating of the covering member 12, the upstream side in the longitudinal direction of the heating furnace 74 is rotated upward about the shaft portion 86. During the rotation of the heating furnace 74, the downstream end portion 76 </ b> A of the glass tube 76 moves to the upper side of the cooling water 17 stored in the cooling device 16, and the covering member 12 in the glass tube 76 falls into the cooling water 17. .

また、ガラス管76には、不活性ガスとして窒素ガスが1ml/分で矢印A方向に流入される。ガラス管76の下流側端部76Aの上方には、ガラス管76から排出される気体を回収する排気装置88が設けられている。排気装置88は、傘状の導入部88Aと、導入部88Aに連結されたダクト88Bと備えており、ダクト88Bの下流側に図示しないファンが設けられている。そして、ファンの回転により導入部88Aから気体を回収する。   Moreover, nitrogen gas flows into the glass tube 76 in the direction of arrow A at 1 ml / min as an inert gas. Above the downstream end portion 76 </ b> A of the glass tube 76, an exhaust device 88 that collects gas discharged from the glass tube 76 is provided. The exhaust device 88 includes an umbrella-shaped introduction portion 88A and a duct 88B connected to the introduction portion 88A, and a fan (not shown) is provided on the downstream side of the duct 88B. And gas is collect | recovered from 88 A of introduction parts by rotation of a fan.

図10A、図10Bに示されるように、被覆層除去装置70は、被覆部材12の冷却後に被覆部材12のエナメル被覆層を剥離する剥離装置90を備えている。剥離装置90は、冷却水98が溜められた回転槽92と、回転槽92の中心部に突設された略円柱状の突出部94と、突出部94の内部に配置された軸部95を中心に回転槽92を回転させるモータ96と、を備えている。回転槽92を回転させることで、遠心力により冷却水98中の被覆部材12同士に衝撃を与え、被覆部材12の銅部材表面のエナメル被覆層を剥離させる。   As shown in FIGS. 10A and 10B, the coating layer removing device 70 includes a peeling device 90 that peels the enamel coating layer of the coating member 12 after the coating member 12 is cooled. The peeling device 90 includes a rotating tank 92 in which cooling water 98 is stored, a substantially cylindrical protruding portion 94 protruding from the center of the rotating tank 92, and a shaft portion 95 disposed inside the protruding portion 94. And a motor 96 for rotating the rotating tank 92 at the center. By rotating the rotating tank 92, impact is applied to the covering members 12 in the cooling water 98 by centrifugal force, and the enamel coating layer on the surface of the copper member of the covering member 12 is peeled off.

次に、被覆層除去装置70の作用であって、本発明の第2実施形態である被覆層除去方法について説明する。   Next, the coating layer removing method according to the second embodiment of the present invention, which is an operation of the coating layer removing apparatus 70, will be described.

図9に示されるように、加熱炉74のガラス管76の内部に被覆部材12を導入し、被覆部材12をガラス管76の長手方向中央部付近に置く。そのとき、ガラス管76を塞がないように被覆部材12の高さはガラス管76の直径の2/3以下とし、ランプ78を発光させて被覆部材12を加熱する。その際、5分以内に被覆部材12の銅部材の温度を約900℃まで上げられる出力でランプ78を発光させる。これによって、被覆部材12のエナメル被覆層の内部の銅部材自体の温度を約900℃まで加熱し、エナメル被覆層内部の銅部材表面を活性化させると共に、エナメル被覆層を炭化させる。エナメル被覆層の炭化が完了した後、銅部材自体の温度を約900℃に少なくとも3分間保持する。これによって、炭化したエナメル被覆層と銅部材との界面が破壊されやすくなる。   As shown in FIG. 9, the covering member 12 is introduced into the inside of the glass tube 76 of the heating furnace 74, and the covering member 12 is placed near the central portion in the longitudinal direction of the glass tube 76. At that time, the height of the covering member 12 is set to 2/3 or less of the diameter of the glass tube 76 so as not to block the glass tube 76, and the covering member 12 is heated by causing the lamp 78 to emit light. At this time, the lamp 78 is caused to emit light with an output capable of raising the temperature of the copper member of the covering member 12 to about 900 ° C. within 5 minutes. Thereby, the temperature of the copper member itself inside the enamel coating layer of the coating member 12 is heated to about 900 ° C., the surface of the copper member inside the enamel coating layer is activated, and the enamel coating layer is carbonized. After carbonization of the enamel coating layer is complete, the temperature of the copper member itself is held at about 900 ° C. for at least 3 minutes. Thereby, the interface between the carbonized enamel coating layer and the copper member is easily broken.

その後、回転装置80により加熱炉74を傾け、ガラス管76内の被覆部材12を約30秒以内に冷却装置16の冷却水17中に落下させる。
なお、本実施形態では、加熱炉74を傾ける回転装置80が設けられているが、これに限定されず、ガラス管76の中に掻き出し棒を入れて被覆部材12を取り出してもよい。
Thereafter, the heating furnace 74 is tilted by the rotating device 80, and the covering member 12 in the glass tube 76 is dropped into the cooling water 17 of the cooling device 16 within about 30 seconds.
In the present embodiment, the rotating device 80 for tilting the heating furnace 74 is provided. However, the present invention is not limited to this, and the covering member 12 may be taken out by inserting a scraping bar into the glass tube 76.

冷却装置16による被覆部材12の冷却後、被覆部材12を剥離装置90の回転槽92に投入する。そして、回転槽92を回転させ、その遠心力で冷却水98中の被覆部材12同士に衝撃を与え、被覆部材12の銅部材表面からエナメル被覆層を剥離する。   After the covering member 12 is cooled by the cooling device 16, the covering member 12 is put into the rotating tank 92 of the peeling device 90. Then, the rotating tank 92 is rotated, and the coating member 12 in the cooling water 98 is impacted by the centrifugal force to peel the enamel coating layer from the copper member surface of the coating member 12.

このような被覆層除去装置70では、チップ形状の被覆部材12を用いた場合でも加熱によりエナメル被覆層を炭化させることで、銅部材からエナメル被覆層を高い除去率で除去することができる。   In such a coating layer removing apparatus 70, even when the chip-shaped coating member 12 is used, the enamel coating layer can be removed from the copper member with a high removal rate by carbonizing the enamel coating layer by heating.

次に、図11を用いて、本発明の第3実施形態である被覆層除去方法が適用される被覆層除去装置について説明する。なお、第1実施形態及び第2実施形態と同一の部材には同一の符号を付し、重複した説明は省略する。   Next, a coating layer removing apparatus to which the coating layer removing method according to the third embodiment of the present invention is applied will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the member same as 1st Embodiment and 2nd Embodiment, and the overlapping description is abbreviate | omitted.

図11に示されるように、被覆層除去装置110は、被覆部材140を不活性ガス雰囲気下で加熱する連続式の加熱装置112と、加熱後に被覆部材140を急冷する冷却装置16と、を備えている。剥離装置は第1実施形態の剥離装置50と第2実施形態の剥離装置90のどちらを用いてもよいので省略する。   As shown in FIG. 11, the coating layer removing device 110 includes a continuous heating device 112 that heats the coating member 140 in an inert gas atmosphere, and a cooling device 16 that rapidly cools the coating member 140 after heating. ing. As the peeling device, either the peeling device 50 of the first embodiment or the peeling device 90 of the second embodiment may be used, and the description thereof is omitted.

被覆部材140は、エナメル線を予めカッターで軸方向と略直交する方向に細かく切断した線状部材である。   The covering member 140 is a linear member obtained by finely cutting an enameled wire in advance in a direction substantially orthogonal to the axial direction with a cutter.

加熱装置112は、複数の被覆部材140が投入されるフィーダ20と、フィーダ20の下部に連結された加熱炉114と、加熱炉114の内部でフィーダ20から投入された被覆部材140を加熱炉114の他端側に搬送する搬送ベルト116と、を備えている。搬送ベルト116は無端状のベルトからなり、一対のローラ118、119に巻き掛けられている。一方のローラ118の回転駆動により搬送ベルト116が矢印B方向に周回移動し、搬送ベルト116上の被覆部材140を搬送するようになっている。加熱炉114の周囲には、搬送ベルト116上の被覆部材140を加熱するヒータ120が設けられている。   The heating device 112 includes a feeder 20 into which a plurality of covering members 140 are charged, a heating furnace 114 connected to a lower portion of the feeder 20, and a covering member 140 that is charged from the feeder 20 inside the heating furnace 114. A conveying belt 116 that conveys the toner to the other end side. The conveyor belt 116 is an endless belt and is wound around a pair of rollers 118 and 119. The conveyance belt 116 rotates in the direction of arrow B by the rotation of one roller 118, and conveys the covering member 140 on the conveyance belt 116. Around the heating furnace 114, a heater 120 for heating the covering member 140 on the transport belt 116 is provided.

加熱炉114の下壁部には、搬送ベルト116の搬送方向下流側に搬送ベルト116から落下した被覆部材140を排出する排出口114Aが設けられている。排出口114Aの下方側には、冷却装置16が配設されている。また、加熱炉114のフィーダ20側の側壁部にはキャリアガス(本実施形態では窒素ガス)を流入する流入口114Bが設けられ、加熱炉114の搬送方向下流側(排出口114A側)の上壁部には加熱炉114内の気体を排気する排気口114Cが設けられている。なお、フィーダ20は窒素ガスをパージ可能に構成されている。   In the lower wall portion of the heating furnace 114, a discharge port 114 </ b> A that discharges the covering member 140 that has dropped from the transport belt 116 is provided on the downstream side of the transport belt 116 in the transport direction. A cooling device 16 is disposed below the discharge port 114A. In addition, an inlet 114B through which a carrier gas (nitrogen gas in the present embodiment) flows is provided on the side wall of the heating furnace 114 on the feeder 20 side, and the upper side of the heating furnace 114 in the conveying direction (on the outlet 114A side) is provided. An exhaust port 114C for exhausting the gas in the heating furnace 114 is provided in the wall portion. The feeder 20 is configured to be able to purge nitrogen gas.

次に、被覆層除去装置110の作用であって、本発明の第2実施形態である被覆層除去方法について説明する。   Next, the coating layer removing method according to the second embodiment of the present invention, which is an operation of the coating layer removing apparatus 110, will be described.

加熱装置112では、フィーダ20から被覆部材140が加熱炉114内に投入され、被覆部材140は搬送ベルト116上を矢印B方向に搬送される。そのとき、ヒータ120により被覆部材140のエナメル被覆層内部の銅部材を約900℃に加熱し、その温度で加熱炉114内を5分以上通過させる。これによって、被覆部材140は大気に触れることなく不活性ガス雰囲気下で加熱され、エナメル被覆層が炭化する。エナメル被覆層の炭化が完了した後、銅部材自体の温度を約900℃に少なくとも3分間保持する。そして、搬送ベルト116の搬送方向端部で被覆部材140は排出口114Aから冷却装置16の冷却水17中に落下する。   In the heating device 112, the covering member 140 is put into the heating furnace 114 from the feeder 20, and the covering member 140 is transported on the transport belt 116 in the arrow B direction. At that time, the copper member inside the enamel coating layer of the coating member 140 is heated to about 900 ° C. by the heater 120 and allowed to pass through the heating furnace 114 at that temperature for 5 minutes or more. As a result, the covering member 140 is heated in an inert gas atmosphere without being exposed to the air, and the enamel covering layer is carbonized. After carbonization of the enamel coating layer is complete, the temperature of the copper member itself is held at about 900 ° C. for at least 3 minutes. Then, the covering member 140 falls into the cooling water 17 of the cooling device 16 from the discharge port 114 </ b> A at the conveyance direction end of the conveyance belt 116.

冷却装置16による被覆部材140の冷却後、被覆部材140を第1実施形態の剥離装置50又は第2実施形態の剥離装置90に投入し、被覆部材140の銅部材表面のエナメル被覆層を剥離する。   After cooling the covering member 140 by the cooling device 16, the covering member 140 is put into the peeling device 50 of the first embodiment or the peeling device 90 of the second embodiment, and the enamel coating layer on the surface of the copper member of the covering member 140 is peeled off. .

このような被覆層除去装置110では、加熱により被覆部材140のエナメル被覆層を炭化させることで、銅部材からエナメル被覆層を高い除去率で除去することができる。   In such a coating layer removing apparatus 110, the enamel coating layer of the coating member 140 is carbonized by heating, whereby the enamel coating layer can be removed from the copper member with a high removal rate.

なお、本実施形態では、線状の被覆部材140が用いられているが、第1実施形態及び第2実施形態と同様にチップ形状の被覆部材12を用いても銅部材からエナメル被覆層を高い除去率で除去することができる。   In this embodiment, the linear covering member 140 is used. However, the enamel covering layer is made higher from the copper member even if the chip-shaped covering member 12 is used as in the first and second embodiments. It can be removed at a removal rate.

図12には、エナメル被覆層を除去した銅部材を加熱溶融する溶融炉150が示されている。図12では、チップ形状の被覆部材12からエナメル被覆層を除去した銅部材12Aを溶融する例が示されている。この溶融炉150には、銅部材12Aを加熱する加熱室154を備えたハウジング152と、ハウジング152の上部に銅部材12Aを加熱室154に投入する導入口156とが設けられている。導入口156の上部には開閉可能な蓋部材158が設けられている。加熱室154の斜め上方側のハウジング152の壁部には加熱室154の気体を排気する排気口160が設けられている。加熱室154を備えたハウジング152の周囲には、加熱室154内を加熱するヒータ162が設けられており、ヒータ162により加熱室154内を加熱して銅部材12Aを溶融させる。   FIG. 12 shows a melting furnace 150 for heating and melting the copper member from which the enamel coating layer has been removed. FIG. 12 shows an example in which the copper member 12A from which the enamel coating layer is removed from the chip-shaped coating member 12 is melted. The melting furnace 150 is provided with a housing 152 provided with a heating chamber 154 for heating the copper member 12A, and an introduction port 156 for introducing the copper member 12A into the heating chamber 154 at the top of the housing 152. A lid member 158 that can be opened and closed is provided above the introduction port 156. An exhaust port 160 for exhausting the gas in the heating chamber 154 is provided in the wall portion of the housing 152 obliquely above the heating chamber 154. A heater 162 for heating the inside of the heating chamber 154 is provided around the housing 152 provided with the heating chamber 154, and the inside of the heating chamber 154 is heated by the heater 162 to melt the copper member 12A.

このような溶融炉150を用い、導入口156から加熱室154内にエナメル被覆層を除去した銅部材12Aを投入し、蓋部材158を閉止して銅部材12Aを溶融した。このとき、排気口160から排気される気体を調べたところ、加熱室154内部より黒煙やダイオキシン(DXN)などの発生が起こらないことが確認された。また、線状の被覆部材140からエナメル被覆層を剥離した銅部材を加熱溶融した場合も同様の結果が得られた。   Using such a melting furnace 150, the copper member 12A from which the enamel coating layer was removed was introduced into the heating chamber 154 from the inlet 156, the lid member 158 was closed, and the copper member 12A was melted. At this time, when the gas exhausted from the exhaust port 160 was examined, it was confirmed that no black smoke or dioxin (DXN) was generated from the inside of the heating chamber 154. The same result was obtained when the copper member from which the enamel coating layer was peeled off from the linear coating member 140 was heated and melted.

エナメル線のリサイクルにおいては、無処理のエナメル線を溶融させると、エナメル被覆層の内部に含まれる塩素や臭素成分が排気中で合成し、ダイオキシン(DXN)の発生源となる場合がある。上記第1〜第3実施形態では、エナメル被覆層を加熱により炭化させ、銅部材からエナメル被覆層を高い除去率で除去することができるので、銅部材を加熱溶融したときにダイオキシン(DXN)などの発生を防止することができる。   In the recycling of enameled wire, when an untreated enameled wire is melted, chlorine and bromine components contained in the enamel coating layer may be synthesized in the exhaust gas and become a source of dioxin (DXN). In the said 1st-3rd embodiment, since an enamel coating layer is carbonized by heating and an enamel coating layer can be removed from a copper member with a high removal rate, when a copper member is heat-melted, dioxin (DXN) etc. Can be prevented.

なお、上記第1〜第3実施形態では、銅部材の表面にエナメル被覆層が形成された被覆部材12、140を用いたが、これに限定されず、銅部材の表面に他の有機化合物等からなる被覆層が形成された被覆部材でも同様に適用することができる。   In addition, in the said 1st-3rd embodiment, although the covering members 12 and 140 by which the enamel coating layer was formed on the surface of the copper member were used, it is not limited to this, Other organic compounds etc. are on the surface of a copper member. The same can be applied to a covering member on which a covering layer made of is formed.

なお、上記第1〜第3実施形態では、冷却装置と剥離装置が別々に設けられているが、これに限定されず、冷却装置と剥離装置とを兼用する構成でもよい。すなわち、加熱した被覆部材を剥離装置に溜められた冷却水で冷却すると同時に攪拌し、銅部材表面から剥離層を剥離するようにしてもよい。   In addition, in the said 1st-3rd embodiment, although the cooling device and the peeling apparatus are provided separately, it is not limited to this, The structure which combines a cooling device and a peeling apparatus may be sufficient. That is, you may make it peel the peeling layer from the copper member surface, stirring simultaneously, cooling the heated coating | coated member with the cooling water stored in the peeling apparatus.

10 被覆層除去装置
12 被覆部材
12A 銅部材
14 加熱装置
16 冷却装置
17 冷却水
26 ガス流入部(ガス流入装置)
28 加熱炉
48 排気口(排気部)
50 剥離装置
57 冷却水(液体)
58 攪拌棒
70 被覆層除去装置
72 加熱装置
74 加熱炉
88 排気装置(排気部)
90 剥離装置
92 回転槽
98 冷却水(液体)
110 被覆層除去装置
112 加熱装置
114 加熱炉
114C 排気口(排気部)
114B 流入口(ガス流入装置)
140 被覆部材
202 突起部
204 構造物(金属製構造物)
206 金属球(金属体)
208 ストッパー
DESCRIPTION OF SYMBOLS 10 Coating layer removal apparatus 12 Coating member 12A Copper member 14 Heating device 16 Cooling device 17 Cooling water 26 Gas inflow part (gas inflow device)
28 Heating furnace 48 Exhaust port (exhaust part)
50 Peeling device 57 Cooling water (liquid)
58 Stirring bar 70 Coating layer removing device 72 Heating device 74 Heating furnace 88 Exhaust device (exhaust part)
90 Peeling device 92 Rotating tank 98 Cooling water (liquid)
110 Covering layer removal device 112 Heating device 114 Heating furnace 114C Exhaust port (exhaust part)
114B inlet (gas inflow device)
140 Cover member 202 Protrusion 204 Structure (metal structure)
206 Metal sphere (metal body)
208 stopper

Claims (15)

銅部材の表面に被覆層が形成された被覆部材を、不活性ガス雰囲気下または過熱蒸気下で、前記被覆層が炭化する温度且つ前記銅部材が溶融しない温度まで加熱する加熱工程と、
前記被覆部材を冷却する冷却工程と、
前記銅部材の表面から前記被覆層を剥離する剥離工程と、
を有する被覆層除去方法。
A heating step of heating the coating member having a coating layer formed on the surface of the copper member to a temperature at which the coating layer is carbonized and a temperature at which the copper member does not melt in an inert gas atmosphere or superheated steam;
A cooling step for cooling the covering member;
A peeling step of peeling the coating layer from the surface of the copper member;
The coating layer removal method which has this.
前記加熱工程で前記銅部材の温度が700℃〜1000℃になるまで加熱する請求項1に記載の被覆層除去方法。   The coating layer removing method according to claim 1, wherein heating is performed until the temperature of the copper member reaches 700 ° C. to 1000 ° C. in the heating step. 前記加熱工程で前記銅部材の温度が900℃以上になるまで加熱し、前記被覆層の炭化が完了した後、さらに前記銅部材の温度を900℃以上で少なくとも3分間保持する請求項1又は請求項2に記載の被覆層除去方法。   The temperature of the said copper member is heated at the said heating process until it becomes 900 degreeC or more, and the carbonization of the said coating layer is completed, The temperature of the said copper member is further hold | maintained at 900 degreeC or more for at least 3 minutes. Item 3. The coating layer removing method according to Item 2. 前記加熱工程で、前記銅部材が加熱開始時の温度から、前記被覆層を炭化する温度且つ前記銅部材が溶融しない温度に到達するまでの時間を5分以内とする請求項1から請求項3までのいずれか1項に記載の被覆層除去方法。   The time from the temperature at which the copper member starts heating to the temperature at which the coating layer is carbonized and the temperature at which the copper member does not melt is within 5 minutes in the heating step. The coating layer removing method according to any one of the above. 前記冷却工程で前記被覆部材を冷却液で冷却する請求項1から請求項4までのいずれか1項に記載の被覆層除去方法。   The coating layer removing method according to any one of claims 1 to 4, wherein the coating member is cooled with a coolant in the cooling step. 前記剥離工程で前記被覆部材を液体中で攪拌し、前記被覆部材の前記被覆層同士を衝突させて前記銅部材の表面から前記被覆層を剥離する請求項1から請求項5までのいずれか1項に記載の被覆層除去方法。   The said covering member is stirred in a liquid at the said peeling process, The said coating layers of the said covering member are made to collide, The said coating layer is peeled from the surface of the said copper member, The any one of Claim 1-5 The coating layer removing method according to item. 前記加熱工程で用いられる加熱装置の内面に突起部を設け、前記銅部材又は前記被覆部材が接触する面積を広げることにより前記銅部材の温度上昇を促進させることを特徴とする請求項1から請求項6までのいずれか1項に記載の覆層除去方法。   The temperature rise of the said copper member is promoted by providing a projection part in the inner surface of the heating apparatus used at the said heating process, and expanding the area which the said copper member or the said covering member contacts. The covering layer removing method according to any one of Items 6 to 6. 前記加熱工程で用いられる加熱装置内の前記突起部の先端に金属製構造物を設け、加熱装置内の熱量を大きくすることを特徴とする請求項1から請求項7までのいずれか1項に記載の被覆層除去方法。   The metal structure is provided at the tip of the protrusion in the heating device used in the heating step, and the amount of heat in the heating device is increased. The coating layer removal method as described. 前記加熱工程で用いられる加熱装置内に予め加熱した金属体を配置して、前記銅部材の温度上昇を促進させることを特徴とする請求項1から請求項8までのいずれか1項に記載の被覆層除去方法。   The metal body heated beforehand is arrange | positioned in the heating apparatus used at the said heating process, The temperature rise of the said copper member is accelerated | stimulated, The any one of Claim 1-8 characterized by the above-mentioned. Coating layer removal method. 前記加熱工程で用いられる加熱装置内に、前記加熱装置内へ投入済で所定の温度まで加熱されている一部の前記銅部材を前記加熱装置内に滞留させるためのストッパーを設けたことを特徴とする請求項1から請求項9までのいずれか1項に記載の被覆層除去方法。   The heating device used in the heating step is provided with a stopper for retaining a part of the copper member that has been charged into the heating device and heated to a predetermined temperature in the heating device. The coating layer removing method according to any one of claims 1 to 9. 請求項1から請求項6までのいずれか1項に記載の被覆層除去方法が適用される被覆層除去装置であって、
被覆部材の前記被覆層を炭化する温度且つ前記銅部材が溶融しない温度まで加熱する加熱装置と、
前記加熱装置内に不活性ガスまたは過熱蒸気を流入させるガス流入装置と、
前記加熱装置内の気体を排気する排気部と、
前記加熱装置から排出された前記被覆部材が投入され、前記被覆部材を冷却液で冷却する冷却装置と、
前記冷却装置から排出された前記被覆部材が投入され、前記被覆部材を液体中で攪拌し、前記被覆層同士を衝突させて前記被覆層を剥離する剥離装置と、
を有する被覆層除去装置。
A coating layer removing apparatus to which the coating layer removing method according to any one of claims 1 to 6 is applied,
A heating device for heating to a temperature at which the coating layer of the coating member is carbonized and a temperature at which the copper member does not melt;
A gas inflow device for flowing an inert gas or superheated steam into the heating device;
An exhaust section for exhausting the gas in the heating device;
A cooling device for charging the covering member discharged from the heating device and cooling the covering member with a coolant;
A peeling device for charging the covering member discharged from the cooling device, stirring the covering member in a liquid, causing the covering layers to collide with each other, and peeling the covering layer;
A coating layer removing apparatus.
前記加熱装置の内面に、突起部が設けられていることを特徴とする請求項11に記載の被覆層除去装置。   The coating layer removing device according to claim 11, wherein a protrusion is provided on an inner surface of the heating device. 前記突起部の先端に金属製構造物が設けられていることを特徴とする請求項12に記載の被覆層除去装置。   13. The coating layer removing apparatus according to claim 12, wherein a metal structure is provided at the tip of the protrusion. 前記加熱装置内に、予め加熱された金属体が配置されていることを特徴とする請求項11から請求項13までのいずれか1項に記載の被覆層除去装置。   The coating layer removing apparatus according to any one of claims 11 to 13, wherein a metal body heated in advance is disposed in the heating apparatus. 前記加熱装置内に、前記加熱装置内へ投入済で所定の温度まで加熱されている一部の前記銅部材を前記加熱装置内に滞留させるためのストッパーが設けられていることを特徴とする請求項11から請求項14までのいずれか1項に記載の被覆層除去装置。   A stopper for retaining a part of the copper member that has been charged into the heating device and heated to a predetermined temperature in the heating device is provided in the heating device. The coating layer removing apparatus according to any one of claims 11 to 14.
JP2011014274A 2010-01-26 2011-01-26 Method and apparatus for removing coating layer Pending JP2011174175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011014274A JP2011174175A (en) 2010-01-26 2011-01-26 Method and apparatus for removing coating layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010014055 2010-01-26
JP2010014055 2010-01-26
JP2011014274A JP2011174175A (en) 2010-01-26 2011-01-26 Method and apparatus for removing coating layer

Publications (1)

Publication Number Publication Date
JP2011174175A true JP2011174175A (en) 2011-09-08

Family

ID=44687283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011014274A Pending JP2011174175A (en) 2010-01-26 2011-01-26 Method and apparatus for removing coating layer

Country Status (1)

Country Link
JP (1) JP2011174175A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284009A (en) * 2019-06-27 2019-09-27 云南铜业股份有限公司西南铜业分公司 A kind of Copper Matte Converting method and apparatus
JP7417852B2 (en) 2018-10-19 2024-01-19 三菱マテリアル株式会社 How to treat covered wires

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143529A (en) * 1984-12-13 1986-07-01 Kobe Steel Ltd Method for regenerating scrap electric wire of copper
JPH06256863A (en) * 1993-03-05 1994-09-13 Asaka Riken Kogyo Kk Method for recovering metal from circuit board and device therefor
JP2000306444A (en) * 1999-04-23 2000-11-02 Nkk Corp Continuous processing equipment for resin-coated wire
JP2001275222A (en) * 2000-03-27 2001-10-05 Taga Seisakusho:Kk Wire insulator stripping method and apparatus
JP2009249665A (en) * 2008-04-03 2009-10-29 Nippon Magnetic Dressing Co Ltd Method for recovering valuable metals from discarded electric wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143529A (en) * 1984-12-13 1986-07-01 Kobe Steel Ltd Method for regenerating scrap electric wire of copper
JPH06256863A (en) * 1993-03-05 1994-09-13 Asaka Riken Kogyo Kk Method for recovering metal from circuit board and device therefor
JP2000306444A (en) * 1999-04-23 2000-11-02 Nkk Corp Continuous processing equipment for resin-coated wire
JP2001275222A (en) * 2000-03-27 2001-10-05 Taga Seisakusho:Kk Wire insulator stripping method and apparatus
JP2009249665A (en) * 2008-04-03 2009-10-29 Nippon Magnetic Dressing Co Ltd Method for recovering valuable metals from discarded electric wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417852B2 (en) 2018-10-19 2024-01-19 三菱マテリアル株式会社 How to treat covered wires
CN110284009A (en) * 2019-06-27 2019-09-27 云南铜业股份有限公司西南铜业分公司 A kind of Copper Matte Converting method and apparatus
CN110284009B (en) * 2019-06-27 2021-10-22 云南铜业股份有限公司西南铜业分公司 Copper matte converting method and equipment

Similar Documents

Publication Publication Date Title
US6523764B2 (en) Method for separating metallic from waste printed circuit boards, and dry distillation apparatus used for waste treatment
EP0694623A2 (en) Method for processing metallic waste
JP4734485B2 (en) Waste plastic processing apparatus and waste plastic processing method
JP2003503201A (en) Tire deterioration device and method
JP2018026279A (en) Method for recovery of valuables from wasted lithium ion battery, and method for preparing data base
JP2011174175A (en) Method and apparatus for removing coating layer
JP5169824B2 (en) Carbon nanohorn manufacturing apparatus and manufacturing method
EP0002664B1 (en) Metallic scrap-treatment process and apparatus therefor
FR2685548A1 (en) Method and device for reprocessing spent batteries of appliances
TW200406362A (en) Fabrication of heavy walled silica tubing
JP4745623B2 (en) Extraction processing method
WO2022172495A1 (en) Zinc recovery method
JP5958797B2 (en) Volatile substance removal apparatus and removal method
EP3146286A1 (en) High organic concurrent decoating kiln
JP2019005703A (en) Cooling apparatus of fly ash
JP4908914B2 (en) Processing equipment such as aluminum chips
JP6289167B2 (en) Method for producing activated carbon
JP4668358B2 (en) Induction heating type distillation furnace
JP2020143330A (en) Copper recovery apparatus and recovery method from copper-containing waste material, and heat resistant vessel
EP3990670A1 (en) Enhanced dross feedstock
JP6644065B2 (en) Method for reducing molten raw material and apparatus for performing this method
JP4663389B2 (en) Waste ash heating system for waste gasification and melting equipment
US5513207A (en) Melting furnace and method
JP5296040B2 (en) Waste ash heating system for waste gasification and melting equipment
JP2018083956A (en) Treatment device and treatment method for mercury-containing substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204