JP2011167994A - Heat-resistant member having thermal barrier coating and gas turbine component using the same - Google Patents

Heat-resistant member having thermal barrier coating and gas turbine component using the same Download PDF

Info

Publication number
JP2011167994A
JP2011167994A JP2010035544A JP2010035544A JP2011167994A JP 2011167994 A JP2011167994 A JP 2011167994A JP 2010035544 A JP2010035544 A JP 2010035544A JP 2010035544 A JP2010035544 A JP 2010035544A JP 2011167994 A JP2011167994 A JP 2011167994A
Authority
JP
Japan
Prior art keywords
heat
layer
resistant member
shielding layer
thermal barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010035544A
Other languages
Japanese (ja)
Inventor
Hideyuki Arikawa
秀行 有川
Teru Mehata
輝 目幡
Yoshiyuki Kojima
慶享 児島
Kunihiro Ichikawa
国弘 市川
Hiroshi Haruyama
博司 春山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010035544A priority Critical patent/JP2011167994A/en
Publication of JP2011167994A publication Critical patent/JP2011167994A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a TBC having sufficient durability and reliability in an operation for a long period of time at a melted-salt corrosive environment using a low-grade fuel. <P>SOLUTION: A heat-resistant member has a thermal barrier coating having a heat shield layer 12 formed of a ceramic provided thereon, via a bonding layer 11 formed of an alloy on the surface of a heat-resistant alloy base material 10 containing Ni, Co or Fe as principal components. The thermal barrier coating layer comprises the heat shield layer 12 formed of a porous ceramic, and a dense environmental shielding layer 13 comprising silica containing a ceramic fiber 17 provided thereon as a principal component. Furthermore, there is an impregnated layer 14 impregnated with a part of a substance containing the silica of the environmental shielding layer 13 as a principal component in pores 15 of the porous ceramic heat shield layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、タービン動静翼や燃焼器等のガスタービン高温部品に用いられるセラミックスからなる遮熱コーティングを有する耐熱部材に係り、特に、高温腐食環境が厳しい条件下で運転されるガスタービン部品用の遮熱コーティングを有する耐熱部材に関する。   The present invention relates to a heat-resistant member having a thermal barrier coating made of ceramics used in gas turbine high-temperature components such as turbine rotor blades and combustors, and particularly for gas turbine components operated under severe conditions of high-temperature corrosion environments. The present invention relates to a heat resistant member having a thermal barrier coating.

ガスタービンは効率向上を目的として運転温度が年々高くなってきている。このような高温化に対処するために、ガスタービン高温部品の一部では、部品の温度を低減する目的で、表面にセラミックスよりなる遮熱コーティング(Thermal Barrier Coating:以下、TBCと称す)を施すことが行われている。   The operation temperature of gas turbines is increasing year by year for the purpose of improving efficiency. In order to cope with such high temperatures, some of the high-temperature parts of the gas turbine are provided with a thermal barrier coating (hereinafter referred to as TBC) made of ceramics on the surface for the purpose of reducing the temperature of the parts. Things have been done.

TBCを施したガスタービン高温部品では、TBCの遮熱効果により、TBCを施工しない場合に比べて部品温度が低く抑えられることから、ガスタービン部品の中でも特に高温強度が要求される部品(例えば、動静翼,燃焼器等)に多く用いられる。使用条件にもよるが、一般的にTBCの適用により基材温度は50〜100℃低減できるといわれており、ガスタービン高温部品にTBCを施すことは非常に有効である。   In a gas turbine high-temperature part subjected to TBC, the temperature of the part can be suppressed lower than in the case where TBC is not applied due to the heat shielding effect of TBC. It is often used for moving blades and combustors. Although it depends on the use conditions, it is generally said that the substrate temperature can be reduced by 50 to 100 ° C. by applying TBC, and it is very effective to apply TBC to the gas turbine high-temperature parts.

TBCは基材に対して、耐酸化性に優れたMCrAlY合金層を介して、低熱伝導性で耐熱性にも優れた部分安定化ジルコニアを遮熱層として形成するのが一般的である(例えば、特許文献1参照)。ここで、Mは鉄(Fe),Ni及びCoからなるグループから選ばれた少なくとも1種を表し、Crはクロム、Alはアルミニウム、Yはイットリウムを表す。   In general, TBC forms partially stabilized zirconia having low thermal conductivity and excellent heat resistance as a heat shielding layer through a MCrAlY alloy layer having excellent oxidation resistance on a base material (for example, , See Patent Document 1). Here, M represents at least one selected from the group consisting of iron (Fe), Ni, and Co, Cr represents chromium, Al represents aluminum, and Y represents yttrium.

ガスタービンでは、従来、燃焼性や腐食防止の観点から、燃料として液化天然ガス(LNG)や灯油,軽油等の比較的高品位の燃料が用いられてきた。これらの燃料では硫黄(S)や灰分等、腐食因子の含有量が非常に少なく、概ね、Sは0.01質量%以下、灰分はほとんど含まれず、高温部品に腐食損傷が生じることは少なかった。このため、従来技術のTBCでは、燃焼ガスの高温化に対応するための耐熱性向上、および、燃焼ガス中に含まれる、主に酸化物固体粒子による粒子摩耗(エロージョン)に対応することが課題とされていた。例えば、特許文献2には、耐熱性に優れた多孔質TBCの表面に、耐エロージョン性を向上する目的で緻密な保護層を設ける方法が開示されている。   Conventionally, in gas turbines, relatively high-grade fuels such as liquefied natural gas (LNG), kerosene, and light oil have been used as fuels from the viewpoint of combustibility and corrosion prevention. These fuels have very low contents of corrosion factors such as sulfur (S) and ash. Generally, S is not more than 0.01% by mass, almost no ash is contained, and high-temperature parts are rarely damaged by corrosion. . For this reason, in the TBC of the prior art, there are problems in improving the heat resistance to cope with the high temperature of the combustion gas, and dealing with particle wear (erosion) mainly caused by oxide solid particles contained in the combustion gas. It was said. For example, Patent Document 2 discloses a method in which a dense protective layer is provided on the surface of a porous TBC excellent in heat resistance for the purpose of improving erosion resistance.

特開昭62−211387号公報JP-A-62-211387 特開平9−78258号公報JP-A-9-78258

しかし、近年、燃料価格高騰や省資源の観点から、ガスタービンでも重油等の低品位燃料の使用が増加してきており、硫黄分や灰分の比較的少ない、低硫黄A重油(LSA重油)が中小型のガスタービンを中心に用いられている。また、更に低品位の高硫黄A重油やB,C重油を燃料として使用することに対する要望も高い。しかし、これらの燃料では、硫黄分や、灰分中にアルカリ金属(Na,K),バナジウム(V)といった腐食因子を含む。   However, in recent years, the use of low-grade fuels such as heavy oil has been increasing in gas turbines from the viewpoint of soaring fuel prices and resource conservation, and low sulfur A heavy oil (LSA heavy oil), which has relatively low sulfur and ash content, is the medium. It is mainly used for small gas turbines. Further, there is a high demand for using lower grade high sulfur A heavy oil and B, C heavy oil as fuel. However, these fuels contain corrosion factors such as alkali metals (Na, K) and vanadium (V) in sulfur and ash.

例えば、日本工業規格(JIS)K2205「重油」によると、低硫黄A重油(1種1号重油)では、Sが0.5%以下、灰分が0.05%以下、高硫黄A重油(1種2号重油)ではSが2.0%以下、灰分が0.05%以下、B重油(2種重油)ではSが3.0%以下、灰分が0.05%以下、C重油(3種1号重油)では、Sが3.5%以下、灰分が0.1%以下と規定されており、更に低質の重油では、Sや灰分の含有率に規定が設けられていないものもある。これら腐食因子は、燃焼ガス中で、相互に、あるいは、燃焼空気中の酸素(O)や海塩粒子(NaCl等)等と複雑に反応し、高温腐食の原因となる様々の化合物を生じる。   For example, according to Japanese Industrial Standard (JIS) K2205 “heavy oil”, low sulfur A heavy oil (Type 1 No. 1 heavy oil) has S of 0.5% or less, ash content of 0.05% or less, high sulfur A heavy oil (1 In Type 2 heavy oil), S is 2.0% or less, ash content is 0.05% or less, in B heavy oil (Type 2 heavy oil), S is 3.0% or less, ash content is 0.05% or less, C heavy oil (3 In Type 1 heavy oil), S is specified to be 3.5% or less and ash content is 0.1% or less, and in some low-quality heavy oils, there is no provision for S and ash content. . These corrosion factors react in a complex manner with each other or with oxygen (O), sea salt particles (NaCl, etc.) in the combustion air in the combustion gas, and generate various compounds that cause high temperature corrosion.

特に、これらの中でも比較的融点の低い化合物が、高温部品の表面に凝縮,溶融状態で付着することで、激しい高温腐食を引き起こすことが知られており、いわゆる溶融塩腐食と呼ばれている。   In particular, a compound having a relatively low melting point among these is known to cause severe high-temperature corrosion by condensing and adhering to the surface of a high-temperature part, and is called so-called molten salt corrosion.

ガスタービン高温部品に用いられる耐熱合金も溶融塩腐食によって激しく腐食されることが知られており、低品位燃料を用いる場合の大きな課題となっている。これは耐熱合金表面に形成され、耐酸化性や耐食性に寄与するクロミア(Cr23)やアルミナ(Al23)といった保護性酸化物皮膜が、溶融塩中で溶解するためである。 It is known that heat-resistant alloys used for gas turbine high-temperature parts are also severely corroded by molten salt corrosion, which is a major problem when using low-grade fuel. This is because a protective oxide film such as chromia (Cr 2 O 3 ) or alumina (Al 2 O 3 ) formed on the surface of the heat-resistant alloy and contributing to oxidation resistance and corrosion resistance is dissolved in the molten salt.

同様の機構によって、TBCの部分安定化ジルコニアについても、溶融塩腐食による損傷が生じる。特に、燃料中にSが0.5%、Vが0.01%を越えて含まれる環境においては、従来技術のTBCでは、遮熱層として用いられる部分安定化ジルコニアが溶融塩腐食による損傷を受け、短時間で剥離を生じやすい。   A similar mechanism also results in molten salt corrosion damage to TBC partially stabilized zirconia. In particular, in an environment where S is contained in the fuel in an amount exceeding 0.5% and V exceeds 0.01%, the partially stabilized zirconia used as a heat shield layer is damaged by molten salt corrosion in the TBC of the prior art. It is easy to peel off in a short time.

本発明の目的は、従来技術のTBCが溶融塩腐食によって損傷を生じやすいという課題を克服し、低品位燃料を用いた溶融塩腐食環境下での長期間の運転においても、十分な耐久性,信頼性を有するTBCを提供することにある。   The object of the present invention is to overcome the problem that the TBC of the prior art is easily damaged by molten salt corrosion, and has sufficient durability even in long-term operation in a molten salt corrosion environment using low grade fuel. It is to provide a TBC having reliability.

すなわち、本発明の耐熱部材は、Ni,CoまたはFeを含む耐熱合金からなる基材と、前記基材上に設けられ、合金からなる結合層と、前記結合層上に設けられ、遮熱コーティングとを有する耐熱部材であって、
前記遮熱コーティングは、多孔質のセラミックスからなる遮熱層と、前記遮熱層上に設けられ、セラミック繊維を含有したシリカを含む緻密質の環境遮蔽層とを有し、前記多孔質のセラミックスからなる遮熱層の気孔内に、前記環境遮蔽層のシリカを含む物質の一部が含浸した含浸層を有することを特徴とする。
That is, the heat-resistant member of the present invention includes a base material made of a heat-resistant alloy containing Ni, Co, or Fe, a bonding layer made of the alloy, and made of an alloy, and provided on the bonding layer. A heat-resistant member having
The thermal barrier coating includes a thermal barrier layer made of porous ceramics, and a dense environmental shield layer that is provided on the thermal barrier layer and includes silica containing ceramic fibers, and the porous ceramics It is characterized by having an impregnation layer impregnated with a part of the substance containing silica of the environmental shielding layer in the pores of the heat shielding layer.

本発明による高耐食TBCは、従来技術のTBCに比べ、過酷な溶融塩腐食環境における耐食性,耐熱性に優れるため、低品位燃料を用いてガスタービンを運転する場合、高温部品の耐久性,信頼性が向上するという利点がある。また、安価な低品位燃料を使用してガスタービンを運転できるため、ガスタービンの燃料コストを低く抑えることが可能となる。さらに、高温部品の耐久性,信頼性が向上することで、高部品の交換や点検の周期を長く設定することが可能となり、ガスタービンの運転コストを低く抑えることが可能という利点がある。   The high corrosion resistance TBC according to the present invention is superior in corrosion resistance and heat resistance in harsh molten salt corrosive environments as compared to the TBC of the prior art. Therefore, when operating a gas turbine using low grade fuel, durability and reliability of high temperature parts There is an advantage that the performance is improved. In addition, since the gas turbine can be operated using inexpensive low-grade fuel, the fuel cost of the gas turbine can be kept low. Furthermore, the durability and reliability of the high-temperature parts are improved, so that it is possible to set a longer period for replacement and inspection of high parts, and it is possible to keep the operating cost of the gas turbine low.

本発明の実施例による耐熱部材の断面模式図である。It is a cross-sectional schematic diagram of the heat-resistant member by the Example of this invention. 本発明によるTBCを設けたタービン動翼の斜視図である。It is a perspective view of the turbine rotor blade provided with TBC by this invention.

本発明の耐熱部材は、Ni,CoまたはFeを主成分とする耐熱合金基材の表面に、合金からなる結合層を介して、セラミックスからなる遮熱層を設けた遮熱コーティングを有しており、前記遮熱コーティング層が、多孔質のセラミックスよりなる遮熱層と、その上に設けられたセラミック繊維を含有したシリカを主成分とする緻密質の環境遮蔽層からなり、さらに、多孔質セラミックス遮熱層の気孔内に、環境遮蔽層のシリカを主成分とする物質の一部が含浸した含浸層を有している。   The heat-resistant member of the present invention has a thermal barrier coating in which a thermal barrier layer made of ceramics is provided on the surface of a heat-resistant alloy substrate mainly composed of Ni, Co, or Fe via a bonding layer made of an alloy. The thermal barrier coating layer is composed of a thermal barrier layer made of porous ceramics and a dense environmental shielding layer mainly composed of silica containing ceramic fibers provided thereon, and further porous In the pores of the ceramic heat shield layer, there is an impregnated layer impregnated with a part of the substance mainly composed of silica of the environmental shield layer.

これにより、セラミック繊維を含有することで強化された、主成分がシリカからなる環境遮蔽層が、溶融塩とセラミック遮熱層の接触を妨げ、セラミック遮熱層の溶融塩腐食を防止することができる。   Thereby, the environmental shielding layer mainly composed of silica, which is reinforced by containing ceramic fibers, prevents contact between the molten salt and the ceramic thermal insulation layer, and prevents corrosion of the ceramic thermal insulation layer. it can.

また、同時にセラミック繊維を含有した主成分がシリカからなる環境遮蔽層の一部が多孔質の安定化ジルコニア層の気孔内に含浸していることから、両者の高い密着性が得られ、さらに含浸層の下部に存在する多孔質の遮熱層が熱応力緩和機能を発揮することで、高耐食性かつ耐熱性に優れた遮熱コーティングを可能とした。   At the same time, part of the environmental shielding layer composed mainly of silica containing ceramic fibers is impregnated in the pores of the porous stabilized zirconia layer, so that high adhesion between them can be obtained. The porous thermal barrier layer existing under the layer exhibits a thermal stress relaxation function, thereby enabling a thermal barrier coating with high corrosion resistance and excellent heat resistance.

以下、図面を参照して、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例に係る耐熱部材の断面を模式的に示す図である。   FIG. 1 is a diagram schematically showing a cross section of a heat-resistant member according to an embodiment of the present invention.

本発明の耐熱部材は、図1に示すように、Ni,CoまたはFeを主成分とする耐熱合金基材10の表面上に、合金からなる結合層11を介して、多孔質の安定化ジルコニアからなる遮熱層12を設け、その表面上にセラミック繊維17を含有した、主成分がシリカからなる高温腐食に対する環境遮蔽層13を設け、さらに、主成分がシリカからなる環境遮蔽層13の一部が、多孔質の安定化ジルコニアからなる遮熱層12の気孔15内に含浸された、含浸層14を設けている。   As shown in FIG. 1, the heat-resistant member of the present invention is made of porous stabilized zirconia on the surface of a heat-resistant alloy substrate 10 mainly composed of Ni, Co, or Fe via a bonding layer 11 made of an alloy. An environmental shielding layer 13 containing high-temperature corrosion composed mainly of silica, which contains ceramic fibers 17, is provided on the surface of the thermal shielding layer 12. The impregnated layer 14 is provided in which the part is impregnated in the pores 15 of the heat shield layer 12 made of porous stabilized zirconia.

Ni,CoまたはFeを主成分とする耐熱合金基材10は、ガスタービン動翼,静翼,燃焼器等に用いられている種々の耐熱合金を用いることができる。   As the heat-resistant alloy base material 10 mainly composed of Ni, Co, or Fe, various heat-resistant alloys used in gas turbine rotor blades, stationary blades, combustors, and the like can be used.

合金からなる結合層11は、耐熱合金基材10と多孔質の安定化ジルコニアからなる遮熱層12の密着性を高めるために両者の中間の熱膨張係数を有し、かつ、基材よりも耐食耐酸化性に優れた合金を用いることが好ましい。例えば、実質的にNi,Coを主成分として、Cr及びAlからなる合金が望ましい。さらに添加元素として、Y,Hf,Ta,Si,Ce等を0〜10重量(wt)%の範囲で含むことができる。特に、TBCの結合層として、一般的に用いられる、MCrAlY合金は本発明の結合層としても好適に用いられる。   The bonding layer 11 made of an alloy has a thermal expansion coefficient intermediate between the heat-resistant alloy base material 10 and the heat-shielding layer 12 made of porous stabilized zirconia, and more than the base material. It is preferable to use an alloy having excellent corrosion resistance and oxidation resistance. For example, an alloy composed essentially of Ni and Co and consisting of Cr and Al is desirable. Furthermore, Y, Hf, Ta, Si, Ce, etc. can be included in the range of 0 to 10% by weight (wt)% as additive elements. In particular, MCrAlY alloy, which is generally used as a TBC bonding layer, is also preferably used as the bonding layer of the present invention.

結合層11は減圧プラズマ溶射法によって形成することが最も望ましいが、HVOF溶射法やHVAF溶射法等の高速ガス溶射法を用いることも可能である。結合層11の厚さは0.05〜0.3mmの範囲が好ましい。   The bonding layer 11 is most preferably formed by a low pressure plasma spraying method, but a high-speed gas spraying method such as an HVOF spraying method or an HVAF spraying method can also be used. The thickness of the bonding layer 11 is preferably in the range of 0.05 to 0.3 mm.

多孔質の安定化ジルコニアからなる遮熱層12は、ZrO2系のセラッミクスを用いるのが好ましく、特に、Y23,MgO,CaO,CeO2,Sc23,Er23,Gd23,Yb23,Al23,SiO2,La23から選ばれた少なくとも1種を含む部分安定化ジルコニアが望ましい。イットリア(Y23)部分安定化ジルコニアは極めて好適である。多孔質の安定化ジルコニアからなる遮熱層12は大気中プラズマ溶射法によって形成することが最も好ましい。 The thermal barrier layer 12 made of porous stabilized zirconia is preferably made of ZrO 2 ceramics, particularly Y 2 O 3 , MgO, CaO, CeO 2 , Sc 2 O 3 , Er 2 O 3 , Gd. A partially stabilized zirconia containing at least one selected from 2 O 3 , Yb 2 O 3 , Al 2 O 3 , SiO 2 , and La 2 O 3 is desirable. Yttria (Y 2 O 3 ) partially stabilized zirconia is very suitable. The thermal barrier layer 12 made of porous stabilized zirconia is most preferably formed by an atmospheric plasma spraying method.

多孔質の安定化ジルコニアからなる遮熱層12の厚さは0.1〜1mmの範囲が好ましい。0.1mm未満ではTBCとして十分な遮熱性が得られない。また、1mm以上では耐熱性が低下し剥離を生じやすくなる。   The thickness of the thermal barrier layer 12 made of porous stabilized zirconia is preferably in the range of 0.1 to 1 mm. If the thickness is less than 0.1 mm, sufficient heat shielding property as TBC cannot be obtained. On the other hand, if it is 1 mm or more, the heat resistance is lowered and peeling tends to occur.

多孔質の安定化ジルコニアからなる遮熱層12の気孔率は、断面組織における気孔15が占める面積率において10〜30%の範囲が好ましい。気孔率が10%未満では、気孔による熱応力緩和機構が十分に作用せず耐熱性が低下する。また、気孔率が30%以上では、皮膜の機械的強度が低下して剥離を生じやすくなる。   The porosity of the thermal barrier layer 12 made of porous stabilized zirconia is preferably in the range of 10 to 30% in the area ratio occupied by the pores 15 in the cross-sectional structure. If the porosity is less than 10%, the thermal stress relaxation mechanism due to the pores does not sufficiently act and the heat resistance is lowered. On the other hand, when the porosity is 30% or more, the mechanical strength of the film is lowered and peeling tends to occur.

環境遮蔽層13は溶融塩と接触しても反応や溶解せずに皮膜を維持し、溶融塩が環境遮蔽層13を通過して、その下部にある、多孔質の安定化ジルコニアからなる遮熱層12,合金からなる結合層11,耐熱合金基材10と接触し、これらを腐食することを防止する機能を果たす。   The environmental shielding layer 13 maintains a film without reacting or dissolving even when it comes into contact with the molten salt, and the molten salt passes through the environmental shielding layer 13 and is formed of porous stabilized zirconia underneath. The layer 12, the bonding layer 11 made of an alloy, and the heat-resistant alloy base material 10 are brought into contact with each other and function to prevent them from being corroded.

このため、環境遮蔽層13には、耐食性に優れたシリカ(SiO2)を主成分とし、セラミック繊維17を含有させ、耐クラック性を強化したものを用いるのが好ましい。硫黄を含む燃料による溶融塩腐食では、主としてアルカリ金属の硫酸塩(例えば、Na2SO4,K2SO4等)が溶融塩として高温部品の表面に凝縮,付着しやすい。同時に存在する他の化合物や雰囲気の環境にも影響を受けるが、これらは酸性塩としての性質を有するため、アルミナやクロミアといった両性酸化物,ジルコニアやイットリアといった塩基性酸化物と反応,溶解することで溶融塩腐食を生じる。しかし、純度の高いシリカは酸性酸化物のため溶融塩との反応が生じ難く、溶融塩腐食に対し優れた耐久性を示す。このため、環境遮蔽層13には、シリカの純度が90%以上の石英ガラス質の材料が最も好適である。シリカの純度が90%未満では不純物等の影響によって溶融塩腐食に対する耐食性が低下する。 For this reason, it is preferable that the environmental shielding layer 13 is made of silica (SiO 2 ) having excellent corrosion resistance, containing ceramic fibers 17 and having enhanced crack resistance. In molten salt corrosion with a fuel containing sulfur, alkali metal sulfates (for example, Na 2 SO 4 , K 2 SO 4, etc.) tend to condense and adhere to the surface of the high-temperature component as a molten salt. At the same time, it is affected by other compounds present and the environment of the atmosphere, but these have properties as acidic salts, so they react and dissolve with amphoteric oxides such as alumina and chromia, and basic oxides such as zirconia and yttria. Causes molten salt corrosion. However, since silica with high purity is an acidic oxide, it does not easily react with molten salt and exhibits excellent durability against molten salt corrosion. Therefore, a quartz glassy material having a silica purity of 90% or more is most suitable for the environmental shielding layer 13. If the purity of silica is less than 90%, the corrosion resistance against molten salt corrosion decreases due to the influence of impurities and the like.

環境遮蔽層13に含有させるセラミック繊維17には、シリカ系,アルミナ系,炭化ケイ素系の繊維が耐熱性の点から好ましく、これらのいずれか、または複数を混合して用いることができる。特に、シリカ系,炭化ケイ素系の繊維は、マトリックス(母相)であるシリカ(SiO2)と同じSiを主成分とするため、繊維とマトリックスの整合性に優れ、好適である。 The ceramic fiber 17 contained in the environmental shielding layer 13 is preferably a silica-based, alumina-based, or silicon carbide-based fiber from the viewpoint of heat resistance, and any one or a mixture of these can be used. In particular, silica-based and silicon carbide-based fibers are preferred because they have the same Si as the matrix (matrix phase) silica (SiO 2 ) as the main component, and thus have excellent fiber-matrix consistency.

セラミック繊維17の直径は20μm以下、長さは2mm以下が好ましく、直径が1〜10μm、長さが0.01〜1mmの範囲がより好適である。繊維の直径が太いと薄い皮膜内に均一に分散させることが困難になり、耐クラック性の強化機能が十分に得られない。一方、繊維の直径が細くなりすぎると、繊維強度の低下や、凝集し易くなって均一分散が困難になり、やはり、耐クラック性の強化機能が十分に得られない。   The diameter of the ceramic fiber 17 is preferably 20 μm or less and the length is preferably 2 mm or less, more preferably in the range of 1 to 10 μm in diameter and 0.01 to 1 mm in length. If the diameter of the fiber is large, it becomes difficult to disperse it uniformly in a thin film, and the function of enhancing crack resistance cannot be obtained sufficiently. On the other hand, if the diameter of the fiber is too thin, the fiber strength is reduced and the fiber is easily aggregated and uniform dispersion becomes difficult, so that the crack resistance strengthening function cannot be sufficiently obtained.

環境遮蔽層13中のセラミック繊維17の含有率は、体積分率で5〜40%が好ましく、より好適には10〜30%である。含有率が低すぎると耐クラック性の強化機能が十分に得られない。一方、含有率が高すぎると、均一分散が困難になり、また、繊維間に隙間が生じやすくなり、耐クラック性の強化機能が十分に得られないばかりか、繊維間の隙間が溶融塩の通路となり、環境遮蔽性も低下する。   The content of the ceramic fiber 17 in the environmental shielding layer 13 is preferably 5 to 40%, more preferably 10 to 30% in terms of volume fraction. When the content is too low, the crack resistance strengthening function cannot be sufficiently obtained. On the other hand, if the content is too high, uniform dispersion becomes difficult, and gaps are likely to be formed between the fibers, and not only a sufficient crack resistance strengthening function cannot be obtained, but also the gaps between the fibers are made of molten salt. It becomes a passage and the environmental shielding is reduced.

主成分がシリカからなる環境遮蔽層13の気孔率は5%以下が好ましい。気孔率が5%を越えると開気孔が増加し、気孔を通じて環境遮蔽層13を溶融塩が浸透,通過しやすくなる。   The porosity of the environmental shielding layer 13 composed mainly of silica is preferably 5% or less. When the porosity exceeds 5%, the open pores increase, and the molten salt easily penetrates and passes through the environmental shielding layer 13 through the pores.

多孔質の安定化ジルコニアからなる遮熱層12表面上の環境遮蔽層13の厚さは0.05〜0.2mmの範囲であることが好ましい。0.05mm未満では環境遮蔽層として十分な遮蔽性が得られない。また、0.2mm以上では成膜時の残留応力や熱応力によってクラックが生じやすくなり、クラックを通じた遮蔽性の低下や、環境遮蔽層の剥離を生じやすくなる。   The thickness of the environmental shielding layer 13 on the surface of the heat shielding layer 12 made of porous stabilized zirconia is preferably in the range of 0.05 to 0.2 mm. If the thickness is less than 0.05 mm, sufficient shielding property as an environmental shielding layer cannot be obtained. On the other hand, when the thickness is 0.2 mm or more, cracks are likely to occur due to residual stress or thermal stress at the time of film formation, and the shielding property through the cracks and the environmental shielding layer are likely to be peeled off.

このような、セラミック繊維17を含有した主成分がシリカからなる環境遮蔽層13の形成方法としては、例えば、金属アルコキシドのアルコール溶液を用いたゾルゲル法,コロイダルシリカ溶液,アルカリ金属シリケート溶液等のシリカ前駆体を含む溶液を用い、これにセラミック繊維17を適量混合し、これを十分に撹拌して、溶液中にセラミック繊維17を均一に分散させた後、塗布,乾燥,焼成して皮膜を形成するプロセスを用いることができる。添加物や不純物の影響が許容できる範囲で、最終的に形成されるシリカが溶融塩に対する耐食性を有するのであれば、市販のシリカ系コーティング剤を用いることも可能である。   Examples of the method for forming the environmental shielding layer 13 containing the ceramic fiber 17 as a main component made of silica include silica such as a sol-gel method using an alcohol solution of a metal alkoxide, a colloidal silica solution, and an alkali metal silicate solution. Using a solution containing the precursor, an appropriate amount of ceramic fiber 17 is mixed therein, and this is sufficiently stirred to uniformly disperse the ceramic fiber 17 in the solution, followed by coating, drying and firing to form a film. A process can be used. A commercially available silica-based coating agent can be used as long as the finally formed silica has corrosion resistance to the molten salt as long as the influence of additives and impurities is acceptable.

また、これらのシリカ前駆体を含む溶液を用い、これを塗布する際に、溶液の粘度を予め適当に調整することで、多孔質の安定化ジルコニアからなる遮熱層12に溶液を塗布した際に、その一部が多孔質の安定化ジルコニアからなる遮熱層内の気孔15に毛細現象によって浸透させることができる。浸透した溶液は、乾燥,焼成を経て、多孔質の安定化ジルコニアからなる遮熱層内の気孔15中で固化してシリカを形成する。これによって、主成分がシリカからなる環境遮蔽層13の一部が、多孔質の安定化ジルコニアからなる遮熱層12の気孔15内に含浸した、含浸層14が形成される。含浸層14を設けることで、環境遮蔽層13と多孔質の安定化ジルコニアからなる遮熱層12の間の密着性を向上することができ、環境遮蔽層13の剥離を防止することができる。   Further, when a solution containing these silica precursors is used and applied, when the solution is applied to the thermal barrier layer 12 made of porous stabilized zirconia by appropriately adjusting the viscosity of the solution in advance. In addition, it is possible to penetrate into the pores 15 in the heat shield layer, a part of which is made of porous stabilized zirconia, by capillary action. The infiltrated solution is dried and fired, and solidifies in the pores 15 in the heat shielding layer made of porous stabilized zirconia to form silica. As a result, an impregnated layer 14 is formed in which a part of the environmental shielding layer 13 made of silica is impregnated in the pores 15 of the heat shielding layer 12 made of porous stabilized zirconia. By providing the impregnation layer 14, the adhesion between the environmental shielding layer 13 and the heat shielding layer 12 made of porous stabilized zirconia can be improved, and peeling of the environmental shielding layer 13 can be prevented.

含浸層14の厚さは0.01〜0.1mmの範囲が好ましく、概ね、多孔質の安定化ジルコニアからなる遮熱層12の厚さに対し10〜20%程度とするのが好ましい。含浸層14が薄い場合は、環境遮蔽層13と多孔質の安定化ジルコニアからなる遮熱層12の間の密着性が不十分となる。また、含浸層14が厚い場合は、多孔質の安定化ジルコニアからなる遮熱層12の気孔率が実質的に減少し、遮熱層12の遮熱性低下や、気孔による熱応力緩和機能の低下による剥離を生じやすくなる。
〔実施例〕
本発明のTBCを設けたガスタービン動翼を作製した。ガスタービン動翼の全体構成を表す斜視図を図2に示す。
The thickness of the impregnation layer 14 is preferably in the range of 0.01 to 0.1 mm, and is preferably about 10 to 20% with respect to the thickness of the thermal barrier layer 12 made of porous stabilized zirconia. When the impregnated layer 14 is thin, the adhesion between the environmental shielding layer 13 and the heat shielding layer 12 made of porous stabilized zirconia becomes insufficient. Further, when the impregnated layer 14 is thick, the porosity of the heat shield layer 12 made of porous stabilized zirconia is substantially reduced, and the heat shielding property of the heat shield layer 12 is lowered or the thermal stress relaxation function is lowered by the pores. It becomes easy to cause peeling.
〔Example〕
A gas turbine rotor blade provided with the TBC of the present invention was produced. A perspective view showing the overall configuration of the gas turbine rotor blade is shown in FIG.

図2において、このガスタービン動翼はNi基耐熱合金(Rene80)製で、例えば3段の動翼を備えたガスタービン回転部分の初段の動翼として用いられ、翼部61,プラットフォーム部62,シャンク63,シールフィン64,チップポケット65を有し、ダブテイル66を介してディスクに取り付けられる。また、この動翼は、翼部長さ100mm,プラットフォーム部42以降の長さ120mmであり、動翼は内部から冷却できるように冷却媒体、特に、空気又は水蒸気が通るように冷却孔(図示せず)がダブテイル66から翼部61を通して設けられている。なお、このTBC動翼は初段に最も優れているが、2段以降の後段動翼にも設けることができる。そして、このガスタービン動翼のうち、燃焼ガスに曝される翼部61及びプラットフォーム部62に、本発明のTBCを形成した。   In FIG. 2, this gas turbine blade is made of a Ni-based heat-resistant alloy (Rene 80), and is used, for example, as a first-stage blade of a rotating portion of a gas turbine having three stages of blades. It has a shank 63, a seal fin 64, and a chip pocket 65, and is attached to the disk via a dovetail 66. The blade has a blade length of 100 mm and a length of 120 mm after the platform portion 42. The blade is cooled by a cooling hole (not shown) through which a cooling medium, in particular, air or water vapor passes so that the blade can be cooled from the inside. ) From the dovetail 66 through the wing 61. Although this TBC blade is most excellent in the first stage, it can also be provided in the latter stage blade after the second stage. And TBC of this invention was formed in the blade | wing part 61 and the platform part 62 which are exposed to combustion gas among this gas turbine moving blade.

その形成方法は、CoNiCrAlY合金(Co−32wt%Ni−21wt%Cr−8wt%Al−0.5%Y)粉末を用いて、減圧雰囲気中プラズマ溶射にて下地層を形成し、拡散熱処理として、真空中で1121℃×2h+843℃×24hの熱処理を実施した。結合層の厚さは約200μmである。その後、結合層を設けた基材上に、イットリア部分安定化ジルコニア(ZrO2−8wt%Y23)粉末を用い、大気中プラズマ溶射にて約0.5mmの厚さ、気孔率が約20%の多孔質セラミックコーティング層を設けた。 The formation method uses a CoNiCrAlY alloy (Co-32 wt% Ni-21 wt% Cr-8 wt% Al-0.5% Y) powder, forms a base layer by plasma spraying in a reduced pressure atmosphere, and performs diffusion heat treatment. A heat treatment of 1121 ° C. × 2 h + 843 ° C. × 24 h was performed in vacuum. The thickness of the tie layer is about 200 μm. Thereafter, using a yttria partially stabilized zirconia (ZrO 2 -8 wt% Y 2 O 3 ) powder on a base material provided with a bonding layer, the thickness is about 0.5 mm by air plasma spraying, and the porosity is about A 20% porous ceramic coating layer was provided.

さらに、この表面にシリカ前駆体を含む溶液として、セラミック系接着剤・充填剤として市販されている東亜合成株式会社製の商品名「アロンセラミックC」に、直径約10μm,長さ約0.5mmのシリカ系繊維を15重量%加え、撹拌機で混合しながら、さらに水を適量加え、粘度を室温で約3Pa・secに調整したものを塗布した。塗布後、室温で24h自然乾燥した。   Furthermore, as a solution containing a silica precursor on the surface, a product name “Aron Ceramic C” manufactured by Toa Gosei Co., Ltd., which is commercially available as a ceramic adhesive and filler, has a diameter of about 10 μm and a length of about 0.5 mm. While adding 15% by weight of silica-based fiber and mixing with a stirrer, an appropriate amount of water was further added, and the viscosity was adjusted to about 3 Pa · sec at room temperature. After coating, it was naturally dried at room temperature for 24 hours.

その後、さらに、試験翼を約90℃×1h,150℃×1hに電気炉中で加熱することで、多孔質セラミックコーティング層の表面にアルミナ系繊維を含有したシリカを主成分とする環境遮蔽層を形成した。予め、同様の手順で作製した小型の試験片の断面観察の結果、環境遮蔽層の厚さは約0.15mm、含浸層の厚さは約0.05mmであった。また、環境遮蔽層中にはシリカ繊維が体積分率で約20%、均一に分散して含有されていた。   Thereafter, the test blade is further heated to about 90 ° C. × 1 h and 150 ° C. × 1 h in an electric furnace, so that the surface of the porous ceramic coating layer is an environmental shielding layer mainly composed of silica containing alumina fibers. Formed. As a result of cross-sectional observation of a small test piece prepared in the same procedure in advance, the thickness of the environmental shielding layer was about 0.15 mm, and the thickness of the impregnation layer was about 0.05 mm. Further, the environmental shielding layer contained silica fibers uniformly dispersed in a volume fraction of about 20%.

このようにして作製した、本発明の高耐食TBCを設けたガスタービン動翼の耐久性を検証するために、燃料として特A重油を使用して運転しているガスタービンにおいて実機試験を実施した。運転試験を実施したガスタービンでは、既に従来技術のTBC翼において溶融塩腐食による損傷が認められていた。   In order to verify the durability of the gas turbine rotor blade provided with the high corrosion resistance TBC of the present invention produced in this way, an actual machine test was carried out in a gas turbine operated using special A heavy oil as fuel. . In the gas turbine that has been subjected to the operation test, damage due to molten salt corrosion has already been recognized in the TBC blade of the prior art.

なお、比較のため、前述の本発明の高耐食TBCを作製したのと同様の方法で、結合層と遮熱層のみ施工し、環境遮蔽層を設けない、従来技術のTBCを設けた動翼も作製し、同時に試験に供した。   For comparison, a moving blade provided with a TBC according to the prior art, in which only the bonding layer and the heat-shielding layer are constructed, and the environment-shielding layer is not provided, in the same manner as the above-described high corrosion-resistant TBC of the present invention is produced. Was also prepared and used for testing at the same time.

2年間の運転後、試験翼を観察したところ、本発明の高耐食TBCを設けたガスタービン動翼ではTBCの損傷は認められず健全であった。一方、比較の従来技術のTBCを設けた動翼では、TBCの遮熱層が局所的に剥離しているのが認められた。剥離部から遮熱層を機械的に剥ぎ取って採取し、遮熱層の断面を分析したところ、S,Vが検出され、剥離が溶融塩腐食によるものと考えられた。   When the test blades were observed after two years of operation, the gas turbine rotor blade provided with the high corrosion resistance TBC of the present invention was sound without any TBC damage. On the other hand, in the moving blade provided with the comparative prior art TBC, it was recognized that the TBC heat shield layer was locally peeled off. The thermal barrier layer was mechanically peeled off from the peeled portion and collected, and the cross section of the thermal barrier layer was analyzed. As a result, S and V were detected, and the peeling was considered to be due to molten salt corrosion.

以上の結果から、本発明の高耐食TBCを設けたガスタービン動翼は、従来型のTBCを設けたガスタービン動翼に比べ、耐久性に優れることが確認された。   From the above results, it was confirmed that the gas turbine rotor blade provided with the high corrosion resistance TBC of the present invention was superior in durability as compared with the gas turbine rotor blade provided with the conventional TBC.

本発明の高耐食TBCを有する耐熱部材は、腐食環境における耐久性が非常に優れている。このため、ガスタービンの動翼,静翼及び燃焼器等のTBCとして適する。また、ガスタービンにみならず、航空機エンジンにも適用することができる。   The heat-resistant member having the high corrosion-resistant TBC of the present invention has very excellent durability in a corrosive environment. For this reason, it is suitable as a TBC for moving blades, stationary blades, and combustors of gas turbines. Moreover, it can be applied not only to a gas turbine but also to an aircraft engine.

10 耐熱合金基材
11 結合層
12 遮熱層
13 環境遮蔽層
14 含浸層
15 気孔
16 溶射粒子
17 セラミック繊維
21 翼部
22 プラットフォーム部
23 シャンク部
24 シールフィン
25 チップポケット
26 ダブテイル
DESCRIPTION OF SYMBOLS 10 Heat-resistant alloy base material 11 Bonding layer 12 Heat shielding layer 13 Environmental shielding layer 14 Impregnation layer 15 Pore 16 Thermal spray particle 17 Ceramic fiber 21 Wing part 22 Platform part 23 Shank part 24 Seal fin 25 Chip pocket 26 Dovetail

Claims (10)

Ni,CoまたはFeを含む耐熱合金からなる基材と、
前記基材上に配置され、合金からなる結合層と、
前記結合層上に配置され、遮熱コーティングと、
を有する耐熱部材であって、
前記遮熱コーティングは、多孔質のセラミックスからなる遮熱層と、前記遮熱層上に配置され、セラミック繊維を含有したシリカを含む緻密質の環境遮蔽層とを有し、前記多孔質のセラミックスからなる遮熱層の気孔内に、前記環境遮蔽層のシリカを含む物質が含浸した含浸層を有することを特徴とする耐熱部材。
A base material made of a heat-resistant alloy containing Ni, Co or Fe;
A bonding layer disposed on the substrate and made of an alloy;
A thermal barrier coating disposed on the bonding layer;
A heat-resistant member having
The thermal barrier coating includes a thermal barrier layer made of porous ceramics, and a dense environmental shield layer that is disposed on the thermal barrier layer and includes silica containing ceramic fibers, and the porous ceramics A heat-resistant member having an impregnated layer impregnated with a substance containing silica of the environmental shielding layer in pores of the heat shielding layer.
請求項1に記載された耐熱部材であって、
前記遮熱層が、ジルコニアからなることを特徴とする耐熱部材。
The heat-resistant member according to claim 1,
The heat-resistant member, wherein the heat shielding layer is made of zirconia.
請求項1に記載された耐熱部材であって、
前記環境遮蔽層中のセラミック繊維が、アルミナ系,シリカ系及び炭化ケイ素系から選ばれる少なくとも1種であることを特徴とする耐熱部材。
The heat-resistant member according to claim 1,
The heat-resistant member, wherein the ceramic fiber in the environmental shielding layer is at least one selected from alumina, silica and silicon carbide.
請求項1に記載された耐熱部材であって、
前記環境遮蔽層の厚さが、0.05〜0.2mmであることを特徴とする耐熱部材。
The heat-resistant member according to claim 1,
The heat-resistant member, wherein the environmental shielding layer has a thickness of 0.05 to 0.2 mm.
請求項1に記載された耐熱部材であって、
前記環境遮蔽層の気孔率が、5%以下であることを特徴とする耐熱部材。
The heat-resistant member according to claim 1,
A heat-resistant member, wherein the porosity of the environmental shielding layer is 5% or less.
請求項1に記載された耐熱部材であって、
前記遮熱層の厚さが、0.1〜1mmであることを特徴とする耐熱部材。
The heat-resistant member according to claim 1,
The heat-resistant member, wherein the heat shielding layer has a thickness of 0.1 to 1 mm.
請求項1に記載された耐熱部材であって、
前記遮熱層の気孔率が、10〜30%の範囲であることを特徴とする耐熱部材。
The heat-resistant member according to claim 1,
The heat-resistant member, wherein the heat shielding layer has a porosity of 10 to 30%.
請求項1に記載された耐熱部材であって、
前記含浸層の厚さが、0.01〜0.1mmであることを特徴とする耐熱部材。
The heat-resistant member according to claim 1,
The heat-resistant member, wherein the impregnated layer has a thickness of 0.01 to 0.1 mm.
請求項1に記載された耐熱部材であって、
前記環境遮蔽層は、セラミック繊維を混合したシリカ前駆体を含む溶液を用いて形成されることを特徴とする耐熱部材。
The heat-resistant member according to claim 1,
The environmental shielding layer is formed using a solution containing a silica precursor mixed with ceramic fibers.
請求項1乃至9のいずれかに1項に記載された耐熱部材を用いたことを特徴とするガスタービン用部品。   A gas turbine component using the heat-resistant member according to any one of claims 1 to 9.
JP2010035544A 2010-02-22 2010-02-22 Heat-resistant member having thermal barrier coating and gas turbine component using the same Pending JP2011167994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035544A JP2011167994A (en) 2010-02-22 2010-02-22 Heat-resistant member having thermal barrier coating and gas turbine component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010035544A JP2011167994A (en) 2010-02-22 2010-02-22 Heat-resistant member having thermal barrier coating and gas turbine component using the same

Publications (1)

Publication Number Publication Date
JP2011167994A true JP2011167994A (en) 2011-09-01

Family

ID=44682598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035544A Pending JP2011167994A (en) 2010-02-22 2010-02-22 Heat-resistant member having thermal barrier coating and gas turbine component using the same

Country Status (1)

Country Link
JP (1) JP2011167994A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185200A (en) * 2012-03-07 2013-09-19 Mazda Motor Corp Thermal insulation coating structure and method for producing the same
JP2013185201A (en) * 2012-03-07 2013-09-19 Mazda Motor Corp Thermal insulation coating structure and method for producing the same
JP2013199011A (en) * 2012-03-23 2013-10-03 Yoshikawa Kogyo Co Ltd Wear resistant and heat resistant fiber-reinforced composite material and method for producing the same
JP2014069574A (en) * 2012-09-28 2014-04-21 General Electric Co <Ge> Laminar alignment, high temperature gas passage component part, and processing to form laminar alignment
WO2014076829A1 (en) * 2012-11-19 2014-05-22 株式会社 日立製作所 Gas turbine member having thermal barrier coating
WO2014184906A1 (en) * 2013-05-15 2014-11-20 株式会社日立製作所 Heat shield coating member
JP2015501375A (en) * 2011-10-13 2015-01-15 ゼネラル・エレクトリック・カンパニイ Thermal barrier coating system and method therefor
US9023486B2 (en) 2011-10-13 2015-05-05 General Electric Company Thermal barrier coating systems and processes therefor
JP2016529442A (en) * 2013-08-27 2016-09-23 シーメンス エナジー インコーポレイテッド Wireless power receiving assembly for telemetry system of combustion turbine engine under high temperature environment
JP2017001235A (en) * 2015-06-08 2017-01-05 トヨタ自動車株式会社 Thermal insulation structure
WO2018066330A1 (en) * 2016-10-06 2018-04-12 三菱重工業株式会社 Thermal barrier coating film, turbine member, and thermal barrier coating method
JP2018179470A (en) * 2017-04-21 2018-11-15 三菱電機株式会社 Fuselage of flying object
JP2019173592A (en) * 2018-03-27 2019-10-10 三菱重工業株式会社 Heat-shielding coating, turbine member, gas turbine and method for manufacturing heat-shielding coating
US20200256200A1 (en) * 2019-02-08 2020-08-13 United Technologies Corporation Article with ceramic barrier coating and layer of networked ceramic nanofibers
US10808308B2 (en) * 2016-06-08 2020-10-20 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating, turbine member, and gas turbine
CN114087026A (en) * 2021-11-19 2022-02-25 西安热工研究院有限公司 Turbine blade

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122315A (en) * 1978-03-15 1979-09-21 Mitsubishi Heavy Ind Ltd Surface treatment
JPH07243018A (en) * 1994-03-08 1995-09-19 Mitsubishi Heavy Ind Ltd Surface modification method for heat insulating film
JPH07268594A (en) * 1994-02-10 1995-10-17 Sumitomo Metal Ind Ltd Member for immersion in hot dip metal coating bath and its production
JPH07292453A (en) * 1994-04-27 1995-11-07 Mitsubishi Heavy Ind Ltd Heat shielding coating method for preventing high temperature oxidation
JPH08143376A (en) * 1994-11-21 1996-06-04 Toshiba Corp Ceramic-based fiber composite material
JPH0978258A (en) * 1995-09-20 1997-03-25 Toshiba Corp High-temperature member having thermal insulation coating film and its production
JPH11264084A (en) * 1998-03-16 1999-09-28 Toshiba Corp Heat resistant member and its production
JP2001240983A (en) * 2000-03-02 2001-09-04 Hitachi Ltd Gas turbine blade
JP2005272927A (en) * 2004-03-24 2005-10-06 Mitsui Eng & Shipbuild Co Ltd High temperature corrosion resistant material
JP2006257451A (en) * 2005-03-15 2006-09-28 Chokoon Zairyo Kenkyusho:Kk Structure of oxidation-resistant coating formed on heat-resistant alloy and coating method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122315A (en) * 1978-03-15 1979-09-21 Mitsubishi Heavy Ind Ltd Surface treatment
JPH07268594A (en) * 1994-02-10 1995-10-17 Sumitomo Metal Ind Ltd Member for immersion in hot dip metal coating bath and its production
JPH07243018A (en) * 1994-03-08 1995-09-19 Mitsubishi Heavy Ind Ltd Surface modification method for heat insulating film
JPH07292453A (en) * 1994-04-27 1995-11-07 Mitsubishi Heavy Ind Ltd Heat shielding coating method for preventing high temperature oxidation
JPH08143376A (en) * 1994-11-21 1996-06-04 Toshiba Corp Ceramic-based fiber composite material
JPH0978258A (en) * 1995-09-20 1997-03-25 Toshiba Corp High-temperature member having thermal insulation coating film and its production
JPH11264084A (en) * 1998-03-16 1999-09-28 Toshiba Corp Heat resistant member and its production
JP2001240983A (en) * 2000-03-02 2001-09-04 Hitachi Ltd Gas turbine blade
JP2005272927A (en) * 2004-03-24 2005-10-06 Mitsui Eng & Shipbuild Co Ltd High temperature corrosion resistant material
JP2006257451A (en) * 2005-03-15 2006-09-28 Chokoon Zairyo Kenkyusho:Kk Structure of oxidation-resistant coating formed on heat-resistant alloy and coating method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023486B2 (en) 2011-10-13 2015-05-05 General Electric Company Thermal barrier coating systems and processes therefor
US9034479B2 (en) 2011-10-13 2015-05-19 General Electric Company Thermal barrier coating systems and processes therefor
JP2015501375A (en) * 2011-10-13 2015-01-15 ゼネラル・エレクトリック・カンパニイ Thermal barrier coating system and method therefor
JP2013185201A (en) * 2012-03-07 2013-09-19 Mazda Motor Corp Thermal insulation coating structure and method for producing the same
JP2013185200A (en) * 2012-03-07 2013-09-19 Mazda Motor Corp Thermal insulation coating structure and method for producing the same
JP2013199011A (en) * 2012-03-23 2013-10-03 Yoshikawa Kogyo Co Ltd Wear resistant and heat resistant fiber-reinforced composite material and method for producing the same
JP2014069574A (en) * 2012-09-28 2014-04-21 General Electric Co <Ge> Laminar alignment, high temperature gas passage component part, and processing to form laminar alignment
WO2014076829A1 (en) * 2012-11-19 2014-05-22 株式会社 日立製作所 Gas turbine member having thermal barrier coating
WO2014184906A1 (en) * 2013-05-15 2014-11-20 株式会社日立製作所 Heat shield coating member
JP2016529442A (en) * 2013-08-27 2016-09-23 シーメンス エナジー インコーポレイテッド Wireless power receiving assembly for telemetry system of combustion turbine engine under high temperature environment
JP2017001235A (en) * 2015-06-08 2017-01-05 トヨタ自動車株式会社 Thermal insulation structure
US10808308B2 (en) * 2016-06-08 2020-10-20 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating, turbine member, and gas turbine
WO2018066330A1 (en) * 2016-10-06 2018-04-12 三菱重工業株式会社 Thermal barrier coating film, turbine member, and thermal barrier coating method
JP2018059465A (en) * 2016-10-06 2018-04-12 三菱重工業株式会社 Thermal barrier coating film, turbine member and thermal barrier coating method
JP2018179470A (en) * 2017-04-21 2018-11-15 三菱電機株式会社 Fuselage of flying object
JP2019173592A (en) * 2018-03-27 2019-10-10 三菱重工業株式会社 Heat-shielding coating, turbine member, gas turbine and method for manufacturing heat-shielding coating
US20200256200A1 (en) * 2019-02-08 2020-08-13 United Technologies Corporation Article with ceramic barrier coating and layer of networked ceramic nanofibers
US11591918B2 (en) * 2019-02-08 2023-02-28 Raytheon Technologies Corporation Article with ceramic barrier coating and layer of networked ceramic nanofibers
CN114087026A (en) * 2021-11-19 2022-02-25 西安热工研究院有限公司 Turbine blade

Similar Documents

Publication Publication Date Title
JP5075880B2 (en) Heat-resistant parts and high-temperature parts for gas turbines
JP2011167994A (en) Heat-resistant member having thermal barrier coating and gas turbine component using the same
JP5561733B2 (en) Gas turbine component having thermal barrier coating and gas turbine using the same
Lee et al. Perspectives on environmental barrier coatings (EBCs) manufactured via air plasma spray (APS) on ceramic matrix composites (CMCs): a tutorial paper
US10871078B2 (en) Low porosity abradable coating
Hardwicke et al. Advances in thermal spray coatings for gas turbines and energy generation: a review
JP5468552B2 (en) Thermal barrier coating system comprising rare earth aluminate layer for improved CMAS penetration resistance and coated article
JP7271429B2 (en) Method for coating the surface of a solid substrate having a layer containing a ceramic compound, and the coated substrate obtained by the method
US9926794B2 (en) Turbine blade tip treatment for industrial gas turbines
US20160333455A1 (en) Thermal Barrier Coating with Lower Thermal Conductivity
US10221703B2 (en) Articles having damage-tolerant thermal barrier coating
JP2011508093A (en) Method for improving CMAS penetration resistance
US20150159507A1 (en) Article for high temperature service
US20070292624A1 (en) Low conductivity, thermal barrier coating system for ceramic matrix composite (CMC) articles
US11473432B2 (en) Anti-CMAS coating with enhanced efficiency
KR101681195B1 (en) Thermal Barrier Coating System with Self-Healing Ability
JP2021191899A (en) Adhesion promoter layer for joining high-temperature protection layer to substrate, and method for producing the same
Suzuki et al. The current status of environmental barrier coatings and future direction of thermal spray process
JP5702749B2 (en) Gas turbine blade, combustor, shroud, and gas turbine using them
Misra Durability challenges for next generation of gas turbine engine materials
JPS5811796A (en) Heat protective heat resistant alloy structure and coating of surface of heat resistant alloy
JP7516293B2 (en) Heat-resistant components and power generation systems
JP3551883B2 (en) Gas turbine blades
Di Girolamo et al. Thermally sprayed coatings for high-temperature applications
RU2746196C1 (en) Part and assembly unit of high-pressure turbine nozzle assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312