JP2011172369A - Synchronous rotating machine - Google Patents

Synchronous rotating machine Download PDF

Info

Publication number
JP2011172369A
JP2011172369A JP2010033190A JP2010033190A JP2011172369A JP 2011172369 A JP2011172369 A JP 2011172369A JP 2010033190 A JP2010033190 A JP 2010033190A JP 2010033190 A JP2010033190 A JP 2010033190A JP 2011172369 A JP2011172369 A JP 2011172369A
Authority
JP
Japan
Prior art keywords
winding
poles
rotating machine
rotor
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010033190A
Other languages
Japanese (ja)
Other versions
JP5778391B2 (en
Inventor
Masatoshi Momiyama
雅俊 樅山
Mitsuhiro Kawamura
光弘 川村
Tadashi Fukami
正 深見
Kazuo Shima
和男 島
Yoshitaka Matsuura
吉高 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Kanazawa Institute of Technology (KIT)
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp, Kanazawa Institute of Technology (KIT) filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2010033190A priority Critical patent/JP5778391B2/en
Publication of JP2011172369A publication Critical patent/JP2011172369A/en
Application granted granted Critical
Publication of JP5778391B2 publication Critical patent/JP5778391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make the winding work of winding wires easy in a reluctance synchronous rotating machine. <P>SOLUTION: The reluctance synchronous rotating machine has a rotor 10, a stator core 50, multiple-pole field windings 60, and multiple-pole armature windings 70. The rotor 10 is supported on a shaft rotatably, and on the outer circumference of the rotor 10, a plurality of salient pole parts 32 in protruding shapes are formed to be spaced from each other at equal intervals in the circumferential direction. The stator core 50 is disposed on the outer circumference of the rotor 10 with a gap from the rotor 10. On the inside circumference of the stator core 50, a plurality of teeth 52 in protruding shapes are formed to be spaced from each other at equal intervals in the circumferential direction. The multiple-pole field windings 60 are wound on each of the plurality of teeth 52, while the multiple-pole armature windings 70, insulated from the field windings 60, are wound on each of the plurality of teeth 52. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、界磁巻線が固定子側に設けられたリラクタンス式の多相同期回転機に関する。   The present invention relates to a reluctance type multiphase synchronous rotating machine in which field windings are provided on a stator side.

従来のリラクタンス式の三相同期発電機は、回転子、固定子、界磁巻線、および、三相の電機子巻線を有していて、界磁巻線が固定子側に設けられている。回転子は、回転可能に軸支されていて、回転子の外周には、互いに周方向に等間隔に配列された凸状の複数の突極部が形成されている。固定子は、回転子の外周に回転子と間隔(エアギャップ)を空けて配設されていて、固定子の内周には、互いに周方向に等間隔に配列された凸状の複数のティースが形成されている。このティースには、界磁巻線および電機子巻線が巻回されている。界磁巻線および電機子巻線は、両巻線による起磁力を正弦波状にするため、複数個のティース間を渡って巻回(いわゆる「分布巻き」)されている。   A conventional reluctance type three-phase synchronous generator has a rotor, a stator, a field winding, and a three-phase armature winding, and the field winding is provided on the stator side. Yes. The rotor is rotatably supported, and a plurality of convex salient pole portions arranged at equal intervals in the circumferential direction are formed on the outer periphery of the rotor. The stator is disposed on the outer periphery of the rotor with a space (air gap) from the rotor, and the stator has a plurality of convex teeth arranged at equal intervals in the circumferential direction on the inner periphery of the stator. Is formed. Field windings and armature windings are wound around the teeth. The field winding and the armature winding are wound across a plurality of teeth (so-called “distributed winding”) in order to make the magnetomotive force of both windings sinusoidal.

この同期発電機は、界磁巻線を界磁電流により直流励磁し、固定子に静止磁界を形成して、この静止磁界を回転子によって磁気変調させて、エアギャップに回転磁界を発生させる。その結果、電機子巻線に三相交流電圧が誘導される(例えば、非特許文献1を参照。)。   In this synchronous generator, a field winding is DC-excited by a field current, a static magnetic field is formed in the stator, and this static magnetic field is magnetically modulated by the rotor to generate a rotating magnetic field in the air gap. As a result, a three-phase AC voltage is induced in the armature winding (see, for example, Non-Patent Document 1).

深見正 他4名, IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL.23, NO.2, JUNE 2008Masami Fukami and 4 others, IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 23, NO. 2, JUNE 2008

上述したリラクタンス式の三相同期発電機では、巻線が分布巻きされているため、巻線の配置が複雑であり、巻回作業においてミスが生じやすい。特に、大容量の大型同期発電機においては、巻回作業が困難であり、多くの作業工数が掛かってしまう。   In the above-described reluctance type three-phase synchronous generator, since the windings are distributedly distributed, the arrangement of the windings is complicated, and mistakes are likely to occur in the winding operation. In particular, in a large-capacity large-sized synchronous generator, winding work is difficult, and a large number of work steps are required.

そこで、本発明は、上述の課題を解決するためになされたものであり、界磁巻線が固定子側に設けられたリラクタンス式の多相同期回転機において、巻線の巻回作業を容易にすることを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and in a reluctance type multiphase synchronous rotating machine in which field windings are provided on the stator side, winding work can be easily performed. The purpose is to.

上記の目的を達成するために、本発明に係るリラクタンス式の多相同期回転機は、回転可能に軸支されて、外周に互いに周方向に等間隔に配列された凸状の複数の突極部が形成された回転子と、前記回転子の外周に前記回転子と間隔を空けて配設されて、内周に互いに周方向に等間隔に配列された凸状の複数のティースが形成された固定子鉄心と、前記複数のティース毎に巻回された複数極の界磁巻線と、前記界磁巻線と絶縁されて、前記複数のティース毎に巻回された複数極の多相の電機子巻線と、を具備したことを特徴とする。   In order to achieve the above object, a reluctance type multi-phase synchronous rotating machine according to the present invention includes a plurality of convex salient poles that are rotatably supported and arranged on the outer circumference at equal intervals in the circumferential direction. And a plurality of convex teeth arranged at equal intervals in the circumferential direction on the inner periphery, the rotor being arranged on the outer periphery of the rotor and spaced from the rotor. A stator core, a multi-pole field winding wound around each of the plurality of teeth, and a multi-phase multi-phase wound around each of the plurality of teeth, insulated from the field winding. And an armature winding.

本発明によれば、界磁巻線が固定子に設けられたリラクタンス式の多相同期回転機において、巻線の巻回作業を容易にすることができる。   According to the present invention, in a reluctance type multiphase synchronous rotating machine in which field windings are provided on a stator, winding work can be facilitated.

本発明の第1の実施形態に係る同期回転機の四分の一の部分横断面を模式的に示した図である。It is the figure which showed typically the partial partial cross section of the quarter of the synchronous rotary machine which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る同期回転機を説明するための図であって、界磁巻線の結線図である。It is a figure for demonstrating the synchronous rotary machine which concerns on the 1st Embodiment of this invention, Comprising: It is a connection diagram of a field winding. 本発明の第1の実施形態に係る同期回転機を説明するための図であって、電機子巻線の結線図である。It is a figure for demonstrating the synchronous rotary machine which concerns on the 1st Embodiment of this invention, Comprising: It is a connection diagram of an armature winding. 本発明の第1の実施形態に係る同期回転機を説明するための図であって、回転速度N=240min−1で定速運転したときの無負荷飽和曲線と三相短絡曲線を示した図である。It is a figure for demonstrating the synchronous rotary machine which concerns on the 1st Embodiment of this invention, Comprising: The figure which showed the no-load saturation curve and three-phase short circuit curve at the time of driving at constant speed with the rotational speed N = 240min- 1 . It is. 本発明の第1の実施形態に係る同期回転機を説明するための図であって、回転速度N=240min−1、界磁電流I=3.5Aのときの電機子電流Iに対する誘導電圧Vと出力Pの変化を示した図である。A diagram for explaining a synchronous rotary machine according to a first embodiment of the present invention, the rotational speed N = 240 min -1, induced for the armature current I a in the case of the field current I f = 3.5A It is the figure which showed the change of the voltage V and the output P. FIG. 本発明の第1の実施形態に係る同期回転機を説明するための図であって、回転速度N=240min−1で定速運転しながら界磁電流I=3.5Aとしたときの無負荷時における誘導電圧Vの実測波形を示した図である。It is a figure for demonstrating the synchronous rotary machine which concerns on the 1st Embodiment of this invention, Comprising: It is nothing when a field current If is 3.5 A while operating at a constant speed at a rotational speed N = 240 min −1. It is the figure which showed the measured waveform of the induced voltage V at the time of load. 本発明の第1の実施形態に係る同期回転機を説明するための図であって、回転速度N=240min−1で定速運転しながら界磁電流I=3.5Aとしたときの負荷(出力P=2.6kW)時における誘導電圧Vの実測波形を示した図である。It is a figure for demonstrating the synchronous rotary machine which concerns on the 1st Embodiment of this invention, Comprising: The load at the time of setting it as the field current If = 3.5A, operating at constant speed with rotational speed N = 240min < -1 > It is the figure which showed the measured waveform of the induced voltage V at the time of (output P = 2.6kW). 本発明の第1の実施形態に係る同期回転機を説明するための図であって、回転速度N=240min−1で定速運転しながら界磁電流I=3.5Aとしたときの無負荷時における界磁電流Iの実測波形を示した図である。It is a figure for demonstrating the synchronous rotary machine which concerns on the 1st Embodiment of this invention, Comprising: It is nothing when a field current If is 3.5 A while operating at a constant speed at a rotational speed N = 240 min −1. it is a diagram showing a measured waveform of the field current I f under load. 本発明の第1の実施形態に係る同期回転機を説明するための図であって、回転速度N=240min−1で定速運転しながら界磁電流I=3.5Aとしたときの負荷(出力P=2.6kW)時における界磁電流Iの実測波形を示した図である。It is a figure for demonstrating the synchronous rotary machine which concerns on the 1st Embodiment of this invention, Comprising: The load at the time of setting it as the field current If = 3.5A, operating at constant speed with rotational speed N = 240min < -1 > is a diagram showing the (output P = 2.6 kW) measured waveform of the field current I f at. 本発明の第1の実施形態に係る同期回転機を説明するための図であって、可変速運転しながら界磁電流Iを1.5A、2.5A、3.5Aと調整した場合の回転速度Nに対する最大出力Pmaxの変化を示した図である。It is a figure for demonstrating the synchronous rotary machine which concerns on the 1st Embodiment of this invention, Comprising: When the field current If is adjusted with 1.5A, 2.5A, and 3.5A during variable speed driving | operation FIG. 6 is a diagram showing a change in maximum output P max with respect to a rotation speed N. 本発明の第2の実施形態に係る同期回転機の四分の一の部分横断面を模式的に示した図である。It is the figure which showed typically the partial partial cross section of the quarter of the synchronous rotary machine which concerns on the 2nd Embodiment of this invention. 本発明の他の実施形態に係る同期回転機を説明するための表であって、p,p,pの組み合わせを示した表である。A table for explaining a synchronous rotary machine according to another embodiment of the present invention, a table showing the combination of p f, p a, p r .

[第1の実施形態]
本発明の第1の実施形態に係るリラクタンス式の多相同期回転機について説明する。
[First Embodiment]
A reluctance type multiphase synchronous rotating machine according to a first embodiment of the present invention will be described.

まず、本実施形態に係るリラクタンス式の多相同期回転機の構造について、図1および図2を用いて説明する。図1は、本実施形態に係る同期回転機の四分の一の部分横断面を模式的に示した図である。図2は、界磁巻線の結線図である。図3は、電機子巻線の結線図である。   First, the structure of a reluctance type multiphase synchronous rotating machine according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a diagram schematically showing a partial cross section of a quarter of the synchronous rotating machine according to the present embodiment. FIG. 2 is a connection diagram of the field winding. FIG. 3 is a connection diagram of the armature winding.

本実施形態に係るリラクタンス式の多相同期回転機(以下、単に「同期回転機」という。)は、例えば三相同期発電機である。同期回転機は、ハウジング(図示しない。)の内部に、回転子10および固定子40を有している。   The reluctance multiphase synchronous rotating machine (hereinafter simply referred to as “synchronous rotating machine”) according to the present embodiment is, for example, a three-phase synchronous generator. The synchronous rotating machine has a rotor 10 and a stator 40 inside a housing (not shown).

回転子10は、界磁巻線60が巻回されていない突極形回転子であって、主軸20および回転子鉄心30を有している。   The rotor 10 is a salient pole type rotor in which the field winding 60 is not wound, and has a main shaft 20 and a rotor core 30.

主軸20は、回転軸と同軸的に延びていて、ハウジングに設けられた軸受(図示しない。)によって、回転可能に軸支されている。   The main shaft 20 extends coaxially with the rotating shaft and is rotatably supported by a bearing (not shown) provided in the housing.

回転子鉄心30は、複数枚の珪素鋼板が回転軸方向に積層されてなり、主軸20の外周に固定されていて、回転軸と同軸的に延びている。回転子鉄心30の外周には、互いに周方向に等間隔に配列された凸状(例えば、横断面が略長方形状)の40個の突極部32が形成されている。すなわち、隣接する突極部32間には、凹溝34が形成されている。   The rotor core 30 is formed by laminating a plurality of silicon steel plates in the direction of the rotation axis, is fixed to the outer periphery of the main shaft 20, and extends coaxially with the rotation axis. On the outer periphery of the rotor core 30 are formed 40 salient pole portions 32 having convex shapes (for example, a substantially rectangular cross section) arranged at equal intervals in the circumferential direction. That is, a concave groove 34 is formed between adjacent salient pole portions 32.

本実施形態においては、回転子鉄心30は、回転軸方向の長さが50mm、外側半径(回転軸中心から突極部32の先端面までの距離)が255mmに形成されている。   In the present embodiment, the rotor core 30 has a length in the direction of the rotation axis of 50 mm and an outer radius (a distance from the center of the rotation axis to the tip surface of the salient pole portion 32) of 255 mm.

固定子40は、固定子鉄心50、複数極の界磁巻線60、および、複数極の三相の電機子巻線70を有している。   The stator 40 includes a stator core 50, a multi-pole field winding 60, and a multi-pole three-phase armature winding 70.

固定子鉄心50は、複数枚の珪素鋼板が回転軸方向に積層されてなり、回転子10の外周に回転子10と間隔(エアギャップ)を空けて配設されている。固定子鉄心50の内周には、互いに周方向に等間隔に配列された凸状(例えば、横断面が略長方形状)の48個のティース52が形成されている。すなわち、隣接するティース52間には、スロット54が形成されている。   The stator core 50 is formed by laminating a plurality of silicon steel plates in the direction of the rotation axis, and is disposed on the outer periphery of the rotor 10 with an interval (air gap) from the rotor 10. On the inner periphery of the stator core 50, 48 teeth 52 having a convex shape (for example, a substantially rectangular cross section) arranged at equal intervals in the circumferential direction are formed. That is, a slot 54 is formed between adjacent teeth 52.

本実施形態においては、固定子鉄心50は、回転軸方向の長さが50mm、外径が315mm、径方向の厚み(ティース52の先端面から固定子鉄心50の外周面までの距離)が59.5mmに形成されている。また、固定子鉄心50は、エアギャップの距離(突極部32の先端面からティース52の先端面までの距離)が0.5mmとなるように配設されている。   In the present embodiment, the stator core 50 has a length in the rotation axis direction of 50 mm, an outer diameter of 315 mm, and a radial thickness (distance from the tip surface of the teeth 52 to the outer peripheral surface of the stator core 50) of 59. .5mm. The stator core 50 is disposed such that the distance of the air gap (the distance from the tip surface of the salient pole portion 32 to the tip surface of the tooth 52) is 0.5 mm.

界磁巻線60は、銅線等の導線が、絶縁物を介して、48個のティース52毎に径方向に垂直に巻回(いわゆる「集中巻き」)されてなる。隣接したティース52に巻回された界磁巻線60は、互いに逆向きに巻回されていて、図1および図2に示したように、互いに直列に接続されている。界磁巻線60には、直流電源(図示しない。)より、界磁電流が供給される。そのため、本実施形態においては、界磁巻線60の極数pは、ティース52の数と同一の48極となっている。なお、界磁巻線60の巻き数は、9216巻きである。 The field winding 60 is formed by winding a conductive wire such as a copper wire perpendicularly in the radial direction for each of the 48 teeth 52 via an insulator (so-called “concentrated winding”). The field windings 60 wound around the adjacent teeth 52 are wound in opposite directions, and are connected in series as shown in FIGS. 1 and 2. A field current is supplied to the field winding 60 from a DC power source (not shown). Therefore, in the present embodiment, the number of poles p f of the field winding 60, and has a number and the same 48-pole teeth 52. The number of turns of the field winding 60 is 9216 turns.

三相の電機子巻線70は、銅線等の導線が、絶縁物を介して、48個のティース52毎に径方向に垂直に巻回(いわゆる「集中巻き」)されてなる。三相の電機子巻線70は、界磁巻線60より径方向の内方の位置で、界磁巻線60と絶縁されるように巻回されていて、隣接したティース52に巻回された電機子巻線70は、互いに同一の向きに巻回されている。電機子巻線70は、図1および図3に示したように、互いにY結線された三相(U相,V相,W相)の巻線により構成されていて、周方向に形成された48個のティース52には、U相の巻線、V相の巻線、W相の巻線が周方向に順に巻回されている。そのため、本実施形態においては、電機子巻線70の極数pは、(48÷3×2=)32極となっている。なお、三相の電機子巻線70の巻き数は、各相につき528巻きである。 The three-phase armature winding 70 is formed by winding a conductor such as a copper wire perpendicularly in the radial direction for each of the 48 teeth 52 via an insulator (so-called “concentrated winding”). The three-phase armature winding 70 is wound so as to be insulated from the field winding 60 at a position radially inward from the field winding 60 and wound around the adjacent teeth 52. The armature windings 70 are wound in the same direction. As shown in FIGS. 1 and 3, the armature winding 70 is composed of three-phase (U-phase, V-phase, W-phase) windings that are Y-connected to each other, and is formed in the circumferential direction. On the 48 teeth 52, a U-phase winding, a V-phase winding, and a W-phase winding are wound in order in the circumferential direction. Therefore, in the present embodiment, the number of poles p a of the armature winding 70 has a (48 ÷ 3 × 2 =) 32 poles. The number of turns of the three-phase armature winding 70 is 528 for each phase.

本実施形態に係るリラクタンス式の多相同期回転機の動作について、発電機を例にして説明する。   The operation of the reluctance type multi-phase synchronous rotating machine according to the present embodiment will be described using a generator as an example.

まず、リラクタンス式の多相同期回転機の動作原理について説明する。界磁巻線60を界磁電流Iにより直流励起すると、固定子40にp極(48極)の静止磁界が形成される。ここで、回転子10を同期回転機の外部に設けられた原動機によって回転速度N[min−1]で駆動すると、この静止磁界がp極((p+p)/2=40極)の回転子10によって磁気変調されて、エアギャップにp極(32極)の回転磁界が発生する。その結果、三相の電機子巻線70に式(1)に示した発電周波数f[Hz]の三相交流電圧が誘導される。 First, the operation principle of a reluctance type multiphase synchronous rotating machine will be described. When direct current excited by the field winding 60 field current I f, the stationary magnetic field of the p f poles (48 poles) are formed on the stator 40. Here, when driven at a rotation speed N [min -1] by a prime mover provided a rotor 10 to the outside of the synchronous rotary machine, the stationary magnetic field p r pole ((p f + p a) / 2 = 40 poles) It is magnetically modulated by the rotor 10 of the rotating magnetic field of the p a pole (32 poles) is generated in the air gap. As a result, a three-phase AC voltage having a power generation frequency f [Hz] shown in Expression (1) is induced in the three-phase armature winding 70.

f={(p+p)/120}×N ・・・式(1)
なお、電機子巻線70に誘導される誘導電圧Vは、界磁巻線60に供給する界磁電流Iを調整することにより、容易に制御される。
f = {(p f + p a ) / 120} × N (1)
Incidentally, the induced voltage V induced in the armature winding 70, by adjusting the supplied field current I f in the field winding 60, it is easily controlled.

次に、本実施形態に係る同期回転機の動作の有限要素解析(FEA)および実験による検証結果について、図4ないし図10を用いて説明する。   Next, finite element analysis (FEA) of the operation of the synchronous rotating machine according to the present embodiment and verification results by experiments will be described with reference to FIGS.

図4は、回転速度N=240min−1で定速運転したときの無負荷飽和曲線と三相短絡曲線を示した図である。図5は、回転速度N=240min−1,界磁電流I=3.5Aのときの電機子電流Iに対する誘導電圧Vと出力Pの変化を示した図である。 FIG. 4 is a diagram showing a no-load saturation curve and a three-phase short-circuit curve when a constant speed operation is performed at a rotational speed N = 240 min −1 . Figure 5 is a rotational speed N = 240 min -1, shows the change of the induced voltage V and the output P for the armature current I a in the case of the field current I f = 3.5A FIG.

図4および図5には、有限要素解析の結果と実験による実測値を同時に示した。両図において、実測値は、有限要素解析の結果とほぼ一致しているため、有限要素解析の妥当性が確認できた。また、図4および図5から分かるように、本実施形態に係る同期回転機は、電機子巻線70が回転子10側に巻回された、一般的な界磁巻線式の三相同期回転機と類似の特性を得ることができた。   4 and 5 show the results of the finite element analysis and the experimentally measured values at the same time. In both figures, the measured values almost coincide with the results of the finite element analysis, so the validity of the finite element analysis could be confirmed. As can be seen from FIGS. 4 and 5, the synchronous rotating machine according to the present embodiment is a general field winding type three-phase synchronization in which the armature winding 70 is wound on the rotor 10 side. The characteristics similar to the rotating machine could be obtained.

また、図6は、回転速度N=240min−1で定速運転しながら界磁電流I=3.5Aとしたときの無負荷時における誘導電圧Vの実測波形を示した図である。図7は、回転速度N=240min−1で定速運転しながら界磁電流I=3.5Aとしたときの負荷(出力P=2.6kW)時における誘導電圧Vの実測波形を示した図である。 FIG. 6 is a diagram showing an actually measured waveform of the induced voltage V when there is no load when the field current If is 3.5 A while operating at a constant speed at a rotational speed N = 240 min −1 . FIG. 7 shows an actually measured waveform of the induced voltage V at a load (output P = 2.6 kW) when the field current If is 3.5 A while operating at a constant speed at a rotational speed N = 240 min −1 . FIG.

図7に示したように、三相の電機子巻線70が集中巻きされているにもかかわらず、負荷時の誘導電圧Vがほぼ正弦波の平衡三相交流になっている。また、発電周波数f=160Hzであり、式(1)を満たしているため、80極((p+p)極)の三相同期発電機として動作していることが確認できた。 As shown in FIG. 7, the induced voltage V at the time of load is a balanced three-phase alternating current of a sine wave, despite the concentrated winding of the three-phase armature winding 70. Further, a power frequency f = 160 Hz, because they satisfy the equation (1), was confirmed to be operating as a three-phase synchronous generator 80 poles ((p f + p a) pole).

一方、図8は、回転速度N=240min−1で定速運転しながら界磁電流I=3.5Aとしたときの無負荷時における界磁電流Iの実測波形を示した図である。図9は、回転速度N=240min−1で定速運転しながら界磁電流I=3.5Aとしたときの負荷(出力P=2.6kW)時における界磁電流Iの実測波形を示した図である。 On the other hand, FIG. 8 is a diagram showing a measured waveform of the field current I f at the time of no load when the field current I f = 3.5A with constant speed operation at a rotational speed N = 240 min -1 . 9, the measured waveform of the field current I f at the load (output P = 2.6 kW) when the field current I f = 3.5A with constant speed operation at a rotational speed N = 240 min -1 FIG.

図8および図9に示したように、界磁電流Iは、負荷の有無にかかわらず、ほぼ時間的に変化しない直流電流となっていて、界磁巻線60には、交流電圧が誘導されていないことが確認できた。したがって、容易に界磁制御できる。 As shown in FIGS. 8 and 9, the field current If is a direct current that does not vary substantially with time regardless of the presence or absence of a load, and an AC voltage is induced in the field winding 60. It was confirmed that it was not done. Therefore, field control can be easily performed.

図10は、可変速運転しながら界磁電流Iを1.5A、2.5A、3.5Aと調整した場合の回転速度Nに対する最大出力Pmaxの変化を示した図である。 Figure 10 is a graph showing the change of the maximum output P max with respect to the rotational speed N of the adjusted for variable speed operation while the field current I f 1.5A, 2.5A, and 3.5A.

図10に示したように、界磁電流Iを調整することにより、可変速で出力Pを任意に制御できることが確認できた。 As shown in FIG. 10, it was confirmed that the output P can be arbitrarily controlled at a variable speed by adjusting the field current If .

本実施形態に係るリラクタンス式の多相同期回転機の効果について説明する。   The effect of the reluctance type multiphase synchronous rotating machine according to the present embodiment will be described.

本実施形態によれば、ティース52毎に界磁巻線60および三相の電機子巻線70を巻回(集中巻き)しているため、巻線60,70の巻回作業が容易になる。また、巻線の配置が単純であるため、巻回作業においてミスが低減し、メンテナンス等も容易になる。   According to the present embodiment, since the field winding 60 and the three-phase armature winding 70 are wound (concentrated winding) for each tooth 52, the winding work of the windings 60 and 70 is facilitated. . Moreover, since the arrangement of the windings is simple, mistakes in the winding work are reduced, and maintenance and the like are facilitated.

また、集中巻きを採用した本実施形態に係る同期回転機は、分布巻きを採用した従来の回転機に比べて、巻線60,70の周長を短縮できるため、製造コストが低減し、かつ、巻線抵抗の低減により出力および効率が向上する。   In addition, the synchronous rotating machine according to this embodiment that employs concentrated winding can shorten the circumferential length of the windings 60 and 70 as compared with the conventional rotating machine that employs distributed winding, and thus the manufacturing cost is reduced, and The output and efficiency are improved by reducing the winding resistance.

また、本実施形態による多極の同期回転機によれば、分布巻きを採用した従来の少極の回転機に比べて、低速回転が可能となる。その結果、風力発電システム等の種々の用途において、ギアレス(ダイレクトドライブ)システムを実現でき、騒音の低減および保守の省力化を図ることができる。   In addition, according to the multi-pole synchronous rotating machine according to the present embodiment, it is possible to rotate at a low speed as compared with the conventional small-pole rotating machine employing distributed winding. As a result, a gearless (direct drive) system can be realized in various applications such as a wind power generation system, and noise can be reduced and maintenance labor can be saved.

また、界磁巻線60が回転子10側に巻回されているのではなく、固定子40側に巻回されているため、ブラシやスリップリング等の回転子10側の給電装置が不要となり、製造コストや組立工数を低減することができる。   Further, since the field winding 60 is not wound on the rotor 10 side but is wound on the stator 40 side, a power feeding device on the rotor 10 side such as a brush or a slip ring becomes unnecessary. Manufacturing costs and assembly man-hours can be reduced.

さらに、上述したように、本実施形態に係る同期回転機によれば、界磁電流Iを調整することにより、容易に界磁制御が可能であり、出力Pを任意に制御できる。 Furthermore, as described above, according to the synchronous rotating machine according to the present embodiment, the field current If can be easily adjusted by adjusting the field current If, and the output P can be arbitrarily controlled.

[第2の実施形態]
本発明の第2の実施形態に係るリラクタンス式の多相同期回転機について、図11を用いて説明する。図11は、本実施形態に係る同期回転機の四分の一の部分横断面を模式的に示した図である。なお、本実施形態は、第1の実施形態の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明を省略する。
[Second Embodiment]
A reluctance type multiphase synchronous rotating machine according to a second embodiment of the present invention will be described with reference to FIG. FIG. 11 is a diagram schematically showing a partial cross section of a quarter of the synchronous rotating machine according to the present embodiment. In addition, this embodiment is a modification of 1st Embodiment, Comprising: The same code | symbol is attached | subjected to the same part or similar part as 1st Embodiment, and duplication description is abbreviate | omitted.

本実施形態では、固定子鉄心50は、周方向に48個に分割された分割コア56を組み合わせることによって構成されていて、各分割コア56の内周には、それぞれ1個のティース52が形成されている。   In the present embodiment, the stator core 50 is configured by combining 48 divided cores 56 divided in the circumferential direction, and one tooth 52 is formed on the inner circumference of each divided core 56. Has been.

本実施形態に係る同期回転機は、まず、各分割コア56のティース52に対して界磁巻線60および三相の電機子巻線70を巻回した後、48個の分割コアを組み合わせて、その後、各ティース52に巻回した巻線60,70同士を接続して、製造される。   In the synchronous rotating machine according to the present embodiment, first, after winding the field winding 60 and the three-phase armature winding 70 around the teeth 52 of each divided core 56, 48 divided cores are combined. Thereafter, the windings 60 and 70 wound around the teeth 52 are connected to each other.

本実施形態によれば、巻線60,70の巻回作業が容易になり、特に、大容量の大型同期回転機においては、この効果が顕著となる。   According to the present embodiment, the winding work of the windings 60 and 70 is facilitated, and this effect is particularly remarkable in a large-capacity large-sized synchronous rotating machine.

[他の実施形態]
第1および第2の実施形態は、単なる例示であって、本発明は、これらに限定されるものではない。
[Other Embodiments]
The first and second embodiments are merely examples, and the present invention is not limited to these.

第1および第2の実施形態では、p/p=48/32=1.5となっているが、p/p=1.2あるいは1.125でも良い。さらに、図12に示したように、p/p=1.5,1.2,1.125を満たすようなp,p,pの組み合わせは、多数存在し、これらのどの組み合わせを採用しても構わない。なお、p/p=1.5,1.2,1.125を満たすようなp,p,pの組み合わせは、個々のティース52に界磁巻線60および電機子巻線70を集中巻した単純な構造であり、界磁巻線60の極数と電機子巻線70の極数とを異にし、電機子巻線70を三相巻線、界磁巻線を直流巻線として動作させることができる。 In the first and second embodiments, although a p f / p a = 48/ 32 = 1.5, may be p f / p a = 1.2 or 1.125. Furthermore, as shown in FIG. 12, p f, p a, the p r combinations that satisfy p f / p a = 1.5,1.2,1.125 are numerous and any of these Combinations may be adopted. Incidentally, p f / p a = 1.5,1.2,1.125 meet such p f, p a, combination of p r is the field winding 60 and the armature winding into individual tooth 52 70 has a simple structure in which the number of poles of the field winding 60 is different from that of the armature winding 70, the armature winding 70 is a three-phase winding, and the field winding is a direct current. It can be operated as a winding.

また、第1および第2の実施形態では、三相の電機子巻線70の結線には、Y結線が採用されているが、Δ結線が採用されても良い。   In the first and second embodiments, the Y connection is adopted for the connection of the three-phase armature winding 70, but the Δ connection may be adopted.

また、第1および第2の実施形態では、電機子巻線70が界磁巻線60より径方向の内方の位置で巻回されているが、電機子巻線70が界磁巻線60より径方向の外方の位置で巻回されていても良い。   In the first and second embodiments, the armature winding 70 is wound at a position radially inward from the field winding 60, but the armature winding 70 is wound on the field winding 60. It may be wound at a more radially outward position.

また、第2の実施形態では、各分割コア56の内周には、それぞれ1個のティース52が形成されているが、各分割コア56の内周に、それぞれ2個以上のティース52が形成されていても良い。   In the second embodiment, one tooth 52 is formed on the inner periphery of each divided core 56, but two or more teeth 52 are formed on the inner periphery of each divided core 56. May be.

さらに、第1および第2の実施形態では、三相同期発電機を例にして説明したが、本発明は、多相の電動機または調相機にも適用できる。   Furthermore, in the first and second embodiments, a three-phase synchronous generator has been described as an example. However, the present invention can also be applied to a multiphase electric motor or a phase adjuster.

10…回転子、20…主軸、30…回転子鉄心、32…突極部、34…凹溝、40…固定子、50…固定子鉄心、52…ティース、54…スロット、56…分割コア、60…界磁巻線、70…電機子巻線 DESCRIPTION OF SYMBOLS 10 ... Rotor, 20 ... Main shaft, 30 ... Rotor core, 32 ... Salient pole part, 34 ... Groove, 40 ... Stator, 50 ... Stator core, 52 ... Teeth, 54 ... Slot, 56 ... Split core, 60: Field winding, 70: Armature winding

Claims (7)

回転可能に軸支されて、外周に互いに周方向に等間隔に配列された凸状の複数の突極部が形成された回転子と、
前記回転子の外周に前記回転子と間隔を空けて配設されて、内周に互いに周方向に等間隔に配列された凸状の複数のティースが形成された固定子鉄心と、
前記複数のティース毎に巻回された複数極の界磁巻線と、
前記界磁巻線と絶縁されて、前記複数のティース毎に巻回された複数極の多相の電機子巻線と、
を具備したことを特徴とするリラクタンス式の多相同期回転機。
A rotor that is rotatably supported and formed with a plurality of convex salient pole portions arranged on the outer periphery at equal intervals in the circumferential direction;
A stator core disposed on the outer periphery of the rotor at an interval from the rotor and formed with a plurality of convex teeth arranged on the inner periphery at equal intervals in the circumferential direction;
A multi-pole field winding wound around each of the plurality of teeth;
A plurality of multi-phase armature windings wound around each of the plurality of teeth, insulated from the field windings;
A reluctance type multi-phase synchronous rotating machine comprising:
前記ティースの個数と前記界磁巻線の極数とが同一であることを特徴とする請求項1に記載のリラクタンス式の多相同期回転機。   The reluctance type multi-phase synchronous rotating machine according to claim 1, wherein the number of teeth and the number of poles of the field winding are the same. 前記突極部の数が
(p+p)/2
(ただし、p:前記界磁巻線の極数、p:前記電機子巻線の極数)
であることを特徴とする請求項1または2に記載のリラクタンス式の多相同期回転機。
The number of salient pole parts is (p f + p a ) / 2
(Where p f is the number of poles of the field winding, p a is the number of poles of the armature winding)
The reluctance type multi-phase synchronous rotating machine according to claim 1, wherein
前記界磁巻線の極数と前記電機子巻線の極数とが
/p=1.5
(ただし、p:前記界磁巻線の極数、p:前記電機子巻線の極数)
を満たすことを特徴とする請求項1ないし3のいずれか一項に記載のリラクタンス式の多相同期回転機。
The number of poles the field winding and the number of poles the armature winding p f / p a = 1.5
(Where p f is the number of poles of the field winding, p a is the number of poles of the armature winding)
The reluctance type multiphase synchronous rotating machine according to any one of claims 1 to 3, wherein:
前記界磁巻線の極数と前記電機子巻線の極数とが
/p=1.2
(ただし、p:前記界磁巻線の極数、p:前記電機子巻線の極数)
を満たすことを特徴とする請求項1ないし3のいずれか一項に記載のリラクタンス式の多相同期回転機。
The field wherein the number of poles winding number of poles of the armature winding and the p f / p a = 1.2
(Where p f is the number of poles of the field winding, p a is the number of poles of the armature winding)
The reluctance type multiphase synchronous rotating machine according to any one of claims 1 to 3, wherein:
前記界磁巻線の極数と前記電機子巻線の極数とが
/p=1.125
(ただし、p:前記界磁巻線の極数、p:前記電機子巻線の極数)
を満たすことを特徴とする請求項1ないし3のいずれか一項に記載のリラクタンス式の多相同期回転機。
The number of poles the field winding and the number of poles the armature winding p f / p a = 1.125
(Where p f is the number of poles of the field winding, p a is the number of poles of the armature winding)
The reluctance type multiphase synchronous rotating machine according to any one of claims 1 to 3, wherein:
前記固定子鉄心は、周方向に分割された分割コアによって構成されていることを特徴する請求項1ないし6のいずれか一項に記載のリラクタンス式の多相同期回転機。   The reluctance type multiphase synchronous rotating machine according to any one of claims 1 to 6, wherein the stator core is constituted by a divided core divided in a circumferential direction.
JP2010033190A 2010-02-18 2010-02-18 Synchronous rotating machine Active JP5778391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033190A JP5778391B2 (en) 2010-02-18 2010-02-18 Synchronous rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033190A JP5778391B2 (en) 2010-02-18 2010-02-18 Synchronous rotating machine

Publications (2)

Publication Number Publication Date
JP2011172369A true JP2011172369A (en) 2011-09-01
JP5778391B2 JP5778391B2 (en) 2015-09-16

Family

ID=44685904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033190A Active JP5778391B2 (en) 2010-02-18 2010-02-18 Synchronous rotating machine

Country Status (1)

Country Link
JP (1) JP5778391B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001423A (en) * 2012-11-20 2013-03-27 史立伟 Internal-external double-stator electro-magnetic double-salient starter generator
WO2014147659A1 (en) * 2013-03-18 2014-09-25 東芝三菱電機産業システム株式会社 Field control device, field control method, and synchronous rotary machine using same
KR20150014989A (en) * 2012-05-22 2015-02-09 보벤 프로퍼티즈 게엠베하 Synchronous generator of a gearless wind energy turbine
JP2017135863A (en) * 2016-01-28 2017-08-03 三菱電機株式会社 Hybrid field type double gap synchronous machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191987A (en) * 1997-10-24 1999-07-13 Okuma Corp Switched reluctance motor
JP2006042577A (en) * 2004-07-30 2006-02-09 Nissan Motor Co Ltd Stator shape of switched reluctance motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191987A (en) * 1997-10-24 1999-07-13 Okuma Corp Switched reluctance motor
JP2006042577A (en) * 2004-07-30 2006-02-09 Nissan Motor Co Ltd Stator shape of switched reluctance motor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150014989A (en) * 2012-05-22 2015-02-09 보벤 프로퍼티즈 게엠베하 Synchronous generator of a gearless wind energy turbine
JP2015521022A (en) * 2012-05-22 2015-07-23 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Synchronous generator of gearless wind power generator
KR101708543B1 (en) * 2012-05-22 2017-02-20 보벤 프로퍼티즈 게엠베하 Synchronous generator of a gearless wind energy turbine
US9653977B2 (en) 2012-05-22 2017-05-16 Wobben Properties Gmbh Synchronous generator of a gearless wind energy turbine
CN103001423A (en) * 2012-11-20 2013-03-27 史立伟 Internal-external double-stator electro-magnetic double-salient starter generator
WO2014147659A1 (en) * 2013-03-18 2014-09-25 東芝三菱電機産業システム株式会社 Field control device, field control method, and synchronous rotary machine using same
CN105144572A (en) * 2013-03-18 2015-12-09 东芝三菱电机产业系统株式会社 Field control device, field control method, and synchronous rotary machine using same
JP5970126B2 (en) * 2013-03-18 2016-08-17 東芝三菱電機産業システム株式会社 Field control device, field control method, and synchronous rotating machine using these
US9450522B2 (en) 2013-03-18 2016-09-20 Toshiba Mitsubishi-Electric Industrial Systems Corporation Field control device, method of field control, and synchronous rotating machine
JP2017135863A (en) * 2016-01-28 2017-08-03 三菱電機株式会社 Hybrid field type double gap synchronous machine

Also Published As

Publication number Publication date
JP5778391B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP4440275B2 (en) Three-phase rotating electric machine
JP4926107B2 (en) Rotating electric machine
US20100264769A1 (en) Induction motor having rotors arranged concentrically and being able to used to generator
US10298084B2 (en) Rotating electric machine for vehicle
US9236784B2 (en) Flux-switching electric machine
JP4940252B2 (en) Manufacturing method of rotating electrical machine
JP5695748B2 (en) Rotating electric machine
JP2016174521A (en) Single-phase brushless motor
US20120086288A1 (en) Electric rotating machine
Zhao et al. Dual-stator two-phase permanent magnet machines with phase-group concentrated-coil windings for torque enhancement
EP2800257A1 (en) Electromagnetic generator
JP5778391B2 (en) Synchronous rotating machine
US10483813B2 (en) Rotor having flux filtering function and synchronous motor comprising same
JP2016213948A (en) Rotary electric machine
JP2016208800A (en) Electric motor
JP5918760B2 (en) Rotating electric machine
CN110620484A (en) Double-air-gap motor
JP2018148675A (en) Stator for rotary electric machine
KR102120361B1 (en) A rotor having a conductor bar of a different length and a synchronous motor comprising the same
JP5063090B2 (en) Rotating electric machine and compressor
JP2008178187A (en) Polyphase induction machine
JP6146611B2 (en) Rotating electric machine stator
JP5611094B2 (en) Rotating electric machine
JP2010284028A (en) Rotating electrical machine integrated with switching element
KR20170030679A (en) LSPM motor having slit structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150709

R150 Certificate of patent or registration of utility model

Ref document number: 5778391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250