JP2011169235A - Method for controlling dpf regeneration - Google Patents

Method for controlling dpf regeneration Download PDF

Info

Publication number
JP2011169235A
JP2011169235A JP2010033870A JP2010033870A JP2011169235A JP 2011169235 A JP2011169235 A JP 2011169235A JP 2010033870 A JP2010033870 A JP 2010033870A JP 2010033870 A JP2010033870 A JP 2010033870A JP 2011169235 A JP2011169235 A JP 2011169235A
Authority
JP
Japan
Prior art keywords
dpf
sof
regeneration
temperature
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010033870A
Other languages
Japanese (ja)
Other versions
JP5609139B2 (en
Inventor
Kazuo Osumi
和生 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2010033870A priority Critical patent/JP5609139B2/en
Publication of JP2011169235A publication Critical patent/JP2011169235A/en
Application granted granted Critical
Publication of JP5609139B2 publication Critical patent/JP5609139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1406Exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling DPF regeneration precisely determining regeneration timing by performing a pretreatment for eliminating a difference in the amount of SOF causing a dispersion in differential pressure before determining differential pressure between the front and rear of a DPF. <P>SOLUTION: Time from completion of the DPF regeneration to the next DPF regeneration is counted, the inlet temperature of the DPF during the time is detected, and SOF time (t<SB>L1-n</SB>) when the inlet temperature of the DPF is lower than temperature (T<SB>SOF</SB>) produced in PM by the SOF after the completion of the DPF regeneration is integrated. When the differential pressure between the front and rear of the DPF is equal to or higher than an upper limit, pretreatment time (t) for keeping the temperature of the DPF at the SOF temperature (T<SB>SOF</SB>) or higher is determined according to SOF integration time (t<SB>L</SB>), and the SOF is oxidized and removed under a pretreatment condition. After an appropriate time, the differential pressure between the front and rear of the DPF with a ratio of soot increased is detected. When the differential pressure is equal to or higher than the upper limit, the soot in the DPF is oxidized and removed to thereby regenerate the DPF. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、車両の排気管に接続されたDPFの目詰まりを的確に判断してDPFを再生するためのDPFの再生制御方法に関するものである。   The present invention relates to a DPF regeneration control method for accurately judging clogging of a DPF connected to an exhaust pipe of a vehicle and regenerating the DPF.

ディーゼルエンジンから排出されるPM(パティキュレートマター;粒状物質)の浄化装置は、ディーゼルエンジンの排気管にDPF(ディーゼルパティキュレートフィルタ)を接続し、そのDPFでPMを捕集して、排気ガスを浄化して大気へ排出するものである。   PM (particulate matter; particulate matter) purification equipment discharged from a diesel engine connects a DPF (diesel particulate filter) to the exhaust pipe of the diesel engine, collects PM with the DPF, and collects exhaust gas. Purify and discharge to the atmosphere.

このDPFで、捕集されたPMは、フィルタの目詰まりの原因となるため、捕集堆積したPMを定期的に酸化させ、除去して再生する必要がある。   Since the PM collected by this DPF causes clogging of the filter, it is necessary to periodically oxidize, remove and regenerate the collected PM.

このDPFの目詰まりの検出は、排気圧センサがDPF前後の差圧を検知し、その差圧が上限値に達したときに、ECU(エンジンコントロールユニット)が自動的に、或いは手動で行う場合には、キャビン内に設けられたDPF警告灯を点灯し、ドライバーが再生実行スイッチを押すことで、DPFの再生が開始される。   The detection of the clogging of the DPF is performed automatically or manually by the ECU (engine control unit) when the exhaust pressure sensor detects the differential pressure before and after the DPF and the differential pressure reaches the upper limit value. In this case, the DPF warning lamp provided in the cabin is turned on, and when the driver presses the regeneration execution switch, the regeneration of the DPF is started.

再生は、排気温度を600℃に上昇させ、この高温の排気ガスでDPFに捕集されたPMを燃焼させ、除去して再生するものである。   In the regeneration, the exhaust temperature is raised to 600 ° C., and the PM collected in the DPF is burned with this high-temperature exhaust gas, removed and regenerated.

この再生は、エンジンの排気側の排気スロットルバルブが開で、噴射パターンをプレ噴射とメイン噴射のマルチ噴射を行っている際に、排気スロットルバルブを閉じ、メイン噴射の前後にプレ噴射とアフター噴射を追加して増量したマルチ噴射(パイロット噴射、プレ噴射、メイン噴射、アフター噴射)を行うことで、排気ガス温度が上昇し、DPF内の酸化触媒の活性温度(250℃)以上に上げ、その後、マルチ噴射(パイロット噴射、プレ噴射、メイン噴射、アフター噴射)に、ポスト噴射を追加することで、DPF内の酸化触媒による触媒燃焼で排気ガスを600℃まで温度を上昇させて、PMを燃焼させている。   In this regeneration, when the exhaust throttle valve on the exhaust side of the engine is open and the injection pattern is performing multi-injection of pre-injection and main injection, the exhaust throttle valve is closed and pre-injection and after-injection before and after the main injection. The exhaust gas temperature rises by performing multi-injection (pilot injection, pre-injection, main injection, after-injection) increased by adding, and then rises above the activation temperature (250 ° C.) of the oxidation catalyst in the DPF. By adding post injection to multi-injection (pilot injection, pre-injection, main injection, after-injection), the temperature of exhaust gas is raised to 600 ° C by catalytic combustion with an oxidation catalyst in the DPF, and PM is burned I am letting.

この再生運転においては、DPFを再生する時期を的確に判定することが重要である。   In this regeneration operation, it is important to accurately determine when to regenerate the DPF.

従来の技術では、特許文献1〜4に示されるように、DPFの前後の差圧とPM堆積量の関係を事前に把握して、マップやモデルを使って適宜差圧による再生時期の判断を行っていた。   In the conventional technology, as shown in Patent Documents 1 to 4, the relationship between the differential pressure before and after the DPF and the PM deposition amount is grasped in advance, and the regeneration timing is appropriately determined by the differential pressure using a map or a model. I was going.

しかし、DPFに堆積するPMはSOF(有機溶剤可溶分)とSOOT(煤)の割合により堆積状態が異なり必ずしも差圧とPM堆積量の関係が一定にならない問題があった。そのため、再生時期の判断が厳密に行えない場面が生じている。   However, PM deposited on the DPF has a problem that the deposition state differs depending on the ratio of SOF (organic solvent soluble component) and SOOT (soot) and the relationship between the differential pressure and the PM deposition amount is not always constant. For this reason, there is a scene where the reproduction time cannot be determined accurately.

特許第3951619号公報Japanese Patent No. 39951619 特許第4100448号公報Japanese Patent No. 4100388 特許第4140640号公報Japanese Patent No. 4140640 特許第4232556号公報Japanese Patent No. 4232556

すなわち、図7は、車両から排出され、DPFに堆積した試料A〜CのPMの表面SEM像を示したもので、図7(a)は、SOF50%の試料A、図7(b)はSOF25%の試料B、図7(c)は、SOF5%以下の試料Cを示している。   That is, FIG. 7 shows a surface SEM image of PM of samples A to C discharged from the vehicle and deposited on the DPF. FIG. 7A shows sample A with 50% SOF, and FIG. Sample B with SOF of 25%, FIG. 7C shows sample C with SOF of 5% or less.

図7からわかるように、PMは、使用条件でSOFとSOOTの割合が一定ではなく、SOFの割合が多いと気孔が少なく、SOFの割合が少ないと気孔が多くなる。このように、SOF量の違いは堆積形態(緻密さ)の大きい差異となって表れる。これが差圧判定のばらつき要因となる。   As can be seen from FIG. 7, in PM, the ratio of SOF and SOOT is not constant under the use conditions. When the ratio of SOF is large, the number of pores is small, and when the ratio of SOF is small, the number of pores is large. Thus, the difference in the amount of SOF appears as a large difference in the deposit form (denseness). This becomes a variation factor of the differential pressure determination.

このため、SOF量が多いPMでは、SOOTが少ないため、過度にDPFの再生運転が行われ、SOF量が少ない時には、SOOTの除去が不十分な再生となってしまい的確な再生運転が行えない問題がある。   For this reason, in PM with a large amount of SOF, since the SOOT is small, the regeneration operation of the DPF is excessively performed. When the amount of SOF is small, the regeneration of the SOOT becomes insufficient and the regeneration operation cannot be performed accurately. There's a problem.

そこで、本発明の目的は、上記課題を解決し、DPF前後の差圧を判定する前に、差圧のばらつき要因となるSOF量の違いを取り除く前処理を行うことで、再生時期の判断を精密に行うことができるDPFの再生制御方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems and perform a pre-processing for removing the difference in the SOF amount that causes the differential pressure variation before determining the differential pressure before and after the DPF, thereby determining the regeneration timing. An object of the present invention is to provide a DPF regeneration control method that can be performed precisely.

上記目的を達成するために請求項1の発明は、エンジンの排気管にDPFを接続し、そのDPFで排気ガス中のPMを捕集して排気ガスを浄化して排気し、そのDPFに堆積したPMによるDPF前後の差圧を検知し、その差圧が上限値以上となったときにDPFを再生するDPFの制御方法において、DPF再生終了時から次のDPF再生までの時間をカウントすると共に、その間のDPFの入口温度を検出し、そのDPF入口温度が、DPF再生終了後からPM中にSOF(有機溶剤可溶分)が生成する温度(TSOF)以下となっているSOF時間(tL1〜n)を積算し、上記DPF前後の差圧が上限値以上となったとき、PM中のSOFを酸化除去すべく、SOF積算時間(tL)に応じてDPFの温度のSOF温度(TSOF)以上に保つ前処理時間(t)を決定し、その前処理条件でSOFを酸化除去し、しかる後、SOOTの割合の多くなったDPF前後の差圧を検知し、その差圧が上限値以上となったときに、DPF中のSOOTを酸化除去してDPFを再生することを特徴とするDPFの再生制御方法である。 In order to achieve the above object, according to the first aspect of the present invention, a DPF is connected to an exhaust pipe of an engine, PM in the exhaust gas is collected by the DPF, the exhaust gas is purified and exhausted, and accumulated in the DPF. In the DPF control method for detecting the differential pressure before and after the DPF due to the PM and the DPF is regenerated when the differential pressure exceeds the upper limit value, the time from the end of the DPF regeneration until the next DPF regeneration is counted. In the meantime, the DPF inlet temperature is detected, and the DPF inlet temperature is equal to or lower than the temperature (T SOF ) at which SOF (organic solvent soluble component) is generated in PM after the completion of DPF regeneration (t L1 to n ) are integrated, and when the differential pressure before and after the DPF becomes equal to or higher than the upper limit, the SOF temperature of the DPF temperature (t L ) in accordance with the SOF integration time (t L ) to oxidize and remove the SOF in PM coercive in T SOF) more The pretreatment time (t) is determined, and the SOF is oxidized and removed under the pretreatment conditions. Thereafter, the differential pressure before and after the DPF in which the ratio of SOOT is increased is detected, and the differential pressure exceeds the upper limit value. In some cases, the DPF regeneration control method is characterized in that the SOPF in the DPF is oxidized and removed to regenerate the DPF.

請求項2の発明は、前処理時間(t)は、PM堆積量の判定値をWPMとし、SOF除去後のPM質量をWSOFとし、PMの酸化速度をVSOFとし、SOF積算時間(tL)、再生間隔をtoとしたとき、
t=(WPM×WSOF)/VSOF×tL/to
で決定し、
さらに前処理条件(PC)は、
PC=TSOF×t
で設定する請求項1記載のDPFの再生制御方法である。
According to the second aspect of the present invention, the pretreatment time (t) is the PM deposition amount judgment value W PM , the PM mass after SOF removal is W SOF , the PM oxidation rate is V SOF , and the SOF integration time ( t L ), where the playback interval is t o
t = (W PM × W SOF ) / V SOF × t L / t o
Determined by
Furthermore, pre-processing conditions (PC) are
PC = T SOF × t
The DPF regeneration control method according to claim 1, which is set in step (1).

請求項3の発明は、前処理条件は、DPFにSOF温度(TSOF)として250〜300℃の排ガスを、前処理時間(t)流して行う請求項1又は2記載のDPFの再生制御方法である。 The invention according to claim 3 is the DPF regeneration control method according to claim 1 or 2, wherein the pretreatment condition is that the exhaust gas having an SOF temperature (T SOF ) of 250 to 300 ° C. is passed through the DPF for a pretreatment time (t). It is.

本発明によれば、DPF前後の差圧を判定する際に、先ず差圧が上限値に達した時にSOFを除去する前処理運転を行い、その後、実質的にSOOT堆積による差圧に基づいて再生時期を判断することで的確な再生運転を行うことができるという優れた効果を発揮するものである。   According to the present invention, when determining the differential pressure before and after the DPF, first, when the differential pressure reaches the upper limit value, the pretreatment operation for removing the SOF is performed, and then substantially based on the differential pressure due to SOOT deposition. By judging the regeneration time, an excellent effect that an accurate regeneration operation can be performed is exhibited.

本発明のDPFの再生制御方法のフローチャートを示す図である。It is a figure which shows the flowchart of the reproduction | regeneration control method of DPF of this invention. 本発明において、DPFに堆積したPMを加熱した時の質量変化を示す図である。In this invention, it is a figure which shows mass change when PM deposited on DPF is heated. 本発明において、DPFに堆積したPMを加熱した時の酸化速度を示す図である。In this invention, it is a figure which shows the oxidation rate when PM deposited on DPF is heated. 本発明において、DPF再生間隔の間のDPF入口温度の経時変化の一例を示す図である。In this invention, it is a figure which shows an example of a time-dependent change of the DPF inlet_port | entrance temperature between DPF regeneration intervals. 本発明と従来例におけるDPFのPM堆積量と圧力損失の関係を示す図である。It is a figure which shows the relationship between PM deposition amount of DPF and pressure loss in this invention and a prior art example. 本発明において、ディーゼルエンジン排気系に組み込まれたDPFシステムを示す図である。In this invention, it is a figure which shows the DPF system integrated in the diesel engine exhaust system. DPFに堆積したPMの表面のSEM像を示す図である。It is a figure which shows the SEM image of the surface of PM deposited on DPF.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

先ず、図6により、本発明におけるディーゼルエンジン排気系に組み込まれたDPFシステムを説明する。   First, with reference to FIG. 6, the DPF system incorporated in the diesel engine exhaust system of the present invention will be described.

図6において、ディーゼルエンジン10には、吸気マニホールド11と排気マニホールド12が接続される。吸気マニホールド11には吸気管13が接続され、その吸気管13に吸気スロットルバルブ14が接続される。   In FIG. 6, an intake manifold 11 and an exhaust manifold 12 are connected to the diesel engine 10. An intake pipe 13 is connected to the intake manifold 11, and an intake throttle valve 14 is connected to the intake pipe 13.

排気マニホールド12には排気管15が接続され、その排気管15に排気スロットルバルブ16、DPF18、消音器19が順次接続される。排気スロットルバルブ16は、エアータンク20からの空気圧を調整する電気式制圧切替バルブ17で、その開度が制御される。   An exhaust pipe 15 is connected to the exhaust manifold 12, and an exhaust throttle valve 16, a DPF 18, and a silencer 19 are sequentially connected to the exhaust pipe 15. The exhaust throttle valve 16 is an electric pressure control switching valve 17 that adjusts the air pressure from the air tank 20 and its opening degree is controlled.

DPF18は、排気管15を拡径したDPF本体21内の前段に酸化触媒22が設けられ、後段に触媒化セラミックフィルター23が設けられて構成され、前段の酸化触媒22で、排気ガス中のHC(炭化水素)やCOを酸化すると共にPMの一部を酸化し、後段の触媒化セラミックフィルター23で、PMを捕集する。   The DPF 18 is configured such that an oxidation catalyst 22 is provided in the front stage in the DPF main body 21 whose diameter of the exhaust pipe 15 is expanded, and a catalytic ceramic filter 23 is provided in the rear stage. The oxidation catalyst 22 in the front stage is used for the HC in the exhaust gas. (Hydrocarbon) and CO are oxidized and a part of PM is oxidized, and PM is collected by the catalytic ceramic filter 23 at the subsequent stage.

DPF18には酸化触媒22の前後の排気ガス温度を検出する排気温度センサ24,25が設けられ、また触媒化セラミックフィルター23の前後の排気ガスの差圧を検出する排気圧力センサ26が設けられ、これらの検出値がECU(エンジンコントロールユニット)30に入力される。   The DPF 18 is provided with exhaust temperature sensors 24 and 25 for detecting the exhaust gas temperature before and after the oxidation catalyst 22, and the exhaust pressure sensor 26 for detecting the differential pressure between the exhaust gases before and after the catalytic ceramic filter 23. These detected values are input to an ECU (engine control unit) 30.

ECU30には、車速センサ27からの車速、各種センサ28からエンジン回転数やエンジン冷却水温度が入力され、これらに基づいてECU30が、エンジン10の燃料噴射量を決定すると共に、各種マルチ噴射パターン(パイロット噴射、プレ噴射、メイン噴射、アフター噴射、ポスト噴射)を適宜選択して燃料を噴射すべく燃料噴射装置(図示せず)を制御する。   The ECU 30 receives the vehicle speed from the vehicle speed sensor 27, the engine speed and the engine coolant temperature from the various sensors 28, and the ECU 30 determines the fuel injection amount of the engine 10 based on these and various multi-injection patterns ( A fuel injection device (not shown) is controlled so as to inject fuel by appropriately selecting pilot injection, pre-injection, main injection, after-injection, and post-injection.

また、ECU30は、排気圧力センサ26で検出した差圧と排気温度センサ24,25の検出値に基づいて、吸気スロットルバルブ14の開度を制御し、また電気式制圧切替バルブ17に開度信号を出力して排気スロットルバルブ16の開度を制御して、エンジン10に供給する吸気量とエンジン10からの排気ガス量を調整し、その排気ガス温度を制御することで、DPF18に流入する排気ガス温度を上昇させてDPF18を連続再生運転できるようになっている。   Further, the ECU 30 controls the opening degree of the intake throttle valve 14 based on the differential pressure detected by the exhaust pressure sensor 26 and the detected values of the exhaust temperature sensors 24 and 25, and the opening degree signal to the electric pressure control switching valve 17. Is output to control the opening degree of the exhaust throttle valve 16 to adjust the amount of intake air supplied to the engine 10 and the amount of exhaust gas from the engine 10, and by controlling the exhaust gas temperature, the exhaust gas flowing into the DPF 18 is controlled. The DPF 18 can be continuously regenerated by increasing the gas temperature.

本発明において、ECU30は、排気圧力センサ26で検出した差圧が上限値(ΔPlimit)以上のときに、再生運転する前に、DPF18に堆積したPM中のSOF量をDPFの入口温度の経時変化から決定し、SOFを除去する前処理運転を行ってPMからSOFを除去し、SOOTの割合の多くなったDPF前後の差圧を検知し、その差圧が上限値(ΔPlimit)以上かどうかを判断することで、的確な再生時期を判断することができ、これにより、的確な再生運転を行うことができる。 In the present invention, when the differential pressure detected by the exhaust pressure sensor 26 is equal to or greater than the upper limit (ΔP limit ), the ECU 30 determines the amount of SOF in the PM accumulated in the DPF 18 over time at the DPF inlet temperature before the regeneration operation. Determine from change, perform pre-processing operation to remove SOF, remove SOF from PM, detect differential pressure before and after DPF with increased SOOT ratio, and whether the differential pressure is more than upper limit (ΔP limit ) By determining whether or not, an appropriate regeneration time can be determined, and thus an accurate regeneration operation can be performed.

以下に、本発明のDPFの再生制御方法を詳細に説明する。   The DPF regeneration control method of the present invention will be described in detail below.

図7で説明したように、車両から排出されるPMは使用条件でSOFとSOOTの割合が一定ではなく、SOF量の違いは堆積形態(緻密さ)の大きい差異となって表れる。これが差圧判定のばらつき要因となる。   As described with reference to FIG. 7, the PM discharged from the vehicle does not have a constant ratio of SOF and SOOT under use conditions, and the difference in the amount of SOF appears as a large difference in deposition form (denseness). This becomes a variation factor of the differential pressure determination.

そこで、図7(a)の試料A(SOF量50%)、図7(b)の試料В(SOF量25%、図7(c)の試料C(SOF量5%以下)の示差熱分析を行った結果を図2に示す。   Therefore, differential thermal analysis of sample A in FIG. 7A (SOF amount 50%), sample В in FIG. 7B (SOF amount 25%, sample C in FIG. 7C (SOF amount 5% or less)). The result of performing is shown in FIG.

図2は、試料A〜CのPMを示差熱分析器で熱質量分析を行ったときの温度とPM質量変化を示したものである。   FIG. 2 shows changes in temperature and PM mass when samples A to C are subjected to thermal mass spectrometry using a differential thermal analyzer.

PMを250〜300℃まで加熱すると、PM質量変化は、試料A>試料B>試料Cであるが、300℃以上となると各試料A〜Cは同じ質量変化となり、500℃までは質量変化がなく500℃以上となると同じ質量変化となり、600℃でPMがなくなることがわかる。   When PM is heated to 250 to 300 ° C., the PM mass change is Sample A> Sample B> Sample C. However, when the temperature is 300 ° C. or higher, each sample A to C has the same mass change, and the mass change is up to 500 ° C. It turns out that it becomes the same mass change when it becomes 500 degreeC or more, and PM is lose | eliminated at 600 degreeC.

そこでこの図2の結果から、試料A〜Cは同じ質量変化となるWSOFのときの温度をTSOFとすると、TSOFまでの質量減少は各試料A〜CのPMの水分量とSOF分量の和の違いを示している。またTSOF以上では、各PMとも質量減少は一定の曲線を描くことから、TSOF以上に、すなわちSOF除去温度に加熱すればPM中の組成はほぼ均一になった(WSOF)と考えることができる。 Therefore, from the results of FIG. 2, if the temperature at the time of W SOF in which the samples A to C have the same mass change is T SOF , the mass decrease up to T SOF is the amount of moisture and the amount of SOF in the PM of each sample A to C. Shows the difference between the sums of In T SOF above also be considered by drawing mass reduction certain curves in each PM, above T SOF, i.e. composition in PM by heating the SOF elimination temperature became substantially uniform and (W SOF) Can do.

尚、エンジン機種により多少の幅はあるものの、SOF除去温度TSOFは、250℃〜300℃位、WSOFは0.2〜0.5である。 The SOF removal temperature T SOF is about 250 ° C. to 300 ° C., and W SOF is 0.2 to 0.5, although there are some widths depending on the engine model.

図3は、図2から算出したPMの酸化速度を示したものである。   FIG. 3 shows the PM oxidation rate calculated from FIG.

図3より、SOF分の酸化速度は、SOF除去温度TSOFの時に最大値(VSOF)を示し、その後、酸化速度は遅くなり、500℃以上でSOOTの酸化により酸化速度が上昇する結果が得られた。 From FIG. 3, the oxidation rate of SOF shows the maximum value (V SOF ) at the SOF removal temperature T SOF , and then the oxidation rate becomes slow, and the oxidation rate is increased by oxidation of SOOT above 500 ° C. Obtained.

以上より、DPFに堆積するPM中のSOF量にバラツキがあっても、PM中のSOFを除去すれば、PMは、図7(C)の試料CのようにSOF量の少ない略SOOTからなるPMとすることができる。   As described above, even if there is a variation in the amount of SOF in the PM deposited on the DPF, if the SOF in the PM is removed, the PM is made up of substantially SOOT with a small amount of SOF as in the sample C in FIG. It can be PM.

そこで、PM中に発生するSOF量を推定することで、SOFを効率よく除去ができることがわかる。   Therefore, it is understood that the SOF can be efficiently removed by estimating the amount of SOF generated in the PM.

図4は、図6で説明したDPFシステムにおいて、排気温度センサ24,25で、DPF再生直後から、PMを捕集した際のDPF入口の温度の経時変化を示したものである。   FIG. 4 shows the change over time in the temperature of the DPF inlet when PM is collected by the exhaust temperature sensors 24 and 25 immediately after the DPF regeneration in the DPF system described in FIG.

排ガス中に発生するSOFは、SOF除去温度TSOF以下になったときに発生し、SOF除去温度TSOF以上では酸化燃焼すると考えられるため、DPF入口の温度が、SOF除去温度TSOF以下となる時間(tL1〜tLn)を積算する。 The SOF generated in the exhaust gas is generated when the SOF removal temperature T SOF or lower is reached, and it is considered that oxidation combustion occurs at the SOF removal temperature T SOF or higher. Therefore , the DPF inlet temperature becomes the SOF removal temperature T SOF or lower. The time (t L1 to t Ln ) is integrated.

すなわち、図4でDPF再生間隔(時間t0)中のTSOF以下となる時間(tL)の合計は、
L=tL1+tL2+tL3+tL4+tL5+tL6
となり、再生間隔の時間t0中の時間tLは、PMに含まれるSOF量を表すものとなる。
That is, the total time (t L ) that is equal to or less than T SOF in the DPF regeneration interval (time t 0 ) in FIG.
t L = t L1 + t L2 + t L3 + t L4 + t L5 + t L6
Thus, the time t L in the regeneration interval time t 0 represents the amount of SOF contained in the PM.

そこで、実際にDPFに堆積したPMの組成を均質化するためにPM中のSOFを除去する前処理条件(PC)を説明する。   Therefore, pretreatment conditions (PC) for removing SOF in PM in order to homogenize the composition of PM actually deposited on the DPF will be described.

DPFに堆積したPMの大部分がSOOTで、差圧の上限値(ΔPlimit)となるときの、PM堆積量の判定値をWPMとし、SOF除去後のPM質量をWSOFとし、PMの酸化速度をVSOFとし、SOF積算時間(tL)、再生間隔をtoとしたとき、前処理時間(t)は、
t=(WPM×WSOF)/VSOF×tL/to …(1)
で決定し、
また前処理条件(PC)は、
PC=TSOF×t …(2)
で決定する。
When most of the PM deposited on the DPF is SOOT and reaches the upper limit value (ΔP limit ) of the differential pressure, the judgment value of the PM deposition amount is W PM , the PM mass after SOF removal is W SOF , When the oxidation rate is V SOF , the SOF integration time (t L ), and the regeneration interval is t o , the pretreatment time (t) is
t = (W PM × W SOF ) / V SOF × t L / t o (1)
Determined by
The pre-processing conditions (PC) are
PC = T SOF × t (2)
To decide.

式1中のPM堆積量の判定値WPMは、エンジンの形式とDPFの形式から予め求めておき、同時にPMの酸化速度VSOFも実際に酸化させた時の値を基に求めておき、これら値を図6のECU30に記憶させておく。またTSOFは、ECUが、エンジン排気系で得られる250〜300℃の値の中で適宜決定できるようにする。 The PM deposition amount determination value W PM in Equation 1 is obtained in advance from the engine type and DPF type, and at the same time, the PM oxidation rate V SOF is obtained based on the value when actually oxidized, These values are stored in the ECU 30 in FIG. Further, T SOF can be appropriately determined by the ECU within a value of 250 to 300 ° C. obtained in the engine exhaust system.

このように前処理時間(t)とSOF除去温度TSOFを考慮した前処理条件(PC)を決定し、DPFを図6で説明したDPFシステムで、実際にDPFに流す排ガスのSOF除去温度TSOFを調整し、これを前処理時間(t)保持し、これに基づいて前処理することで、図7(c)に示した試料Cの状態にPMを均質化することができ、この前処理後は、差圧の上限値(ΔPlimit)に達したときに、排ガス温度を600℃とすることで、的確な再生処理が行える。 In this way, the pretreatment condition (PC) considering the pretreatment time (t) and the SOF removal temperature T SOF is determined, and the SPF removal temperature T of the exhaust gas actually flowing to the DPF in the DPF system described in FIG. By adjusting the SOF , holding the preprocessing time (t), and preprocessing based on this, PM can be homogenized to the state of the sample C shown in FIG. After the treatment, when the upper limit value (ΔP limit ) of the differential pressure is reached, the exhaust gas temperature is set to 600 ° C., so that an accurate regeneration treatment can be performed.

図5は、PM堆積量とDPF前後の圧力損失の関係を示したもので、線Aは図7(a)に示したSOF量の試料A、線Cは、図7(c)に示したSOF量の試料Cを示し、図5(a)は本発明のPM堆積量と圧力損失の関係を、図5(b)は従来のPM堆積量と圧力損失の関係を示している。   FIG. 5 shows the relationship between the PM deposition amount and the pressure loss before and after the DPF. The line A shows the sample A of the SOF amount shown in FIG. 7A, and the line C shows the relationship shown in FIG. 7C. FIG. 5A shows the relationship between the PM deposition amount of the present invention and the pressure loss, and FIG. 5B shows the relationship between the conventional PM deposition amount and the pressure loss.

図5(a)に示すように適正なPM堆積量になったときの圧力損失は、線Aのmaxと線Cのminでほとんど差がないものとできるのに対して、図5(b)に示す従来例では、線Aのmaxと線Cのminとの圧力損失差が大きく、線Aに近い状態ではSOF割合が多くなる。   As shown in FIG. 5A, the pressure loss when an appropriate amount of PM is deposited can be almost the same between the max of line A and the min of line C, whereas FIG. In the conventional example shown in FIG. 2, the pressure loss difference between the max of the line A and the min of the line C is large, and the SOF ratio increases in a state close to the line A.

このように本発明では、従来の方法ではばらつきの大きかった差圧による再生判定を行う前に、上述の前処理を加えることで精密化できる。   As described above, the present invention can be refined by adding the above-described pre-processing before performing the regeneration determination based on the differential pressure, which has a large variation in the conventional method.

この本発明の再生制御方法は、図6で説明したECU30にプログラムされており、ECU30が、排気圧力センサ26で検出した差圧と排気温度センサ24,25の検出値に基づいて再生時期を判断すると共に再生制御を実行するようになっている。   The regeneration control method of the present invention is programmed in the ECU 30 described with reference to FIG. 6, and the ECU 30 determines the regeneration timing based on the differential pressure detected by the exhaust pressure sensor 26 and the detected values of the exhaust temperature sensors 24 and 25. At the same time, playback control is executed.

このECU30による再生制御のフローチャートを図1により説明する。   A flowchart of the regeneration control by the ECU 30 will be described with reference to FIG.

DPF再生運転が終了し、次のDPF詰まり判定40をスタートさせ、DPF入口温度(T)と、時間(t)の測定41を行う。この際、時間tがカウントされ、そのカウント値(Σt0)が、内部記憶42される。 After the DPF regeneration operation is completed, the next DPF clogging determination 40 is started, and the measurement 41 of the DPF inlet temperature (T) and time (t) is performed. At this time, the time t is counted, and the count value (Σt 0 ) is stored in the internal memory 42.

また温度(T)は、step1で、T>TSOFかどうかが判断され、T>TSOFであれば、そのT>TSOFとなっている間の時間(tL)が、積算され自動的に内部記憶43される。 The temperature (T) is a step1, T> T whether SOF is determined, T> if T SOF, the time (t L) between on which it is T> T SOF, automatically be credited Is stored in the internal memory 43.

次に差圧(ΔP)の測定44がなされ、step2で差圧測定した差圧(ΔP)が、ΔPlimit>ΔPかどうかが判断され、ΔPlimit>ΔPであれば、DPF詰まり判定40側に戻されて、再度、step1で、DPF温度(T)がT>TSOFとなっているかどうかが判断され、T>TSOFとなっていれば、その時間(tL)が積算される。 Then measure 44 of the differential pressure ([Delta] P) is performed, the differential pressure ([Delta] P) is obtained by the differential pressure measured in step2, it is determined whether [Delta] P limit> [Delta] P, if [Delta] P limit> [Delta] P, the DPF clogging determination 40 side In step 1, it is determined again whether or not the DPF temperature (T) is T> T SOF . If T> T SOF , the time (t L ) is accumulated.

次にstep2の判断で、ΔPlimit≦ΔPとなったときに、前処理(PC)45を行う。この際、内部記憶42,43に記憶された積算時間(t0)とT>TSOFとなっている間の積算時間(tL)を基に、式1,2で説明した計算を行って、すなわち、
t=(WPM×WSOF)/VSOF×tL/to …(1)
PC=TSOF×t …(2)
を計算して前処理45を行い、DPFに堆積したPM中のSOFを除去する。
Next, when it is determined in step 2 that ΔP limit ≦ ΔP, preprocessing (PC) 45 is performed. At this time, based on the accumulated time (t 0 ) stored in the internal memories 42 and 43 and the accumulated time (t L ) while T> T SOF , the calculations described in the expressions 1 and 2 are performed. That is,
t = (W PM × W SOF ) / V SOF × t L / t o (1)
PC = T SOF × t (2)
Is calculated and the pretreatment 45 is performed to remove the SOF in the PM deposited on the DPF.

次に、step3で差圧判定し、再度ΔPlimit>ΔPかどうかが判断される。 Next, the differential pressure is determined at step 3, and it is determined again whether ΔP limit > ΔP.

前処理45でDPFに堆積したPM中のSOFが除去された場合には、SOFが除去されるために、ΔPlimit>ΔPであり、DPF詰まり判定40側に戻され、step1,step2の判断で、必要に応じて再度前処理がなされる。 When the SOF in the PM accumulated in the DPF is removed in the pre-processing 45, since SOF is removed, ΔP limit > ΔP, and the process returns to the DPF clogging determination 40 side, and the determination of step 1 and step 2 is performed. If necessary, pre-processing is performed again.

そして、PM中のSOFが少なくなり、DPFに堆積するSOOTが多く、SOOT量(PM推定値)に基づく差圧上限値(ΔPlimit)以上になったとき、step3で、ΔPlimit≦ΔPと判断され、実際のDPF再生46をスタートさせる。このstep3での判断は、図5(a)で説明したDPFに堆積するPM推定値と圧力損失に基づくものであり、ΔPlimit≦ΔPは、SOFが除去されたSOOTの多いPMの差圧ΔPであり、同一条件で再生処理が的確に行えることとなる。 When the SOF in the PM decreases and the amount of SOOT that accumulates in the DPF exceeds the differential pressure upper limit (ΔP limit ) based on the SOOT amount (PM estimated value), it is determined in step 3 that ΔP limit ≦ ΔP The actual DPF regeneration 46 is started. The determination in step 3 is based on the PM estimated value and pressure loss accumulated in the DPF described with reference to FIG. 5A, and ΔP limit ≦ ΔP is the differential pressure ΔP of the PM having a large SOOT from which the SOF has been removed. Thus, the reproduction process can be accurately performed under the same conditions.

なお、図1のフローでstep2、step3の差圧判定で、上限値をΔPlimitと同じにしているが、step2の上限値ΔPlimitは、step3の上限値ΔPlimitより低い値に設定しておいてもよい。 In the flow of FIG. 1, the upper limit value is set to be equal to ΔP limit in the differential pressure determination of step 2 and step 3, but the upper limit value ΔP limit of step 2 is set to a value lower than the upper limit value ΔP limit of step 3 . May be.

次に、ECU30による前処理(PC)45制御は、図6で説明した、エンジン10の排気側の排気スロットルバルブ16が開で、噴射パターンをプレ噴射とメイン噴射のマルチ噴射を行っている際に、排気スロットルバルブ16を閉じ、メイン噴射の前後にプレ噴射とアフター噴射を追加して増量したマルチ噴射(パイロット噴射、プレ噴射、メイン噴射、アフター噴射)を行うことで、排気ガス温度が上昇し、DPF内の酸化触媒22の活性温度(250℃)以上に上げ、これをSOF除去温度TSOFとし、前処理PC時間(=TSOF×t)継続することでSOFの除去を行う。 Next, pre-processing (PC) 45 control by the ECU 30 is performed when the exhaust throttle valve 16 on the exhaust side of the engine 10 described with reference to FIG. 6 is opened and the injection pattern is subjected to multi-injection of pre-injection and main injection. In addition, exhaust gas temperature rises by closing the exhaust throttle valve 16 and performing multi-injection (pilot injection, pre-injection, main injection, after-injection) by adding pre-injection and after-injection before and after main injection. Then, the temperature is raised to the activation temperature (250 ° C.) or higher of the oxidation catalyst 22 in the DPF, and this is set as the SOF removal temperature T SOF, and the SOF is removed by continuing the pretreatment PC time (= T SOF × t).

またDPF再生46は、排気スロットルバルブ16を閉じ、マルチ噴射(パイロット噴射、プレ噴射、メイン噴射、アフター噴射、ポスト噴射)を行うことで、DPF18内の酸化触媒22による触媒燃焼で排気ガスを600℃まで温度を上昇させて、PMを酸化燃焼させることで行う。この再生は、触媒化セラミックフィルター23に堆積するPMが実質的にSOOTであり、その堆積量も略一定のため、再生時間を的確に設定することが可能となる。   The DPF regeneration 46 closes the exhaust throttle valve 16 and performs multi-injection (pilot injection, pre-injection, main injection, after-injection, and post-injection), so that the exhaust gas is 600 by catalytic combustion by the oxidation catalyst 22 in the DPF 18. This is done by raising the temperature to 0 ° C. and oxidizing and burning PM. In this regeneration, the PM deposited on the catalyzed ceramic filter 23 is substantially SOOT, and the deposition amount is substantially constant, so that the regeneration time can be set accurately.

10 エンジン
15 排気管
18 DPF
45 前処理(PC)
46 DPF再生
10 Engine 15 Exhaust pipe 18 DPF
45 Pretreatment (PC)
46 DPF regeneration

Claims (3)

エンジンの排気管にDPFを接続し、そのDPFで排気ガス中のPMを捕集して排気ガスを浄化して排気し、そのDPFに堆積したPMによるDPF前後の差圧を検知し、その差圧が上限値以上となったときにDPFを再生するDPFの制御方法において、DPF再生終了時から次のDPF再生までの時間をカウントすると共に、その間のDPFの入口温度を検出し、そのDPF入口温度が、DPF再生終了後からPM中にSOF(有機溶剤可溶分)が生成する温度(TSOF)以下となっているSOF時間(tL1〜n)を積算し、上記DPF前後の差圧が上限値以上となったとき、PM中のSOFを酸化除去すべく、SOF積算時間(tL)に応じてDPFの温度のSOF温度(TSOF)以上に保つ前処理時間(t)を決定し、その前処理条件でSOFを酸化除去し、しかる後、SOOTの割合の多くなったDPF前後の差圧を検知し、その差圧が上限値以上となったときに、DPF中のSOOTを酸化除去してDPFを再生することを特徴とするDPFの再生制御方法。 DPF is connected to the exhaust pipe of the engine, PM in the exhaust gas is collected by the DPF, the exhaust gas is purified and exhausted, and the differential pressure before and after the DPF due to the PM accumulated in the DPF is detected. In the DPF control method for regenerating the DPF when the pressure exceeds the upper limit value, the time from the end of the DPF regeneration to the next DPF regeneration is counted, the inlet temperature of the DPF during that time is detected, and the DPF inlet The SOF time (t L1 to n ) where the temperature is equal to or lower than the temperature (T SOF ) at which SOF (organic solvent soluble component) is generated in PM after the completion of DPF regeneration is integrated, and the differential pressure before and after the DPF When the value exceeds the upper limit, in order to oxidize and remove the SOF in the PM, the pretreatment time (t) for maintaining the DPF temperature at or above the SOF temperature (T SOF ) is determined according to the SOF integration time (t L ). And its pre-processing conditions SOF is oxidized and removed, and then the pressure difference before and after the DPF with a high SOOT ratio is detected. When the pressure difference exceeds the upper limit, the SOOT in the DPF is oxidized and removed to regenerate the DPF. A method for controlling regeneration of a DPF, comprising: 前処理時間(t)は、PM堆積量の判定値をWPMとし、SOF除去後のPM質量をWSOFとし、PMの酸化速度をVSOFとし、SOF積算時間(tL)、再生間隔をtoとしたとき、
t=(WPM×WSOF)/VSOF×tL/to
で決定し、
さらに前処理条件(PC)は、
PC=TSOF×t
で設定する請求項1記載のDPFの再生制御方法。
The pretreatment time (t) is the PM deposition amount judgment value W PM , the PM mass after SOF removal is W SOF , the PM oxidation rate is V SOF , the SOF integration time (t L ), and the regeneration interval When t o
t = (W PM × W SOF ) / V SOF × t L / t o
Determined by
Furthermore, pre-processing conditions (PC) are
PC = T SOF × t
The DPF regeneration control method according to claim 1, which is set in step (1).
前処理条件は、DPFにSOF温度(TSOF)として250〜300℃の排ガスを、前処理時間(t)流して行う請求項1又は2記載のDPFの再生制御方法。 The DPF regeneration control method according to claim 1 or 2, wherein the pretreatment condition is performed by flowing an exhaust gas having an SOF temperature (T SOF ) of 250 to 300 ° C through the DPF for a pretreatment time (t).
JP2010033870A 2010-02-18 2010-02-18 DPF regeneration control method Expired - Fee Related JP5609139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033870A JP5609139B2 (en) 2010-02-18 2010-02-18 DPF regeneration control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033870A JP5609139B2 (en) 2010-02-18 2010-02-18 DPF regeneration control method

Publications (2)

Publication Number Publication Date
JP2011169235A true JP2011169235A (en) 2011-09-01
JP5609139B2 JP5609139B2 (en) 2014-10-22

Family

ID=44683604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033870A Expired - Fee Related JP5609139B2 (en) 2010-02-18 2010-02-18 DPF regeneration control method

Country Status (1)

Country Link
JP (1) JP5609139B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199220A1 (en) 2016-01-27 2017-08-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine
EP3199776A1 (en) 2016-01-27 2017-08-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine
CN108223060A (en) * 2017-12-20 2018-06-29 中国第汽车股份有限公司 A kind of particulate matter trap monitors system and method
CN112943416A (en) * 2021-04-28 2021-06-11 潍柴动力股份有限公司 DPF active regeneration control method and particle catcher
CN114235271A (en) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 Method and device for detecting dew point of differential pressure sensor, storage medium and equipment
CN114382579A (en) * 2022-01-28 2022-04-22 无锡威孚力达催化净化器有限责任公司 Control method for prolonging non-road DPF parking regeneration interval time

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650130A (en) * 1992-04-02 1994-02-22 Toyota Motor Corp Exhaust emission control device of diesel engine
JP2003314249A (en) * 2002-04-25 2003-11-06 Denso Corp Exhaust-emission control device of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650130A (en) * 1992-04-02 1994-02-22 Toyota Motor Corp Exhaust emission control device of diesel engine
JP2003314249A (en) * 2002-04-25 2003-11-06 Denso Corp Exhaust-emission control device of internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199220A1 (en) 2016-01-27 2017-08-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine
EP3199776A1 (en) 2016-01-27 2017-08-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine
CN107023365A (en) * 2016-01-27 2017-08-08 丰田自动车株式会社 Emission control for internal combustion engine
US10302000B2 (en) 2016-01-27 2019-05-28 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine
US10309285B2 (en) 2016-01-27 2019-06-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine
CN107023365B (en) * 2016-01-27 2019-06-25 丰田自动车株式会社 Emission control for internal combustion engine
CN108223060A (en) * 2017-12-20 2018-06-29 中国第汽车股份有限公司 A kind of particulate matter trap monitors system and method
CN112943416A (en) * 2021-04-28 2021-06-11 潍柴动力股份有限公司 DPF active regeneration control method and particle catcher
CN114235271A (en) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 Method and device for detecting dew point of differential pressure sensor, storage medium and equipment
CN114235271B (en) * 2021-11-12 2024-01-12 潍柴动力股份有限公司 Dew point detection method and device for differential pressure sensor, storage medium and equipment
CN114382579A (en) * 2022-01-28 2022-04-22 无锡威孚力达催化净化器有限责任公司 Control method for prolonging non-road DPF parking regeneration interval time

Also Published As

Publication number Publication date
JP5609139B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
US7325395B2 (en) Exhaust gas purification device of internal combustion engine
JP4709220B2 (en) Particulate filter regeneration method
JP5609139B2 (en) DPF regeneration control method
JP2005214178A (en) Exhaust emission control device for internal combustion engine
JP2005256804A (en) Exhaust emission cleaning device for internal combustion engine
JP2003314249A (en) Exhaust-emission control device of internal combustion engine
JP4363289B2 (en) Exhaust gas purification device for internal combustion engine
JP2008031854A (en) Exhaust emission control device for internal combustion engine
US8919106B2 (en) Method for operating a motor vehicle internal combustion engine with an exhaust particle filter
KR20180101011A (en) Method for regeneration of gasoline particulate filter
JP5609140B2 (en) DPF regeneration control method
JP6365560B2 (en) Exhaust gas purification device for internal combustion engine
JP2006063970A (en) Exhaust emission control device of internal combustion engine
JP2003083036A (en) Regeneration control device for particulate filter
JP2004132358A (en) Filter control device
JP2006063905A (en) Method for estimating particulate matter remaining quantity of particulate filter and method for regenerating particulate filter
JP2017110614A (en) Internal combustion engine
JP5903777B2 (en) Exhaust gas purification system and exhaust gas purification method
JP5569690B2 (en) Exhaust gas purification device for internal combustion engine
JP2006242072A (en) Exhaust emission control device for internal combustion engine
JP6642199B2 (en) Exhaust gas purification device
JP2010174794A (en) Exhaust emission control device
JP2010144557A (en) Exhaust emission control system and exhaust emission control method
JP6658210B2 (en) Exhaust gas purification device
JP2014114802A (en) Exhaust gas treating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5609139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees