JP2011172598A - Delicious shrimp and method for producing the same - Google Patents

Delicious shrimp and method for producing the same Download PDF

Info

Publication number
JP2011172598A
JP2011172598A JP2011131765A JP2011131765A JP2011172598A JP 2011172598 A JP2011172598 A JP 2011172598A JP 2011131765 A JP2011131765 A JP 2011131765A JP 2011131765 A JP2011131765 A JP 2011131765A JP 2011172598 A JP2011172598 A JP 2011172598A
Authority
JP
Japan
Prior art keywords
shrimp
imp
temperature
nucleic acid
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011131765A
Other languages
Japanese (ja)
Other versions
JP5266365B2 (en
Inventor
Masahito Matsukawa
雅仁 松川
Noriki Koyama
法希 小山
Masahiko Shimada
昌彦 島田
Masayuki Kanamori
正幸 金森
Hitoaki Yokota
仁朗 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruha Nichiro Corp
Original Assignee
Maruha Nichiro Seafoods Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruha Nichiro Seafoods Inc filed Critical Maruha Nichiro Seafoods Inc
Priority to JP2011131765A priority Critical patent/JP5266365B2/en
Publication of JP2011172598A publication Critical patent/JP2011172598A/en
Application granted granted Critical
Publication of JP5266365B2 publication Critical patent/JP5266365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Meat, Egg Or Seafood Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a processing method for preparing fresh shrimps having improved taste which can be easily introduced during a processing procedure while keeping freshness independent of natural or cultured articles and kinds of shrimps, and to provide general processed articles including fresh, frozen and heated shrimps having improved taste. <P>SOLUTION: There are provided shrimps containing 5'-inosinic acid (IMP) at a ratio of ≥40% based on nucleic acid-relating substances and having improved taste and a method for producing the shrimps containing 5'-inosinic acid (IMP) at a ratio of ≥40% based on nucleic acid-relating substances and having improved taste by keeping shrimps at 10-50°C for 0.1-24 hours. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、IMP含量が高く呈味が改善されたエビ類に関する。また、本発明は、生鮮品もしくは冷凍エビ類の旨味を増強する処理法に関する。   The present invention relates to shrimps having a high IMP content and improved taste. The present invention also relates to a treatment method for enhancing the umami of fresh products or frozen shrimps.

日本では、天然養殖を問わず多種・多様な形態のエビが輸入・生産され、すし、天ぷら、フライなどの惣菜として加工消費されており、日本は古くから世界的なエビの消費大国である。   In Japan, various and various forms of shrimp are imported and produced regardless of natural farming, processed and consumed as side dishes such as sushi, tempura, and fries. Japan has long been a world-class shrimp consumer.

日本で、エビが好まれる理由には、エビ独特の呈味や食感が日本人の好み(旨味を好む)に合っていることが上げられる。   The reason why shrimp are preferred in Japan is that the unique taste and texture of shrimp match the taste of Japanese people.

エビ類の呈味は、グリシン・アラニン・グルタミン酸に代表される遊離アミノ酸やIMP、アデノシン−リン酸(AMP)の核酸関連物質、ベタイン、有機酸などの成分であり、これらの成分が多いエビが、甘味・旨味が強く美味しいエビとされ、好まれている。   The taste of shrimp is free amino acids such as glycine, alanine, and glutamic acid, IMP, nucleic acid-related substances such as adenosine-phosphate (AMP), betaine, and organic acids. The shrimp has a strong sweetness and umami, and is preferred.

そこで、加工現場ではエビの商品価値を上げる為に、エビに含まれている遊離アミノ酸の中、グリシン、アラニン、グルタミン酸などを配合した調味液(漬け込み液)に浸漬し、加工段階でこれらの成分含量を増やし、呈味を改善する方法が図られている。   Therefore, in order to increase the commercial value of shrimp at the processing site, they are immersed in a seasoning liquid (dipping solution) containing glycine, alanine, glutamic acid, etc., among the free amino acids contained in shrimp, and these components are processed at the processing stage. A method for increasing the content and improving the taste has been attempted.

しかしながらこの方法で、呈味付けされたエビは、本来のエビらしい風味ではない事や、調理中に味が抜け易いなどの欠点もある。   However, shrimp seasoned by this method have disadvantages that the flavor is not like the original shrimp and that the taste is easily lost during cooking.

一方、畜養殖エビを水揚げ直後に飼育水より高い食塩濃度の飼育水で、一定時間飼育する事で、遊離アミノ酸量が高く、甘味、旨味の改善されたエビが発明されている(特許文献1参照)。この方法で得られたエビは、従来の畜養エビより遊離アミノ酸が多く風味もエビ本来のものである。   On the other hand, shrimp with a high free amino acid content and improved sweetness and umami have been invented by breeding livestock shrimp immediately after landing with breeding water having a higher salt concentration than breeding water for a certain period of time (Patent Document 1). reference). The shrimp obtained by this method has more free amino acids than the conventional livestock shrimp and has a natural flavor.

しかし、この発明では高浸透圧ストレスにより脱皮してしまう場合があることや、対象にできるエビが畜養殖の生きているエビに限られること、さらに養殖から加工まで一連の工程が揃った養殖場でないと実施ができないこと(一般に養殖池と加工場は離れていることが多く汎用性がない)など、技術的にも、また多様な生産形態を持つ食用エビ加工一般に適応できる方法ではない。   However, in the present invention, there is a case where it is molted by high osmotic pressure stress, the shrimp that can be targeted is limited to live shrimp in livestock farming, and a farm with a series of processes from aquaculture to processing It is not a method that can be applied to edible shrimp processing in general from a variety of production forms, such as being unable to implement unless it is not possible (generally, the aquaculture pond is often separated from the processing plant and is not versatile).

次に、遊離アミノ酸とは別に魚類の呈味に大きく影響する核酸関連物質についてであるが、一般に魚類で蓄積が認められる核酸関連物質中のIMPは、遊離アミノ酸のグルタミン酸(Glu)との相乗効果によって旨味を高める効果があることは既に有名である。魚類では、低温で放置する事で、生体内のアデノシン3リン酸(ATP)が、死後アデノシン2リン酸(ADP)→AMP→IMPに速やかに分解し、IMPとして一時的に蓄積され、これによって呈味が増強される。しかし、時間が長時間経過した場合や、高温で放置した場合にはイノシン(HxR)、ヒポキサンチン(Hx)への分解が進み、鮮度が低下し、鮮度の指標となるK値も上昇する。   Next, regarding nucleic acid-related substances that greatly affect the taste of fish apart from free amino acids, IMP in nucleic acid-related substances generally accumulated in fish is synergistic with glutamic acid (Glu), a free amino acid. It is already well known that it has the effect of enhancing umami. In fish, the adenosine triphosphate (ATP) in the body is rapidly decomposed into post-mortem adenosine diphosphate (ADP) → AMP → IMP by being left at low temperature, and is temporarily accumulated as IMP. Taste is enhanced. However, when time passes for a long time or when left at high temperature, decomposition into inosine (HxR) and hypoxanthine (Hx) proceeds, the freshness decreases, and the K value, which is an index of freshness, also increases.

ところで、エビ類を低温で放置するとAMPとIMPの両方が蓄積され、魚類のようにIMPだけがリッチな状態にはならない。エビ類で一時的に蓄積されるAMPにもGluとの旨味の相乗効果はある。しかし、その効果はIMPと大きく違っており、AMPの相乗効果はIMPを100%とした場合に、その18%に止まることが知られている(非特許文献1参照)。   By the way, when shrimp are left at a low temperature, both AMP and IMP accumulate, and only IMP does not become rich like fish. AMP, which is temporarily accumulated in shrimps, also has a synergistic effect of umami with Glu. However, the effect is greatly different from IMP, and it is known that the synergistic effect of AMP is limited to 18% when IMP is set to 100% (see Non-Patent Document 1).

既にクルマエビの死後における核酸成分の変化様式について研究報告された結果では(非特許文献2参照)、最長貯蔵時間における各温度のIMPの蓄積比率(%)を見ると、-3℃貯蔵144時間(6日間)で42%、0℃貯蔵144時間(6日間)で43%、5℃48時間(2日間)で36%、10℃24時間(1日間)で33%となっており、10℃以下の低温では非常に長時間を要しないとIMPが蓄積されないことが分かっている。しかし、実際の製造においては、これだけ長時間貯蔵するとエビ類特有の黒変の問題が起こり、また鮮度の指標となるK値も20%を超えると考えられ、商品価値を失う恐れがあることや、微生物的な問題も実際の製造場面では懸念される。   As a result of research reports on the changes in nucleic acid components after the death of prawns (see Non-Patent Document 2), the accumulation rate (%) of IMP at each temperature in the longest storage time is 144 hours at -3 ° C storage (%) 42% for 6 days), 43% for 144 hours at 0 ° C (6 days), 36% for 48 hours (2 days) at 5 ° C, 33% for 24 hours (10 days) at 10 ° C, 10 ° C It is known that IMP does not accumulate at the following low temperatures unless a very long time is required. However, in actual manufacturing, if stored for such a long time, the blackening problem peculiar to shrimp occurs, and the K value, which is an index of freshness, is considered to exceed 20%, and there is a risk that the commercial value may be lost. Microbial problems are also a concern in actual production situations.

さらに、クルマエビの場合には上記文献が既に報告されているが、現在商業的に重要なエビであるブラックタイガーとバナメイエビの2種については、死後の核酸成分の変化に関連した文献等による公知情報がまったくない状況であった。   Furthermore, in the case of prawns, the above-mentioned documents have already been reported, but for the two types of commercially important shrimp, black tiger and vanamae shrimp, publicly known information related to changes in nucleic acid components after death There was no situation at all.

特開平07−170886号公報Japanese Unexamined Patent Publication No. 07-170886

SHINGO IKEDA and TSUNEHIKO NINOMIYA、JOURNAL OF FOOD SCIENCE-VOLUME36(1971)SHINGO IKEDA and TSUNEHIKO NINOMIYA, JOURNAL OF FOOD SCIENCE-VOLUME36 (1971) 松本美鈴、山中英明、「クルマエビの死後硬直に関する研究」、Nippon Suisan Gakkaishi、57(11)、2121-2126 (1991)Misuzu Matsumoto, Hideaki Yamanaka, "Study on post-mortem stiffness of prawns", Nippon Suisan Gakkaishi, 57 (11), 2121-2126 (1991)

本発明が解決しようとする課題は、天然・養殖、エビの種類を問わず、鮮度を維持したままで加工工程上に容易に導入できうる呈味を増強した生鮮エビを作る処理法を提供し、旨味が増強された生鮮品・冷凍品・加熱品のエビ加工品全般を提供するものである。   The problem to be solved by the present invention is to provide a treatment method for producing fresh shrimp with enhanced taste that can be easily introduced into the processing process while maintaining freshness regardless of the type of natural, aquaculture or shrimp. , Provides all processed shrimp products such as fresh, frozen and heated products with enhanced umami.

まず、発明者らは、同種のエビでも、呈味に差があることに着目し、エビの呈味成分と味の関係を調べた。その結果、呈味を示す個々の遊離アミノ酸量や遊離アミノ酸総量より、核酸関連物質の組成比の違いが、味、特に旨味に影響していることを発見した。具体的には、冷凍・生鮮エビの場合、核酸関連物質の総量は、8〜12μmol/gであり、そのほとんど(>80%)がAMPとIMPであるが、官能評価で甘味・旨味が強いとされたエビ類では、IMPがAMPより多く含まれている傾向にあることを発見した。   First, the inventors focused on the difference in taste even in the same kind of shrimp, and investigated the relationship between the shrimp's taste component and taste. As a result, it was discovered that the difference in the composition ratio of the nucleic acid-related substances affects the taste, particularly umami, from the amount of free amino acids and the total amount of free amino acids exhibiting taste. Specifically, in the case of frozen and fresh shrimp, the total amount of nucleic acid-related substances is 8 to 12 μmol / g, most of which (> 80%) is AMP and IMP. It was discovered that IMP tends to contain more AMP than AMP.

そこで、ATP、ADP、AMPとIMP含量の高い状態すなわちK値20%以下の状態のエビを使い、IMPリッチな状態を作る加工方法を鋭意検討した結果、エビを一定範囲の温度帯に一定時間保持する事により、K値の上昇が少なく(HxR・Hxの蓄積が少なく)、IMPを有意に増やしたエビを得る本発明を完成するに至った。すなわち、AMP→IMPへの反応を促進する一方で、IMP→HxRの反応を抑制することにより、エビ類体内にIMPを高濃度蓄積する方法を発明した。   Therefore, as a result of intensive research on processing methods to create an IMP rich state using shrimp with a high ATP, ADP, AMP and IMP content, that is, a state with a K value of 20% or less, the shrimp is kept in a certain temperature range for a certain period of time. By holding, the present invention for obtaining shrimp with a small increase in K value (small accumulation of HxR / Hx) and significantly increased IMP has been completed. That is, the inventors have invented a method for accumulating a high concentration of IMP in a shrimp body by suppressing the reaction of IMP → HxR while promoting the reaction of AMP → IMP.

この発明でIMPを増やしたエビは、増やす前のエビと比べ優位に旨味が強く、今まで行われていた遊離アミノ酸を増やす方法より、簡単にエビ本来の風味で強い旨味のエビになることを見出した。   The shrimp with increased IMP in this invention has a strong umami advantage compared to the shrimp before the increase, and it is easier to become a shrimp with a strong flavor with the original flavor of shrimp than the method of increasing free amino acids that has been done so far I found it.

すなわち、本発明の態様は以下の通りである。
[1] 核酸関連物質中の5’−イノシン酸(IMP)の割合が40%以上で、旨味が増強されたエビ類。
[2] K値が20%以下である[1]のエビ類。
[3] IMPの絶対濃度が3μmol/g以上である[1]または[2]のエビ類。
[4] [1]〜[3]のいずれかのエビ類を用いた生鮮品・冷凍品・加熱加工品。
[5] エビ類が、クルマエビ属(Penaeus属)に属する[1]〜[4]のいずれかのエビ類。
[6] クルマエビ属(Penaeus属)に属するエビが、ブラックタイガー(Penaeus monodon)、クルマエビ(Penaeus japonicus)、タイショウエビ(Penaeus chinensis)、バナメイ(Penaeus vannamei)のいずれかである[5]のエビ類。
[7] エビ類を10〜50℃の温度で、0.1〜24時間保持することにより、エビ類体内にIMPを蓄積させることを特徴とする[1]〜[4]のいずれかのエビ類の製造方法。
[8] エビ類を15〜40℃の温度で、0.1〜10時間保持することにより、エビ類体内にIMPを蓄積させることを特徴とする[7]のエビ類の製造方法。
[9] さらに、エビ類のK値を20%以下に抑えることを特徴とする[7]または[8]のエビ類の製造方法。
[10] エビ類を10〜50℃の温度で、0.1〜24時間保持することを特徴とする、エビ類体内で死後に起こるATP→ADP→AMP→IMP→HxR→Hxで表される核酸関連物質の反応において、AMP→IMPの反応を促進し、IMP→HxRの反応を抑制し、IMPをエビ類体内に蓄積させる方法。
[11] エビ類を15〜40℃の温度で、0.1〜10時間保持することを特徴とする[10]の方法。
[12] [10]または[11]の方法で製造されたエビ類。
That is, the aspects of the present invention are as follows.
[1] Shrimp with enhanced umami taste in which the proportion of 5'-inosinic acid (IMP) in nucleic acid-related substances is 40% or more.
[2] The shrimp according to [1], which has a K value of 20% or less.
[3] The shrimp according to [1] or [2], wherein the absolute concentration of IMP is 3 μmol / g or more.
[4] A fresh product, a frozen product, or a heat-processed product using the shrimp of any one of [1] to [3].
[5] The shrimp according to any one of [1] to [4], wherein the shrimp belongs to the genus Penaeus.
[6] The shrimp of [5], wherein the shrimp belonging to the genus Penaeus is any one of black tiger (Penaeus monodon), tiger prawn (Penaeus japonicus), Thai shrimp (Penaeus chinensis), and Banamei (Penaeus vannamei). .
[7] The shrimp according to any one of [1] to [4], wherein IMP is accumulated in the shrimp body by holding the shrimp at a temperature of 10 to 50 ° C. for 0.1 to 24 hours. Production method.
[8] The method for producing shrimp according to [7], wherein IMP is accumulated in the shrimp body by holding the shrimp at a temperature of 15 to 40 ° C. for 0.1 to 10 hours.
[9] The method for producing a shrimp according to [7] or [8], wherein the K value of the shrimp is further suppressed to 20% or less.
[10] Nucleic acid-related ATP → ADP → AMP → IMP → HxR → Hx occurring after death in shrimp, characterized by holding shrimp at a temperature of 10-50 ° C. for 0.1-24 hours In the reaction of substances, AMP → IMP reaction is promoted, IMP → HxR reaction is suppressed, and IMP is accumulated in shrimps.
[11] The method according to [10], wherein the shrimp is maintained at a temperature of 15 to 40 ° C. for 0.1 to 10 hours.
[12] Shrimp produced by the method of [10] or [11].

本発明によれば、各種エビ類を15〜40℃の中温に保持することによって、比較的短時間でIMPを高濃度蓄積させ、エビの旨味をさらに増強させることができる。本来エビは魚と違って、IMPが蓄積されにくい性質を示し、10℃未満の低温では長時間を要し、逆に黒変等の問題が発生する。あるいは40℃以上の高温では極短時間処理することによってもIMPは増加するが、HxRも生成し、逆にIMPを高濃度蓄積するという意味では効率的ではない。本発明は、ちょうど中間的な温度をエビの死後の貯蔵温度に設定することにより、IMPを高濃度蓄積させることのできる方法を提供すると共に、IMPを高濃度含有した旨味の強いエビを提供するものである。   According to the present invention, by maintaining various shrimp at an intermediate temperature of 15 to 40 ° C., high concentration of IMP can be accumulated in a relatively short time, and the flavor of shrimp can be further enhanced. Shrimp, unlike fish, have the property that IMP is difficult to accumulate, and it takes a long time at temperatures below 10 ° C, and conversely, problems such as blackening occur. Alternatively, at a high temperature of 40 ° C. or higher, IMP increases even by treating for a very short time, but HxR is also generated, and conversely, it is not efficient in the sense of accumulating a high concentration of IMP. The present invention provides a method capable of accumulating a high concentration of IMP by setting just an intermediate temperature to the storage temperature after shrimp death, and also provides a savory shrimp containing a high concentration of IMP. Is.

養殖ブラックタイガーエビ無頭殻付き冷凍品を0℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which occur when the frozen product with cultured black tiger shrimp headless shell is stored at 0 degreeC. 養殖ブラックタイガーエビ無頭殻付き冷凍品を25℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which occur when the frozen product with cultured black tiger shrimp headless shell is stored at 25 degreeC. 養殖ブラックタイガーエビ無頭殻付き冷凍品を45℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which occur when the frozen product with cultured black tiger shrimp headless shell is stored at 45 degreeC. ブラックタイガー冷凍エビの各温度貯蔵中に起こるIMP%とK値の関係を示す図である。It is a figure which shows the relationship between IMP% and K value which occur during each temperature storage of black tiger frozen shrimp. ブラックタイガー冷凍エビの40%IMP蓄積時におけるK値の貯蔵温度依存性を示す図である。It is a figure which shows the storage temperature dependence of K value at the time of 40% IMP accumulation | storage of black tiger frozen shrimp. 養殖バナメイエビ無頭殻付き冷凍品を0℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of the AMP and IMP density | concentration which occur when the frozen product with a cultured shrimp headless shell is stored at 0 degreeC. 養殖バナメイエビ無頭殻付き冷凍品を25℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which occur when the culture | cultivated vaname shrimp uncrashed frozen goods are stored at 25 degreeC. 養殖バナメイエビ無頭殻付き冷凍品を55℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which occur when the culture | cultivation vanamae shrimp uncrashed frozen product is stored at 55 degreeC. バナメイ冷凍エビの各温度貯蔵中に起こるIMP%とK値の関係を示す図である。It is a figure which shows the relationship between IMP% and K value which occur during each temperature storage of frozen frozen shrimp. バナメイ冷凍エビの40%IMP蓄積時におけるK値の貯蔵温度依存性を示す図である。It is a figure which shows the storage temperature dependence of K value at the time of 40% IMP accumulation | storage of vaname frozen shrimp. クルマエビ無頭殻付き冷凍品を10℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which occurs when the frozen product with a prawn headless shell is stored at 10 degreeC. クルマエビ無頭殻付き冷凍品を25℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which occurs when the frozen product with a prawn headless shell is stored at 25 degreeC. クルマエビ無頭殻付き冷凍品を45℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which occurs when the frozen product with a head shrimp of prawns is stored at 45 degreeC. クルマエビ無頭殻付きを10℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which occurs when a prawn with a headless shell is stored at 10 degreeC. クルマエビ無頭殻付きを20℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which occur when a prawn with a headless shell is stored at 20 degreeC. ブラックタイガーエビ無頭殻付きを7℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which occurs when a black tiger shrimp with a headless shell is stored at 7 degreeC. ブラックタイガーエビ無頭殻付きを20℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which occurs when a black tiger shrimp with a headless shell is stored at 20 degreeC. バナメイエビ無頭殻付きを7℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which arises when a vanilla shrimp with a headless shell is stored at 7 degreeC. バナメイエビ無頭殻付きを20℃で貯蔵した時に起こるAMPとIMP濃度の変化を示す図である。It is a figure which shows the change of AMP and IMP density | concentration which arises when a vanilla shrimp with a headless shell is stored at 20 degreeC.

本発明において原料となるエビは、活きていない畜養殖、天然の食用エビで、生鮮品、冷凍品の何れでもよく、脱頭・頭付、殻付・脱殻品の何れの形態でもよいが、頭を落したものが好ましい。エビの種類は限定されないが、クルマエビ属(Penaeus属)に属するエビが好ましく、さらにブラックタイガー(Penaeus monodon)、クルマエビ(Penaeus japonicus)、タイショウエビ(Penaeus chinensis)、バナメイ(Penaeus vannamei)が好ましい。   The shrimp used as a raw material in the present invention is a non-livestock aquaculture, a natural edible shrimp, which may be a fresh product or a frozen product, and may be any form of decapitation / headed, shelled / dehulled product, What dropped the head is preferable. The type of shrimp is not limited, but shrimp belonging to the genus Penaeus is preferable, and black tiger (Penaeus monodon), prawn (Penaeus japonicus), Thai shrimp (Penaeus chinensis), and Banamei (Penaeus vannamei) are more preferable.

エビは、冷凍品は解凍したものを、生鮮品はそのままで、活きたものは〆た後、品温を10〜50℃、好ましくは15〜40℃で、0.1時間〜24時間、好ましくは0.1〜10時間保つ。ブラックタイガーの場合は15℃〜25℃、バナメイの場合は15℃〜40℃が好ましい。エビの貯蔵時の温度および時間の適切な組合わせの例として、25℃で1時間もしくは2時間以上等の組合わせが挙げられる。   For shrimp, frozen products are thawed, fresh products are left as they are, live ones are cooked, and the product temperature is 10 to 50 ° C., preferably 15 to 40 ° C., 0.1 to 24 hours, preferably Keep for 0.1-10 hours. In the case of black tiger, 15 ° C to 25 ° C is preferable, and in the case of Banamei, 15 ° C to 40 ° C is preferable. Examples of suitable combinations of temperature and time during shrimp storage include combinations at 25 ° C. for 1 hour or 2 hours or more.

上記温度で上記時間保つことにより、AMPを蓄積させることなく、IMPを蓄積させることができる。すなわち、エビ類の死後、エビ体内の核酸関連物質は、主にATP→ADP→AMP→IMP→HxR→Hxと変化する。また、該反応経路の途中で、IMPを経由せずAMP→アデノシン→HxRと反応が進む経路も存在する。本発明の方法により、エビ体内でAMP→IMPの反応を促進すると共に、IMP→HxRの反応が抑制されるので、IMP含量が高く、HxRおよびHx含量が低いエビ類を製造することができる。この場合、IMP→HxRの反応が抑制されるとは、AMP→IMP→HxRの一連の反応中で、相対的にAMP→IMPの反応がIMP→HxRの反応よりも優先的に進行することをいう。逆に10℃以下あるいは50℃以上の温度では、IMP→HxRの反応がAMP→IMPの反応よりも優先的に起こるため、IMP含量は高くならない。   By maintaining the above temperature for the above time, IMP can be accumulated without accumulating AMP. That is, after shrimp death, the nucleic acid-related substance in the shrimp changes mainly from ATP → ADP → AMP → IMP → HxR → Hx. In addition, there is a route in which the reaction proceeds in the middle of the reaction route from AMP → adenosine → HxR without going through IMP. According to the method of the present invention, the AMP → IMP reaction is promoted in the shrimp and the IMP → HxR reaction is suppressed, so that shrimp having a high IMP content and a low HxR and Hx content can be produced. In this case, the suppression of the reaction of IMP → HxR means that the reaction of AMP → IMP proceeds relatively preferentially over the reaction of IMP → HxR in a series of reactions of AMP → IMP → HxR. Say. Conversely, at temperatures below 10 ° C or above 50 ° C, the IMP → HxR reaction occurs preferentially over the AMP → IMP reaction, so the IMP content does not increase.

この時、好ましくは乾燥を防ぐ目的でビニール袋などに入れ脱気を行って密封する。あるいは、品温を速やかに目的の温度にするために、30℃〜40℃に調節した3〜20%の食塩を含む溶液中に浸漬し、エビの温度が目的の温度になるのを待ってから、液を切って室温に放置する。   At this time, it is preferably sealed in a plastic bag or the like for the purpose of preventing drying. Alternatively, in order to quickly bring the product temperature to the target temperature, immerse it in a solution containing 3-20% salt adjusted to 30 ° C to 40 ° C and wait for the shrimp temperature to reach the target temperature. Then, drain the solution and leave it at room temperature.

この工程で、エビ中の核酸関連物質の中で旨味増強成分であるIMP量が優位に増え、全核酸関連物質、すなわち核酸成分中の40%以上となり、エビ中に含まれるグルタミン酸の旨味の増強と合間って、明らかに旨味の強いエビができる。すなわち、本発明のエビ類は、全核酸関連物質中のIMP量が40%以上、好ましくは42%以上、さらに好ましくは45%以上であるエビ類である。ここで、核酸関連物質には、ATP、ADP、AMP、HxR(イノシン)、Hx(ヒポキサンチン)およびIMPが含まれる。エビ中のIMP量とは、エビの筋肉中のIMP量をいい、例えば、頭胸部と腹部を切り離しながら背腸も同時に取り除き、続いて腹部を覆っている甲殻を除き、さらに、腹部の第1節部位と第6節部位及び尾節の筋肉部位を取り除いた部位を分析部位として分析すればよい。本発明において、エビ中の核酸関連物質量という場合、このようにして分析した値である。   In this process, the amount of IMP, which is an umami enhancing component among the nucleic acid-related substances in shrimp, increased predominately, becoming 40% or more of all nucleic acid-related substances, ie, nucleic acid components, and enhancing the umami of glutamic acid contained in shrimp In the meantime, you can make shrimp with a strong taste. That is, the shrimp of the present invention is a shrimp in which the amount of IMP in the total nucleic acid-related substance is 40% or more, preferably 42% or more, more preferably 45% or more. Here, the nucleic acid-related substances include ATP, ADP, AMP, HxR (inosine), Hx (hypoxanthine) and IMP. The amount of IMP in shrimp refers to the amount of IMP in shrimp muscles.For example, the back and intestines are removed at the same time while separating the chest and abdomen, and the crust that covers the abdomen is removed. What is necessary is just to analyze as the analysis part the part which removed the node part, the sixth part part, and the muscle part of the tail joint. In the present invention, the amount of nucleic acid-related substance in shrimp is a value analyzed in this way.

また、本発明のエビ類中のIMPの絶対量は、3μmol/g以上である。
また、この処理により、エビ中の遊離アミノ酸などの成分溶出はほとんどなく、遊離アミノ酸総量の変化は見られない。
Further, the absolute amount of IMP in the shrimp of the present invention is 3 μmol / g or more.
Also, by this treatment, there is almost no elution of components such as free amino acids in shrimp, and no change in the total amount of free amino acids is observed.

さらに、本発明のエビ類は、K値が20以下のエビ類である。ここで、K値とは鮮度の指標になる値であり、K値(%)=(HxR+Hx)/(ATP+ADP+AMP+IMP+HxR+Hx)×100で示される。一般的にK値が20以下の場合、生食に適しており、本発明のエビ類は生食可能である。   Furthermore, the shrimp of the present invention is a shrimp having a K value of 20 or less. Here, the K value is a value that serves as an index of freshness, and is represented by K value (%) = (HxR + Hx) / (ATP + ADP + AMP + IMP + HxR + Hx) × 100. Generally, when the K value is 20 or less, it is suitable for raw eating, and the shrimp of the present invention can be eaten raw.

さらに、本発明のエビ類の核酸関連物質の組成の例として、IMP量が40〜60%、AMPが20〜40%、HxR+Hxが20%以下という組成が挙げられる。   Furthermore, examples of the composition of the shrimp nucleic acid-related substance of the present invention include a composition in which the amount of IMP is 40 to 60%, AMP is 20 to 40%, and HxR + Hx is 20% or less.

本発明のエビ類は、旨味が増強されているという特徴を有するか、旨味が増強されているか否かは、2点識別試験法、定量的記述分析法等の官能試験を行うことにより決定することができる。   The shrimp of the present invention has a feature that umami is enhanced or whether umami is enhanced is determined by performing a sensory test such as a two-point discrimination test method or a quantitative description analysis method. be able to.

このように加工したエビは、そのまま、また調理後凍結して冷凍品にしても良く、もちろんそのまま調理しても良い。本発明で得られるエビを、寿司エビに加工した場合、醤油のグルタミン酸の旨味を増強し、さらに旨味の強いすしエビとなる。また、天ぷら・フライの加工品にした場合でも同様に旨味の強い加工品となり、あるいは中華素材・スープ等の具材にした場合でも、調理品全体の旨味を増すことになり、極めて簡単で十分に味の改善が可能な有用な技術である。   The shrimp processed in this way may be frozen as it is after cooking, to make a frozen product, or of course, cooked as it is. When the shrimp obtained in the present invention is processed into sushi shrimp, it enhances the umami of glutamic acid in soy sauce, and becomes sushi shrimp with a stronger umami. In addition, even if it is processed into tempura and fried food, it becomes a processed product with strong taste as well, or even when used in ingredients such as Chinese ingredients and soup, the taste of the whole cooked product is increased, making it extremely simple and sufficient. It is a useful technique that can improve the taste.

本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.

実施例1
エビ中の核酸成分組成の分析は、以下の方法で実施した。先ずエビから分析サンプルを採取する方法は、頭胸部と腹部を切り離しながら背腸も同時に取り除き、続いて腹部を覆っている甲殻を除いた。さらに、腹部の第1節部位と第6節部位及び尾節の筋肉部位を取り除いた部位を分析部位としてサンプリングした。
Example 1
Analysis of the composition of nucleic acid components in shrimp was carried out by the following method. First, an analytical sample was collected from shrimp by removing the back and intestines at the same time while separating the thorax and abdomen, and then removing the crust covering the abdomen. Furthermore, the site | part which removed the 1st node site | part of the abdomen, the 6th node site | part, and the muscle site | part of the tail node was sampled as an analysis site | part.

次に核酸成分の抽出方法は、氷水中で冷却した5%トリクロロ酢酸を、採取したエビの重量に対して20倍量加えて、直ちにホモジナイズして懸濁液とした。得られた懸濁液を遠心分離(国産スイング式遠心機にて3,000rpmで15分間(4℃))し、上清として得られた液部をフィルター処理(0.2μm)して、核酸分析用HPLC(高速液体クロマトフラフィー)に供した。   Next, the nucleic acid component was extracted by adding 20% of 5% trichloroacetic acid cooled in ice water to the weight of the collected shrimp and immediately homogenizing to obtain a suspension. The obtained suspension is centrifuged (3,000 rpm for 15 minutes (4 ° C) in a domestic swing centrifuge), and the liquid part obtained as a supernatant is filtered (0.2 μm) for nucleic acid analysis. It used for HPLC (high performance liquid chromatography).

HPLCの内容としては、使用カラム(使用温度)はShodex Asahipak製GS-320HQ(30℃)、溶離液組成は200mMリン酸溶液pH2.9とし、流速0.6ml/minで、UV検出機にて吸光波長260nmで検出した。定量値の算出には、Windows対応ソフト・EZChrom Eliteを使用した。なお、K値あるいはIMP(%)は、各核酸成分の定量値(μmol/g)から以下の式に従って算出した。
K値(%)=(HxR+Hx)/(ATP+ADP+AMP+IMP+HxR+Hx)×100
IMP(%)=IMP/(ATP+ADP+AMP+IMP+HxR+Hx)×100
As for the contents of HPLC, the column used (temperature used) is GS-320HQ (30 ° C) manufactured by Shodex Asahipak, the eluent composition is 200 mM phosphoric acid solution pH 2.9, the flow rate is 0.6 ml / min, and it is absorbed by the UV detector. Detection was performed at a wavelength of 260 nm. For calculation of quantitative values, Windows compatible software EZChrom Elite was used. The K value or IMP (%) was calculated from the quantitative value (μmol / g) of each nucleic acid component according to the following formula.
K value (%) = (HxR + Hx) / (ATP + ADP + AMP + IMP + HxR + Hx) x 100
IMP (%) = IMP / (ATP + ADP + AMP + IMP + HxR + Hx) × 100

実施例2
IQF凍結(一尾ずつバラバラに凍結されたもの)された養殖ブラックタイガーエビの無頭殻付き冷凍品(サイズ31/41尾)を、20℃の流水中で20分解凍処理し、水切り後に氷冷し、そのまま沸騰水中で3分間加熱した場合(未熟成区)と、水切り後のエビをビニール袋に密閉し20℃に設定した恒温槽中で2時間貯蔵してから加熱した場合(熟成区)について遊離アミノ酸、及び核酸成分を分析し表1に示した。
Example 2
IQF-frozen (frozen one-by-one frozen) cultured black tiger shrimp frozen products with headless shells (size 31/41 tails) were thawed in running water at 20 ° C for 20 minutes, drained and then iced When cooled and boiled for 3 minutes in boiling water (unripe section) and when shredded shrimp are sealed in a plastic bag and stored for 2 hours in a thermostat set at 20 ° C (aged section) The free amino acids and nucleic acid components were analyzed for) and shown in Table 1.

その結果、全遊離アミノ酸濃度および全核酸濃度、またK値には大差はなかった。一方、核酸組成においては、未熟成区ではAMPが53.6%及びIMPが27%であったが、熟成区ではAMP26.8%、IMP55.4%となり、20℃で貯蔵することによりAMPとIMPの比率が逆転し、IMPの蓄積が明らかに認められた。   As a result, the total free amino acid concentration, the total nucleic acid concentration, and the K value were not significantly different. On the other hand, in terms of nucleic acid composition, AMP was 53.6% and IMP was 27% in the immature group, but AMP was 26.8% and IMP 55.4% in the matured group. The ratio was reversed and IMP accumulation was clearly observed.

実施例3
実施例2の両試験区について、2点識別試験法による官能評価を行った。表2に従って旨味を比較した結果、26名中20人が熟成区のエビの方が旨味が強いと評価した。熟成区のエビの方が統計的にも1%の有意水準で明らかなに旨味が強くなっていることが確認された。
Example 3
In both test sections of Example 2, sensory evaluation was performed by a two-point discrimination test method. As a result of comparing the umami according to Table 2, 20 people out of 26 evaluated that the shrimp in the aged area had stronger umami. It was confirmed that the shrimp in the ripening zone was statistically strong at 1% significance level.

実施例4
IQF凍結された養殖バナメイエビの無頭殻付き冷凍品(サイズ31/41尾)を、20℃の流水中で20分解凍処理し、水切り後に氷冷し、そのまま沸騰水中で3分間加熱した場合(未熟成区)と、水切り後のエビに対して、2倍量の30℃に調製した5%食塩水を投入して、そのまま2時間放置してから再度水切りして加熱した場合(熟成区)について遊離アミノ酸、核酸成分を分析し表3に示した。
Example 4
When IQF-frozen cultured vanname prawns (31/41 tails) are thawed in running water at 20 ° C for 20 minutes, drained and then ice-cooled and heated in boiling water for 3 minutes ( When the 5% saline solution prepared at 30 ° C, which is twice the amount, is added to the shrimp after draining, and left to stand for 2 hours, drained again and heated (aging) Table 3 shows the analysis of free amino acids and nucleic acid components.

その結果、全遊離アミノ酸濃度および全核酸濃度には大差がなく、またK値においては熟成区での増加が認められたが、その値は10%以下であった。一方、核酸組成においては未熟成区ではAMPが77.4%及びIMP7.6%であったのが、熟成区ではAMP33.6%、IMP51%となり、冷凍バナメイエビの場合でも20℃で貯蔵することによりAMPとIMPの比率が逆転し、IMPの蓄積が明らかに認められた。   As a result, there was no significant difference in the total free amino acid concentration and the total nucleic acid concentration, and an increase in the matured area was observed in the K value, but the value was 10% or less. On the other hand, in terms of nucleic acid composition, AMP was 77.4% and IMP 7.6% in the immature group, but it was AMP 33.6% and IMP 51% in the matured group. The ratio of IMP to IMP was reversed, and IMP accumulation was clearly observed.

