JP2011173468A - Vehicular control apparatus - Google Patents

Vehicular control apparatus Download PDF

Info

Publication number
JP2011173468A
JP2011173468A JP2010037684A JP2010037684A JP2011173468A JP 2011173468 A JP2011173468 A JP 2011173468A JP 2010037684 A JP2010037684 A JP 2010037684A JP 2010037684 A JP2010037684 A JP 2010037684A JP 2011173468 A JP2011173468 A JP 2011173468A
Authority
JP
Japan
Prior art keywords
vehicle speed
target vehicle
pseudo
actual
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010037684A
Other languages
Japanese (ja)
Other versions
JP5491901B2 (en
Inventor
Yosuke Morokuma
洋輔 諸熊
Kenji Hijikata
賢二 土方
Keisuke Ajimoto
恵介 鯵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2010037684A priority Critical patent/JP5491901B2/en
Publication of JP2011173468A publication Critical patent/JP2011173468A/en
Application granted granted Critical
Publication of JP5491901B2 publication Critical patent/JP5491901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent sensation of running from degrading, by suppressing undershoot of vehicle speed at deceleration, without sacrificing tracking ability to the speed of target vehicle. <P>SOLUTION: A vehicular control apparatus sets a pseudo-target vehicle speed initialized at a target vehicle speed, when an actual vehicle speed reduces by a deceleration fuel cut, until the deviation of the actual vehicle speed from the target vehicle speed becomes a vehicle speed difference ΔV. The pseudo-target vehicle speed is increased with computing periods, within the range of the actual vehicle speed. With the increase in the speed of the pseudo-target vehicle, a required acceleration is increased from a minimum value to an acceleration necessary for recovery from the deceleration fuel cut. After recovery from the deceleration fuel cut, the pseudo-target vehicle speed is changed gradually to the speed of the target vehicle and the required acceleration is increased to the acceleration necessary for uniform motion (degree of acceleration=0). As a result of this, the actual vehicle speed to the speed of the target vehicle can be matched, while suppressing undershoot, without sacrificing the tracking ability to the target vehicle speed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、実車速と目標車速との偏差に基づいて駆動力を制御する車両の制御装置に関する。   The present invention relates to a vehicle control device that controls driving force based on a deviation between an actual vehicle speed and a target vehicle speed.

一般に、自動車等の車両のオートクルーズ制御においては、車両の実車速と目標車速との偏差に基づいて駆動力をフィードバック制御し、一定速での走行を可能としているが、走行条件やドライバの操作等により、車速のアンダーシュートやオーバーシュートが発生する場合がある。   In general, in auto-cruise control of a vehicle such as an automobile, the driving force is feedback-controlled based on the deviation between the actual vehicle speed and the target vehicle speed to enable driving at a constant speed. For example, undershoot or overshoot of the vehicle speed may occur.

これに対処するため、例えば、特許文献1には、定速走行制御中にコーストスイッチが操作されると、走行抵抗がある程度以上の場合には一定の割合で目標車速を減少させ、走行抵抗が小さい場合には実車速と目標車速との偏差が所定値を越えないように目標車速を設定することで、車速のアンダーシュートやオーバーシュートを防止する技術が開示されている。   In order to cope with this, for example, in Patent Document 1, when the coast switch is operated during constant speed traveling control, the target vehicle speed is decreased at a certain rate when the traveling resistance is more than a certain level, and the traveling resistance is reduced. A technique for preventing undershoot and overshoot of the vehicle speed by setting the target vehicle speed so that the deviation between the actual vehicle speed and the target vehicle speed does not exceed a predetermined value when it is small is disclosed.

特開平8−40110号公報JP-A-8-40110

特許文献1に開示されるような従来のオートクルーズ制御では、クルーズ制御中の要求加速度は、実車速と目標車速との偏差に基づいて算出されるため、アクセルペダルによる加速操作後等の、実車速が目標車速よりも大きくなった場合には、速やかに実車速を目標車速に一致させるため、減速燃料カットが実施される。このため、実車速が目標車速を下回ってから加速を指示しても、減速燃料カットから直ぐには復帰せず、車両が加速し始めるまでに時間がかかってアンダーシュートが発生してしまう。   In the conventional auto cruise control as disclosed in Patent Document 1, the required acceleration during cruise control is calculated based on the deviation between the actual vehicle speed and the target vehicle speed. When the speed becomes higher than the target vehicle speed, a deceleration fuel cut is performed in order to quickly match the actual vehicle speed with the target vehicle speed. For this reason, even if acceleration is instructed after the actual vehicle speed falls below the target vehicle speed, the vehicle does not return immediately after the deceleration fuel cut, and it takes time until the vehicle starts to accelerate and undershoot occurs.

すなわち、図5に示すように、実車速が目標車速より大きく、減速燃料カットが実施されている状態では、要求加速度は、等速運動に必要な加速度(加速度=0)より小さい負の極小値になっている。従って、実車速が目標車速に一致したタイミング(図中のR’点)で加速を指示しても、直ぐには要求加速度が燃料カットから復帰するための加速度(駆動力が0以上となる要求加速度;駆動力=要求加速度×加速抵抗+走行抵抗)に達せず、目標車速に対して実車速がアンダーシュートしてしまう。   That is, as shown in FIG. 5, in the state where the actual vehicle speed is higher than the target vehicle speed and the deceleration fuel cut is performed, the required acceleration is a negative minimum value smaller than the acceleration required for constant speed motion (acceleration = 0). It has become. Therefore, even if acceleration is instructed at the timing when the actual vehicle speed coincides with the target vehicle speed (point R ′ in the figure), the requested acceleration immediately returns from the fuel cut (the requested acceleration at which the driving force becomes 0 or more). Driving force = required acceleration × acceleration resistance + running resistance), and the actual vehicle speed undershoots the target vehicle speed.

この車速のアンダーシュートが発生すると、減速燃料カットから復帰したとき、目標車速が実車速より大きいため、実車速を目標車速に一致させようと急激に加速度が大きくなり、走行フィーリングの悪化を招いてしまう。このような問題は、車速の単位時間当たりの変化量を小さくする、すなわち加速度変化を小さくするように設定すれば対応可能であるが、反面、目標車速への追従性が犠牲になってしまい、何れにしても、走行フィーリングの悪化を解消することは困難である。   If this vehicle speed undershoot occurs, the target vehicle speed is greater than the actual vehicle speed when returning from the deceleration fuel cut, so the acceleration suddenly increases to make the actual vehicle speed match the target vehicle speed, leading to a deterioration in driving feeling. I will. Such a problem can be dealt with by setting the amount of change per unit time of the vehicle speed to be small, that is, setting the acceleration change to be small, but on the other hand, followability to the target vehicle speed is sacrificed, In any case, it is difficult to eliminate the deterioration of the driving feeling.

本発明は上記事情に鑑みてなされたもので、目標車速への追従性を犠牲にすることなく減速時の車速のアンダーシュートを抑制し、走行フィーリングの悪化を防止することのできる車両の制御装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and controls a vehicle that can suppress undershoot of the vehicle speed during deceleration without sacrificing follow-up performance to the target vehicle speed and prevent deterioration in running feeling. The object is to provide a device.

上記目的を達成するため、本発明による車両の制御装置は、車両の実車速と目標車速との偏差に基づいて駆動力を制御し、要求駆動力が所定の値より小さくなったとき、エンジンの燃料カットを実行する車両の制御装置において、上記目標車速が上記実車速より小さく且つ上記実車速と上記目標車速との偏差が所定値以下の場合、上記目標車速より大きく且つ上記実車速より小さい擬似目標車速を設定する擬似目標車速設定部と、上記目標車速が上記実車速より大きい場合、上記実車速と上記目標車速との偏差に基づいて駆動力を制御し、上記目標車速が上記実車速より小さく且つ上記実車速と上記目標車速との偏差が所定値以下の場合、上記実車速と上記疑似目標車速との偏差に基づいて駆動力を制御する駆動力制御部とを備えたことを特徴とする。   In order to achieve the above object, the vehicle control apparatus according to the present invention controls the driving force based on the deviation between the actual vehicle speed and the target vehicle speed, and when the required driving force becomes smaller than a predetermined value, In the control apparatus for a vehicle that performs fuel cut, when the target vehicle speed is smaller than the actual vehicle speed and the deviation between the actual vehicle speed and the target vehicle speed is equal to or less than a predetermined value, the simulation is greater than the target vehicle speed and smaller than the actual vehicle speed. When the target vehicle speed is greater than the actual vehicle speed, the driving force is controlled based on the deviation between the actual vehicle speed and the target vehicle speed, and the target vehicle speed is greater than the actual vehicle speed. A driving force control unit that controls the driving force based on the deviation between the actual vehicle speed and the pseudo target vehicle speed when the deviation is small and the deviation between the actual vehicle speed and the target vehicle speed is a predetermined value or less; To.

本発明によれば、目標車速への追従性を犠牲にすることなく減速時の車速のアンダーシュートを抑制することができ、走行フィーリングの悪化を防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, the undershoot of the vehicle speed at the time of deceleration can be suppressed without sacrificing the followable | trackability to a target vehicle speed, and the deterioration of driving | running | working feeling can be prevented.

エンジン制御系の概略構成図Schematic configuration diagram of engine control system 定速走行制御に係る機能ブロック図Functional block diagram for constant speed travel control 駆動力制御ルーチンのフローチャートDriving force control routine flowchart 疑似目標車速による駆動力制御を示す説明図Explanatory drawing showing drive force control by pseudo target vehicle speed 従来のオートクルーズ制御における車速のアンダーシュートを示す説明図Explanatory drawing showing undershoot of vehicle speed in conventional auto cruise control

以下、図面を参照して本発明の実施の形態を説明する。
図1において、符号1はエンジン、符号10はエンジン1を制御する制御装置であり、マイクロコンピュータを中心として構成される電子制御装置(ECU)である。制御装置10は、エンジン1の吸気通路2から吸入される空気量を検出するための吸入空気量センサ3、エンジン回転数を検出するためのクランク角センサ4、車速を検出するための車速センサ5、その他、図示しないネットワークを介して接続される車載の他の制御装置からの制御情報に基づいて、吸気通路2に介装されたスロットル弁6を開閉駆動するスロットルアクチュエータ7を介してエンジン1に供給される空気量を制御すると共に、インジェクタ8を駆動して吸入空気量に対応する燃料噴射量を制御し、エンジン1の駆動力制御を行う。
Embodiments of the present invention will be described below with reference to the drawings.
In FIG. 1, reference numeral 1 denotes an engine, and reference numeral 10 denotes a control device that controls the engine 1, which is an electronic control unit (ECU) that is configured around a microcomputer. The control device 10 includes an intake air amount sensor 3 for detecting the amount of air taken from the intake passage 2 of the engine 1, a crank angle sensor 4 for detecting the engine speed, and a vehicle speed sensor 5 for detecting the vehicle speed. In addition, the engine 1 is connected to the engine 1 via a throttle actuator 7 that opens and closes the throttle valve 6 interposed in the intake passage 2 based on control information from another on-vehicle controller connected via a network (not shown). In addition to controlling the amount of air supplied, the injector 8 is driven to control the fuel injection amount corresponding to the intake air amount, thereby controlling the driving force of the engine 1.

また、制御装置10には、ユーザ(ドライバ)がマニュアル操作することで一定車速での走行を可能とするためのクルーズコントロールスイッチ20が接続されている。クルーズコントロールスイッチ20は、例えば、図示しないステアリングに配置されたプッシュスイッチ及びトグルスイッチ等からなる操作スイッチであり、定速走行制御(オートクルーズ制御)をON/OFFするクルーズスイッチ、定速走行制御を解除するためのキャンセルスイッチ、定速走行時の車速をセットしたり、定速走行時の車速を下降側へ変更するセット/コーストスイッチ、前回記憶しているセット車速で再セットしたり、セット車速を上昇側へ変更するリジューム/アクセラレートスイッチ等のスイッチ群で構成されている。   In addition, a cruise control switch 20 is connected to the control device 10 so that the user (driver) can manually operate at a constant vehicle speed. The cruise control switch 20 is, for example, an operation switch including a push switch and a toggle switch disposed on a steering wheel (not shown). The cruise control switch 20 is a cruise switch for turning ON / OFF constant speed traveling control (auto cruise control), and constant speed traveling control. Cancel switch to cancel, set the vehicle speed at constant speed, set / coast switch to change the vehicle speed at constant speed to the lower side, reset at the previously stored set vehicle speed, set vehicle speed It is composed of a group of switches such as a resume / accelerate switch for changing to the upward side.

制御装置10によるオートクルーズ制御は、基本的には、車速センサ5により検出された実車速とユーザによって設定された目標車速との偏差に基づいて、実験或いは適合等で決定された目標加速度を実現する駆動力をエンジン1に発生させる制御である。その際、ドライバの操作によるオーバーライドやアクセラレート操作後の、実車速>目標車速の状態からの減速時には、インジェクタ8の駆動を停止して減速燃料カットを実施するが、従来のように実車速が目標車速まで低下したときに減速燃料カットから復帰して加速指示を行うと、実際に車両が加速し始めるまでに時間がかかり、アンダーシュートが発生してしまう。   The auto-cruise control by the control device 10 basically realizes the target acceleration determined by experiment or adaptation based on the deviation between the actual vehicle speed detected by the vehicle speed sensor 5 and the target vehicle speed set by the user. This is control for causing the engine 1 to generate the driving force to be generated. At this time, when the vehicle is decelerated from the state where the actual vehicle speed> the target vehicle speed after the override or acceleration operation by the driver's operation, the drive of the injector 8 is stopped and the deceleration fuel cut is performed. If the acceleration is instructed after returning from the deceleration fuel cut when the vehicle speed is reduced to the target vehicle speed, it takes time until the vehicle actually starts to accelerate and undershoot occurs.

このため、本制御装置10は、オートクルーズ制御の機能として、図2に示すように、クルーズコントロールスイッチ20を介したユーザの操作入力に従って定速走行の目標車速を設定する通常の目標車速設定部11に加えて、目標車速に対して擬似的な目標車速となる疑似目標車速を設定する疑似目標車速設定部12、実車速と目標車速との偏差に基づく駆動力制御及び実車速と疑似目標車速との偏差に基づく駆動力制御を行う駆動力制御部13を備えている。このような機能構成を備えることにより、本制御装置10は、疑似目標車速を用いて実車速が目標車速を下回る前に減速燃料カットから復帰させ、アンダーシュートの発生を抑制するようにしている。   Therefore, as shown in FIG. 2, the control device 10 has a normal target vehicle speed setting unit that sets a target vehicle speed for constant speed traveling according to a user operation input via the cruise control switch 20 as a function of auto-cruise control. 11, a pseudo target vehicle speed setting unit 12 that sets a pseudo target vehicle speed that is a pseudo target vehicle speed with respect to the target vehicle speed, driving force control based on a deviation between the actual vehicle speed and the target vehicle speed, and the actual vehicle speed and the pseudo target vehicle speed. And a driving force control unit 13 that performs driving force control based on the deviation. By providing such a functional configuration, the control device 10 uses the pseudo target vehicle speed to return from the deceleration fuel cut before the actual vehicle speed falls below the target vehicle speed, thereby suppressing the occurrence of undershoot.

詳細には、疑似目標車速設定部12は、実車速と目標車速との偏差が正且つ所定値より小さいとき、すなわち、実車速が目標車速より大きく、燃料カットによる減速が実施されており、その上、実車速が目標車速に近いときに、実車速と目標車速とに基づいて擬似的な目標車速となる擬似目標車速を設定する。この擬似目標車速は、実車速が目標車速を下回る前に、実車速と一致するように徐々に大きくされ、実車速が目標車速と一致する前に、実車速と擬似目標車速との偏差に基づく要求加速度を大きくする(駆動力が0以上となる要求加速度にする)ことで、減速燃料カットから復帰させる。減速燃料カットからの復帰後は、目標車速を目指して擬似目標車速を減少させ、実車速がアンダーシュートすることなく目標車速に一致させる。   More specifically, the pseudo target vehicle speed setting unit 12 is configured such that when the deviation between the actual vehicle speed and the target vehicle speed is positive and smaller than a predetermined value, that is, the actual vehicle speed is higher than the target vehicle speed, and deceleration by fuel cut is performed. In addition, when the actual vehicle speed is close to the target vehicle speed, a pseudo target vehicle speed that is a pseudo target vehicle speed is set based on the actual vehicle speed and the target vehicle speed. This pseudo target vehicle speed is gradually increased so as to coincide with the actual vehicle speed before the actual vehicle speed falls below the target vehicle speed, and is based on a deviation between the actual vehicle speed and the pseudo target vehicle speed before the actual vehicle speed coincides with the target vehicle speed. The required acceleration is increased (the required acceleration is such that the driving force becomes 0 or more) to return from the deceleration fuel cut. After returning from the deceleration fuel cut, the pseudo target vehicle speed is decreased toward the target vehicle speed, and the actual vehicle speed is made to match the target vehicle speed without undershooting.

駆動力制御部13は、実車速と目標車速との偏差に基づいて、実験或いは適合等で決定された目標加速度を実現するに必要な要求加速度を演算する。そして、この要求加速度に、車両重量と加速度とによる加速抵抗を乗算した上で、車両の前面投影面積と空気抵抗係数と車輪速度の2乗とによる空気抵抗、転がり抵抗係数と車両重量とによる車輪の転がり抵抗等の走行抵抗を加算し、要求駆動力を算出する。   Based on the deviation between the actual vehicle speed and the target vehicle speed, the driving force control unit 13 calculates a required acceleration necessary for realizing the target acceleration determined by experiment or adaptation. Then, after multiplying this required acceleration by acceleration resistance due to the vehicle weight and acceleration, the wheel according to the front projected area of the vehicle, the air resistance coefficient, and the square of the wheel speed, the rolling resistance coefficient and the vehicle weight. The required driving force is calculated by adding running resistance such as rolling resistance.

尚、車両重量、空気抵抗係数、及び前面投影面積は、それぞれ車両諸元により事前に求められて設定されており、転がり抵抗係数は、事前に実験或いはシミュレーション等により求められて設定されている。また、車輪速度は、図示しない車輪速センサ等によって検出し、加速度は車輪速度から算出する。   The vehicle weight, the air resistance coefficient, and the front projected area are determined and set in advance according to vehicle specifications, and the rolling resistance coefficient is determined and set in advance through experiments or simulations. The wheel speed is detected by a wheel speed sensor (not shown) and the acceleration is calculated from the wheel speed.

更に、駆動力制御部13は、要求駆動力とエンジン回転数とに基づいて目標スロットル開度を演算する。そして、スロットル弁6の開度が目標スロットル開度に一致するよう、PID制御等によりスロットルアクチュエータ7を介してスロットル弁6を開閉駆動することで、実車速が目標車速に一致するようにフィードバック制御する。   Further, the driving force control unit 13 calculates a target throttle opening based on the required driving force and the engine speed. Then, feedback control is performed so that the actual vehicle speed matches the target vehicle speed by opening and closing the throttle valve 6 via the throttle actuator 7 by PID control or the like so that the opening degree of the throttle valve 6 matches the target throttle opening degree. To do.

以上の目標車速に基づく駆動力制御は、基本的に実車速が目標車速より小さい場合の処理であり、アクセラレート操作等によって実車速が目標車速よりも大きくなると、駆動力制御部13は、設定している要求加速度を、目標車速での等速運動に必要な加速度(加速度=0)よりも小さい極小値とする。この要求加速度が極小値の状態では、減速燃料カット条件が成立し、インジェクタ8の駆動が停止されると共にスロットル弁6の開度が所定の開度に保持される。   The driving force control based on the above target vehicle speed is basically processing when the actual vehicle speed is smaller than the target vehicle speed. When the actual vehicle speed becomes higher than the target vehicle speed by an acceleration operation or the like, the driving force control unit 13 sets The required acceleration is set to a minimum value that is smaller than the acceleration (acceleration = 0) required for constant speed motion at the target vehicle speed. In the state where the required acceleration is a minimum value, the deceleration fuel cut condition is satisfied, the drive of the injector 8 is stopped, and the opening degree of the throttle valve 6 is held at a predetermined opening degree.

要求加速度が極小値で減速燃料カットが実施されている状態では、実車速と目標車速との偏差が所定値以下になったとき、上述したように、疑似目標車速設定部12で通常の目標車速より大きく且つ実車速より小さい疑似目標車速が設定される。これに対して、駆動力制御部13は、実車速と疑似目標車速との偏差(疑似偏差)に基づいて、要求加速度を再演算する。   In the state where the required acceleration is the minimum value and the deceleration fuel cut is performed, when the deviation between the actual vehicle speed and the target vehicle speed is equal to or less than the predetermined value, the pseudo target vehicle speed setting unit 12 performs the normal target vehicle speed as described above. A pseudo target vehicle speed that is larger and smaller than the actual vehicle speed is set. On the other hand, the driving force control unit 13 recalculates the required acceleration based on the deviation (pseudo deviation) between the actual vehicle speed and the pseudo target vehicle speed.

実車速と疑似目標車速との疑似偏差に基づいて演算される要求加速度は、疑似目標車速が上昇するに従い、等速運動に必要な加速度(加速度=0)に向かって上昇する。そして、実車速が疑似目標車速と一致する前に、要求加速度が燃料カットを解除可能な加速度に達し、実車速が目標車速を下回る前に減速燃料カットが解除されて復帰する。減速燃料カットからの復帰後は、擬似目標車速が目標車速に向かって減少していき、走行抵抗−駆動力<0の状態(要求加速度<0の状態)で車両が減速され、実車速がアンダーシュートすることなく、実車速を目標車速に一致させることができる。   The required acceleration calculated based on the pseudo deviation between the actual vehicle speed and the pseudo target vehicle speed increases toward the acceleration (acceleration = 0) necessary for constant speed motion as the pseudo target vehicle speed increases. Then, before the actual vehicle speed matches the pseudo target vehicle speed, the required acceleration reaches an acceleration at which the fuel cut can be canceled, and before the actual vehicle speed falls below the target vehicle speed, the deceleration fuel cut is canceled and the vehicle returns. After returning from the deceleration fuel cut, the pseudo target vehicle speed decreases toward the target vehicle speed, the vehicle is decelerated in the state of running resistance-driving force <0 (state of required acceleration <0), and the actual vehicle speed is under The actual vehicle speed can be matched with the target vehicle speed without shooting.

以上のオートクルーズ制御における駆動力制御は、具体的には、制御装置10で実行されるソフトウエア処理によって実行される。次に、この駆動力制御のソフトウエア処理について、図3のフローチャートを用いて説明する。   Specifically, the driving force control in the above-described auto cruise control is executed by software processing executed by the control device 10. Next, the software process for controlling the driving force will be described with reference to the flowchart of FIG.

図3のフローチャートは、所定の周期で実行される駆動力制御ルーチンを示している。この駆動力制御ルーチンは、先ず、最初のステップS1において、車速センサ5で検出した実車速と、設定されている目標車速との偏差を演算する。次いで、ステップS2へ進み、実車速と目標車速との偏差が正、且つ偏差が所定範囲内(車速差ΔVの範囲内)にある条件が成立するか否かを調べる。   The flowchart of FIG. 3 shows a driving force control routine executed at a predetermined cycle. In the driving force control routine, first, in a first step S1, a deviation between the actual vehicle speed detected by the vehicle speed sensor 5 and the set target vehicle speed is calculated. Next, the process proceeds to step S2, and it is checked whether or not a condition is established in which the deviation between the actual vehicle speed and the target vehicle speed is positive and the deviation is within a predetermined range (within the vehicle speed difference ΔV).

その結果、ステップS2の条件不成立の場合、すなわち、実車速と目標車速との偏差が正で減速燃料カットの実施によって車速が低下しても、目標車速との差が所定範囲内に入っていない場合には、ステップS2からステップS3へ進み、実車速と目標車速との偏差に基づく駆動力制御を実行する。一方、ステップS2の条件が成立する場合、すなわち減速燃料カットにより車速が低下して目標車速との差が所定範囲内に入った場合には、ステップS2からステップS4へ進み、条件成立の初回経験が有るか否かを調べる。   As a result, if the condition of step S2 is not satisfied, that is, even if the deviation between the actual vehicle speed and the target vehicle speed is positive and the vehicle speed is reduced by performing the deceleration fuel cut, the difference from the target vehicle speed is not within the predetermined range. In this case, the process proceeds from step S2 to step S3, and the driving force control based on the deviation between the actual vehicle speed and the target vehicle speed is executed. On the other hand, if the condition of step S2 is satisfied, that is, if the vehicle speed decreases due to the deceleration fuel cut and the difference from the target vehicle speed falls within a predetermined range, the process proceeds from step S2 to step S4, and the first experience of satisfying the condition Check if there is any.

ステップS4において、条件成立の初回経験がない場合(ステップS2の条件成立を初めて経験した場合)、ステップS4からステップS5へ進んで目標車速を初期値として疑似目標車速を設定する(疑似目標車速=目標車速)。続くステップS6では、フラグ等を用いて初回経験有りの制御状態にセットする。そして、ステップS7で、実車速と疑似目標車速との偏差(疑似偏差;実車速−疑似目標車速)に基づく駆動力を出力し、ルーチンを抜ける。   In step S4, when there is no initial experience of satisfying the condition (when the condition is satisfied for the first time in step S2), the process proceeds from step S4 to step S5, and the pseudo target vehicle speed is set with the target vehicle speed as an initial value (pseudo target vehicle speed = Target vehicle speed). In the subsequent step S6, a control state with the first experience is set using a flag or the like. In step S7, a driving force based on a deviation between the actual vehicle speed and the pseudo target vehicle speed (pseudo deviation; actual vehicle speed-pseudo target vehicle speed) is output, and the routine is exited.

ステップS2の条件成立を経験した後は、次回のルーチンでステップS4からステップS8へ進んで疑似車速に基づく駆動力を出力し、ステップS9で疑似偏差が閾値A以下の状態の経験が有るか否かを調べる。そして、閾値A以下の経験が無い場合、ステップS10で疑似偏差が閾値A以下になったか否かを調べる。閾値A以下の経験が無い場合、ステップS11で疑似目標車速に所定の値を加算して疑似目標車速を目標車速に向かって増加させ、ルーチンを抜ける。   After experiencing the establishment of the condition of step S2, in the next routine, the process proceeds from step S4 to step S8 to output the driving force based on the pseudo vehicle speed, and whether or not there is an experience in a state where the pseudo deviation is equal to or less than the threshold A in step S9. Find out. If there is no experience below the threshold A, it is checked in step S10 whether or not the pseudo deviation is below the threshold A. If there is no experience below the threshold A, a predetermined value is added to the pseudo target vehicle speed in step S11 to increase the pseudo target vehicle speed toward the target vehicle speed, and the routine is exited.

すなわち、図4に示すように、減速燃料カットによって実車速が低下し、実車速と目標車速との偏差が車速差ΔVになったとき、目標車速を初期値として疑似目標車速を設定する。そして、図4中に破線で示すように、演算周期毎に疑似目標車速に所定値を加算し、実車速を上回らない範囲で疑似目標車速を増加させていく。このとき、疑似目標車速の増加に伴って、要求加速度が負の極小値から減速燃料カットからの復帰に必要な加速度に向かって増加していく。   That is, as shown in FIG. 4, when the actual vehicle speed is reduced by the deceleration fuel cut and the deviation between the actual vehicle speed and the target vehicle speed becomes the vehicle speed difference ΔV, the pseudo target vehicle speed is set with the target vehicle speed as an initial value. Then, as indicated by a broken line in FIG. 4, a predetermined value is added to the pseudo target vehicle speed every calculation cycle, and the pseudo target vehicle speed is increased within a range not exceeding the actual vehicle speed. At this time, as the pseudo target vehicle speed increases, the required acceleration increases from the negative minimum value toward the acceleration required for returning from the deceleration fuel cut.

そして、実車速と疑似目標車速との疑似偏差が閾値A以下になると、ステップS10からステップS12へ進み、フラグ等を用いて疑似目標車速一致経験有りの制御状態にセットする。このとき、実車速と疑似目標車速とが一致する前のタイミング(図4のR点)で要求加速度が減速燃料カットからの復帰に必要な加速度に達し、減速燃料カットから復帰する。   Then, when the pseudo deviation between the actual vehicle speed and the pseudo target vehicle speed becomes equal to or less than the threshold value A, the process proceeds from step S10 to step S12, and a control state with experience of matching the pseudo target vehicle speed is set using a flag or the like. At this time, the required acceleration reaches the acceleration required for returning from the deceleration fuel cut at a timing (point R in FIG. 4) before the actual vehicle speed and the pseudo target vehicle speed coincide with each other, and returns from the deceleration fuel cut.

疑似偏差が閾値A以下の状態を経験した後は、ステップS9からステップS13へ進み、疑似目標車速と目標車速との差が閾値B以下になったか否かを調べる。そして、閾値B以下に達していない場合、ステップS13からステップS14へ進み、疑似目標車速から所定の値を減算する処理を本ルーチンの繰り返しによる演算周期毎に行う。   After experiencing the state in which the pseudo deviation is equal to or less than the threshold A, the process proceeds from step S9 to step S13, and it is checked whether or not the difference between the pseudo target vehicle speed and the target vehicle speed is equal to or less than the threshold B. If the value does not reach the threshold value B or less, the process proceeds from step S13 to step S14, and a process of subtracting a predetermined value from the pseudo target vehicle speed is performed every calculation cycle by repeating this routine.

すなわち、図4に示すように、減速燃料カットからの復帰後は、疑似目標車速を徐々に目標車速に近づけていき、要求加速度を等速運動に必要な加速度(加速度=0)に向かって増加させる。これにより、走行抵抗−駆動力<0の状態で減速させ、アンダーシュートを抑制しつつ実車速を目標車速に一致させることができる。   That is, as shown in FIG. 4, after returning from the deceleration fuel cut, the pseudo target vehicle speed is gradually brought closer to the target vehicle speed, and the required acceleration is increased toward the acceleration required for constant speed motion (acceleration = 0). Let Thereby, it can decelerate in the state of driving resistance-driving force <0, and it can match an actual vehicle speed with a target vehicle speed, suppressing an undershoot.

その後、疑似目標車速と目標車速との差が閾値B以下になると、ステップS13からステップS15へ進み、実車速と目標車速との偏差が正且つ所定範囲内にある条件の初回経験、疑似目標車速、及び疑似目標車速一致経験をリセットする。そして、以後、実車速と目標車速との偏差に基づく通常のオートクルーズ制御に移行する。   Thereafter, when the difference between the pseudo target vehicle speed and the target vehicle speed becomes equal to or less than the threshold value B, the process proceeds from step S13 to step S15, the initial experience under the condition that the deviation between the actual vehicle speed and the target vehicle speed is positive and within a predetermined range, , And reset the simulated target vehicle speed matching experience. Thereafter, the routine shifts to normal auto cruise control based on the deviation between the actual vehicle speed and the target vehicle speed.

このように本実施の形態においては、目標車速が実車速より小さく且つ実車速と目標車速との偏差が所定値以下の場合、目標車速より大きく且つ実車速より小さい擬似目標車速を設定する。そして、疑似目標車速を実車速に向かって上昇させ、実車速と疑似目標車速との偏差に基づいて駆動力を制御することで、早期に要求加速度を減速燃料カットからの復帰に必要な加速度まで上昇させ、実車速が目標車速を下回る前に減速燃料カットから復帰させる。燃料カットからの復帰後は、疑似目標車速を目標車速に向かって徐々に減少させていき、走行抵抗−駆動力<0の状態で減速させる。   As described above, in the present embodiment, when the target vehicle speed is smaller than the actual vehicle speed and the deviation between the actual vehicle speed and the target vehicle speed is a predetermined value or less, the pseudo target vehicle speed that is larger than the target vehicle speed and smaller than the actual vehicle speed is set. Then, the pseudo target vehicle speed is increased toward the actual vehicle speed, and the driving force is controlled based on the deviation between the actual vehicle speed and the pseudo target vehicle speed, so that the required acceleration can be reduced to the acceleration necessary for returning from the deceleration fuel cut at an early stage. Increase the speed and return from the deceleration fuel cut before the actual vehicle speed falls below the target vehicle speed. After returning from the fuel cut, the pseudo target vehicle speed is gradually decreased toward the target vehicle speed, and the vehicle is decelerated in the state of running resistance−driving force <0.

これにより、オートクルーズ制御中のドライバの操作によるオーバーライドやアクセラレート操作後に見られる、実車速>目標車速の状態からの減速時に、目標車速への追従性を犠牲にすることなくアンダーシュートを抑制することができる。   This suppresses undershoot without sacrificing the ability to follow the target vehicle speed when the vehicle is decelerated from the state where the actual vehicle speed is higher than the target vehicle speed. be able to.

1 エンジン
3 吸入空気量センサ
4 クランク角センサ
5 車速センサ
6 スロットル弁
7 スロットルアクチュエータ
8 インジェクタ
10 制御装置
11 目標車速設定部
12 疑似目標車速設定部
13 駆動力制御部
20 クルーズコントロールスイッチ
DESCRIPTION OF SYMBOLS 1 Engine 3 Intake air amount sensor 4 Crank angle sensor 5 Vehicle speed sensor 6 Throttle valve 7 Throttle actuator 8 Injector 10 Control apparatus 11 Target vehicle speed setting part 12 Pseudo target vehicle speed setting part 13 Driving force control part 20 Cruise control switch

Claims (4)

車両の実車速と目標車速との偏差に基づいて駆動力を制御し、要求駆動力が所定の値より小さくなったとき、エンジンの燃料カットを実行する車両の制御装置において、
上記目標車速が上記実車速より小さく且つ上記実車速と上記目標車速との偏差が所定値以下の場合、上記目標車速より大きく且つ上記実車速より小さい擬似目標車速を設定する擬似目標車速設定部と、
上記目標車速が上記実車速より大きい場合、上記実車速と上記目標車速との偏差に基づいて駆動力を制御し、上記目標車速が上記実車速より小さく且つ上記実車速と上記目標車速との偏差が所定値以下の場合、上記実車速と上記疑似目標車速との偏差に基づいて駆動力を制御する駆動力制御部と
を備えたことを特徴とする車両の制御装置。
In the vehicle control device that controls the driving force based on the deviation between the actual vehicle speed of the vehicle and the target vehicle speed, and executes the fuel cut of the engine when the required driving force becomes smaller than a predetermined value
A pseudo target vehicle speed setting unit that sets a pseudo target vehicle speed that is larger than the target vehicle speed and smaller than the actual vehicle speed when the target vehicle speed is smaller than the actual vehicle speed and a deviation between the actual vehicle speed and the target vehicle speed is a predetermined value or less; ,
When the target vehicle speed is greater than the actual vehicle speed, the driving force is controlled based on the deviation between the actual vehicle speed and the target vehicle speed, and the target vehicle speed is smaller than the actual vehicle speed and the deviation between the actual vehicle speed and the target vehicle speed. And a driving force control unit that controls the driving force based on a deviation between the actual vehicle speed and the pseudo target vehicle speed.
上記擬似目標車速を、上記目標車速を初期値として演算周期毎に所定の値を加算して増加させることを特徴とする請求項1記載の車両の制御装置。   2. The vehicle control device according to claim 1, wherein the pseudo target vehicle speed is increased by adding a predetermined value for each calculation cycle with the target vehicle speed as an initial value. 上記擬似目標車速が上記実車速を上回らないように設定することを特徴とする請求項1又は2記載の車両の制御装置。   3. The vehicle control device according to claim 1, wherein the pseudo target vehicle speed is set so as not to exceed the actual vehicle speed. 上記実車速と上記擬似目標車速との偏差が所定値以下になった場合、上記擬似目標車速から演算周期毎に所定の値を減算することを特徴とする請求項1〜3の何れかに記載の車両の制御装置。   The predetermined value is subtracted from the pseudo target vehicle speed every calculation cycle when the deviation between the actual vehicle speed and the pseudo target vehicle speed becomes a predetermined value or less. Vehicle control device.
JP2010037684A 2010-02-23 2010-02-23 Vehicle control device Expired - Fee Related JP5491901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037684A JP5491901B2 (en) 2010-02-23 2010-02-23 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037684A JP5491901B2 (en) 2010-02-23 2010-02-23 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2011173468A true JP2011173468A (en) 2011-09-08
JP5491901B2 JP5491901B2 (en) 2014-05-14

Family

ID=44686773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037684A Expired - Fee Related JP5491901B2 (en) 2010-02-23 2010-02-23 Vehicle control device

Country Status (1)

Country Link
JP (1) JP5491901B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016110730A1 (en) * 2015-01-05 2017-10-12 日産自動車株式会社 Target vehicle speed generation device and travel control device
WO2020008775A1 (en) * 2018-07-02 2020-01-09 古野電気株式会社 Speed control device, automatic navigation system, and speed control method
CN115848370A (en) * 2023-02-22 2023-03-28 北京易控智驾科技有限公司 Method and device for controlling unmanned vehicle, electronic device and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840110A (en) * 1994-05-24 1996-02-13 Nissan Motor Co Ltd Constant speed travelling control device for vehicle
JP2000355236A (en) * 1999-05-31 2000-12-26 Daimlerchrysler Ag Method for setting pressetable ideal vehicle speed and control system
JP2001073841A (en) * 1999-09-02 2001-03-21 Honda Motor Co Ltd Control device of lean burn engine
JP2009108798A (en) * 2007-10-31 2009-05-21 Honda Motor Co Ltd Fuel supply restricting device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840110A (en) * 1994-05-24 1996-02-13 Nissan Motor Co Ltd Constant speed travelling control device for vehicle
JP2000355236A (en) * 1999-05-31 2000-12-26 Daimlerchrysler Ag Method for setting pressetable ideal vehicle speed and control system
JP2001073841A (en) * 1999-09-02 2001-03-21 Honda Motor Co Ltd Control device of lean burn engine
JP2009108798A (en) * 2007-10-31 2009-05-21 Honda Motor Co Ltd Fuel supply restricting device for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016110730A1 (en) * 2015-01-05 2017-10-12 日産自動車株式会社 Target vehicle speed generation device and travel control device
WO2020008775A1 (en) * 2018-07-02 2020-01-09 古野電気株式会社 Speed control device, automatic navigation system, and speed control method
JPWO2020008775A1 (en) * 2018-07-02 2021-08-02 古野電気株式会社 Speed control device, automatic navigation system and speed control method
US11472289B2 (en) 2018-07-02 2022-10-18 Furuno Electric Company Limited Speed control device, automatic navigation system and method of controlling speed
JP7361691B2 (en) 2018-07-02 2023-10-16 古野電気株式会社 Speed control device, automatic navigation system and speed control method
CN115848370A (en) * 2023-02-22 2023-03-28 北京易控智驾科技有限公司 Method and device for controlling unmanned vehicle, electronic device and storage medium

Also Published As

Publication number Publication date
JP5491901B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP4462148B2 (en) Cruise control equipment
US10239522B2 (en) Inter-vehicle control apparatus
JP6048457B2 (en) Vehicle travel control device
JP2007276542A (en) Traveling control device for vehicle
CN101898513B (en) accelerator reaction force control apparatus
JP2012047148A (en) Control device of vehicle
EP2803548B1 (en) Vehicle speed control apparatus
EP2210761A1 (en) Vehicle drive force control system
US11124174B2 (en) Vehicle control system
JP2010143462A (en) Auto-cruise control device for hybrid car and automatic braking control device for vehicle
US10569765B2 (en) Vehicle behavior control device
JP6020510B2 (en) Vehicle control device
JP5491901B2 (en) Vehicle control device
JP5333323B2 (en) Braking control system
JP2008037152A (en) Driving-force control device of vehicle
US20130006493A1 (en) Driving force control apparatus and driving force control method for vehicle
JP2011143915A (en) Vehicle control system and vehicle control method
JP2005263098A (en) Automatic cruise control device
EP2769892B1 (en) Throttle behaviour
JP2015068271A (en) Vehicle travel control device
JP5912673B2 (en) Electronically controlled throttle device
JP2012219761A (en) Vehicle control apparatus
JP2010209983A (en) Driving force control device
JP2006291870A (en) Vehicle speed control device
JP5918976B2 (en) Output control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R150 Certificate of patent or registration of utility model

Ref document number: 5491901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees