JP2011173952A - (meth)acrylate derivative composition and method for producing the same - Google Patents

(meth)acrylate derivative composition and method for producing the same Download PDF

Info

Publication number
JP2011173952A
JP2011173952A JP2010037235A JP2010037235A JP2011173952A JP 2011173952 A JP2011173952 A JP 2011173952A JP 2010037235 A JP2010037235 A JP 2010037235A JP 2010037235 A JP2010037235 A JP 2010037235A JP 2011173952 A JP2011173952 A JP 2011173952A
Authority
JP
Japan
Prior art keywords
meth
acrylate
reaction
acid
multibranched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010037235A
Other languages
Japanese (ja)
Other versions
JP5471579B2 (en
Inventor
Takashi Yasumura
隆志 安村
Chikaya Kato
哉也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2010037235A priority Critical patent/JP5471579B2/en
Publication of JP2011173952A publication Critical patent/JP2011173952A/en
Application granted granted Critical
Publication of JP5471579B2 publication Critical patent/JP5471579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multibranched (meth)acrylate composition that can be used without performing specific treatment, such as advanced filtration, after reaction, as well as a simple method for producing a multibranched (meth)acrylate. <P>SOLUTION: The method for producing a multibranched (meth)acrylate is provided, in which the multibranched (meth)acrylate is obtained by reaction of a multibranched polyether polyol with (meth)acrylic acid, wherein the multibranched polyether polyol is obtained by reaction of a hydroxyalkyloxetane with a monofunctional epoxy compound in the presence of a sulfonic acid-based esterification reaction catalyst. The method for producing a multibranched (meth)acrylate includes a process of treating the reaction liquid with a basic substance without performing a process of water washing and liquid separation operation for removing the sulfonic acid-based esterification reaction catalyst after the reaction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、スルホン酸系エステル化反応触媒の存在下に、多分岐(メタ)アクリレートを製造する方法に関する。また、本発明は、本製造方法によって得られる多分岐(メタ)アクリレート組成物に関する。 The present invention relates to a method for producing a multibranched (meth) acrylate in the presence of a sulfonic acid esterification reaction catalyst. Moreover, this invention relates to the multibranched (meth) acrylate composition obtained by this manufacturing method.

これまで、分岐樹脂の原料である多分岐ポリエーテルポリオールの製造について報告されている。例えば、特許文献1には、オキセタン化合物を熱カチオン重合させることにより得られるポリオールについて記載がある。具体的には、反応器にオキセタン化合物と熱カチオン開始剤の混合物を仕込み、加熱して反応させる方法、並びに反応器にオキセタン化合物と熱カチオン開始剤の混合物を仕込み、加熱して反応が開始した後に、連続的又は逐次的にオキセタン化合物と熱カチオン開始剤との混合物を滴下する方法等が挙げられている。
また、特許文献2には、ヒドロキシアルキルオキセタンと1官能性エポキシ化号物と開環反応させて得られる多分岐ポリエーテルポリオールであって、その分構造中に1級水酸基と2級水酸基とを有する多分基ポリエーテルポリオールが記載されている。
So far, the production of multi-branched polyether polyols, which are raw materials for branched resins, has been reported. For example, Patent Document 1 describes a polyol obtained by thermal cationic polymerization of an oxetane compound. Specifically, a method of charging a reactor with a mixture of an oxetane compound and a thermal cation initiator and heating to react, and a reactor with a mixture of an oxetane compound and a thermal cation initiator and heating to start the reaction Later, a method of dropping a mixture of an oxetane compound and a thermal cation initiator continuously or sequentially is mentioned.
Patent Document 2 discloses a multi-branched polyether polyol obtained by ring-opening reaction with a hydroxyalkyl oxetane and a monofunctional epoxidized compound, and a primary hydroxyl group and a secondary hydroxyl group are included in the structure. A possibly based polyether polyol is described.

上記多分岐ポリエーテルポリオールのアクリレート化合物は、UV硬化樹脂の分野では、低粘度、低収縮、高密着性、高硬化性を有することから、これらの特性を生かした用途開発が期待されているが、当該化合物及びその製造方法は、学術文献、特許等で散見されるものの、実用化が遅れている。その理由としては、原料の多分岐ポリエーテルポリオールの製造が困難であること、及び通常アクリルエステル化反応後の処理に水洗・分液・濾過等の操作が必要なことから製造コストが著しく高く、これらの問題が解決されていないことが挙げられる。 Since the acrylate compound of the above-mentioned multi-branched polyether polyol has low viscosity, low shrinkage, high adhesion, and high curability in the field of UV curable resin, application development utilizing these characteristics is expected. Although the compound and its production method are frequently found in academic literature, patents, etc., their practical application has been delayed. The reason for this is that the production cost is remarkably high because it is difficult to produce the raw material multi-branched polyether polyol, and usually operations such as water washing, liquid separation and filtration are required for the treatment after the acrylic esterification reaction. It is mentioned that these problems are not solved.

例えば、前記特許文献1には、ポリオールと(メタ)アクリル酸とのエステル化反応物が記載されており、エステル化反応は、常法に従えば良いことが記載されており、具体的には、有機溶媒中、酸触媒及びラジカル重合禁止剤の存在下に、ポリオールと(メタ)アクリル酸を反応させる方法が開示されている。酸触媒として好ましいものとしては、塩酸、臭化水素酸、硫酸及びリン酸等の無機酸、ベンゼンスルホン酸、p−トルエンスルホン酸、トリクロロ酢酸、シュウ酸及びギ酸等の有機酸又はそれらの塩、陽イオン交換樹脂等の固体酸、塩化亜鉛、塩化スズ、塩化第二鉄、塩化第二銅及び硫酸第二銅等のルイス酸、並びに活性白土等を挙げることができる。これらの中でも、硫酸、リン酸、p−トルエンスルホン酸等が挙げられている。 For example, Patent Document 1 describes an esterification reaction product of a polyol and (meth) acrylic acid, and describes that the esterification reaction may be performed according to a conventional method. A method of reacting a polyol and (meth) acrylic acid in an organic solvent in the presence of an acid catalyst and a radical polymerization inhibitor is disclosed. Preferred examples of the acid catalyst include inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid and phosphoric acid, organic acids such as benzenesulfonic acid, p-toluenesulfonic acid, trichloroacetic acid, oxalic acid and formic acid, or salts thereof. Examples thereof include solid acids such as cation exchange resins, Lewis acids such as zinc chloride, tin chloride, ferric chloride, cupric chloride and cupric sulfate, and activated clay. Among these, sulfuric acid, phosphoric acid, p-toluenesulfonic acid, etc. are mentioned.

また、エステル交換法による方法として、特許文献3には、スタノキサンを触媒として使用する方法が記載されているが、当該法では、反応終了後の生成物中からのスズの除去が問題となる。 Further, as a method based on the transesterification method, Patent Document 3 describes a method using stannoxane as a catalyst. However, in this method, removal of tin from the product after completion of the reaction becomes a problem.

しかしながら、上記文献に代表されるアクリル酸エステル化反応では、反応終了後に水洗・分液操作を行う必要があることから大量の廃液が発生すること、また、分液操作を行わずに、塩基性物質等で反応液を処理すると、アクリレート化合物中に酸触媒に由来する析出物が生成し次工程へそのまま移行することができず、珪藻土濾過等の新たな工程を必要とする等の問題点が解決されていない状況である。 However, in the acrylic esterification reaction represented by the above document, it is necessary to carry out water washing and liquid separation operation after the completion of the reaction, so that a large amount of waste liquid is generated, and basic operation is performed without performing liquid separation operation. When the reaction solution is treated with a substance or the like, a precipitate derived from the acid catalyst is generated in the acrylate compound and cannot be transferred to the next process as it is, and there is a problem that a new process such as diatomaceous earth filtration is required. The situation has not been resolved.

特開2003−335854号公報JP 2003-335854 A 特開2006−282698号公報JP 2006-282698 A 特開2004−190019号公報JP 2004-190019 A

上記背景技術を鑑み、本発明の課題は、簡便な多分岐(メタ)アクリレートを製造する方法を提供すると共に、反応終了後特段の高度濾過等の処理を行うことなく使用が可能な多分岐(メタ)アクリレート組成物を提供することにある。 In view of the above-described background art, an object of the present invention is to provide a method for producing a simple multibranched (meth) acrylate, and to be used without any special treatment such as high filtration after the reaction is completed ( It is to provide a (meth) acrylate composition.

本発明者らは、
スルホン酸系エステル化反応触媒の存在下、ヒドロキシアルキルオキセタンと1官能性エポキシ化合物とを反応させて得られる多分岐ポリエーテルポリオール(A)と(メタ)アクリル酸とを反応させて得られる多分岐(メタ)アクリレートの製造方法であって、
反応終了後、該スルホン酸系エステル化反応触媒を除去するための水洗・分液操作工程を行わずに反応液を塩基性物質で処理する工程を含むことを特徴とする多分岐(メタ)アクリレートの製造方法を提供することにより、上記課題を解決した。
The inventors have
Multi-branch obtained by reacting multi-branched polyether polyol (A) obtained by reacting hydroxyalkyl oxetane with monofunctional epoxy compound in the presence of sulfonic acid esterification reaction catalyst and (meth) acrylic acid A method for producing (meth) acrylate,
A multi-branched (meth) acrylate comprising a step of treating the reaction solution with a basic substance without performing a water washing / separation operation step for removing the sulfonic acid esterification reaction catalyst after completion of the reaction. The above-described problems have been solved by providing a manufacturing method.

本発明によれば、簡便な多分岐(メタ)アクリレートを製造する方法が提供可能となると共に、反応終了後特段の高度濾過等の処理を行うことなく使用が可能な多分岐(メタ)アクリレート組成物を提供するができる。 ADVANTAGE OF THE INVENTION According to this invention, while being able to provide the method of manufacturing a simple multibranched (meth) acrylate, the multibranched (meth) acrylate composition which can be used without performing the process of special high filtration after completion | finish of reaction, etc. You can offer things.

上記課題解決のため、本発明者は、スルホン酸系エステル化触媒の選択、及び反応の後処理法について詳細な検討を行った結果、
1)スルホン酸系エステル化触媒として、長鎖アルキル置換ベンゼンスルホン酸を用い、
2)反応の処理として、反応終了後に反応液を塩基性物質で処理する
ことにより、一気にこれらの問題を解決した。
In order to solve the above-mentioned problems, the present inventor conducted a detailed study on the selection of the sulfonic acid esterification catalyst and the post-treatment method of the reaction,
1) Using a long-chain alkyl-substituted benzene sulfonic acid as a sulfonic acid esterification catalyst,
2) As a reaction treatment, these problems were solved at once by treating the reaction solution with a basic substance after completion of the reaction.

即ち、本発明は、
1.スルホン酸系エステル化反応触媒の存在下、ヒドロキシアルキルオキセタンと1官能性エポキシ化合物とを反応させて得られる多分岐ポリエーテルポリオール(A)と(メタ)アクリル酸とを反応させて得られる多分岐(メタ)アクリレートの製造方法であって、
反応終了後、該スルホン酸系エステル化反応触媒を除去するための水洗・分液操作工程を行わずに、反応液を塩基性物質で処理する工程を含むことを特徴とする多分岐(メタ)アクリレートの製造方法、
2.スルホン酸系エステル化反応触媒が、置換基として炭素数8〜20のアルキル基を有する
ベンゼンスルホン酸、又はビニルスルホン酸である1.に記載の多分岐(メタ)アクリレー
トの製造方法。
3.置換基として炭素数8〜20のアルキル基を有するベンゼンスルホン酸が、ドデシルベンゼンスルホン酸である請求項2に記載の多分岐(メタ)アクリレートの製造方法、
4.塩基性物質が、アルカリ溶液である1.〜3.の何れかに記載の多分岐(メタ)アクリレートの製造方法、
5.1.〜4.の何れかに記載の製造方法により得られる多分岐(メタ)アクリレート、及びスルホン酸系触媒と塩基性物質とで形成される塩を含む重合性不飽和樹脂組成物、
6.更に、希釈溶剤、又は重合性単量体を含む5.に記載の重合性不飽和樹脂組成物、
を提供する。
That is, the present invention
1. Multi-branch obtained by reacting multi-branched polyether polyol (A) obtained by reacting hydroxyalkyl oxetane with monofunctional epoxy compound in the presence of sulfonic acid esterification reaction catalyst and (meth) acrylic acid A method for producing (meth) acrylate,
After completion of the reaction, the method comprises a step of treating the reaction solution with a basic substance without performing a water washing / separation operation step for removing the sulfonic acid esterification reaction catalyst. Acrylate production method,
2. 1. The sulfonic acid esterification reaction catalyst is benzenesulfonic acid or vinylsulfonic acid having an alkyl group having 8 to 20 carbon atoms as a substituent. The manufacturing method of the hyperbranched (meth) acrylate as described in 2.
3. The method for producing a multibranched (meth) acrylate according to claim 2, wherein the benzenesulfonic acid having an alkyl group having 8 to 20 carbon atoms as a substituent is dodecylbenzenesulfonic acid.
4). 1. The basic substance is an alkaline solution ~ 3. A method for producing a multibranched (meth) acrylate according to any one of
5.1. ~ 4. A polymerizable unsaturated resin composition comprising a hyperbranched (meth) acrylate obtained by the production method according to any one of the above and a salt formed from a sulfonic acid catalyst and a basic substance,
6). Further, it contains a diluting solvent or a polymerizable monomer. A polymerizable unsaturated resin composition according to claim 1,
I will provide a.

本発明に用いられるヒドロキシアルキルオキセタンと1官能性エポキシ化合物とを反応させて得られる多分岐ポリエーテルポリオールは、例えば特開2006−282698に記載の多分岐ポリエーテルポリオールを用いることができる。 As the multi-branched polyether polyol obtained by reacting the hydroxyalkyl oxetane and the monofunctional epoxy compound used in the present invention, for example, a multi-branched polyether polyol described in JP-A-2006-282698 can be used.

本発明の多分岐ポリエーテルポリオール(A)は、ヒドロキシアルキルオキセタンと、1官能性エポキシ化合物とを開環反応させて得られる多分岐ポリエーテルポリオールである。 The multibranched polyether polyol (A) of the present invention is a multibranched polyether polyol obtained by ring-opening reaction of a hydroxyalkyl oxetane and a monofunctional epoxy compound.

ここで、ヒドロキシアルキルオキセタンは、下記一般式(1)で表される構造を有するものが挙げられる。 Here, examples of the hydroxyalkyl oxetane include those having a structure represented by the following general formula (1).

Figure 2011173952
Figure 2011173952

ここで、一般式(1)中、Rは、メチレン基、エチレン基、若しくはプロピレン基であり、一方、Rは、水素原子、炭素原子数1〜8のアルキル基、炭素原子数1〜5のアルコキシアルキル基、又は炭素原子数1〜6のヒドロキシアルキル基を表す。また、炭素原子数1〜8のアルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、及び2−エチルヘキシル基が挙げられ、炭素原子数1〜5のアルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基が挙げられる。また、炭素原子数1〜3のヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基、及びヒドロキシプロピル基が挙げられる。 Here, in the general formula (1), R 1 is a methylene group, ethylene group, or propylene group, while R 2 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or 1 to 1 carbon atoms. 5 represents an alkoxyalkyl group or a hydroxyalkyl group having 1 to 6 carbon atoms. Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and a 2-ethylhexyl group. As the alkoxyalkyl group having 1 to 5 carbon atoms, Includes a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a methoxyethyl group, an ethoxyethyl group, and a propoxyethyl group. Moreover, as a C1-C3 hydroxyalkyl group, a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group are mentioned.

かかる一般式(1)で表されるヒドロキシアルキルオキセタンの中でも、Rがメチレン基であり、かつ、Rが炭素原子数1〜7のアルキル基である化合物、とりわけ3−ヒドロキシメチル−3−エチルオキセタン、及び3−ヒドロキシメチル−3−メチルオキセタンが好ましい。 Among the hydroxyalkyloxetanes represented by the general formula (1), compounds in which R 1 is a methylene group and R 2 is an alkyl group having 1 to 7 carbon atoms, particularly 3-hydroxymethyl-3- Ethyl oxetane and 3-hydroxymethyl-3-methyl oxetane are preferred.

次に、上記ヒドロキシアルキルオキセタンと開環反応させる1官能性エポキシ化合物は、オレフィンエポキサイド、アルキルグリシジルエーテル、アルキルグリシジルエステル等が挙げられる。 Next, examples of the monofunctional epoxy compound that undergoes a ring-opening reaction with the hydroxyalkyl oxetane include olefin epoxide, alkyl glycidyl ether, and alkyl glycidyl ester.

ここで、オレフィンエポキサイドは、具体的には、プロピレンオキサイド、1−ブテンオキサイド、1−ペンテンオキサイド、1−ヘキセンオキサイド、1,2−エポキシオクタン、1,2−エポキシドデカン、シクロヘキセンオキシド、シクロオクテンオキシド、シクロドデセンオキシド、スチレンオキシド、及び、フッ素原子数1〜18のフロロアルキルエポキシドが挙げられる。 Here, the olefin epoxide specifically includes propylene oxide, 1-butene oxide, 1-pentene oxide, 1-hexene oxide, 1,2-epoxyoctane, 1,2-epoxydodecane, cyclohexene oxide, cyclooctene oxide. , Cyclododecene oxide, styrene oxide, and fluoroalkyl epoxide having 1 to 18 fluorine atoms.

アルキルグリシジルエーテルは、メチルグリシジルエーテル、エチルグリシジルエーテル、n−プロピルグリシジルエーテル、i−プロピルグリシジルエーテル、n−ブチルグリシジルエーテル、i−ブチルグリシジルエーテル、n−ペンチルグリシジルエーテル、2−エチルヘキシル−グリシジルエーテル、ウンデシルグリシジルエーテル、ヘキサデシルグリシジルエーテル、アリールグリシジルエーテル、フェニルグリシジルエーテル、2−メチルフェニルグリシジルエーテル、4−t−ブチルフェニルグリシジルエーテル、4−ノニルフェニルグリシジルエーテル、4−メトキシフェニルグリシジルエーテル、及び、1〜18のフッ素原子数を有するフロロアルキルグリシジルエーテルが挙げられる。 Alkyl glycidyl ether is methyl glycidyl ether, ethyl glycidyl ether, n-propyl glycidyl ether, i-propyl glycidyl ether, n-butyl glycidyl ether, i-butyl glycidyl ether, n-pentyl glycidyl ether, 2-ethylhexyl-glycidyl ether, Undecyl glycidyl ether, hexadecyl glycidyl ether, aryl glycidyl ether, phenyl glycidyl ether, 2-methylphenyl glycidyl ether, 4-t-butylphenyl glycidyl ether, 4-nonylphenyl glycidyl ether, 4-methoxyphenyl glycidyl ether, and Examples thereof include fluoroalkyl glycidyl ether having 1 to 18 fluorine atoms.

アルキルグリシジルエステルは、グリシジルアセテート、グリシジルプロピオネート、グリシジルブチレート、グリシジルメタクリレート、及びグリシジルベンゾエートが挙げられる。 Alkyl glycidyl esters include glycidyl acetate, glycidyl propionate, glycidyl butyrate, glycidyl methacrylate, and glycidyl benzoate.

ここで、ヒドロキシアルキルオキセタンと、1官能性エポキシ化合物とを開環反応させる方法は、具体的には、以下の(方法1)〜(方法3)が挙げられる。 Here, specific examples of the method of ring-opening reaction of hydroxyalkyl oxetane and a monofunctional epoxy compound include the following (Method 1) to (Method 3).

(方法1)
方法1は、ヒドロキシアルキルオキセタンと、1官能性エポキシ化合物とを、モル基準で、(ヒドロキシアルキルオキセタン/1官能性エポキシ化合物)=1/1〜1/10、好ましくは1/1〜1/3となる割合で混合し、これらをパーオキサイドフリーの有機溶媒、例えば、ジエチルエーテル、ジ−i−プロピルエーテル、ジ−n−ブチルエーテル、ジ−i−ブチルエーテル、ジ−t−ブチルエーテル、t−アミルメチルエーテル、又はジオキソランで、原料成分/有機溶剤の質量比が1/1〜1/5、好ましくは1/1.5〜1/2.5となる割合で溶解する。
(Method 1)
Method 1 comprises hydroxyalkyl oxetane and a monofunctional epoxy compound, on a molar basis, (hydroxyalkyl oxetane / monofunctional epoxy compound) = 1/1 to 1/10, preferably 1/1 to 1/3. These are mixed in a ratio such that they are peroxide-free organic solvents such as diethyl ether, di-i-propyl ether, di-n-butyl ether, di-i-butyl ether, di-t-butyl ether, t-amyl methyl It is dissolved in ether or dioxolane at a ratio of the raw material component / organic solvent mass ratio of 1/1 to 1/5, preferably 1 / 1.5-1 to 2.5.

得られた溶液を−10℃〜−15℃まで攪拌しながら冷却、次いで、重合開始剤を単独で、或いは溶液状態で、0.1〜1時間、好ましくは0.3〜0.5時間かけて滴下する。ここで、重合開始剤は、原料モノマーの全質量に対して0.01〜1質量%、好ましくは0.75〜0.3質量%なる割合で使用できる。また、重合開始剤を溶液状態で使用する場合、当該溶液中の重合開始剤の濃度は、1〜90質量%、特に25〜50質量%であることが好ましい。ついで、この重合溶液を25℃になる迄攪拌し、次いで、リフラックスする温度まで加熱し、0.5〜3時間かけて原料成分を全て反応するまで反応を行う。原料モノマーの転化率は、GC、NMR、又はIRスペクトルによって確認することによって制御できる。 The resulting solution is cooled while stirring to -10 ° C to -15 ° C, and then the polymerization initiator alone or in the solution state is 0.1 to 1 hour, preferably 0.3 to 0.5 hour. And dripping. Here, the polymerization initiator can be used at a ratio of 0.01 to 1% by mass, preferably 0.75 to 0.3% by mass, based on the total mass of the raw material monomers. Moreover, when using a polymerization initiator in a solution state, it is preferable that the density | concentration of the polymerization initiator in the said solution is 1-90 mass%, especially 25-50 mass%. Next, the polymerization solution is stirred until it reaches 25 ° C., then heated to a refluxing temperature, and the reaction is carried out until all the raw material components are reacted over 0.5 to 3 hours. The conversion rate of the raw material monomer can be controlled by confirming with GC, NMR, or IR spectrum.

重合後、得られた前記多分岐ポリエーテルポリオール(A)は、前記重合開始剤と当量の水酸化アルカリ水溶液による攪拌、又は、前記重合開始剤と当量のナトリウムアルコキシドやカリウムアルコキシドの添加によって中和する。中和後、濾過し、溶媒で目的物を抽出後、減圧下に溶媒を留去し、目的とする多分岐ポリエーテルポリオール(A)を得ることができる。 After polymerization, the obtained multi-branched polyether polyol (A) is neutralized by stirring with an aqueous alkali hydroxide solution equivalent to the polymerization initiator, or by adding sodium alkoxide or potassium alkoxide equivalent to the polymerization initiator. To do. After neutralization, the mixture is filtered and the target product is extracted with a solvent, and then the solvent is distilled off under reduced pressure to obtain the target multi-branched polyether polyol (A).

(方法2)
方法2は、ヒドロキシアルキルオキセタンと、1官能性エポキシ化合物とを、モル基準で、(ヒドロキシアルキルオキセタン/1官能性エポキシ化合物)=1/1〜1/10、好ましくは1/1〜1/3となる割合で、70℃以上の沸点を有する炭化水素系溶媒中に溶解する。ここで、炭化水素系溶媒は、例えば、n−ヘプタン、i−オクタン、シクロヘキサンが挙げられ、とりわけ溶解性の点からシクロヘキサンが好ましい。また、原料モノマーと炭化水素系溶媒との比率は、前者:後者が1:1〜1:10、特に1:2.5〜1:3.5であることが好ましい。
(Method 2)
Method 2 comprises hydroxyalkyloxetane and monofunctional epoxy compound on a molar basis, (hydroxyalkyloxetane / monofunctional epoxy compound) = 1/1 to 1/10, preferably 1/1 to 1/3. It dissolves in a hydrocarbon solvent having a boiling point of 70 ° C. or higher. Here, examples of the hydrocarbon solvent include n-heptane, i-octane, and cyclohexane, and cyclohexane is particularly preferable from the viewpoint of solubility. The ratio of the raw material monomer to the hydrocarbon solvent is preferably 1: 1 to 1:10, particularly 1: 2.5 to 1: 3.5, the former: the latter.

この混合物の温度は、0〜25℃、好ましくは5〜15℃、特に好ましくは10〜15℃に保持され、次いで、攪拌下に原料モノマーの全量に対して0.01〜1モル%、特に0.05〜0.15モル%の重合開始剤を一度に加える。
重合開始剤の添加直後、系内は不均一系になって25〜40℃まで系内温度が上昇する。一旦、15〜25℃まで冷却した後、反応混合物を40〜70℃、好ましくは50〜60℃まで加熱して、1〜5時間、好ましくは2〜3時間の間、原料モノマーが全て転化するまで反応を行う。反応終了後は、方法1と同様にして中和、濾過し、次いで、溶媒を留去する。
The temperature of the mixture is maintained at 0 to 25 ° C., preferably 5 to 15 ° C., particularly preferably 10 to 15 ° C., and then 0.01 to 1 mol% with respect to the total amount of raw material monomers with stirring, in particular 0.05 to 0.15 mol% of polymerization initiator is added at once.
Immediately after the addition of the polymerization initiator, the system becomes heterogeneous and the system temperature rises to 25-40 ° C. Once cooled to 15-25 ° C., the reaction mixture is heated to 40-70 ° C., preferably 50-60 ° C., and all the raw material monomers are converted for 1-5 hours, preferably 2-3 hours. Perform the reaction until After completion of the reaction, the solution is neutralized and filtered in the same manner as in Method 1, and then the solvent is distilled off.

(方法3)
方法3は、原料モノマーの全量に対して0.01〜1モル%、特に0.05〜0.15モル%となる量の重合開始剤を、70℃以上の沸点を有する炭化水素系有機溶媒に溶解し、これを0〜25℃、好ましくは5〜15℃、特に好ましくは10〜15℃に保持する。ここで、炭化水素系溶媒は、例えば、n−ヘプタン、i−オクタン、シクロヘキサンが挙げられ、とりわけ溶解性の点からシクロヘキサンが好ましい。また、該炭化水素系溶媒中の重合開始剤濃度は、0.01〜1質量%、特に0.025〜0.25質量%であることが好ましい。
(Method 3)
Method 3 is a hydrocarbon-based organic solvent having a boiling point of 70 ° C. or higher, with a polymerization initiator in an amount of 0.01 to 1 mol%, particularly 0.05 to 0.15 mol%, based on the total amount of raw material monomers. And is maintained at 0 to 25 ° C, preferably 5 to 15 ° C, particularly preferably 10 to 15 ° C. Here, examples of the hydrocarbon solvent include n-heptane, i-octane, and cyclohexane, and cyclohexane is particularly preferable from the viewpoint of solubility. The polymerization initiator concentration in the hydrocarbon solvent is preferably 0.01 to 1% by mass, particularly preferably 0.025 to 0.25% by mass.

この溶液に対して、ヒドロキシアルキルオキセタンと、1官能性エポキシ化合物とを、モル基準で、(ヒドロキシアルキルオキセタン/1官能性エポキシ化合物)=1/1〜1/10、好ましくは1/1〜1/3となる割合で、混合した混合物を、系内の温度が20〜35℃になるように連続的に滴下する。滴下終了後も系内の温度が20〜25℃になるまで攪拌を行う。 With respect to this solution, hydroxyalkyl oxetane and monofunctional epoxy compound, on a molar basis, (hydroxyalkyl oxetane / 1 monofunctional epoxy compound) = 1/1 to 1/10, preferably 1/1 to 1 The mixed mixture is continuously dropped so that the temperature in the system becomes 20 to 35 ° C. at a ratio of / 3. Stirring is continued until the temperature in the system reaches 20 to 25 ° C. even after completion of the dropping.

次いで、反応混合物を40〜70℃、好ましくは50〜60℃まで加熱して、1〜5時間、好ましくは2〜3時間の間、原料モノマーが全て転化するまで反応を行う。原料モノマーの転化率は、GC、NMR、又はIRスペクトルによって確認することによって制御できる。反応終了後は、方法1と同様にして中和、濾過し、次いで、溶媒を留去する。 Next, the reaction mixture is heated to 40 to 70 ° C., preferably 50 to 60 ° C., and the reaction is performed for 1 to 5 hours, preferably 2 to 3 hours until all the raw material monomers are converted. The conversion rate of the raw material monomer can be controlled by confirming with GC, NMR, or IR spectrum. After completion of the reaction, the solution is neutralized and filtered in the same manner as in Method 1, and then the solvent is distilled off.

ここで用いる重合開始剤は、HSO、HCl、HBF、HPF、HSbF、HAsF、p−トルエンスルホン酸、トリフロロメタンスルホン酸などのブロンステッド酸、BF、AlCl、TiCl、SnClなどのルイス酸、トリアリールスルフォニウム−ヘキサフルオロホスフェート、トリアリールスルフォニウム−アンチモネート、ジアリールイオドニウム−ヘキサフルオロホスフェート、ジアリールイオドニウム−アンチモネート、N−ベンジルピリジニウム−ヘキサフルオロホスフェート、N−ベンジルピリジニウム−アンチモネートなどのオニウム塩化合物、トリフェニルカルボニウム−テトラフルオロボレート、トリフェニルカルボニウム−ヘキサフルオロホスフェート、トリフェニルカルボニウム−ヘキサフルオロアンチモネートなどのトリフェニルカルボニウム塩、p−トルエンスルホニルクロライド、メタンスルホニルクロライド、トリフルオロメタンスルホニルクロライド、p−トルエンスルホン酸無水物、メタンスルホン酸無水物、トリフルオロメタンスルホン酸無水物、p−トルエンスルホン酸メチルエステル、p−トルエンスルホン酸エチルエステル、メタンスルホン酸メチルエステル、トリフルオロメタンスルホン酸メチルエステル、トリフルオロメタンスルホン酸トリメチルシリルエステルなどのアルキル化剤が挙げられる。 The polymerization initiator used here, H 2 SO 4, HCl, HBF 4, HPF 6, HSbF 6, HAsF 6, p- toluenesulfonic acid, Bronsted acids such as trifluoromethanesulfonic acid, BF 3, AlCl 3, Lewis acids such as TiCl 4 , SnCl 4 , triarylsulfonium-hexafluorophosphate, triarylsulfonium-antimonate, diaryliodonium-hexafluorophosphate, diaryliodonium-antimonate, N-benzylpyridinium-hexa Onium salt compounds such as fluorophosphate, N-benzylpyridinium-antimonate, triphenylcarbonium-tetrafluoroborate, triphenylcarbonium-hexafluorophosphate, triphenylcarbonate Triphenylcarbonium salts such as nium-hexafluoroantimonate, p-toluenesulfonyl chloride, methanesulfonyl chloride, trifluoromethanesulfonyl chloride, p-toluenesulfonic acid anhydride, methanesulfonic acid anhydride, trifluoromethanesulfonic acid anhydride, Examples include alkylating agents such as p-toluenesulfonic acid methyl ester, p-toluenesulfonic acid ethyl ester, methanesulfonic acid methyl ester, trifluoromethanesulfonic acid methyl ester, and trifluoromethanesulfonic acid trimethylsilyl ester.

これらのなかでも特に、HPF、HSbF、HAsF、トリフェニルカルボニウム−ヘキサフルオロホスフェートが活性に優れる点から好ましく、特にHPF及びトリフェニルカルボニウム−ヘキサフルオロホスフェートが好ましい。 Among these, HPF 6 , HSbF 6 , HAsF 6 , and triphenylcarbonium-hexafluorophosphate are particularly preferable from the viewpoint of excellent activity, and HPF 6 and triphenylcarbonium-hexafluorophosphate are particularly preferable.

このようにして得られる多分岐ポリエーテルポリオール(A)は、その分子構造中に1級水酸基(H1)と2級水酸基(H2)とを有しており、かつ、前記多分岐ポリエーテルポリオール(A)の数平均分子量(Mn)が1,000〜3,500、水酸基価が150〜350mg・KOH/gであることを特徴としている。 The multibranched polyether polyol (A) thus obtained has a primary hydroxyl group (H1) and a secondary hydroxyl group (H2) in its molecular structure, and the multibranched polyether polyol ( The number average molecular weight (Mn) of A) is 1,000 to 3,500, and the hydroxyl value is 150 to 350 mg · KOH / g.

即ち、本発明の多分岐ポリエーテルポリオール(A)は、ヒドロキシアルキルオキセタンと、1官能性エポキシ化合物とを開環反応させて得られる多分岐構造を有することから該多分岐ポリエーテルポリオール(A)の慣性半径が小さくなり、更に、数平均分子量(Mn)が1,000〜3,500という低い値を有することから、従来になく流動性が極めて良好となり、ウレタン系樹脂組成物として作業性が飛躍的に改善される。また、水酸基価が150〜350mg・KOH/gであり、分子量が小さい割に多くの水酸基を有することから硬化時の架橋密度が高くなって、硬質の塗膜を形成できる。 That is, since the multi-branched polyether polyol (A) of the present invention has a multi-branched structure obtained by ring-opening reaction of a hydroxyalkyl oxetane and a monofunctional epoxy compound, the multi-branched polyether polyol (A) And the number average molecular weight (Mn) has a low value of 1,000 to 3,500, so that the fluidity is extremely good compared to the prior art, and workability as a urethane resin composition is improved. Dramatically improved. Moreover, since it has a hydroxyl value of 150 to 350 mg · KOH / g and a large number of hydroxyl groups for a small molecular weight, the crosslinking density at the time of curing is increased, and a hard coating film can be formed.

このような多分岐ポリエーテルポリオール(A)の具体的構造は、ヒドロキシアルキルオキセタン と、1官能性エポキシ化合物 とを開環反応させて得られる種々の構造が含まれる。具体的には、下記一般式(1) Specific structures of such a multi-branched polyether polyol (A) include various structures obtained by ring-opening reaction of a hydroxyalkyl oxetane and a monofunctional epoxy compound. Specifically, the following general formula (1)

Figure 2011173952
Figure 2011173952

(ここで、一般式(1)中、R及びRは、前記したものと同一である。)
で表されるヒドロキシアルキルオキセタンと、下記一般式(2)
(Here, in general formula (1), R 1 and R 2 are the same as described above.)
And a hydroxyalkyl oxetane represented by the following general formula (2)

Figure 2011173952
Figure 2011173952

(ここで、一般式(2)中、Rは前記1官能性エポキシ化合物のエポキシ基の他の構造を表す。)で表される1官能性エポキシ化合物を開環反応させた場合、下記の構造で表される繰り返し単位、及び、末端構造単位の中から適宜選択される構造単位で前記多分岐ポリエーテルポリオール(A)は構成されることになる。 (In the general formula (2), R 3 represents another structure of the epoxy group of the monofunctional epoxy compound.) When the monofunctional epoxy compound represented by the following formula is subjected to a ring-opening reaction, The multi-branched polyether polyol (A) is composed of a repeating unit represented by a structure and a structural unit appropriately selected from terminal structural units.

Figure 2011173952
Figure 2011173952

Figure 2011173952
Figure 2011173952

ここで、前記各構造単位において実線部分は当該構造単位内の単結合を示し、破線部分は、他の構造単位とエーテル結合を形成する単結合を示す。また、前記OR〜OR、OE1、及びOE2は、ヒドロキシアルキルオキセタンに起因する構造単位であって、OR〜ORは繰り返し単位を表し、OE1及びOE2は末端構造単位を表す。
また、ER1、EE1、及びEE2は、前記1官能性エポキシ化合物に起因する構造単位であって、ER1は繰り返し単位を表し、EE1及びEE2は末端構造単位を表す。
Here, in each of the structural units, a solid line portion indicates a single bond in the structural unit, and a broken line portion indicates a single bond that forms an ether bond with another structural unit. In addition, OR 1 to OR 3 , OE1 and OE2 are structural units derived from hydroxyalkyl oxetane, OR 1 to OR 3 represent repeating units, and OE1 and OE2 represent terminal structural units.
Further, ER1, EE1, and EE2 are structural units derived from the monofunctional epoxy compound, ER1 represents a repeating unit, and EE1 and EE2 represent terminal structural units.

本発明の多分岐ポリエーテルポリオール(A)は、前記OR〜OR及びER1から選択される繰り返し単位によって多分岐構造が形成され、末端に前記OE1、OE2、EE1、及びEE2から選択される末端構造単位を有するものである。なお、これらの繰り返し単位及び末端構造単位はランダムに存在していてもよいし、OR〜ORが分子構造の中心部分を構成し、末端に前記末端構造単位を有するものであってもよい。なお、本発明では2級水酸基(H2)が必須であることから、前記EE1は必須の構造単位として多分岐ポリエーテルポリオール(A)中に存在する。 In the multi-branched polyether polyol (A) of the present invention, a multi-branched structure is formed by the repeating unit selected from the OR 1 to OR 3 and ER1, and the terminal is selected from the OE1, OE2, EE1, and EE2. It has a terminal structural unit. These repeating units and terminal structural units may be present at random, or OR 1 to OR 3 may constitute the central part of the molecular structure and have the terminal structural unit at the terminal. . In the present invention, since the secondary hydroxyl group (H2) is essential, the EE1 is present in the multi-branched polyether polyol (A) as an essential structural unit.

本発明の多分岐(メタ)アクリレートは、上記多分岐ポリエーテルポリオール(A)に(メタ)アクリル酸を反応させて得ることができる。 The multibranched (meth) acrylate of the present invention can be obtained by reacting the above multibranched polyether polyol (A) with (meth) acrylic acid.

本明細書中において、(メタ)アクリル酸とはアクリル酸とメタアクリル酸を総称する用語であり、他の類似の表現についても同様である。
本発明の多分岐ポリエーテルポリオール(A)には、多官能オキセタン化合物のオキセタニル基とエポキシ基との付加反応により生じたヒドロキシメチル基が存在している。多分岐ポリエーテルポリオール(A)は、ヒドロキシメチル基の水酸基と(メタ)アクリル酸との縮合反応によって合成される。
In this specification, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid, and the same applies to other similar expressions.
In the multi-branched polyether polyol (A) of the present invention, there is a hydroxymethyl group generated by an addition reaction between an oxetanyl group and an epoxy group of a polyfunctional oxetane compound. The multi-branched polyether polyol (A) is synthesized by a condensation reaction between a hydroxyl group of a hydroxymethyl group and (meth) acrylic acid.

(メタ)アクリル酸と多分岐ポリエーテルポリオール(A)との反応は、例えば約−50〜150℃、好ましくは0〜100℃の温度範囲で行なうことができる。 The reaction between (meth) acrylic acid and the multi-branched polyether polyol (A) can be performed, for example, at a temperature range of about −50 to 150 ° C., preferably 0 to 100 ° C.

(メタ)アクリル酸の使用量は、目的により選定されるが、前記多分岐ポリエーテルポリオール(A)中のヒドロキシ基化学当量に対して、0.1〜2.0モルが好適である。0.1モルより少ないと導入される(メタ)アクリレート基の量が少なくなり、好ましくない。一方、2.0モルを越えて多量に使用すると、未反応の(メタ)アクリル酸が反応液中に多量残存し、減圧除去工程に長時間費やすなどの恐れがあるため好ましくない。より好ましくは、0.5〜1.2モルである。 Although the usage-amount of (meth) acrylic acid is selected by the objective, 0.1-2.0 mol is suitable with respect to the hydroxy group chemical equivalent in the said multibranched polyether polyol (A). When the amount is less than 0.1 mol, the amount of (meth) acrylate groups to be introduced decreases, which is not preferable. On the other hand, if it is used in a large amount exceeding 2.0 mol, a large amount of unreacted (meth) acrylic acid remains in the reaction solution, which is not preferred because it may take a long time for the reduced pressure removal step. More preferably, it is 0.5-1.2 mol.

前記反応は、有機溶媒の存在下、又は無溶媒下でも進行するが、反応時撹拌効率を改善するため有機溶媒の存在下で行なうことが好ましい。
使用できる有機溶媒としては、(メタ)アクリレートとの反応に影響を与えるものでなければ、特に制限はないが、好ましくは、炭化水素系有機溶媒、芳香族系有機溶媒、エーテル系有機溶剤を挙げることができる。更に、具体的には炭化水素系有機溶媒としては、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン等を挙げることができ、芳香族系有機溶媒としては、ベンゼン、トルエン、キシレン、エチルベンゼンを挙げることができ、エーテル系有機溶剤としては、ジエチルエーテル、ジイソプロピルエーテル、シクロペンチルメチールエーテル等を挙げることができる。
The reaction proceeds even in the presence of an organic solvent or in the absence of a solvent, but it is preferably performed in the presence of an organic solvent in order to improve the stirring efficiency during the reaction.
The organic solvent that can be used is not particularly limited as long as it does not affect the reaction with (meth) acrylate, and preferably includes a hydrocarbon organic solvent, an aromatic organic solvent, and an ether organic solvent. be able to. More specifically, examples of the hydrocarbon organic solvent include hexane, heptane, octane, cyclohexane, and methylcyclohexane. Examples of the aromatic organic solvent include benzene, toluene, xylene, and ethylbenzene. Examples of the ether organic solvent include diethyl ether, diisopropyl ether, cyclopentyl methyl ether and the like.

反応温度は、使用されるエステル化反応触媒、有機溶媒によって異なるが、通常−20℃〜150℃の温度を挙げることができ、反応時間は、通常1〜48時間を挙げることができる。
より好ましい温度は、50〜100℃である。
Although reaction temperature changes with the esterification reaction catalyst and organic solvent to be used, the temperature of -20 degreeC-150 degreeC can be mentioned normally, and reaction time can mention normally 1 to 48 hours.
A more preferable temperature is 50 to 100 ° C.

本発明では、(メタ)アクリレートとの反応で使用されるエステル化反応触媒に特徴を有する。本発明の多分岐(メタ)アクリレートの製造では、通常のエステル化反応触媒を用いることができる。このようなエステル化反応触媒としては、HSO、HCl、HBF、HPF、HSbF、HAsF、p−トルエンスルホン酸、トリフロロメタンスルホン酸などのブロンステッド酸、BF、AlCl、TiCl、SnClなどのルイス酸等を挙げることができるが、本発明では、特にスルホン酸系エステル化反応触媒が好ましい。このスルホン酸系触媒の使用量としては、(メタ)アクリル酸と多分岐ポリエーテルポリオール(A)の合計仕込み量に対して通常0.01〜20重量%の範囲であり、より好ましくは0.1〜5重量%である。 In this invention, it has the characteristics in the esterification reaction catalyst used by reaction with (meth) acrylate. In the production of the multibranched (meth) acrylate of the present invention, a normal esterification reaction catalyst can be used. Such as the esterification catalyst, H 2 SO 4, HCl, HBF 4, HPF 6, HSbF 6, HAsF 6, p- toluenesulfonic acid, Bronsted acids such as trifluoromethanesulfonic acid, BF 3, AlCl 3 , Lewis acids such as TiCl 4 and SnCl 4 can be mentioned. In the present invention, a sulfonic acid esterification catalyst is particularly preferable. The amount of the sulfonic acid catalyst used is usually in the range of 0.01 to 20% by weight with respect to the total charged amount of (meth) acrylic acid and the multi-branched polyether polyol (A), more preferably 0.8. 1 to 5% by weight.

好ましい触媒として、より具体的には、置換基として炭素数8〜20のアルキル基を有するベンゼンスルホン酸を挙げることができる。このようなベンゼンスルホン酸としては、オクチルベンゼンスルホン酸、デシルベンゼンスルホン酸、ウンデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、トリデシルベンゼンスルホン酸、テトラデシルベンゼンスルホン酸等を挙げることができ、工業的に入手可能なドデシルベンゼンスルホン酸が特に好ましい。
ドデシルベンゼンスルホン酸は、エステル化反応後の反応液を塩基性物質で処理する工程を
経て得られる反応後の組成物に析出物を生じないことを確認している。
More preferable examples of the catalyst include benzenesulfonic acid having an alkyl group having 8 to 20 carbon atoms as a substituent. Examples of such benzenesulfonic acid include octylbenzenesulfonic acid, decylbenzenesulfonic acid, undecylbenzenesulfonic acid, dodecylbenzenesulfonic acid, tridecylbenzenesulfonic acid, tetradecylbenzenesulfonic acid, and the like. Particularly preferred is dodecylbenzenesulfonic acid available in
It has been confirmed that dodecylbenzenesulfonic acid does not produce precipitates in the composition after the reaction obtained through the step of treating the reaction solution after the esterification reaction with a basic substance.

また、同様に反応後の組成物に析出物を生じないことからビニルスルホン酸を好適な触媒として挙げることができる。
本発明では、生成物である多分岐(メタ)アクリレート組成物を含む重合性不飽和樹脂組成物を提供するが、各種のスルホン酸系エステル化反応触媒の検討を行い、上記課題を解決できる触媒の種類を多数検討を行った後になしえたもので、特に長鎖アルキルベンゼンスルホン酸、或いはビニルスルホン酸を用いた場合に、上記課題の解決が可能であることを見出したことによる。
Similarly, since a precipitate is not generated in the composition after the reaction, vinyl sulfonic acid can be mentioned as a suitable catalyst.
In the present invention, a polymerizable unsaturated resin composition containing a multibranched (meth) acrylate composition as a product is provided. However, various sulfonic acid esterification catalysts are studied and the above-mentioned problems can be solved. This was achieved after a number of studies were conducted, and it was found that the above problems could be solved particularly when long-chain alkylbenzene sulfonic acid or vinyl sulfonic acid was used.

また、前記反応においては、(メタ)アクリレートの重合性二重結合の重合によるゲル化を防止する目的で、空気を吹き込んだり、重合禁止剤を加えてもよい。 In the reaction, air may be blown or a polymerization inhibitor may be added for the purpose of preventing gelation due to polymerization of the polymerizable double bond of (meth) acrylate.

重合禁止剤の例としては、メトキノン、ハイドロキノン、トルハイドロキノン、メトキシフェノール、フェノチアジン、トリフェニルアンチモン、塩化銅、4-ヒドロキシ-2,2,6,6−テトラメチルピペリジン1-オキシル等の通常公知の重合禁止剤が挙げられる。 Examples of polymerization inhibitors include commonly known compounds such as methoquinone, hydroquinone, toluhydroquinone, methoxyphenol, phenothiazine, triphenylantimony, copper chloride, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl. A polymerization inhibitor is mentioned.

本発明のエステル化反応では、反応終了後に塩基性物質で反応液を処理する工程を有する。
エステル化反応では、スルホン酸系エステル化触媒の除去方法として、反応液に水を添加し、水洗・分液操作を行うことによりスルホン酸系エステル化触媒を水層への除去を行うことが一般的である。しかしながら、本発明の多分岐(メタ)アクリレートの製造において、この水洗・
分液操作を行うと、分液が不可能か、或いは辛うじて分液されたとしても、有機層及び水層に強い濁りが生じ、生成物である多分岐(メタ)アクリレートの分離・精製工程が別途必要になる欠点がある。
そこで、本発明では、水洗・分液操作を行わずに塩基性物質で反応液を処理する工程を有する。
The esterification reaction of the present invention includes a step of treating the reaction solution with a basic substance after completion of the reaction.
In the esterification reaction, as a method for removing the sulfonic acid esterification catalyst, it is common to remove the sulfonic acid esterification catalyst into the aqueous layer by adding water to the reaction solution, washing with water and performing a liquid separation operation. Is. However, in the production of the multibranched (meth) acrylate of the present invention,
Even if the separation operation is impossible, or even if the separation is difficult, strong turbidity occurs in the organic layer and the aqueous layer, and the separation and purification process of the product multi-branched (meth) acrylate is performed. There is a disadvantage that is required separately.
Therefore, the present invention includes a step of treating the reaction solution with a basic substance without performing washing and liquid separation operations.

本発明で用いられる塩基性物質は、使用されたスルホン酸系エステル化触媒を中和するものであれば特に制限はないが、アルカリ溶液(アルコール性、又は水性)が好ましい。アルカリ水溶液が特に好ましい。
アルカリ水溶液としては、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化リチウム等を挙げることができ、水溶液濃度に限定はないが、使用する水が少ない方が好ましく、例えば、20〜50%の濃度の水溶液を挙げることができる。本アルカリ水溶液は、エステル化反応終了後に反応液に添加を行えばよい。このアルカリ水溶液の添加量は、目的に応じて適宜選択されるが、少なくともスルホン酸系触媒を中和するのに必要な量のアルカリ化合物を添加することが好ましい。
The basic substance used in the present invention is not particularly limited as long as it neutralizes the sulfonic acid esterification catalyst used, but an alkaline solution (alcoholic or aqueous) is preferable. An aqueous alkali solution is particularly preferred.
Examples of the alkaline aqueous solution include a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, and lithium hydroxide. The concentration of the aqueous solution is not limited, but less water is preferably used, for example, 20 to 50%. An aqueous solution having a concentration of The alkaline aqueous solution may be added to the reaction solution after completion of the esterification reaction. The addition amount of the alkaline aqueous solution is appropriately selected according to the purpose, but it is preferable to add at least an alkali compound necessary for neutralizing the sulfonic acid catalyst.

アルカリ水溶液の添加後は、反応系に減圧装置を接続し、徐々に減圧度を上げながら系内の溶媒及び残存する(メタ)アクリル酸、微量の水の除去工程を行えばよい。この工程での温度は、通常−20℃〜150℃の温度を挙げることができ、好ましくは0〜100℃の温度範囲で行なう。
こうして、本発明で目的とする多分岐(メタ)アクリレートを含む重合性不飽和樹脂組成物を得ることができ、本多分岐(メタ)アクリレートは、更に希釈溶剤、又は重合性不飽和単量体を含んでよい。
After the addition of the aqueous alkali solution, a pressure reducing device is connected to the reaction system, and a step of removing the solvent, remaining (meth) acrylic acid, and a trace amount of water in the system may be performed while gradually increasing the degree of pressure reduction. As for the temperature in this step, a temperature of −20 ° C. to 150 ° C. can be mentioned normally, and preferably in the temperature range of 0 to 100 ° C.
In this way, the polymerizable unsaturated resin composition containing the multibranched (meth) acrylate aimed at in the present invention can be obtained. The multibranched (meth) acrylate is further diluted with a diluent solvent or a polymerizable unsaturated monomer. May be included.

用いることのできる希釈溶剤としては、重合性不飽和樹脂組成物と混和可能な有機溶剤を挙げることができ、例えば、炭化水素系有機溶媒、芳香族系有機溶媒、エーテル系有機溶剤、ケトン系有機溶剤、エステル系有機溶剤を挙げることができる。更に、具体的には炭化水素系有機溶媒としては、ヘキサン、ヘプタン、オクタン、シクロヘキサン等を挙げることができ、芳香族系有機溶媒としては、トルエン、キシレン、エチルベンゼンを挙げることができ、エーテル系有機溶剤としては、テトラヒドロフラン、ジイソプロピルエーテル等を挙げることができ、ケトン系有機溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等を挙げることができ、エステル系有機溶剤としては、酢酸エチル、酢酸ブチル等を挙げることができ、用途に応じて適宜選択される。 Examples of the diluting solvent that can be used include organic solvents that are miscible with the polymerizable unsaturated resin composition, such as hydrocarbon-based organic solvents, aromatic-based organic solvents, ether-based organic solvents, and ketone-based organic solvents. A solvent and an ester organic solvent can be mentioned. More specifically, examples of the hydrocarbon-based organic solvent include hexane, heptane, octane, and cyclohexane. Examples of the aromatic-based organic solvent include toluene, xylene, and ethylbenzene. Examples of the solvent include tetrahydrofuran and diisopropyl ether. Examples of the ketone organic solvent include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of the ester organic solvent include ethyl acetate and butyl acetate. And can be appropriately selected depending on the application.

また、本発明の重合性不飽和樹脂組成物は、重合性不飽和単量体を含んでよく、このような重合性不飽和単量体としては、通常公知の化合物を挙げることができ、例えば、芳香族ビニル単量体、(メタ)アクリレート、アリル化合物、カルボン酸ビニルエステル、ビニルエーテル、マレイミド化合物等挙げることができる。更に、具体的には芳香族ビニル単量体としては、スチレン、ビニルトルエン、t−ブチルスチレン、ジビニルベンゼン等を挙げることができ、(メタ)アクリレートとしては、メチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなどの単官能(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性(メタ)アクリレートなどの多官能(メタ)アクリレートが挙げられる。アリル化合物としては、ジアリルフタレート、ジエチレングリコールビスアリルカーボネート等が挙げられ、カルボン酸ビニルエステルとしては、酢酸ビニル、アジピン酸ジビニル等が挙げられ、ビニルエーテルとしては、シクロヘキシルビニルエーテル、4−ヒドロキシブチルビニルエーテル、トリエチレングリコールジビニルエーテル等が挙げられ、マレイミド化合物等としては、シクロヘキシルマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド等挙げられる。その他の重合性不飽和単量体として、ビニルピロリドン、ビニルカプロラクタム、α−メチレン−γ−ブチロラクトン等も挙げられ、用途に応じて適宜選択される。 Moreover, the polymerizable unsaturated resin composition of the present invention may contain a polymerizable unsaturated monomer, and examples of such polymerizable unsaturated monomer include usually known compounds. , Aromatic vinyl monomers, (meth) acrylates, allyl compounds, carboxylic acid vinyl esters, vinyl ethers, maleimide compounds, and the like. More specifically, examples of the aromatic vinyl monomer include styrene, vinyl toluene, t-butyl styrene, divinyl benzene, and the like. Examples of the (meth) acrylate include methyl (meth) acrylate, phenoxyethyl ( Examples thereof include monofunctional (meth) acrylates such as (meth) acrylate, polyfunctional (meth) acrylates such as pentaerythritol tetra (meth) acrylate, and trimethylolpropane ethylene oxide-modified (meth) acrylate. Examples of the allyl compound include diallyl phthalate and diethylene glycol bisallyl carbonate. Examples of the carboxylic acid vinyl ester include vinyl acetate and divinyl adipate. Examples of the vinyl ether include cyclohexyl vinyl ether, 4-hydroxybutyl vinyl ether, and triethylene. Examples of the maleimide compound include cyclohexyl maleimide and bisphenol A diphenyl ether bismaleimide. Other polymerizable unsaturated monomers include vinyl pyrrolidone, vinyl caprolactam, α-methylene-γ-butyrolactone, and the like, which are appropriately selected depending on the application.

また、本発明の多分岐(メタ)アクリレートは、多分岐構造であるため、同じ分子量の線状ポリマーと比較すると、分子同士の絡み合いがなくなるため、種々の溶媒に対する高い溶解性を示し、また溶液粘度を低下できる。 In addition, since the multibranched (meth) acrylate of the present invention has a multibranched structure, compared with a linear polymer having the same molecular weight, there is no entanglement between molecules, so that it exhibits high solubility in various solvents, and a solution Viscosity can be reduced.

更に、本発明の多分岐(メタ)アクリレートの1種又は2種以上の混合物に、重合開始剤として光ラジカル重合開始剤又は熱ラジカル重合開始剤を混合することにより、光硬化性又は熱硬化性の重合性不飽和樹脂組成物が得られる。 Furthermore, by mixing a photoradical polymerization initiator or a thermal radical polymerization initiator as a polymerization initiator into one or a mixture of two or more of the multi-branched (meth) acrylates of the present invention, photocurability or thermosetting. A polymerizable unsaturated resin composition is obtained.

前記重合開始剤として用いられる光ラジカル重合開始剤としては、活性エネルギー線の照射によりラジカルを発生する公知の化合物が使用可能であり、その具体例としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル等のベンゾインとそのアルキルエーテル類;アセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、4−(1−t−ブチルジオキシ−1−メチルエチル)アセトフェノン等のアセトフェノン類;2−メチルアントラキノン、2−アミルアントラキノン、2−t−ブチルアントラキノン、1−クロロアントラキノン等のアントラキノン類;2,4−ジメチルチオキサントン、2,4−ジイソプロピルチオキサントン、2−クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4−(1−t−ブチルジオキシ−1−メチルエチル)ベンゾフェノン、3,3’,4,4’−テトラキス(t−ブチルジオキシカルボニル)ベンゾフェノン等のベンゾフェノン類;2−メチルチオ−1−[4−(メチルチオ)フェニル]−2−モルホリノ−プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタン−1−オン等のアミノアセトフェノン類;2,4,6−トリメチルベンゾイルホスフィンオキシド等のアルキルホスフィン類;9−フェニルアクリジン等のアクリジン類等が挙げられる。これらの光ラジカル重合開始剤は、単独で又は2種以上を組み合わせて用いることができる。 As the radical photopolymerization initiator used as the polymerization initiator, known compounds that generate radicals upon irradiation with active energy rays can be used. Specific examples thereof include benzoin, benzoin methyl ether, benzoin ethyl ether, and the like. Benzoin and alkyl ethers thereof; acetophenones such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 4- (1-t-butyldioxy-1-methylethyl) acetophenone; 2-methylanthraquinone, 2-amylanthraquinone Anthraquinones such as 2-t-butylanthraquinone and 1-chloroanthraquinone; thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone and 2-chlorothioxanthone; acetophenone di Ketals such as til ketal and benzyldimethyl ketal; benzophenone, 4- (1-t-butyldioxy-1-methylethyl) benzophenone, 3,3 ′, 4,4′-tetrakis (t-butyldioxycarbonyl) benzophenone, etc. Benzophenones; 2-methylthio-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane-1- Aminoacetophenones such as ON; alkyl phosphines such as 2,4,6-trimethylbenzoylphosphine oxide; acridines such as 9-phenylacridine and the like. These radical photopolymerization initiators can be used alone or in combination of two or more.

これらの光ラジカル重合開始剤の配合量は、重合性不飽和基含有多分岐化合物100質量部当り0.1〜30質量部の割合が好ましい。光ラジカル重合開始剤の配合量が上記範囲よりも少ない場合、活性エネルギー線の照射を行なっても硬化しないか、又は照射時間を増やす必要があり、適切な塗膜物性が得られ難くなる。一方、上記範囲よりも多量に光ラジカル重合開始剤を添加しても、硬化性に変化は無く、物性的、経済的に好ましくない。 The amount of these radical photopolymerization initiators is preferably 0.1 to 30 parts by mass per 100 parts by mass of the polymerizable unsaturated group-containing multibranched compound. When the amount of the radical photopolymerization initiator is less than the above range, it does not cure even when active energy rays are irradiated, or it is necessary to increase the irradiation time, making it difficult to obtain appropriate coating properties. On the other hand, even if a radical photopolymerization initiator is added in a larger amount than the above range, the curability does not change, which is not preferable in terms of physical properties and economically.

本発明の硬化性組成物又は光硬化性・熱硬化性組成物においては、活性エネルギー線による硬化を促進させるために、硬化促進剤又は増感剤を上記のような光ラジカル重合開始剤と併用してもよい。 In the curable composition or photocurable / thermosetting composition of the present invention, a curing accelerator or a sensitizer is used in combination with the above-mentioned photo radical polymerization initiator in order to promote curing by active energy rays. May be.

硬化促進剤としては、トリエチルアミン、トリエタノールアミン、2−ジメチルアミノエタノール、N,N−ジメチルアミノ安息香酸エチルエステル、N,N−ジメチルアミノ安息香酸イソアミルエステル、ペンチル−4−ジメチルアミノベンゾエート等の三級アミン類;β−チオジグリコール等のチオエーテル類等が挙げられる。
増感剤としては、(ケト)クマリン、チオキサンテン等の増感色素類;及びシアニン、ローダミン、サフラニン、マラカイトグリーン、メチレンブルー等の色素のアルキルホウ酸塩等が挙げられる。
Examples of the curing accelerator include triethylamine, triethanolamine, 2-dimethylaminoethanol, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, and pentyl-4-dimethylaminobenzoate. Secondary amines; and thioethers such as β-thiodiglycol.
Examples of the sensitizer include sensitizing dyes such as (keto) coumarin and thioxanthene; and alkyl borates of dyes such as cyanine, rhodamine, safranine, malachite green, and methylene blue.

これらの硬化促進剤又は増感剤は、それぞれ単独で又は2種以上を組み合わせて用いることができる。その使用量は、重合性不飽和基含有多分岐化合物100質量部当り0.1〜10質量部の割合が好ましい。 These curing accelerators or sensitizers can be used alone or in combination of two or more. The amount used is preferably 0.1 to 10 parts by mass per 100 parts by mass of the polymerizable unsaturated group-containing multibranched compound.

前記重合開始剤として用いられる熱ラジカル重合開始剤としては、ベンゾイルパーオキサイド、アセチルパーオキサイド、メチルエチルケトンパーオキサイド、ラウロイルパーオキサイド、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルヒドロパーオキサイド、クメンヒドロパーオキサイド等の有機過酸化物;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−2−メチルブチロニトリル、2,2’−アゾビス−2,4−ジバレロニトリル、1,1’−アゾビス(1−アセトキシ−1−フェニルエタン)、1’−アゾビス−1−シクロヘキサンカルボニトリル、ジメチル−2,2’−アゾビスイソブチレイト、4,4’−アゾビス−4−シアノバリックアシツド、2−メチル−2,2’−アゾビスプロパンニトリル等のアゾ系開始剤等が挙げられ、より好ましくはノンシアン、ノンハロゲンタイプの1,1’−アゾビス(1−アセトキシ−1−フェニルエタン)が挙げられる。 Examples of the thermal radical polymerization initiator used as the polymerization initiator include benzoyl peroxide, acetyl peroxide, methyl ethyl ketone peroxide, lauroyl peroxide, dicumyl peroxide, di-t-butyl peroxide, and t-butyl hydroperoxide. , Organic peroxides such as cumene hydroperoxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis-2-methylbutyronitrile, 2,2′-azobis-2,4-di Valeronitrile, 1,1′-azobis (1-acetoxy-1-phenylethane), 1′-azobis-1-cyclohexanecarbonitrile, dimethyl-2,2′-azobisisobutyrate, 4,4′-azobis -4-Cyanobaric acid, 2-methyl-2,2'-azobispropaprop Azo initiators such as nitrile and the like, and more preferably non-cyan, halogen-free 1,1'-azobis (1-acetoxy-1-phenylethane) and the like.

熱ラジカル重合開始剤は、重合性不飽和基含有多分岐化合物100質量部当り好ましくは0.1〜30質量部、より好ましくは0.5〜10質量部の割合で用いられる。 The thermal radical polymerization initiator is preferably used in a proportion of 0.1 to 30 parts by mass, more preferably 0.5 to 10 parts by mass per 100 parts by mass of the polymerizable unsaturated group-containing multibranched compound.

また、熱ラジカル重合開始剤として有機過酸化物のうち硬化速度の小さいものを用いる場合には、トリブチルアミン、トリエチルアミン、ジメチル−p−トルイジン、ジメチルアニリン、トリエタノールアミン、ジエタノールアミン等の三級アミン、又はナフテン酸コバルト、オクトエ酸コバルト、ナフテン酸マンガン等の金属石鹸を促進剤として用いることができる。 In addition, when using an organic peroxide having a low curing rate as a thermal radical polymerization initiator, a tertiary amine such as tributylamine, triethylamine, dimethyl-p-toluidine, dimethylaniline, triethanolamine, diethanolamine, Alternatively, a metal soap such as cobalt naphthenate, cobalt octoate, or manganese naphthenate can be used as the accelerator.

本発明の硬化性樹脂組成物は熱硬化性成分を含むことができる。熱硬化性成分としては、1分子中に少なくとも2つ以上のオキシラン基又はオキセタニル基を有する多官能エポキシ化合物又はオキセタン化合物を好適に用いることができる。 The curable resin composition of the present invention can contain a thermosetting component. As the thermosetting component, a polyfunctional epoxy compound or oxetane compound having at least two oxirane groups or oxetanyl groups in one molecule can be suitably used.

多官能エポキシ化合物としては、例えば、ノボラック型エポキシ樹脂(例えば、フェノール、クレゾール、ハロゲン化フェノール、アルキルフェノール等のフェノール類とホルムアルデヒドを酸触媒下で反応させて得られるノボラック類に、エピクロルヒドリン又はメチルエピクロルヒドリンを反応させて得られるものであり、市販品としては日本化薬(株)製のEOCN−103、EOCN−104S、EOCN−1020、EOCN−1027、EPPN−201、BREN−S;ダウ・ケミカル社製のDEN−431、DEN−438;DIC(株)製のN−730、N−770、N−865、N−665、N−673、N−695、VH−4150等)、ビスフェノールA型エポキシ樹脂(例えば、ビスフェノール、ビスフェノール、ビスフェノール、テトラブロモビスフェノール等のビスフェノール類にエピクロルヒドリン又はメチルエピクロルヒドリンを反応させて得られるものであり、市販品としては、油化シェルエポキシ(株)製のエピコート1004、エピコート1002;ダウ・ケミカル社製のDER−330、DER−337等)、トリスフェノールメタン型エポキシ樹脂(例えば、トリスフェノールメタン、トリスクレゾールメタン等とエピクロルヒドリン又はメチルエピクロルヒドリンを反応させて得られるものであり、市販品としては、日本化薬(株)製のEPPN−501、EPPN−502等)、トリス(2,3−エポキシプロピル)イソシアヌレート、ビフェノールジグリシジルエーテル、その他脂環式エポキシ樹脂、アミノ基含有エポキシ樹脂、共重合型エポキシ樹脂、カルド型エポキシ樹脂、カリックスアレーン型エポキシ樹脂等公知慣用のエポキシ樹脂を、単独で又は2種以上を組み合わせて用いることができる。 Examples of the polyfunctional epoxy compound include novolak-type epoxy resins (for example, novolaks obtained by reacting phenols such as phenol, cresol, halogenated phenol, alkylphenol and formaldehyde in the presence of an acid catalyst with epichlorohydrin or methyl epichlorohydrin. It is obtained by reaction, and commercially available products include EOCN-103, EOCN-104S, EOCN-1020, EOCN-1027, EPPN-201, BREN-S manufactured by Nippon Kayaku Co., Ltd .; manufactured by Dow Chemical DEN-431, DEN-438; DIC Corporation N-730, N-770, N-865, N-665, N-673, N-695, VH-4150, etc.), bisphenol A type epoxy resin (For example, bisphenol, bisphenol It is obtained by reacting bisphenols such as bisphenol and tetrabromobisphenol with epichlorohydrin or methyl epichlorohydrin, and commercially available products include Epicoat 1004 and Epicoat 1002 manufactured by Yuka Shell Epoxy Co., Ltd .; manufactured by Dow Chemical Co., Ltd. DER-330, DER-337, etc.), trisphenol methane type epoxy resin (for example, trisphenol methane, triskresol methane, etc., and epichlorohydrin or methyl epichlorohydrin are obtained. EPPN-501, EPPN-502, etc.), tris (2,3-epoxypropyl) isocyanurate, biphenol diglycidyl ether, other alicyclic epoxy resins, amino group-containing epoxy trees , Copolymerization type epoxy resin, cardo type epoxy resin, a calixarene type epoxy resins conventionally known epoxy resins may be used alone or in combination of two or more.

本発明の重合性不飽和基含有多分岐化合物は、種々の分野において樹脂添加剤として有利に用いることができる。例えば、ポリスチレン樹脂、アクリル樹脂等の分子量調節剤、ポリオレフィン樹脂、ブタジエンゴム等の架橋剤等である。また、光硬化性成分又は熱硬化性成分として有利に用いることができる。得られた硬化物は種々の分野に適用することができ、例えば木工、プラスチック、鋼板用塗料、UV硬化型インキ、感光性樹脂凸版、光硬化接着剤、嫌気性接着剤、コンクリート用ランニング剤、パテ等の空隙補修剤、FRP成形品、押し出し樹脂成形品、フイルム、発泡樹脂成形品等多くの用途に利用可能である。 The polymerizable unsaturated group-containing hyperbranched compound of the present invention can be advantageously used as a resin additive in various fields. Examples thereof include molecular weight regulators such as polystyrene resins and acrylic resins, and crosslinking agents such as polyolefin resins and butadiene rubber. Moreover, it can be advantageously used as a photocurable component or a thermosetting component. The obtained cured product can be applied to various fields, such as woodwork, plastic, steel plate paint, UV curable ink, photosensitive resin letterpress, photocuring adhesive, anaerobic adhesive, concrete running agent, It can be used for various applications such as void repairing agents such as putty, FRP molded products, extruded resin molded products, films, and foamed resin molded products.

(製造例1)<多分岐ポリエーテルポリオール(A)の合成>
窒素、空気リフラックスコンデンサー、マグネット式撹拌棒、温度計を具備した1000mLの3つ口フラスコ中で、三フッ化ホウ素ジエチルエーテル錯体1.24g(8.7mmol)を、乾燥かつ過酸化物フリーのメチル−t−ブチルエーテル273gで希釈した。
別途容器にて、3−ヒドロキシメチル−3−エチルオキセタン140g(1.21mol)とプロピレンオキサイド70.0g(1.21mol)を混合し、上記3つ口フラスコへ、定量ポンプで5.5時間かけて滴下した。このとき、系内の温度を20℃に保つよう、随時アイスバスで冷却を行った。滴下終了後、さらにプロピレンオキサイド63.0g(1.08mol)を、同様に系内の温度を20℃に保ちつつ、3時間かけて滴下し、さらに4時間攪拌した。ここで、三フッ化ホウ素ジエチルエーテル錯体0.620g(4.4mmol)を添加し、さらに20℃で6時間攪拌した。
(Production Example 1) <Synthesis of multi-branched polyether polyol (A)>
In a 1000 mL three-necked flask equipped with nitrogen, an air reflux condenser, a magnetic stirring bar, and a thermometer, 1.24 g (8.7 mmol) of boron trifluoride diethyl ether complex was dried and free of peroxide. Diluted with 273 g of methyl-t-butyl ether.
In a separate container, 140 g (1.21 mol) of 3-hydroxymethyl-3-ethyloxetane and 70.0 g (1.21 mol) of propylene oxide were mixed, and the above three-necked flask was consumed with a metering pump for 5.5 hours. And dripped. At this time, the system was cooled by an ice bath as needed to keep the temperature in the system at 20 ° C. After completion of the dropwise addition, 63.0 g (1.08 mol) of propylene oxide was further added dropwise over 3 hours while keeping the temperature in the system at 20 ° C., and the mixture was further stirred for 4 hours. Here, 0.620 g (4.4 mmol) of boron trifluoride diethyl ether complex was added, and the mixture was further stirred at 20 ° C. for 6 hours.

反応混合物は、反応に使用した三フッ化ホウ素ジエチルエーテル錯体の10倍重量のハイドロタルサイトを加え、1時間還流させることにより吸着除去した。ハイドロタルサイトを濾別したのち、メチル−t−ブチルエーテルを除去し、透明で高粘性の多分岐ポリエーテルポリオール(A)267gを得た。
この多分岐ポリエーテルポリオール(A)は、Mn=2,876g/mol、Mw=7,171g/mol、水酸基価=253mg・KOH/gであり、プロトンNMRから、モル基準で3−ヒドロキシメチル−3−エチルオキセタン:プロピレンオキサイド=1:1.9であることが判明した。また、全水酸基に対する2級水酸基の比率は、40%であった。これを多分岐ポリエーテルポリオール(A)HB−1と言う。
The reaction mixture was adsorbed and removed by adding hydrotalcite 10 times the weight of boron trifluoride diethyl ether complex used in the reaction and refluxing for 1 hour. After the hydrotalcite was filtered off, methyl-t-butyl ether was removed to obtain 267 g of a transparent and highly viscous multi-branched polyether polyol (A).
This multi-branched polyether polyol (A) has Mn = 2,876 g / mol, Mw = 7,171 g / mol, hydroxyl value = 253 mg · KOH / g, and 3-hydroxymethyl- on a molar basis from proton NMR. It was found that 3-ethyloxetane: propylene oxide = 1: 1.9. The ratio of secondary hydroxyl groups to all hydroxyl groups was 40%. This is referred to as multi-branched polyether polyol (A) HB-1.

(実施例1)<重合性不飽和基含有多分岐ポリエーテルの合成>
ディーン・スターク管、窒素及び空気導入管、撹拌装置、温度計を具備した500mLの4つ口フラスコ中に、前述の多分岐ポリエーテルポリオール(A)HB−1を155g、アクリル酸51g、シクロヘキサン200g、ハイドロキノンモノメチルエーテル0.21g、触媒としてドデシルベンゼンスルホン酸4g(12.3mmol)を仕込み、窒素と空気2対1の混合ガス流通下で、82℃まで昇温した。シクロヘキサンの還流が始まり、水の流出が徐々に始まった。その後、85℃まで昇温して24時間反応させると、理論脱水量の70%に達したので冷却を開始した。30℃付近まで冷却した後、ディーン・スターク管を水冷コンデンサに交換した。次に50%水酸化ナトリウム0.98g(12.3mmol)を仕込み、80℃まで昇温、保持した。次に減圧装置に接続し、徐々に減圧度を上げながら系内の溶媒及び残存するアクリル酸、微量の水の除去工程を実施した。酸価が5以下になったので、反応容器より取り出し、硝子瓶に充填した。得られた重合性不飽和基含有多分岐ポリエーテルの水酸基価は、73.1mg・KOH/gで、全水酸基のアクリル酸エステル価率は、66%であった。アクリル基濃度は、2.54mmol/gと算出された。以下、これを重合性不飽和基含有多分岐ポリエーテル樹脂HBA−1とする。室温で放冷一日後に外観を目視確認した。淡黄色透明で濁りは無かった。
(Example 1) <Synthesis of polymerizable unsaturated group-containing hyperbranched polyether>
In a 500 mL four-necked flask equipped with a Dean-Stark tube, nitrogen and air inlet tube, stirring device, and thermometer, 155 g of the aforementioned multi-branched polyether polyol (A) HB-1, 51 g of acrylic acid, 200 g of cyclohexane Then, 0.21 g of hydroquinone monomethyl ether and 4 g (12.3 mmol) of dodecylbenzenesulfonic acid as a catalyst were charged, and the temperature was raised to 82 ° C. under a mixed gas flow of nitrogen and air 2: 1. Cyclohexane reflux began, and water flow began gradually. Thereafter, when the temperature was raised to 85 ° C. and reacted for 24 hours, it reached 70% of the theoretical dehydration amount, and cooling was started. After cooling to around 30 ° C., the Dean-Stark tube was replaced with a water-cooled condenser. Next, 0.98 g (12.3 mmol) of 50% sodium hydroxide was charged, and the temperature was raised to 80 ° C. and held. Next, it was connected to a decompression device, and a step of removing the solvent in the system, the remaining acrylic acid and a trace amount of water was performed while gradually increasing the degree of decompression. Since the acid value became 5 or less, it was taken out from the reaction vessel and filled into a glass bottle. The obtained polymerizable unsaturated group-containing multi-branched polyether had a hydroxyl value of 73.1 mg · KOH / g, and an acrylic ester value rate of all hydroxyl groups was 66%. The acrylic group concentration was calculated to be 2.54 mmol / g. Hereinafter, this is referred to as polymerizable unsaturated group-containing multi-branched polyether resin HBA-1. The appearance was visually confirmed one day after cooling at room temperature. It was light yellow and transparent, and there was no turbidity.

(実施例2)<重合性不飽和基含有多分岐ポリエーテルの合成>
実施例1と同様にして500mLの4つ口フラスコ中に、前述の多分岐ポリエーテルポリオール(A)HB−1を155g、アクリル酸51g、シクロヘキサン200g、ハイドロキノンモノメチルエーテル0.21g、触媒としてビニルスルホン酸1.3g(12.3mmol)を仕込み、窒素と空気2対1の混合ガス流通下で、82℃まで昇温した。シクロヘキサンの還流が始まり、水の流出が徐々に始まった。その後、85℃まで昇温して20時間反応させると、理論脱水量の80%に達したので冷却を開始した。30℃付近まで冷却した後、ディーン・スターク管を水冷コンデンサに交換した。次に50%水酸化ナトリウム0.98g(12.3mmol)を仕込み、80℃まで昇温、保持した。次に減圧装置に接続し、徐々に減圧度を上げながら系内の溶媒及び残存するアクリル酸、微量の水の除去工程を実施した。酸価が5以下になったので、反応容器より取り出し、硝子瓶に充填した。得られた重合性不飽和基含有多分岐ポリエーテルの水酸基価は、50.5mg・KOH/gで、全水酸基のアクリル酸エステル価率は、76%であった。アクリル基濃度は、2.86mmol/gと算出された。以下これを重合性不飽和基含有多分岐ポリエーテル樹脂HBA−2とする。実施例1と同様に外観を目視確認した。淡黄色透明で濁りは無かった。
(Example 2) <Synthesis of polymerizable unsaturated group-containing hyperbranched polyether>
In the same manner as in Example 1, in a 500 mL four-necked flask, 155 g of the above-mentioned multi-branched polyether polyol (A) HB-1, 51 g of acrylic acid, 200 g of cyclohexane, 0.21 g of hydroquinone monomethyl ether, vinylsulfone as a catalyst The acid 1.3g (12.3mmol) was prepared, and it heated up to 82 degreeC under the mixed gas circulation of nitrogen and air 2: 1. Cyclohexane reflux began, and water flow began gradually. Thereafter, the temperature was raised to 85 ° C. and the reaction was carried out for 20 hours. Since the amount reached 80% of the theoretical dehydration amount, cooling was started. After cooling to around 30 ° C., the Dean-Stark tube was replaced with a water-cooled condenser. Next, 0.98 g (12.3 mmol) of 50% sodium hydroxide was charged, and the temperature was raised to 80 ° C. and held. Next, it was connected to a decompression device, and a step of removing the solvent in the system, the remaining acrylic acid and a trace amount of water was performed while gradually increasing the degree of decompression. Since the acid value became 5 or less, it was taken out from the reaction vessel and filled into a glass bottle. The hydroxyl group value of the obtained polymerizable unsaturated group-containing multi-branched polyether was 50.5 mg · KOH / g, and the acrylic ester value rate of all hydroxyl groups was 76%. The acrylic group concentration was calculated to be 2.86 mmol / g. Hereinafter, this is referred to as polymerizable unsaturated group-containing multi-branched polyether resin HBA-2. As in Example 1, the appearance was visually confirmed. It was light yellow and transparent, and there was no turbidity.

(比較例1)<重合性不飽和基含有多分岐ポリエーテルの合成>
実施例1と同様にして500mLの4つ口フラスコ中に、前述の多分岐ポリエーテルポリオール(A)HB−1を155g、アクリル酸51g、シクロヘキサン200g、ハイドロキノンモノメチルエーテル0.21g、触媒としてパラトルエンスルホン酸2.1g(12.3mmol)を仕込み、窒素と空気2対1の混合ガス流通下で、82℃まで昇温した。シクロヘキサンの還流が始まり、水の流出が徐々に始まった。その後、85℃まで昇温して20時間反応させると、理論脱水量の70%に達したので冷却を開始した。30℃付近まで冷却した後、ディーン・スターク管を水冷コンデンサに交換した。次に50%水酸化ナトリウム0.98g(12.3mmol)を仕込み、80℃まで昇温、保持した。次に減圧装置に接続し、徐々に減圧度を上げながら系内の溶媒及び残存するアクリル酸、微量の水の除去工程を実施した。酸価が5以下になったので、反応容器より取り出し、硝子瓶に充填した。得られた重合性不飽和基含有多分岐ポリエーテルの化合物の水酸基価は、71.0mg・KOH/gで、全水酸基のアクリル酸エステル価率は、67%であった。アクリル基濃度は、2.57mmol/gと算出された。
以下これを重合性不飽和基含有多分岐ポリエーテルHBA−3とする。実施例1と同様に外観を目視確認した。淡黄白色で濁っていた。
(Comparative Example 1) <Synthesis of polymerizable unsaturated group-containing hyperbranched polyether>
In the same manner as in Example 1, in a 500 mL four-necked flask, 155 g of the above-mentioned multi-branched polyether polyol (A) HB-1, 51 g of acrylic acid, 200 g of cyclohexane, 0.21 g of hydroquinone monomethyl ether, and paratoluene as a catalyst. 2.1 g (12.3 mmol) of sulfonic acid was charged, and the temperature was raised to 82 ° C. under a mixed gas flow of nitrogen and air 2 to 1. Cyclohexane reflux began, and water flow began gradually. Then, when it heated up to 85 degreeC and made it react for 20 hours, since it reached 70% of theoretical dehydration amount, cooling was started. After cooling to around 30 ° C., the Dean-Stark tube was replaced with a water-cooled condenser. Next, 0.98 g (12.3 mmol) of 50% sodium hydroxide was charged, and the temperature was raised to 80 ° C. and held. Next, it was connected to a decompression device, and a step of removing the solvent in the system, the remaining acrylic acid, and a trace amount of water was carried out while gradually increasing the degree of decompression. Since the acid value became 5 or less, it was taken out from the reaction vessel and filled into a glass bottle. The hydroxyl group value of the obtained polymerizable unsaturated group-containing multi-branched polyether compound was 71.0 mg · KOH / g, and the acrylic acid ester value rate of all hydroxyl groups was 67%. The acrylic group concentration was calculated to be 2.57 mmol / g.
This is hereinafter referred to as polymerizable unsaturated group-containing multi-branched polyether HBA-3. As in Example 1, the appearance was visually confirmed. It was pale yellowish white and cloudy.

(比較例2)<重合性不飽和基含有多分岐ポリエーテルの合成>
実施例1と同様にして500mLの4つ口フラスコ中に、前述の多分岐ポリエーテルポリオール(A)HB−1を155g、アクリル酸51g、シクロヘキサン200g、ハイドロキノンモノメチルエーテル0.21g、触媒としてパラトルエンスルホン酸2.1g(12.3mmol)を仕込み、窒素と空気2対1の混合ガス流通下で、82℃まで昇温した。シクロヘキサンの還流が始まり、水の流出が徐々に始まった。その後、85℃まで昇温して20時間反応させると、理論脱水量の70%に達したので冷却を開始した。30℃付近まで冷却した。次に20%水酸化ナトリウム50g(250mmol)を仕込み、この温度保持しながら10分間攪拌した。次に攪拌を停止し、分液ロートに全量移送し、静置し溶剤/水の分離工程を実施した。直後は乳白色で乳化状態であった。24時間後確認すると、同様乳白色で溶剤と水は分離していなかった。3日後も同様に分離していなかった。
よって、本製法では、重合性不飽和基含有多分岐ポリエーテルを得ることができなかった。
(Comparative Example 2) <Synthesis of polymerizable unsaturated group-containing hyperbranched polyether>
In the same manner as in Example 1, in a 500 mL four-necked flask, 155 g of the above-mentioned multi-branched polyether polyol (A) HB-1, 51 g of acrylic acid, 200 g of cyclohexane, 0.21 g of hydroquinone monomethyl ether, and paratoluene as a catalyst. 2.1 g (12.3 mmol) of sulfonic acid was charged, and the temperature was raised to 82 ° C. under a mixed gas flow of nitrogen and air 2 to 1. Cyclohexane reflux began, and water flow began gradually. Then, when it heated up to 85 degreeC and made it react for 20 hours, since it reached 70% of theoretical dehydration amount, cooling was started. Cooled to around 30 ° C. Next, 50 g (250 mmol) of 20% sodium hydroxide was added and stirred for 10 minutes while maintaining this temperature. Next, stirring was stopped, the whole amount was transferred to a separatory funnel, and allowed to stand to carry out a solvent / water separation step. Immediately after, it was milky white and emulsified. When confirmed after 24 hours, it was milky white and the solvent and water were not separated. Similarly, it was not separated after 3 days.
Therefore, in this production method, a polymerizable unsaturated group-containing multibranched polyether could not be obtained.

<評価方法>
<重合性不飽和単量体への溶解性確認(外観目視観察)>
得られた重合性不飽和基含有多分岐ポリエーテル樹脂60g、スチレンモノマー40gを50℃加温下、混合攪拌し、溶液を作製した。室温静置一日後の溶液の外観を目視観察した。
この結果を3段階にて評価した。
○:淡黄色透明で、濁り、沈殿等認められない。
△:淡黄色透明で、濁りが認められる。
×:淡黄色白色で、濁り、沈殿が認められる。
評価に使用した重合性不飽和基含有多分岐ポリエーテル樹脂は、実施例で得られたHBA−1、及びHBA−2と、比較例で得られたHBA−3である。その結果を表−1に示す。
<Evaluation method>
<Verification of solubility in polymerizable unsaturated monomer (visual observation of appearance)>
60 g of the obtained polymerizable unsaturated group-containing multi-branched polyether resin and 40 g of styrene monomer were mixed and stirred while heating at 50 ° C. to prepare a solution. The appearance of the solution after one day of standing at room temperature was visually observed.
This result was evaluated in three stages.
○: Light yellow and transparent with no turbidity or precipitation.
Δ: Light yellow and transparent with turbidity observed.
X: Pale yellowish white, cloudy and precipitated.
The polymerizable unsaturated group-containing multi-branched polyether resin used for the evaluation is HBA-1 and HBA-2 obtained in Examples and HBA-3 obtained in Comparative Examples. The results are shown in Table-1.

<ポリスチレン樹脂合成時、少量添加による分子量増大性の確認>
スチレンモノマー9g、トルエン1g、重合開始剤0.0018g(パーブチルZ、日油製)、重合性不飽和基含有多分岐ポリエーテル樹脂0.009gを30℃で混合攪拌し、溶液を作製した。これを硝子アンプルに仕込み、窒素置換したのち封管した。このアンプルをオイルバスに侵積し、バス内のオイルを130℃から160℃まで5時間かけて緩やかに昇温した。室温にて約5時間放冷後、アンプルを割り、重合物を取り出した。この重合物の1gを60gのトルエンに溶解し、300メッシュのSUS金網でろ過し不溶物の有無を確認する。次に500gのメタノールで再沈殿させ、重合物を回収し、真空乾燥にて60℃で12時間乾燥させ、評価用のポリスチレン樹脂を得た。なお、ブランク試験として、重合性不飽和基含有多分岐ポリエーテル樹脂を使用しないものも、同時比較した。評価に使用した重合性不飽和基含有多分岐ポリエーテルは、実施例で得られたHBA−1、HBA−2、及び比較例で得られたHBA−3である。
<Confirmation of molecular weight increase by addition of small amount during synthesis of polystyrene resin>
9 g of styrene monomer, 1 g of toluene, 0.0018 g of a polymerization initiator (Perbutyl Z, manufactured by NOF Corporation) and 0.009 g of a polymerizable unsaturated group-containing multi-branched polyether resin were mixed and stirred at 30 ° C. to prepare a solution. This was charged into a glass ampule, purged with nitrogen, and sealed. This ampoule was immersed in an oil bath, and the oil in the bath was gradually heated from 130 ° C. to 160 ° C. over 5 hours. After allowing to cool at room temperature for about 5 hours, the ampoule was broken and the polymer was taken out. 1 g of this polymer is dissolved in 60 g of toluene and filtered through a 300-mesh SUS wire mesh to confirm the presence or absence of insoluble matter. Next, it was reprecipitated with 500 g of methanol, and the polymer was collected and dried at 60 ° C. for 12 hours by vacuum drying to obtain a polystyrene resin for evaluation. In addition, as a blank test, what did not use a polymerizable unsaturated group containing hyperbranched polyether resin was also compared simultaneously. The polymerizable unsaturated group-containing hyperbranched polyether used for evaluation is HBA-1 and HBA-2 obtained in Examples and HBA-3 obtained in Comparative Examples.

得られたポリスチレン樹脂をTHFに溶解し、分子量分布測定した。検出器は、屈折率式と、多角度レーザー散乱検出の二つで分子量を測定した。屈折率式から得られた重量平均分子量をRI−Mwとする。多角度レーザー散乱検出から得られた重量平均分子量をMALS−Mwとする。その結果を表−2に示す。なお、ブランク試験として、重合性不飽和基含有多分岐ポリエーテル樹脂を使用しなかった結果も表−2(評価例1)に示す。 The obtained polystyrene resin was dissolved in THF, and the molecular weight distribution was measured. Two detectors were used to measure the molecular weight: a refractive index formula and multi-angle laser scattering detection. Let the weight average molecular weight obtained from the refractive index formula be RI-Mw. Let the weight average molecular weight obtained from multi-angle laser scattering detection be MALS-Mw. The results are shown in Table-2. In addition, as a blank test, the result which did not use polymerizable unsaturated group containing multibranched polyether resin is also shown in Table-2 (evaluation example 1).

<紫外線硬化塗膜性能の確認(紫外線硬化樹脂適性の評価)>
重合性不飽和基含有多分岐ポリエーテル樹脂50g、メチルエチルケトン50g、光開始剤1gヒドロキシ-シクロヘキシル-フェニル-ケトン)を50℃に加温下、暗所にて攪拌、溶液を作製した。室温静置一日後の溶液の外観を目視観察した。
この結果を3段階にて評価した。
○:淡黄色透明で、濁り、沈殿等認められない。
△:淡黄色透明で、薄く濁りが認められる。
×:淡黄色白色で、濁り、沈殿が認められる。
評価に使用した重合性不飽和基含有多分岐ポリエーテル樹脂は、実施例で得られたHBA−1、及びHBA−2と、比較例で得られたHBA−3である。その結果を表−1に示す。
<Confirmation of UV curable coating film performance (evaluation of UV curable resin suitability)>
Polymeric unsaturated group-containing multi-branched polyether resin 50 g, methyl ethyl ketone 50 g, photoinitiator 1 g hydroxy-cyclohexyl-phenyl-ketone) was stirred at 50 ° C. in the dark to prepare a solution. The appearance of the solution after one day of standing at room temperature was visually observed.
This result was evaluated in three stages.
○: Light yellow and transparent with no turbidity or precipitation.
(Triangle | delta): It is light yellow transparent and a thin turbidity is recognized.
X: Pale yellowish white, cloudy and precipitated.
The polymerizable unsaturated group-containing multi-branched polyether resin used for the evaluation is HBA-1 and HBA-2 obtained in Examples and HBA-3 obtained in Comparative Examples. The results are shown in Table-1.

次に、この溶液を用いて紫外線硬化塗膜を作製した。バーコーターを用いて、100ミクロンのPETフイルム上に塗布後、80℃の乾燥機にて5分乾燥させ、室温まで冷却した。厚さ約100μmで得られた塗布物を、コンベアスピード5m/分、出力160W/cmのメタルハライドランプで0.8J/cmの条件で紫外線照射を、2回行なった。得られた硬化物を以下の方法に従い評価した。
硬度評価:鉛筆硬度JIS K−5400による鉛筆引っかき試験をおこない、硬化物の破れにより評価を行った。
屈曲試験:塗膜を有するPETフイルムを180℃屈曲させ、塗膜の割れ、剥がれを目視観察した。
この結果を3段階にて評価した。
○:塗膜の割れ、剥がれ等認められない。
△:塗膜の割れが認められる。
×:塗膜の割れ、剥がれが認められる。
塗膜の透明性:黒色の画用紙の上に試片を置き、濁りの有無を目視確認した。
評価に使用した重合性不飽和基含有多分岐ポリエーテルは、実施例で得られたHBA−1、HBA−2、及び比較例で得られたHBA−3である。その結果を表−3(評価例2)に示す。
Next, an ultraviolet curable coating film was prepared using this solution. After coating on a 100 micron PET film using a bar coater, it was dried for 5 minutes in a dryer at 80 ° C. and cooled to room temperature. The coated material obtained with a thickness of about 100 μm was irradiated twice with a metal halide lamp having a conveyor speed of 5 m / min and an output of 160 W / cm under the condition of 0.8 J / cm 2 . The obtained cured product was evaluated according to the following method.
Hardness evaluation: Pencil hardness A pencil scratch test according to JIS K-5400 was performed, and evaluation was performed by tearing the cured product.
Bending test: A PET film having a coating film was bent at 180 ° C., and cracking and peeling of the coating film were visually observed.
This result was evaluated in three stages.
○: No cracking or peeling of the coating film is observed.
(Triangle | delta): The crack of a coating film is recognized.
X: The crack of a coating film and peeling are recognized.
Transparency of coating film: A test piece was placed on black drawing paper, and the presence or absence of turbidity was visually confirmed.
The polymerizable unsaturated group-containing hyperbranched polyether used for evaluation is HBA-1 and HBA-2 obtained in Examples and HBA-3 obtained in Comparative Examples. The results are shown in Table 3 (Evaluation Example 2).

Figure 2011173952
Figure 2011173952

Figure 2011173952
Figure 2011173952

Figure 2011173952
Figure 2011173952

<表中の略号の説明>
・DBSA:ドデシルベンゼンスルホン酸
・VSA:ビニルスルホン酸
・PTSA:p−トルエンスルホン酸
・SM:スチレンモノマー
<Explanation of abbreviations in the table>
DBSA: Dodecylbenzenesulfonic acid VSA: Vinylsulfonic acid PTSA: p-toluenesulfonic acid SM: Styrene monomer

表−1から判るように、本発明の製造法によれば、水洗を行わないため重合性不飽和基含有多分岐ポリエーテル樹脂を容易に回収、製造できる。廃棄されるのは、少量の水(縮合水)のみであり、回収された反応溶媒、未反応の(メタ)アクリル酸は再使用可能である。得られた本発明の重合性不飽和樹脂は、濁りが無く、溶液とした場合も濁らず、多くの用途の樹脂原料として使用可能である。 As can be seen from Table 1, according to the production method of the present invention, the polymerizable unsaturated group-containing multi-branched polyether resin can be easily recovered and produced because it is not washed with water. Only a small amount of water (condensed water) is discarded, and the recovered reaction solvent and unreacted (meth) acrylic acid can be reused. The obtained polymerizable unsaturated resin of the present invention has no turbidity and is not turbid even when used as a solution, and can be used as a resin raw material for many applications.

また、表−2から判るように、本発明の重合性不飽和樹脂は、ポリスチレン樹脂の分子量調節剤としても有用で、分子量を増大させるが不溶物の生成が起き難く、制御し易い。また、表−3から判るように、本発明の重合性不飽和樹脂を紫外線硬化させた塗膜は、透明で基材追従性に優れ、適度な硬度を発現するため、紫外線硬化性塗料の主剤としても有用である。 Further, as can be seen from Table-2, the polymerizable unsaturated resin of the present invention is also useful as a molecular weight regulator of polystyrene resin, and increases the molecular weight but hardly generates insoluble matter and is easy to control. Further, as can be seen from Table-3, the coating film obtained by UV curing the polymerizable unsaturated resin of the present invention is transparent, excellent in substrate followability, and exhibits appropriate hardness. It is also useful.

一方、従来の酸触媒反応後、アルカリ水洗等を行う方法では、本重合性不飽和基含有多分岐ポリエーテル樹脂は、水と乳化し易く分離が困難となり、回収できなくなり、量産性に劣る。
従来のp−トルエンスルホン酸等の短鎖アルキルベンゼンスルホン酸等を用いて同様に反応することは可能であるが、スルホン酸塩等の析出による該樹脂の濁りが発生し、ろ過が困難である。よってそのまま使用すると、濁り、不溶物の生成等品質上の問題がある。そのため、多くの用途の樹脂原料として使用は、困難である。
On the other hand, in the conventional method of performing alkaline water washing after the acid catalyst reaction, the polymerizable unsaturated group-containing multi-branched polyether resin is easily emulsified with water and difficult to separate, and cannot be recovered, resulting in poor mass productivity.
Although it is possible to react in the same manner using conventional short-chain alkylbenzenesulfonic acid such as p-toluenesulfonic acid, turbidity of the resin due to precipitation of sulfonate and the like occurs, and filtration is difficult. Therefore, when used as it is, there are quality problems such as turbidity and generation of insoluble matter. Therefore, it is difficult to use as a resin raw material for many applications.

本発明の多分岐(メタ)アクリレートは、重合性の不飽和樹脂組成物としての利用が可能である。 The multi-branched (meth) acrylate of the present invention can be used as a polymerizable unsaturated resin composition.

Claims (6)

スルホン酸系エステル化反応触媒の存在下、ヒドロキシアルキルオキセタンと1官能性エポキシ化合物とを反応させて得られる多分岐ポリエーテルポリオール(A)と(メタ)アクリル酸とを反応させて得られる多分岐(メタ)アクリレートの製造方法であって、
反応終了後、該スルホン酸系エステル化反応触媒を除去するための水洗及び分液操作工程を行わずに、反応液を塩基性物質で処理する工程を含むことを特徴とする多分岐(メタ)アクリレートの製造方法。
Multi-branch obtained by reacting multi-branched polyether polyol (A) obtained by reacting hydroxyalkyl oxetane with monofunctional epoxy compound in the presence of sulfonic acid esterification reaction catalyst and (meth) acrylic acid A method for producing (meth) acrylate,
After completion of the reaction, the method comprises a step of treating the reaction solution with a basic substance without performing water washing and a liquid separation operation step for removing the sulfonic acid esterification reaction catalyst. Method for producing acrylate.
スルホン酸系エステル化反応触媒が、置換基として炭素数8〜20のアルキル基を有するベンゼンスルホン酸、又はビニルスルホン酸である請求項1に記載の多分岐(メタ)アクリレートの製造方法。 The method for producing a multibranched (meth) acrylate according to claim 1, wherein the sulfonic acid esterification reaction catalyst is benzenesulfonic acid having a C8-20 alkyl group as a substituent or vinylsulfonic acid. 置換基として炭素数8〜20のアルキル基を有するベンゼンスルホン酸が、ドデシルベンゼンスルホン酸である請求項2に記載の多分岐(メタ)アクリレートの製造方法。 The method for producing a multibranched (meth) acrylate according to claim 2, wherein the benzenesulfonic acid having an alkyl group having 8 to 20 carbon atoms as a substituent is dodecylbenzenesulfonic acid. 塩基性物質が、アルカリ溶液である請求項1〜3の何れかに記載の多分岐(メタ)アクリレートの製造方法。 The method for producing a multibranched (meth) acrylate according to any one of claims 1 to 3, wherein the basic substance is an alkaline solution. 請求項1〜4の何れかに記載の製造方法により得られる多分岐(メタ)アクリレート、及びスルホン酸系エステル化反応触媒と塩基性物質とで形成される塩を含む重合性不飽和樹脂組成物。 A polymerizable unsaturated resin composition comprising a hyperbranched (meth) acrylate obtained by the production method according to claim 1, and a salt formed from a sulfonic acid esterification reaction catalyst and a basic substance. . 更に、希釈溶剤、又は重合性不飽和単量体を含む請求項5に記載の重合性不飽和樹脂組成物。 Furthermore, the polymerizable unsaturated resin composition of Claim 5 containing a dilution solvent or a polymerizable unsaturated monomer.
JP2010037235A 2010-02-23 2010-02-23 (Meth) acrylate derivative composition and method for producing the same Active JP5471579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037235A JP5471579B2 (en) 2010-02-23 2010-02-23 (Meth) acrylate derivative composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037235A JP5471579B2 (en) 2010-02-23 2010-02-23 (Meth) acrylate derivative composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011173952A true JP2011173952A (en) 2011-09-08
JP5471579B2 JP5471579B2 (en) 2014-04-16

Family

ID=44687123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037235A Active JP5471579B2 (en) 2010-02-23 2010-02-23 (Meth) acrylate derivative composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP5471579B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521780A (en) * 2013-06-04 2016-07-25 コーニング インコーポレイテッド Synthesis of polyfunctional polyol acrylate
US9701857B2 (en) 2013-05-27 2017-07-11 DIC Corporation (Tokyo) Active energy ray-curable composition, and ink composition for inkjet recording use which is prepared using said composition
CN116004090A (en) * 2023-02-27 2023-04-25 上海正欧实业有限公司 Wear-resistant epoxy floor coating and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028990B1 (en) * 1964-06-22 1975-09-19
JP2001172383A (en) * 1999-10-08 2001-06-26 Takemoto Oil & Fat Co Ltd Production method of polyether ester monomer, and cement dispersant
JP2003335854A (en) * 2002-05-17 2003-11-28 Toagosei Co Ltd New (meth)acrylate and curable composition containing it
JP2004516349A (en) * 2000-12-20 2004-06-03 ビーエーエスエフ アクチェンゲゼルシャフト Process for producing alkyl polyalkylene glycol esters of monoethylenically unsaturated carboxylic acids
JP2008094907A (en) * 2006-10-10 2008-04-24 Dainippon Ink & Chem Inc Method for producing multi-branched polyether polyol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028990B1 (en) * 1964-06-22 1975-09-19
JP2001172383A (en) * 1999-10-08 2001-06-26 Takemoto Oil & Fat Co Ltd Production method of polyether ester monomer, and cement dispersant
JP2004516349A (en) * 2000-12-20 2004-06-03 ビーエーエスエフ アクチェンゲゼルシャフト Process for producing alkyl polyalkylene glycol esters of monoethylenically unsaturated carboxylic acids
JP2003335854A (en) * 2002-05-17 2003-11-28 Toagosei Co Ltd New (meth)acrylate and curable composition containing it
JP2008094907A (en) * 2006-10-10 2008-04-24 Dainippon Ink & Chem Inc Method for producing multi-branched polyether polyol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9701857B2 (en) 2013-05-27 2017-07-11 DIC Corporation (Tokyo) Active energy ray-curable composition, and ink composition for inkjet recording use which is prepared using said composition
JP2016521780A (en) * 2013-06-04 2016-07-25 コーニング インコーポレイテッド Synthesis of polyfunctional polyol acrylate
CN116004090A (en) * 2023-02-27 2023-04-25 上海正欧实业有限公司 Wear-resistant epoxy floor coating and preparation method thereof
CN116004090B (en) * 2023-02-27 2023-09-29 上海正欧实业有限公司 Wear-resistant epoxy floor coating and preparation method thereof

Also Published As

Publication number Publication date
JP5471579B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2010114077A1 (en) α-(UNSATURATED ALKOXYALKYL)ACRYLATE COMPOSITION AND PROCESS FOR PRODUCTION THEREOF
KR101371878B1 (en) Photo- and/or thermo-curable copolymer, curable resin compositions, and cured articles
US20110112266A1 (en) Curable copolymer and curable resin composition
JP2019522002A (en) Hybrid photosensitive resin and method for producing the same
JPWO2012172841A1 (en) Radical polymerizable composition, cured product, and plastic lens
JP6094912B2 (en) Bicarbazole compound, photocurable composition, cured product thereof, curable composition for plastic lens, and plastic lens
JP2016161939A (en) Negative photosensitive resin composition, photocuring pattern formed using the same, and image display device comprising the same
CN101466741A (en) Polymerization accelerator, curable composition, cured product and method for producing thiol compound
JP5471579B2 (en) (Meth) acrylate derivative composition and method for producing the same
JP4942893B2 (en) Unsaturated monocarboxylic acid ester compound, method for producing the same, and active energy ray-curable composition
KR20150122597A (en) Resin composition for trasparent plastic substrate
JP4960135B2 (en) Sulfur-containing hyperbranched compound and unsaturated group-containing hyperbranched compound
JP7312543B2 (en) WEATHER-RESISTANT HARD COAT COMPOSITION FOR GLASS SUBSTITUTE SUBSTRATE, CURED PRODUCT, AND LAMINATED PRODUCT
JP5541857B2 (en) Bifunctional (meth) acrylate with fluorene skeleton
JP2003002919A (en) Novel di(meth)acrylate and curable composition containing the same
TWI510466B (en) Epoxy acrylate, acrylic composition, hardened product and method for producing the same
JP5103912B2 (en) Curable resin composition and cured product thereof
JP4941942B2 (en) Sulfur-containing hyperbranched compound and unsaturated group-containing hyperbranched compound
JP5620858B2 (en) Epoxy acrylate, acrylic composition, cured product and method for producing the same
JP7312544B2 (en) WEATHER-RESISTANT HARD COAT COMPOSITION FOR METAL, CURED PRODUCT, AND PAINTED METAL SUBSTRATE
JP2004231704A (en) Curable composition
JP6187846B1 (en) Active energy ray-curable composition and plastic lens
CN114746392A (en) Alicyclic acrylate compound, alicyclic epoxy acrylate compound, curable composition, and cured product
JP5035726B2 (en) Novel di (meth) acrylate and photocurable resin composition containing the same
JP2008273930A (en) Compound containing hydroxy group, radiation-curable composition, and optical component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250