実施例5
実施例4の両試験区のボイルバナメイエビについて、訓練された13名のパネルにより定量的記述分析法(「官能評価技術の現状と展望」相島鐵朗、月刊フードケミカル、Vol.18、No1、(2002))による官能評価を実施した。すなわち、特定パネル13名を一つの場所に集めて、両試験区のエビを食してもらい、この両エビの味覚的な違いを評価する上で適切な評価言葉が何かを話し合ったところ、エビの甘味、旨味の2項目が適切であり、なおかつ全員が共通して認識することのできる評価言葉であることを確認した。そして再びこれら2項目についてパネラー個別による官能評価を実施した。その結果を表4に示したが、甘味、旨味の2項目全てにおいて、熟成区のエビの方が明らかに強く感じられると評価され、この結果について母平均の差の検定(対応あり・t検定による)を行った結果、旨味は5%、甘味においては1%の有意水準で明らかな官能的な差が確認された。
Example 5
For the boiled lobster in both test areas of Example 4, a quantitative descriptive analysis method (“Current Status and Prospect of Sensory Evaluation Technology” by Goro Aijima, Monthly Food Chemical, Vol.18, No1, ( 2002)). In other words, 13 specific panels were gathered in one place, eaten shrimp in both test areas, and discussed the appropriate evaluation words to evaluate the taste difference between the two shrimp. 2 items of sweetness and umami were appropriate, and it was confirmed that the evaluation words can be recognized by everyone. And again, sensory evaluation by individual panelists was conducted for these two items. The results are shown in Table 4, and it was evaluated that shrimp in the matured area clearly felt stronger in all two items of sweetness and umami. As a result, a clear sensory difference was confirmed at a significance level of 5% for umami and 1% for sweetness.

以上の結果から、エビに含まれる各種核酸成分中のIMP量を増加させることによって、官能的にも明らかにエビの旨味が増強されていることが実証された。   From the above results, it was demonstrated that by increasing the amount of IMP in various nucleic acid components contained in shrimp, the umami taste of the shrimp was clearly enhanced functionally.

実施例6
次に、各エビの冷凍品を用いて、IMPが効率的に蓄積される貯蔵温度について詳細に検討した。
IQF凍結された養殖ブラックタイガーエビの無頭殻付き冷凍品(サイズ31/41尾)を、20℃の流水中で20分解凍処理し、水切り後に氷冷し、0℃、25℃、45℃で所定時間貯蔵して、核酸成分の経時的な変化を追跡し、その結果を図1-1から図1−3に示した。貯蔵温度による速度的な差はあるが、AMP(○)は何れの温度でも貯蔵時間の経過に伴い減少した。一方、IMP(●)とIMP%(△)は0℃と45℃では僅かに増加しただけで、IMPは40%に到達しなかった。25℃では経時的に増加し、IMP(%)は最大55%に達した。
Example 6
Next, we examined in detail the storage temperature at which IMP was efficiently accumulated using frozen products of each shrimp.
IQF frozen cultured black tiger shrimp with a headless shell (size 31/41 tails) was thawed in running water at 20 ° C for 20 minutes, drained and then ice-cooled, 0 ° C, 25 ° C, 45 ° C In Fig. 1-1 to Fig. 1-3, the changes over time of the nucleic acid components were traced and the changes over time of the nucleic acid components were traced. Although there is a difference in speed depending on the storage temperature, AMP (◯) decreased with the passage of storage time at any temperature. On the other hand, IMP (●) and IMP% (△) increased only slightly at 0 ° C and 45 ° C, and IMP did not reach 40%. At 25 ° C, it increased with time, and IMP (%) reached 55% at maximum.

実施例7
実施例6のデータに、5℃、10℃、15℃、20℃、30℃、35℃、40℃、50℃および55℃の温度で貯蔵したデータも加えて、貯蔵中に起こるIMP(%)の増加と、それに伴うK値の増加の関係を図2に示した。この結果、15℃〜25℃ではK値が10〜15%の範囲でIMP(%)が60%弱で最大となり、その貯蔵温度よりも温度が高低に離れるほど、蓄積するIMP(%)の最大値は低くなった。また図2の結果から、IMPが40%に到達した時点でのK値を読みとり、貯蔵温度との関係を図3に示した。ただし、IMPが40%に到達しなかった温度については○で示し、各シンボルの横の( )内には、最長貯蔵時間とその時点でのK値を記入した。この結果によれば、IMPが40%に到達しなかったのは、0℃、5℃、45℃、50℃および55℃の温度であった。IMP(%)が40%に到達した10℃〜40℃の温度範囲では、温度に対してはU字型の依存性を示した。すなわち、ブラックタイガーエビの場合は、15℃〜25℃の温度範囲で低いK値(5〜10%)の状態でIMPが40%に到達するが、その温度範囲から高低に離れるとK値は高くなり、さらに温度が離れると、K値のみが増加する一方で、その割にIMPは増加しにくくなった。
Example 7
In addition to the data of Example 6, the data stored at temperatures of 5 ° C., 10 ° C., 15 ° C., 20 ° C., 30 ° C., 35 ° C., 40 ° C., 50 ° C. and 55 ° C. are also added to the IMP (% ) And the accompanying increase in the K value are shown in FIG. As a result, at 15 ° C to 25 ° C, the IMP (%) reaches a maximum at a little less than 60% when the K value is in the range of 10 to 15%, and as the temperature goes away from the storage temperature, the accumulated IMP (%) The maximum value was lowered. Further, from the result of FIG. 2, the K value when the IMP reached 40% was read, and the relationship with the storage temperature is shown in FIG. However, the temperature at which IMP did not reach 40% is indicated by a circle, and the longest storage time and the K value at that time are entered in () next to each symbol. According to this result, IMP did not reach 40% at temperatures of 0 ° C., 5 ° C., 45 ° C., 50 ° C. and 55 ° C. In the temperature range from 10 ° C. to 40 ° C. where IMP (%) reached 40%, U-shaped dependence on temperature was exhibited. In other words, in the case of black tiger shrimp, IMP reaches 40% at a low K value (5 to 10%) in the temperature range of 15 ° C to 25 ° C. As the temperature increased and the temperature further increased, only the K value increased, but IMP became difficult to increase.

実施例8
IQF凍結された養殖バナメイエビの無頭殻付き冷凍品(サイズ31/41尾)を、20℃の流水中で20分解凍処理し、水切り後0℃、25℃、55℃で所定時間貯蔵して、核酸成分の経時的な変化を追跡し、その結果を図4−1から図4−3に示した。貯蔵温度による速度的な差はあるが、AMP(○)は何れの温度でも貯蔵時間の経過に伴い減少した。一方、IMP(●)とIMP%(△)は0℃と45℃では僅かに増加しただけで、IMPは40%に到達しなかった。25℃では経時的に増加し、IMP(%)は最大55%弱に達した。
Example 8
IQF-frozen cultivated vaname shrimp with a headless shell (size 31/41 tails) is thawed in running water at 20 ° C for 20 minutes, drained and stored at 0 ° C, 25 ° C and 55 ° C for a specified time. The change with time of the nucleic acid component was traced, and the results are shown in FIGS. 4-1 to 4-3. Although there is a difference in speed depending on the storage temperature, AMP (◯) decreased with the passage of storage time at any temperature. On the other hand, IMP (●) and IMP% (△) increased only slightly at 0 ° C and 45 ° C, and IMP did not reach 40%. At 25 ° C, it increased with time, and IMP (%) reached a maximum of slightly less than 55%.

実施例9
実施例8のデータに、5℃、10℃、15℃、20℃、30℃、35℃、40℃、45℃および50℃の温度で貯蔵したデータも加えて、貯蔵中に起こるIMP(%)の増加と、それに伴うK値の増加の関係図を図5に示した。この結果、20℃〜40℃ではK値が10%〜15%の範囲でIMP(%)が60%強で最大となり、その範囲よりも温度が高低に離れるほど、IMP(%)の最大値は低くなった。また図5の結果から、IMPが40%に到達した時点でのK値の値を読みとり、貯蔵温度との関係を図6に示した。ただし、IMPが40%に到達しなかった温度については○で示し、各シンボルの横の( )内には、最長貯蔵時間とその時点でのK値を記入した。この結果によれば、IMPが40%に到達しなかったのは、0℃、5℃、55℃の温度であった。IMP(%)が40%に到達した10℃〜50℃の温度範囲では、温度に対してはU字型の依存性を示した。すなわち、バナメイエビの場合は、15℃〜40℃の温度範囲で低いK値(5〜10%)の状態でIMPが40%に到達するが、その温度範囲から高低に離れるとK値は高くなり、さらに温度が離れると、K値のみが増加する一方で、その割にIMPは増加しにくくなった。
Example 9
In addition to the data of Example 8, the data stored at temperatures of 5 ° C., 10 ° C., 15 ° C., 20 ° C., 30 ° C., 35 ° C., 40 ° C., 45 ° C. and 50 ° C. are also added to the IMP (% ) And the accompanying increase in K value is shown in FIG. As a result, at 20 ° C to 40 ° C, the K value is in the range of 10% to 15%, the IMP (%) becomes a maximum just over 60%, and the maximum value of the IMP (%) increases as the temperature goes higher and lower than that range. Became lower. Moreover, the value of K value when IMP reached 40% was read from the result of FIG. 5, and the relationship with the storage temperature was shown in FIG. However, the temperature at which IMP did not reach 40% is indicated by a circle, and the longest storage time and the K value at that time are entered in () next to each symbol. According to this result, the IMP did not reach 40% at temperatures of 0 ° C., 5 ° C., and 55 ° C. In the temperature range from 10 ° C. to 50 ° C. where IMP (%) reached 40%, U-shaped dependence on temperature was exhibited. In other words, in the case of shrimp, IMP reaches 40% at a low K value (5 to 10%) in the temperature range of 15 ° C to 40 ° C. As the temperature further increased, only the K value increased, but IMP was less likely to increase.

実施例10
IQF凍結したクルマエビの無頭殻付き冷凍品(サイズ31/41尾)を、20℃の流水中で20分解凍処理し、水切り後10℃、25℃、45℃で所定時間貯蔵して、核酸成分の経時的な変化を追跡し、その結果を図7−1から図7−3に示した。いずれの温度においても、AMP(○)は貯蔵初期に一度最大値を向かえた。これは本実験に供した解凍直後のエビはATPを多量に含んでおり、貯蔵初期にATPが急激に分解して、貯蔵の初期段階でAMPが一時的に蓄積したためである。その後AMPは経時的に減少した。一方IMP(●)は、貯蔵開始から経時的に増加し、10℃と25℃貯蔵では、その絶対濃度と割合が同じレベルにまで増加したが、それに比べて45℃ではIMPの増加は少なかった。
Example 10
IQF-frozen frozen prawns (size 31/41 tails) were thawed in running water at 20 ° C for 20 minutes, drained, and stored at 10 ° C, 25 ° C, 45 ° C for a specified period of time. Changes in the components over time were traced, and the results are shown in FIGS. 7-1 to 7-3. At any temperature, AMP (◯) once reached its maximum value at the beginning of storage. This is because the shrimp immediately after thawing used in this experiment contained a large amount of ATP, and ATP rapidly decomposed in the early stage of storage, and AMP temporarily accumulated in the initial stage of storage. Thereafter, AMP decreased with time. On the other hand, IMP (●) increased with the passage of time from the beginning of storage, and at 10 ° C and 25 ° C storage, the absolute concentration and ratio increased to the same level, but at 45 ° C the increase in IMP was small. .

以上の結果から、冷凍エビ中のIMPを効率的に蓄積するための有効な処理方法として、解凍後の貯蔵温度を調節することで、AMPからIMPへの分解反応が効率的に起こり、結果としてIMPが高濃度蓄積できることがわかった。そしてエビの種類により5℃前後の違いがあるものの、その至適温度範囲は10℃〜50℃であり、その範囲においてさらに効率的でしかも高濃度のIMPが蓄積できる温度は15℃〜40℃であった。言い換えれば、より低温あるいは高温の貯蔵では、IMPの蓄積量の増加に伴うK値の増加がより大きく起こるため、IMPが効率的に蓄積されにくく、また最大蓄積量も少なくなることがわかった。   From the above results, as an effective treatment method for efficiently storing IMP in frozen shrimp, by adjusting the storage temperature after thawing, decomposition reaction from AMP to IMP occurs efficiently, and as a result It was found that IMP can accumulate at high concentration. Although there is a difference of around 5 ° C depending on the kind of shrimp, the optimum temperature range is 10 ° C to 50 ° C, and the temperature at which higher concentration of IMP can be accumulated in that range is 15 ° C to 40 ° C Met. In other words, it was found that in the storage at a lower temperature or higher temperature, the increase in the K value accompanying the increase in the amount of accumulated IMP occurs, so that it is difficult to efficiently accumulate IMP and the maximum amount of accumulation decreases.

実施例11
活きたクルマエビを1時間氷殺し、頭部と背腸を除去して無頭殻付きエビとした。これを10℃と20℃に貯蔵して、核酸成分の経時的な変化を追跡し、その結果を図8−1および図8−2に示した。10℃貯蔵では、AMP(○)はほとんど生成されなかったが、貯蔵400分(約6.5時間)後からIMP(●)が遅れて蓄積した。これは、活きたクルマエビの氷殺直後は、核酸組成中ATPがほとんどであり、貯蔵400分までその状態を維持し、その後急激なATPの減少が起こり、それに伴いIMPが蓄積し始めたことによる。一方20℃の場合も貯蔵開始時点ではATPがほとんどであるが、10℃貯蔵よりも短い貯蔵時間からIMPの蓄積が始まり、最大で70%弱のIMP(%)の蓄積が起こった。
Example 11
Live prawns were killed by ice for 1 hour, and the head and back intestine were removed to make shrimp with a headless shell. This was stored at 10 ° C. and 20 ° C., and changes with time of the nucleic acid components were followed. The results are shown in FIGS. 8-1 and 8-2. When stored at 10 ° C, AMP (◯) was hardly produced, but IMP (●) accumulated after 400 minutes (about 6.5 hours) of storage. This is because immediately after the killing of live prawns, most of the ATP was contained in the nucleic acid composition and maintained that state until 400 minutes of storage, after which a sharp decrease in ATP occurred, and IMP started accumulating accordingly. . On the other hand, at 20 ° C, ATP was mostly at the beginning of storage, but IMP accumulation started from a shorter storage time than 10 ° C storage, and up to 70% of IMP (%) accumulated at the maximum.

実施例12
池上げ後氷殺して、3〜5時間経過したブラックタイガーエビについて、頭部と背腸を除去した無頭殻付きエビを、7℃と20℃に貯蔵して、核酸成分の経時的な変化を追跡し、その結果を図9−1および図9−2に示した。何れの温度でも貯蔵初期にAMPが一端増加し、その後AMP(○)の減少に伴いIMP(●)が蓄積されたが、最大値で見ると7℃よりも20℃の方がIMPの絶対濃度及び組成割合が多くなった。
Example 12
Black tiger shrimps that have been killed in ice after raising the ponds and stored for 5 to 5 hours are stored at 7 ° C and 20 ° C. The results are shown in FIGS. 9-1 and 9-2. At any temperature, AMP increased once at the beginning of storage, and IMP (●) was accumulated as AMP (○) decreased. However, the maximum concentration of AMP was 20 ° C rather than 7 ° C. And the composition ratio increased.

実施例13
池上げ後氷殺して、3〜5時間経過したバナメイエビについて、頭部と背腸を除去した無頭殻付きエビを、7℃と20℃に貯蔵して、核酸成分の経時的な変化を追跡し、その結果を図10−1および図10−2に示した。何れの温度でも貯蔵初期にAMP(○)が一端増加し、その後AMPの減少に伴いIMP(●)が蓄積されたが、最大値で見ると7℃よりも20℃の方がIMPの絶対濃度及び組成割合が多くなった。
Example 13
After ponding, the shrimp with the head and back intestine, with the head and back intestines removed, is stored at 7 ° C and 20 ° C, and changes over time in the nucleic acid components are traced. The results are shown in FIGS. 10-1 and 10-2. At any temperature, AMP (○) once increased at the beginning of storage, and IMP (●) was accumulated as AMP decreased. However, when viewed at the maximum value, the absolute concentration of IMP was 20 ° C rather than 7 ° C. And the composition ratio increased.

以上の結果から、未冷凍の各種エビの場合でも、冷凍エビで調べた至適貯蔵温度において、より高濃度のIMPの蓄積が確認された。   From the above results, even in the case of various types of unfrozen shrimp, accumulation of IMP at a higher concentration was confirmed at the optimum storage temperature examined with frozen shrimp.

Claims (7)

ATP関連物質中の5’−イノシン酸(IMP)の割合が50%以上で、IMPがAMPより多く含まれている、旨味が増強されたエビ類。   Shrimp with enhanced umami, in which the proportion of 5'-inosinic acid (IMP) in the ATP-related substance is 50% or more and IMP is contained more than AMP. エビ類を15〜25℃の温度で、0.1〜24時間保持することにより得られる、請求項1記載のエビ類。   The shrimp according to claim 1, obtained by holding the shrimp at a temperature of 15 to 25 ° C for 0.1 to 24 hours. K値が20%以下である請求項1又は2に記載のエビ類。   The shrimp according to claim 1 or 2, having a K value of 20% or less. IMPの絶対濃度が3μmol/g以上である請求項1〜3のいずれか1項に記載のエビ類。   The shrimp according to any one of claims 1 to 3, wherein the absolute concentration of IMP is 3 µmol / g or more. エビ類が、クルマエビ属(Penaeus属)に属する請求項1〜4のいずれか1項に記載のエビ類。   The shrimp according to any one of claims 1 to 4, wherein the shrimp belongs to the genus Penaeus. クルマエビ属(Penaeus属)に属するエビが、ブラックタイガー(Penaeus monodon)、クルマエビ(Penaeus japonicus)、タイショウエビ(Penaeus chinensis)、バナメイ(Penaeus vannamei)のいずれかである請求項5記載のエビ類。   The shrimp according to claim 5, wherein the shrimp belonging to the genus Penaeus is any one of black tiger (Penaeus monodon), tiger shrimp (Penaeus japonicus), tiger shrimp (Penaeus chinensis), and Penaeus vannamei. 請求項1〜6のいずれか1項に記載のエビ類を用いた生鮮品、冷凍品および加熱加工品からなる群から選択される加工品。   A processed product selected from the group consisting of a fresh product, a frozen product, and a heat-processed product using the shrimp according to any one of claims 1 to 6.
JP2011131765A 2011-06-14 2011-06-14 Delicious shrimp and its manufacturing method Expired - Fee Related JP5266365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131765A JP5266365B2 (en) 2011-06-14 2011-06-14 Delicious shrimp and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131765A JP5266365B2 (en) 2011-06-14 2011-06-14 Delicious shrimp and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005137768A Division JP5258011B2 (en) 2005-05-10 2005-05-10 Delicious shrimp and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2011172598A true JP2011172598A (en) 2011-09-08
JP5266365B2 JP5266365B2 (en) 2013-08-21

Family

ID=44686070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131765A Expired - Fee Related JP5266365B2 (en) 2011-06-14 2011-06-14 Delicious shrimp and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5266365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019059402A1 (en) * 2017-09-22 2020-11-05 日本水産株式会社 Aquaculture crustaceans and their manufacturing methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125743A (en) * 1992-10-21 1994-05-10 Tomoya:Kk Production of food products of increased deliciousness
JPH07255432A (en) * 1993-10-13 1995-10-09 Nippon Suisan Kaisha Ltd Package for prawn, body color-improved black tiger
JP2000201653A (en) * 1999-01-11 2000-07-25 Taisho Technos Co Ltd Processing of crustacean
JP2003235520A (en) * 2002-02-08 2003-08-26 Nichirei Corp Method for producing shrimps improved in texture, taste and surface color and surface color-improving composition for shrimps
JP2006050981A (en) * 2004-08-13 2006-02-23 Adoban Tokyo Kk Shrimp preservative and method for preserving shrimp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125743A (en) * 1992-10-21 1994-05-10 Tomoya:Kk Production of food products of increased deliciousness
JPH07255432A (en) * 1993-10-13 1995-10-09 Nippon Suisan Kaisha Ltd Package for prawn, body color-improved black tiger
JP2000201653A (en) * 1999-01-11 2000-07-25 Taisho Technos Co Ltd Processing of crustacean
JP2003235520A (en) * 2002-02-08 2003-08-26 Nichirei Corp Method for producing shrimps improved in texture, taste and surface color and surface color-improving composition for shrimps
JP2006050981A (en) * 2004-08-13 2006-02-23 Adoban Tokyo Kk Shrimp preservative and method for preserving shrimp

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6010029786; CHEN, H.-C. et al.: '"Changes in biochemical and bacteriological quality of grass prawn during transportation by icing an' J. Food. Sci. Vol.55, No.3, 1990, pp.670-673 *
JPN7012003035; 小山法希ほか: 'バネメイエビ筋肉中のATP関連化合物の変化と味覚への影響' 日本水産学会誌 第74巻 第6号, 2008, p.1068-1074 *
JPN7012003036; 新井健一: '海産無脊椎動物筋肉中のヌクレオチド' Bulletin of the Japanese Society of Scientific Fisheries 第32巻 第2号, 1966, p.174-180 *
JPN7012003037; 小関聡美ほか: '魚介類の死後硬直と鮮度(K値)の変化' 「海-自然と文化」東海大学紀要海洋学部 第4巻 第2号, 2006 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019059402A1 (en) * 2017-09-22 2020-11-05 日本水産株式会社 Aquaculture crustaceans and their manufacturing methods
JP7319923B2 (en) 2017-09-22 2023-08-02 株式会社ニッスイ Method for producing vannamei shrimp

Also Published As

Publication number Publication date
JP5266365B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
Abraha et al. Effect of processing methods on nutritional and physico-chemical composition of fish: a review
Sampels The effects of processing technologies and preparation on the final quality of fish products
Yanar et al. Effects of brine concentration on shelf-life of hot-smoked tilapia (Oreochromis niloticus) stored at 4 C
KR100888232B1 (en) Prawn soy and manufacturing method thereof
CN102948822B (en) Processing method of instant lightly baked scallop
CN102599549A (en) Method for preparing non-fried instant freshwater fish
CN101773259A (en) Method for processing instant flexibly-packaged penaeus vannamei boone
CN103689670A (en) Method for preparing grilled cod fillet food
CN103549497A (en) Making method for quick-frozen seasoned sliced red snapper food
Rybicka et al. Salt reduction in seafood–A review
CN102948824A (en) Processing method of instant seasoning scallop
Tirtawijaya et al. Effect of steaming and hot smoking treatment combination on the quality characteristics of hagfish (Myxine glutinosa)
Tahıluddın et al. Traditional fish processing techniques applied in the Philippines and Turkey
CN103689669A (en) Preparation method of barbecued salmon fillet food
KR101359224B1 (en) Method of Processing Cephalopoda of Mollusca including sugaring
JP5266365B2 (en) Delicious shrimp and its manufacturing method
Arumugam Studies on the Quality of fish cutlet prepared from Rohu (Labeo rohita) during refrigerated storage
JP5258011B2 (en) Delicious shrimp and its manufacturing method
Şengör et al. Determination of the amino acid and chemical composition of canned smoked mussels (Mytilus galloprovincialis, L.)
KR20180013223A (en) Preparation of dried red tilefish mixed with pepper paste
KR20190082412A (en) A method for preparing a smoking grilled comb pen shell
JP4909942B2 (en) Method for producing smoked seafood
CN103704779A (en) Preparing method of barbecued horse mackerel fillet food
KR100834703B1 (en) Manufacturing method of kimchi using snow crap
Shiriskar et al. Preparation of boiled and dried products from anchovies (Stolephorus sp.) and studies on quality changes during storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120926

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Ref document number: 5266365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees