JP2011165949A - Separator for electrolytic capacitor, and electrolytic capacitor using the same - Google Patents

Separator for electrolytic capacitor, and electrolytic capacitor using the same Download PDF

Info

Publication number
JP2011165949A
JP2011165949A JP2010027739A JP2010027739A JP2011165949A JP 2011165949 A JP2011165949 A JP 2011165949A JP 2010027739 A JP2010027739 A JP 2010027739A JP 2010027739 A JP2010027739 A JP 2010027739A JP 2011165949 A JP2011165949 A JP 2011165949A
Authority
JP
Japan
Prior art keywords
separator
electrolytic capacitor
fiber
short
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010027739A
Other languages
Japanese (ja)
Other versions
JP5485739B2 (en
Inventor
Takahiro Tsukuda
貴裕 佃
Tomohiro Sato
友洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2010027739A priority Critical patent/JP5485739B2/en
Publication of JP2011165949A publication Critical patent/JP2011165949A/en
Application granted granted Critical
Publication of JP5485739B2 publication Critical patent/JP5485739B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for an electrolytic capacitor high in piercing strength even if it is thin, and to provide an electrolytic capacitor low in short circuit failure rate and ESR and small in variation of the ESR. <P>SOLUTION: The separator for an electrolytic capacitor is formed of a wet nonwoven fabric using a 80 mesh woven metal having a wire diameter of 0.14 mm and an opening of 0.18 mm as a sieving plate, and containing a solvent spun cellulose fiber having a modified freeness degree of 0-250 ml measured in conformity to JIS P8121 except for setting of sample concentration of 0.1% and an acrylic short fiber as essential constituents, and having a void content of 62.0-86.0%. The electrolytic capacitor includes the same. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電解コンデンサ用セパレータ及び電解コンデンサに関する。   The present invention relates to an electrolytic capacitor separator and an electrolytic capacitor.

従来、電解液を使用する電解コンデンサのセパレータとしては、麻パルプやエスパルトパルプを主体とする紙に紙力増強剤を付着させた紙製セパレータ(例えば、特許文献1〜3参照)、再生セルロース繊維の叩解原料と天然パルプからなる紙製セパレータ(例えば、特許文献4参照)が使用されている。また、電解液中での熱劣化が少ない化学繊維を含有するセパレータが開示されている(例えば、特許文献5参照)。これらのセパレータは、ESRをより低くするために、厚みを薄くしていくと、突刺強度が弱くなるため、電極箔のエッジ部分のバリが貫通しやすくなり、ショート不良率が高くなる問題があった。   Conventionally, as an electrolytic capacitor separator using an electrolytic solution, a paper separator in which a paper strength enhancer is attached to paper mainly composed of hemp pulp or esparto pulp (for example, see Patent Documents 1 to 3), regenerated cellulose A paper separator made of a fiber beating raw material and natural pulp (see, for example, Patent Document 4) is used. Moreover, the separator containing the chemical fiber with little thermal deterioration in electrolyte solution is disclosed (for example, refer patent document 5). These separators have a problem that, when the thickness is reduced in order to lower the ESR, the piercing strength is weakened, so that the burr at the edge portion of the electrode foil is likely to penetrate and the short-circuit defect rate is increased. It was.

特開2001−267182号公報JP 2001-267182 A 特開2004−200395号公報Japanese Patent Application Laid-Open No. 2004-200395 特開2004−228600号公報JP 2004-228600 A 特許第3466206号公報Japanese Patent No. 3466206 特開2002−367863号公報JP 2002-367863 A

本発明の課題は、上記実情を鑑みたものであって、薄くても突刺強度が強い電解コンデンサ用セパレータ及びショート不良率とESRが低く、ESRのばらつきが小さい電解コンデンサを提供することである。   In view of the above circumstances, an object of the present invention is to provide an electrolytic capacitor separator that is thin but has high piercing strength, and an electrolytic capacitor that has a low short-circuit defect rate and low ESR, and has small variations in ESR.

本発明者らは、この課題を解決するために鋭意研究を行った結果、特定範囲の変法濾水度を有する溶剤紡糸セルロース繊維とアクリル短繊維とを必須成分として含有し、特定範囲の空孔率を有する湿式不織布からなる電解コンデンサ用セパレータが強い突刺強度を有し、該セパレータを具備した電解コンデンサはショート不良率とESRが低く優れ、ESRのばらつきが小さいことを見出し、本発明に至ったものである。   As a result of intensive studies to solve this problem, the inventors of the present invention contain solvent-spun cellulose fibers having a modified freeness in a specific range and acrylic short fibers as essential components, and a specific range of empty fibers. A separator for electrolytic capacitors made of a wet nonwoven fabric having porosity has a strong piercing strength, and the electrolytic capacitor equipped with the separator has an excellent low short-circuit defect rate and low ESR, and has a small variation in ESR, leading to the present invention. It is a thing.

すなわち、本発明は、アクリル短繊維と、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度が0〜250mlの溶剤紡糸セルロース繊維とを必須成分として含有してなり、空孔率が62.0〜86.0%である湿式不織布からなることを特徴とする電解コンデンサ用セパレータである。   That is, the present invention was measured in accordance with JIS P8121, except that an acrylic short fiber and an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm were used as a sieve plate, and the sample concentration was 0.1%. Electrolytic capacitor characterized by comprising a solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml as an essential component and comprising a wet nonwoven fabric having a porosity of 62.0 to 86.0% It is a separator.

本発明は、本発明の電解コンデンサ用セパレータを具備してなる電解コンデンサである。   The present invention is an electrolytic capacitor comprising the electrolytic capacitor separator of the present invention.

本発明の電解コンデンサ用セパレータは、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度が0〜250mlの溶剤紡糸セルロース繊維とアクリル短繊維とを必須成分として含有してなり、空孔率が62.0〜86.0%である湿式不織布からなるため、厚みが薄くても突刺強度が強く、電極箔のバリの貫通を抑えることができ、セパレータの空孔が均一に形成されることにより、電解液がセパレータ中に偏ることなく、保持量不足を防ぐことができる。そのため、該セパレータを具備してなる電解コンデンサはショート不良率とESRが低く、ESRのばらつきが小さい。   The separator for an electrolytic capacitor of the present invention is a modified method measured according to JIS P8121, except that an 80-mesh wire mesh having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as a sieve plate, and the sample concentration is 0.1%. Since it comprises a solvent-spun cellulose fiber having a freeness of 0 to 250 ml and an acrylic short fiber as essential components and is made of a wet nonwoven fabric having a porosity of 62.0 to 86.0%, the thickness is small. Also, the puncture strength is strong, the penetration of the burr of the electrode foil can be suppressed, and the pores of the separator are uniformly formed, so that the electrolyte is not biased in the separator and the holding amount can be prevented from being insufficient. Therefore, the electrolytic capacitor including the separator has a low short-circuit defect rate and low ESR, and the variation in ESR is small.

溶剤紡糸セルロース繊維のカナダ標準濾水度と変法濾水度(試料濃度を0.03%にした以外はJIS P8121に準拠して測定した濾水度)の関係を表したグラフである。It is a graph showing the relationship between Canadian standard freeness of solvent-spun cellulose fibers and modified freeness (freeness measured in accordance with JIS P8121 except that the sample concentration is 0.03%). 溶剤紡糸セルロース繊維の変法濾水度(ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度)を表したグラフである。Modified drainage of solvent-spun cellulose fiber (measured in accordance with JIS P8121 except that 80 mesh wire mesh with a wire diameter of 0.14 mm and mesh size of 0.18 mm was used as the sieve plate, and the sample concentration was 0.1%. It is a graph showing modified freeness).

本発明において、「セパレータ」と表記する場合は電解コンデンサ用セパレータを意味する。   In the present invention, the expression “separator” means an electrolytic capacitor separator.

本発明におけるアクリル短繊維は、繊維長1〜10mmのものが用いられ、1〜6mmが好ましく用いられる。繊維長が1mm未満だと、セパレータから脱落しやすくなる場合や突刺強度が不十分になる場合があり、10mmより長いと繊維同士がよれて、地合が不均一になる場合がある。アクリル短繊維の繊度は0.05〜1.0dtexが好ましい。繊度が0.05dtex未満だと、セパレータの突刺強度が不十分になる場合があり、1.0dtexより太いと、セパレータの空孔率が大きくなりすぎる場合や厚みむらが生じる場合がある。本発明におけるアクリルとは、アクリロニトリル100%の重合体からなるもの、アクリロニトリルに対して、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル等の(メタ)アクリル酸誘導体、酢酸ビニルなどを共重合させたものを指す。アクリル短繊維は、耐電解液性に優れる。本発明のセパレータは、アクリル短繊維を含有することにより、突刺強度が強くなる。   The acrylic short fiber in the present invention has a fiber length of 1 to 10 mm, and preferably 1 to 6 mm. If the fiber length is less than 1 mm, it may be easy to drop off from the separator or the puncture strength may be insufficient. If the fiber length is longer than 10 mm, the fibers may come together and the formation may become uneven. The fineness of the acrylic short fibers is preferably 0.05 to 1.0 dtex. If the fineness is less than 0.05 dtex, the puncture strength of the separator may be insufficient, and if it is greater than 1.0 dtex, the separator may have excessively high porosity or uneven thickness. Acrylic in the present invention is composed of a polymer of 100% acrylonitrile, and acrylonitrile is copolymerized with (meth) acrylic acid derivatives such as acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, and vinyl acetate. It refers to what you let me. Acrylic short fibers are excellent in resistance to electrolyte. The separator of this invention becomes strong in puncture strength by containing an acrylic short fiber.

本発明における変法濾水度とは、JIS P8121に規定されるカナダ標準濾水度の測定方法に対して、試料濃度またはふるい板の何れかまたは両方を変更して測定した濾水度を意味する。これまで、針葉樹木材パルプ、広葉樹木材パルプ、麻パルプ、エスパルトパルプなどの天然セルロース繊維のカナダ標準濾水度と変法濾水度の関係については報告されているが、溶剤紡糸セルロース繊維のカナダ標準濾水度と変法濾水度の関係は、明らかになっていなかった。本発明者らは、リファイナーを用いて溶剤紡糸セルロース繊維を微細化していき、微細化の程度ごとにカナダ標準濾水度と変法濾水度を測定した結果、該繊維の濾水挙動が、特開2000−331663号公報に開示されている天然セルロース繊維の濾水挙動と異なることを見出した。   The modified freeness in the present invention means the freeness measured by changing either or both of the sample concentration and the sieve plate with respect to the Canadian standard freeness measurement method defined in JIS P8121. To do. So far, the relationship between Canadian standard freeness and modified freeness of natural cellulose fibers such as conifer wood pulp, hardwood wood pulp, hemp pulp and esparto pulp has been reported. The relationship between standard freeness and modified freeness has not been clarified. The inventors of the present invention refined solvent-spun cellulose fibers using a refiner, and measured Canadian standard freeness and modified freeness for each degree of refinement. It has been found that it is different from the drainage behavior of natural cellulose fibers disclosed in JP 2000-331663 A.

図1に溶剤紡糸セルロース繊維のカナダ標準濾水度と変法濾水度の関係を表す。図1において、標準濾水度とはJIS P8121のカナダ標準濾水度を意味し、変法濾水度とは、試料濃度を0.03%にした以外はJIS P8121に準拠して測定した濾水度を意味する。図1の横軸は微細化の程度を示しており、右に向かうほど微細化の程度が進んでいる。カナダ標準濾水度は、微細化の程度がある段階までは、0.5mlで一定であるが、それ以上微細化が進むと、濾水度が大きくなっている。一方、変法濾水度は微細化の程度が進むに従って、濾水度が大きくなっている。この濾水挙動は、特開2000−331663号公報に開示されている天然セルロース繊維の濾水挙動、すなわち、微細化の程度が進むほど、カナダ標準濾水度と変法濾水度が減少する濾水挙動とは全く異なっている。このように微細化の程度が進むほど濾水度が大きくなる理由は、微細化が進むに従って溶剤紡糸セルロース繊維の繊維長が短くなっていき、特に試料濃度が薄い場合に繊維同士の絡みが少なくなり、繊維ネットワークが形成されにくくなるため、溶剤紡糸セルロース繊維自体がふるい板の穴をすり抜けてしまうからである。つまり、微細化した溶剤紡糸セルロース繊維の場合は、JIS P8121の測定方法では正確な濾水度が計測できないのである。より詳細に説明すると、天然セルロース繊維は、微細化の程度が進むほど、繊維の幹から細いフィブリルが多数裂けた状態になるため、フィブリルを介して繊維同士が絡みやすく、繊維ネットワークを形成しやすいのに対し、溶剤紡糸セルロース繊維は、微細化処理によって繊維の長軸に平行に細かく分割されやすく、分割後の繊維1本1本における繊維径の均一性が高いため、平均繊維長が短くなるほど、繊維同士が絡みにくくなり、繊維ネットワークを形成しにくいと考えられる。   FIG. 1 shows the relationship between Canadian standard freeness and modified freeness of solvent-spun cellulose fibers. In FIG. 1, the standard freeness means the Canadian standard freeness of JIS P8121, and the modified freeness means the filter measured according to JIS P8121 except that the sample concentration is 0.03%. It means water content. The horizontal axis in FIG. 1 indicates the degree of miniaturization, and the degree of miniaturization progresses toward the right. The Canadian standard freeness is constant at 0.5 ml until the degree of refinement, but the freeness increases with further refinement. On the other hand, the modified freeness increases as the degree of refinement progresses. This drainage behavior is the drainage behavior of natural cellulose fibers disclosed in JP 2000-331663 A, that is, the Canadian standard freeness and modified freeness decrease as the degree of refinement progresses. The drainage behavior is quite different. The reason why the degree of freezing increases as the degree of refinement increases is that the fiber length of the solvent-spun cellulose fiber decreases as the refinement progresses, and there is less entanglement between the fibers especially when the sample concentration is low. This is because it becomes difficult to form a fiber network, and the solvent-spun cellulose fibers themselves pass through the holes in the sieve plate. In other words, in the case of solvent-spun cellulose fibers that have been refined, an accurate freeness cannot be measured by the measuring method of JIS P8121. In more detail, natural cellulose fibers are in a state where many fine fibrils are torn apart from the trunk of the fiber as the degree of refinement progresses, so fibers tend to be entangled with each other via fibrils, and a fiber network is easily formed. On the other hand, the solvent-spun cellulose fiber is easily finely divided in parallel to the long axis of the fiber by the refining treatment, and the uniformity of the fiber diameter in each fiber after division is high, so that the average fiber length becomes shorter. It is considered that the fibers are less likely to be entangled with each other and it is difficult to form a fiber network.

そこで、本発明者らは、溶剤紡糸セルロース繊維の正確な濾水度を測定するための検討を行った。図2は、試料濃度とふるい板の両方を変更して測定した変法濾水度を示している。すなわち、JIS P8121に規定されているふるい板の代わりに80メッシュの金網を用い、試料濃度を0.1%にして測定した変法濾水度である。80メッシュの線径は直径0.14mmで、目開き0.18mmの金網(PULP AND PAPER RESEARCH INSTITUTE OF CANADA製)を使用した。図2の横軸のゼロは、微細化処理を全くしていない溶剤紡糸セルロース繊維を意味する。図2から明らかなように、微細化の程度が進むほど、濾水度は小さくなっており、溶剤紡糸セルロース繊維の抜けが抑えられ、より正確な濾水度を計測できたことがわかる。以下、本発明における変法濾水度とは、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度を意味し、特にことわりのない限り、単に「変法濾水度」と表記する。   Therefore, the present inventors have studied to measure the exact freeness of solvent-spun cellulose fibers. FIG. 2 shows the modified freeness measured by changing both the sample concentration and the sieve plate. That is, the modified freeness measured by using an 80-mesh wire net instead of the sieve plate specified in JIS P8121, and setting the sample concentration to 0.1%. The wire diameter of 80 mesh was 0.14 mm in diameter, and a wire mesh (manufactured by PULP AND PAPER RESEARCH INSTITUTE OF CANADA) having an opening of 0.18 mm was used. The zero on the horizontal axis in FIG. 2 means solvent-spun cellulose fibers that have not been refined at all. As can be seen from FIG. 2, as the degree of refinement progresses, the freeness decreases, and the solvent-spun cellulose fibers are prevented from coming off, and the freeness can be measured more accurately. Hereinafter, the modified freeness in the present invention is based on JIS P8121, except that an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as a sieve plate, and the sample concentration is 0.1%. This means the measured modified freeness, and is simply expressed as “modified dryness” unless otherwise specified.

変法濾水度が0〜250mlの溶剤紡糸セルロース繊維は、繊維径が細く、均一性が高いため、セパレータの孔径が比較的均一に形成され、セパレータ中での電解液の偏りや保持量不足を防ぐことができる。本発明の溶剤紡糸セルロース繊維は、変法濾水度が0〜200mlであることがより好ましく、0〜160mlであることがさらに好ましい。変法濾水度が250mlを超える場合は、微細化処理が不十分で、繊維の分割が十分に進まず、元の太い繊維径のまま残る割合が多くなるため、セパレータに大きな貫通孔ができ、電極箔のエッジ部分のバリが貫通しやすくなり、ショート不良率が高くなる。   Solvent-spun cellulose fibers with a modified freeness of 0 to 250 ml have a thin fiber diameter and high uniformity, so the pore diameter of the separator is relatively uniform, and the electrolyte is not evenly distributed or retained in the separator. Can be prevented. The solvent-spun cellulose fiber of the present invention preferably has a modified freeness of 0 to 200 ml, more preferably 0 to 160 ml. If the modified freeness exceeds 250 ml, the refinement process is insufficient, the fiber division does not proceed sufficiently, and the proportion of the original thick fiber diameter remains large, so a large through-hole is formed in the separator. The burrs at the edge portions of the electrode foil are likely to penetrate and the short-circuit defect rate is increased.

変法濾水度0〜250mlの溶剤紡糸セルロース繊維を得るには、溶剤紡糸セルロースの短繊維を適度な濃度で水などに分散させ、これをリファイナー、ビーター、ミル、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器などに通して、刃の形状、試料濃度、流量、処理回数、処理速度などの条件を調節して微細化処理すれば良い。   To obtain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, disperse solvent-spun cellulose short fibers in water at an appropriate concentration, and use this as refiner, beater, mill, milling device, high-speed rotating Rotating blade type homogenizer that gives shearing force by blade, double-cylindrical high-speed homogenizer that generates shearing force between a cylindrical inner blade that rotates at high speed and a fixed outer blade. By passing through an ultrasonic crusher or the like, the conditions such as the shape of the blade, the sample concentration, the flow rate, the number of treatments, the treatment speed, and the like may be adjusted for fine processing.

本発明における変法濾水度0〜250mlの溶剤紡糸セルロース繊維の長さ加重平均繊維長は0.2〜3.0mmが好ましい。0.2mm未満だと、繊維長が短すぎて、セパレータから脱落しやすくなる場合がある。3.0mm超では、微細化が不十分で、太い繊維径の割合が多くなり、セパレータに貫通孔が開きやすくなる場合や、繊維のよれが生じ、地合と厚みのばらつきが生じ、ESRのばらつきが大きくなる場合がある。本発明における溶剤紡糸セルロース繊維の長さ加重平均繊維長は、繊維にレーザー光を当てて得られる偏向特性を利用して求める市販の繊維長測定器を用いて測定することができる。   The length weighted average fiber length of the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the present invention is preferably 0.2 to 3.0 mm. If it is less than 0.2 mm, the fiber length is too short, and it may be easy to fall off the separator. If it exceeds 3.0 mm, the refinement is insufficient, the ratio of the thick fiber diameter increases, the through hole tends to open in the separator, the fiber is kinked, the texture and the thickness vary, and the ESR Variation may increase. The length-weighted average fiber length of the solvent-spun cellulose fiber in the present invention can be measured using a commercially available fiber length measuring device that is obtained by utilizing the deflection characteristics obtained by applying laser light to the fiber.

本発明のセパレータ中のアクリル短繊維と変法濾水度0〜250mlの溶剤紡糸セルロース繊維の合計含有率は、40〜100質量%が好ましい。40質量%未満だと、突刺強度が不十分になる場合や、該セパレータを具備した電解コンデンサのESRが高くなる場合やESRのばらつきが大きくなる場合がある。本発明のセパレータ中のアクリル短繊維と変法濾水度0〜250mlの溶剤紡糸セルロース繊維の比率は、質量基準で、1:9〜8:1が好ましく、3:17〜3:1がより好ましい。アクリル短繊維の比率が1:9より少ないと、セパレータの突刺強度が不十分になる場合があり、8:1より多いとセパレータの厚みを薄くしにくくなる場合やESRが高くなる場合がある。   The total content of the short acrylic fiber and the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the separator of the present invention is preferably 40 to 100% by mass. If it is less than 40% by mass, the puncture strength may be insufficient, the ESR of the electrolytic capacitor equipped with the separator may be high, or the ESR may be highly variable. The ratio of the short acrylic fiber and the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the separator of the present invention is preferably 1: 9 to 8: 1 and more preferably 3:17 to 3: 1. preferable. When the ratio of the acrylic short fibers is less than 1: 9, the puncture strength of the separator may be insufficient, and when it is more than 8: 1, it may be difficult to reduce the thickness of the separator or ESR may be increased.

本発明のセパレータは、アクリル短繊維、変法濾水度0〜250mlの溶剤紡糸セルロース繊維以外の繊維を含有しても良い。例えば、ポリアミドからなる短繊維やフィブリル化物、溶剤紡糸セルロースや再生セルロースの短繊維、天然セルロース繊維、天然セルロース繊維のパルプ化物やフィブリル化物、変法濾水度200ml超の溶剤紡糸セルロース繊維、ガラス、アルミナ、シリカなどからなる無機繊維などである。   The separator of the present invention may contain fibers other than acrylic short fibers and solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml. For example, short fibers and fibrils made of polyamide, solvent-spun cellulose and regenerated cellulose short fibers, natural cellulose fibers, pulped and fibrillated natural cellulose fibers, solvent-spun cellulose fibers having a modified freeness of more than 200 ml, glass, Inorganic fibers made of alumina, silica and the like.

ポリアミドは、脂肪族ポリアミド、芳香族ポリアミド、全芳香族ポリアミドの何れでも良いが、耐熱性に優れる全芳香族ポリアミドが好ましい。ポリアミド、溶剤紡糸セルロースや再生セルロースの短繊維は、繊維長1〜10mmが好ましく、1〜6mmがより好ましい。繊維長が1mm未満だと、セパレータから脱落しやすくなる場合があり、10mmより長いと繊維同士がよれて地合が不均一になる場合がある。ポリアミド、溶剤紡糸セルロース、再生セルロースの短繊維の繊度は0.01〜2.0dtexが好ましい。0.01dtex未満では繊維自身の強度が弱く、セパレータが破断しやすくなる場合がある。2.0dtexより太くなると、セパレータの厚みを薄くしにくくなる場合がある。   The polyamide may be an aliphatic polyamide, an aromatic polyamide, or a wholly aromatic polyamide, but is preferably a wholly aromatic polyamide having excellent heat resistance. The short fiber of polyamide, solvent-spun cellulose or regenerated cellulose preferably has a fiber length of 1 to 10 mm, more preferably 1 to 6 mm. If the fiber length is less than 1 mm, it may be easy to fall off from the separator, and if it is longer than 10 mm, the fibers may come together and the formation may become uneven. The fineness of the short fibers of polyamide, solvent-spun cellulose and regenerated cellulose is preferably 0.01 to 2.0 dtex. If it is less than 0.01 dtex, the strength of the fiber itself is weak and the separator may break easily. If it is thicker than 2.0 dtex, it may be difficult to reduce the thickness of the separator.

天然セルロース繊維のパルプ化物やフィブリル化物は、変法濾水度が0〜400mlが好ましい。変法濾水度が400mlを超えると、太い繊維径の割合が多くなり、セパレータに厚みむらが生じやすくなる場合がある。無機繊維の平均繊維径は0.1〜10.0μmが好ましく、0.1〜3.0μmがより好ましい。平均繊維径が0.1μm未満では、無機繊維が折れやすいため、セパレータから脱落しやすくなる場合があり、10.0μmより太いとセパレータの厚みを薄くしにくくなる場合がある。無機繊維の平均繊維長は0.1〜10.0mmが好ましく、0.1〜5.0mmがより好ましい。平均繊維長が0.1mm未満では、無機繊維がセパレータから脱落しやすくなる場合があり、10.0mmより長いとセパレータの地合や厚みが不均一になりやすい場合がある。   The natural cellulose fiber pulped product or fibrillated product preferably has a modified freeness of 0 to 400 ml. When the modified freeness exceeds 400 ml, the ratio of the thick fiber diameter increases, and the thickness unevenness is likely to occur in the separator. The average fiber diameter of the inorganic fibers is preferably 0.1 to 10.0 μm, and more preferably 0.1 to 3.0 μm. If the average fiber diameter is less than 0.1 μm, the inorganic fibers are likely to be broken, so that they may be easily detached from the separator, and if it is thicker than 10.0 μm, it may be difficult to reduce the thickness of the separator. The average fiber length of the inorganic fibers is preferably 0.1 to 10.0 mm, and more preferably 0.1 to 5.0 mm. If the average fiber length is less than 0.1 mm, the inorganic fibers may easily fall off from the separator, and if it is longer than 10.0 mm, the texture and thickness of the separator may be likely to be uneven.

本発明のセパレータは空孔率が62.0〜86.0%である。空孔率は、セパレータの比重からセパレータの密度を差し引いて得られる値をセパレータの比重で除して100倍した値を意味する。セパレータの比重は、セパレータを構成する繊維の比重と比率から算出される。空孔率が62.0%未満では、電解液の保持性が悪くなり、電解コンデンサのESRが高くなる。空孔率が86.0%より大きいとショート不良率が高くなり、ESRのばらつきが大きくなる。   The separator of the present invention has a porosity of 62.0 to 86.0%. The porosity means a value obtained by dividing the value obtained by subtracting the density of the separator from the specific gravity of the separator by the specific gravity of the separator and multiplying by 100. The specific gravity of the separator is calculated from the specific gravity and ratio of the fibers constituting the separator. When the porosity is less than 62.0%, the retention of the electrolytic solution is deteriorated and the ESR of the electrolytic capacitor is increased. If the porosity is larger than 86.0%, the short-circuit defect rate increases and the variation of ESR increases.

本発明のセパレータは、湿式抄紙法で製造することができる。1層でも良いし、2層以上の漉き合わせで製造しても良い。具体的には所定の繊維を所定濃度に分散させたスラリーを調製し、円網抄紙機、長網抄紙機、傾斜型抄紙機、短網抄紙機、傾斜短網抄紙機、これらを組み合わせたコンビネーション抄紙機の何れかを用いて湿式抄紙すれば良い。湿式抄紙した後は、必要に応じて熱処理、カレンダー処理、熱カレンダー処理などが施される。   The separator of the present invention can be produced by a wet papermaking method. One layer may be used, or two or more layers may be combined. Specifically, a slurry in which a predetermined fiber is dispersed at a predetermined concentration is prepared, and a circular paper machine, a long paper machine, an inclined paper machine, a short paper machine, an inclined short paper machine, and a combination thereof are combined. What is necessary is just to make wet paper using any of a paper machine. After wet papermaking, heat treatment, calendering, thermal calendering, etc. are performed as necessary.

本発明のセパレータの空孔率を62.0〜86.0%にするには、セパレータの比重を基にして、所望の空孔率になるようにセパレータの密度を調節すれば良い。太い繊維の含有率を高くすると、セパレータの密度は小さくなる方向になり、空孔率は大きくなる方向になる。カレンダー処理により厚みを薄くしてセパレータの密度を大きくすると、空孔率は小さくなる方向になる。比重の重い繊維の含有率を多くすると、空孔率を大きくする方向になる。   In order to set the porosity of the separator of the present invention to 62.0 to 86.0%, the density of the separator may be adjusted so as to obtain a desired porosity based on the specific gravity of the separator. When the content of thick fibers is increased, the density of the separator is reduced and the porosity is increased. When the thickness is reduced by calendering to increase the density of the separator, the porosity decreases. Increasing the content of fibers with a high specific gravity tends to increase the porosity.

本発明のセパレータは、厚みが15〜100μmであることが好ましく、20〜60μmであることがより好ましい。厚みが15μm未満では、取り扱い時や加工時に破れたり、穴が開いたりする場合がある。100μmより厚いと、電解コンデンサのESRが高くなる場合がある。   The separator of the present invention preferably has a thickness of 15 to 100 μm, more preferably 20 to 60 μm. If the thickness is less than 15 μm, it may be broken during handling or processing, or a hole may be formed. If it is thicker than 100 μm, the ESR of the electrolytic capacitor may increase.

本発明のセパレータは、ガーレー透気度が0.02〜3.00s/100mlであることが好ましく、0.10〜2.00s/100mlであることがより好ましい。ガーレー透気度はJIS P8117に準拠して測定される。ガーレー透気度が0.02s/100ml未満では、電極箔のエッジのバリが貫通しやすくなり、電解コンデンサのショート不良率が高くなる場合と、セパレータ内で電解液の偏りが生じてESRのばらつきが大きくなる場合がある。3.00s/100mlより大きいと、電解コンデンサのESRが高くなる場合がある。   The separator of the present invention preferably has a Gurley air permeability of 0.02 to 3.00 s / 100 ml, and more preferably 0.10 to 2.00 s / 100 ml. The Gurley air permeability is measured according to JIS P8117. If the Gurley air permeability is less than 0.02 s / 100 ml, the burrs on the edge of the electrode foil are likely to penetrate, and the short-circuit defect rate of the electrolytic capacitor increases, and the deviation of the ESR occurs due to the uneven electrolyte in the separator. May become larger. If it is larger than 3.00 s / 100 ml, the ESR of the electrolytic capacitor may increase.

本発明のセパレータは、平均突刺強度が0.40N以上であることが好ましく、0.50N以上がより好ましい。平均突刺強度が0.40N未満だと、電解コンデンサの製造時にセパレータが破損したり、穴が開くなどして、ショート不良率が高くなる場合がある。突刺強度とは、セパレータに対して直角に直径1mmの金属棒を一定速度で降ろしていき、金属棒がセパレータを貫通するまでの最大荷重を意味する。平均突刺強度は、セパレータ試料の任意の5箇所以上の突刺強度を測定し、その平均値とする。   The separator of the present invention preferably has an average puncture strength of 0.40 N or more, and more preferably 0.50 N or more. If the average piercing strength is less than 0.40 N, the short-circuit defect rate may be increased due to damage to the separator or the opening of the electrolytic capacitor. The piercing strength means a maximum load until a metal rod having a diameter of 1 mm is lowered at a constant speed perpendicular to the separator and the metal rod penetrates the separator. The average puncture strength is the average value obtained by measuring the puncture strength at any five or more locations of the separator sample.

本発明における電解コンデンサとは、アルミニウム箔の表面に絶縁性の酸化皮膜が形成された弁金属を陽極に使用し、酸化皮膜を有さないアルミニウム箔を陰極に使用して、これら陽極と陰極の間に電解液が配置されて構成されたものを指す。   The electrolytic capacitor in the present invention uses a valve metal having an insulating oxide film formed on the surface of an aluminum foil as an anode, and uses an aluminum foil without an oxide film as a cathode. It refers to a structure in which an electrolyte is disposed between them.

電解液の溶媒としては、水、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールフェニルエーテル、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、ジアセトンアルコール、ベンジルアルコール、アミルアルコール、グリセリン、γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン、β−ブチロラクトン、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、ヘキサメチルホスホリックアミド、アセトニトリル、アクリロニトリル、アジポニトリル、3−メトキシプロピオニトリル、N−メチル−2−オキサゾリジノン、3,5−ジメチル−2−オキサゾリジノン、エチレンカーボネート、プロピレンカーボネート、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホランなどが挙げられ、これらの単独または混合溶媒が用いられるが、エチレングリコールまたはγ−ブチロラクトンが好ましい。   Solvents for the electrolyte include water, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethylene glycol phenyl ether, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, diethylene Acetone alcohol, benzyl alcohol, amyl alcohol, glycerin, γ-butyrolactone, α-acetyl-γ-butyrolactone, β-butyrolactone, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethylacetoamide , Hexamethylphosphoric amide, acetonitrile, acrylonitrile, adiponitrile, 3-methoxypropionitrile, N-methyl-2-oxazolidinone, 3,5-dimethyl-2-oxazolidinone, ethylene carbonate, propylene carbonate, dimethylsulfone, ethylmethyl Examples include sulfone, diethylsulfone, sulfolane, 3-methylsulfolane, and 2,4-dimethylsulfolane. These solvents are used alone or in combination. Ethylene glycol or γ-butyrolactone is preferable.

電解液の電解質としては、ホウ酸、蓚酸、アジピン酸、ピメリン酸、マレイン酸、安息香酸、フタル酸、サリチル酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン酸、2−メチルアゼライン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、これら酸の塩(例えば、アジピン酸アンモニウム、マレイン酸水素アンモニウムジメチルアミン、2−ブチルオクタン二酸アンモニア、フタル酸水素1−エチル−2,3−ジメチルイミダゾリウムなど)、水酸化テトラメチルアンモニウム、エチルメチルアミン、ジエチルアミン、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミン、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム、炭素数1〜11のアルキル基またはアリールアルキル基で四級化されたイミダゾール化合物、ベンゾイミダゾール化合物、脂環式アミジン化合物などが用いられる。   Examples of the electrolyte of the electrolytic solution include boric acid, succinic acid, adipic acid, pimelic acid, maleic acid, benzoic acid, phthalic acid, salicylic acid, suberic acid, azelaic acid, sebacic acid, undecanoic acid, 2-methyl azelaic acid, 1,6 -Decanedicarboxylic acid, 5,6-decanedicarboxylic acid, salts of these acids (e.g. ammonium adipate, ammonium hydrogen maleate dimethylamine, 2-butyloctanedioic acid ammonia, hydrogen phthalate 1-ethyl-2,3- Dimethyl imidazolium, etc.), tetramethylammonium hydroxide, ethylmethylamine, diethylamine, trimethylamine, diethylmethylamine, ethyldimethylamine, triethylamine, tetramethylammonium, triethylmethylammonium, tetraethylammonium, carbon number 1-11 Imidazole compounds quaternized with an alkyl group or an arylalkyl group, benzimidazole compounds, alicyclic amidine compound and the like are used.

以下、実施例により本発明をさらに詳しく説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to an Example.

実施例1
表1に示したスラリー1を調製し、円網抄紙機を用いて湿式抄紙し、カレンダー処理して実施例1のセパレータを作製した。
Example 1
Slurry 1 shown in Table 1 was prepared, wet papermaking was performed using a circular paper machine, and a calendar process was performed to produce the separator of Example 1.

実施例2、4、7、8
表1に示したスラリー2、3、6、7を調製し、円網抄紙機を用いて湿式抄紙して実施例2、4、7及び8のセパレータを作製した。
Examples 2, 4, 7, 8
Slurries 2, 3, 6, and 7 shown in Table 1 were prepared, and wet papermaking was performed using a circular paper machine to produce separators of Examples 2, 4, 7, and 8.

実施例3、5、6、9〜12
表1に示したスラリー2、4、5、8〜11を用い、カレンダー圧を調節してカレンダー処理した以外は実施例1と同様にして実施例3、5、6、9〜12のセパレータを作製した。
Examples 3, 5, 6, 9-12
The separators of Examples 3, 5, 6, and 9 to 12 were used in the same manner as in Example 1 except that the slurry 2, 4, 5, and 8 to 11 shown in Table 1 were used and the calendar treatment was performed by adjusting the calendar pressure. Produced.

(比較例1、2、5、7、8)
表1に示したスラリー12、13、15、17、18を調製し、円網抄紙機を用いて湿式抄紙し、比較例1、2、5、7及び8のセパレータを作製した。
(Comparative Examples 1, 2, 5, 7, 8)
Slurries 12, 13, 15, 17, and 18 shown in Table 1 were prepared, and wet paper making was performed using a circular paper machine, and separators of Comparative Examples 1, 2, 5, 7, and 8 were produced.

(比較例3、4、6)
表1に示したスラリー2、14、16を調製し、円網抄紙機を用いて湿式抄紙し、カレンダー圧を調節してカレンダー処理して、比較例3、4及び6のセパレータを作製した。
(Comparative Examples 3, 4, 6)
Slurries 2, 14, and 16 shown in Table 1 were prepared, wet papermaking was performed using a circular paper machine, and calendering was performed by adjusting the calender pressure to produce separators of Comparative Examples 3, 4, and 6.

(比較例9)
表1に示したスラリー19を調製し、3連式の円網抄紙機を用いて3層抄き合わせし、オンマシンのダイレクトロールコータを用いてポリアクリルアミドの希釈溶液を浸漬し、ポリアクリルアミドの付着量が3.0質量%になるようにプレスロールでプレスし、乾燥して、比較例9のセパレータを作製した。ポリアクリルアミドは予めアニオン性不純物を除去し、且つカチオンの総量を25ppm以下に精製したものを用いた。
(Comparative Example 9)
The slurry 19 shown in Table 1 was prepared, and three layers were laminated using a triple-lined net paper machine, and a polyacrylamide diluted solution was immersed using an on-machine direct roll coater. The separator of Comparative Example 9 was produced by pressing with a press roll so that the adhesion amount was 3.0 mass% and drying. Polyacrylamide was used in which anionic impurities were previously removed and the total amount of cations was purified to 25 ppm or less.

表1中のA1〜A6は溶剤紡糸セルロース繊維を意味し、その変法濾水度は表1に示した通りである。B1は繊度0.1dtex、繊維長3mmのアクリル短繊維(三菱レイヨン製、商品名:ボンネル)、B2は繊度0.4dtex、繊維長5mmのアクリル短繊維(三菱レイヨン製、商品名:ボンネル)、B3は繊度1.0dtex、繊維長5mmのアクリル短繊維(三菱レイヨン製、商品名:ボンネル)を意味する。C1は繊度1.7dtex、繊維長4mmの溶剤紡糸セルロース短繊維(レンチング社製、商品名:テンセル)を意味する。D1は変法濾水度270ml、長さ加重平均繊維長0.21mmのリンター繊維を意味する。E1は繊度0.1dtex、繊維長3mmのポリエステル短繊維(帝人ファイバー製、商品名:TM04PN)、E2は繊度0.5dtex、繊維長5mmのポリエステル短繊維(帝人ファイバー製、商品名:TA04N)を意味する。F1はマニラ麻を意味し、そのカナダ標準濾水度は表1に示した通りである。F2はエスパルトパルプを意味し、そのカナダ標準濾水度は表1に示した通りである。F1、F2の変法濾水度は何れも800mlであった。溶剤紡糸セルロース繊維、溶剤紡糸セルロース短繊維、リンター繊維、マニラ麻、エスパルトパルプの比重は1.50とした。アクリル短繊維の比重は1.17とした。ポリエステル短繊維の比重は1.40とした。   A1 to A6 in Table 1 mean solvent-spun cellulose fibers, and their modified freeness is as shown in Table 1. B1 is acrylic short fiber having a fineness of 0.1 dtex and a fiber length of 3 mm (product name: Bonnell), B2 is acrylic short fiber having a fineness of 0.4 dtex and a fiber length of 5 mm (product name: Bonnell), B3 means an acrylic short fiber (manufactured by Mitsubishi Rayon, trade name: Bonnell) having a fineness of 1.0 dtex and a fiber length of 5 mm. C1 means a solvent-spun cellulose short fiber having a fineness of 1.7 dtex and a fiber length of 4 mm (trade name: Tencel, manufactured by Lenzing). D1 means a linter fiber having a modified freeness of 270 ml and a length-weighted average fiber length of 0.21 mm. E1 is a polyester short fiber having a fineness of 0.1 dtex and a fiber length of 3 mm (made by Teijin Fibers, trade name: TM04PN), E2 is a polyester short fiber having a fineness of 0.5 dtex and a fiber length of 5 mm (made by Teijin Fibers, trade name: TA04N) means. F1 means Manila hemp, and its Canadian standard freeness is as shown in Table 1. F2 means esparto pulp, and its Canadian standard freeness is as shown in Table 1. The modified freeness of F1 and F2 were both 800 ml. The specific gravity of solvent-spun cellulose fiber, solvent-spun cellulose short fiber, linter fiber, Manila hemp, and esparto pulp was 1.50. The specific gravity of the acrylic short fiber was 1.17. The specific gravity of the polyester short fiber was 1.40.

Figure 2011165949
Figure 2011165949

実施例及び比較例のセパレータについて、下記の試験方法により評価を行い、結果を表2に示した。   The separators of Examples and Comparative Examples were evaluated by the following test methods, and the results are shown in Table 2.

<厚み>
セパレータの厚みをJIS C2111に準拠して測定した。
<Thickness>
The thickness of the separator was measured according to JIS C2111.

<密度>
セパレータの密度をJIS C2111に準拠して測定した。
<Density>
The density of the separator was measured according to JIS C2111.

<空孔率>
セパレータの空孔率は、セパレータの比重からセパレータの密度を差し引いて得られる値をセパレータの比重で除して100倍して算出した。
<Porosity>
The porosity of the separator was calculated by dividing the value obtained by subtracting the density of the separator from the specific gravity of the separator by the specific gravity of the separator and multiplying by 100.

<透気度>
外径28.6mmの円孔を有するガーレー透気度計を用いて、100mlの空気がセパレータを通過するに要した時間を1試料につき任意の5箇所以上で計測し、その平均値とした。
<Air permeability>
Using a Gurley permeability meter having a circular hole with an outer diameter of 28.6 mm, the time required for 100 ml of air to pass through the separator was measured at any five or more locations per sample, and the average value was obtained.

<平均突刺強度>
卓上型材料試験機(商品名:STA−1150、(株)オリエンテック製)に据え付けた40mmφの固定枠に装着し、直径1.0mmの金属針((株)オリエンテック製)を試料面に対して直角に50mm/分の一定速度で貫通するまで降ろした。この時の最大荷重(N)を任意の5箇所以上で計測し、その平均値を平均突刺強度とした。
<Average puncture strength>
Mounted on a 40mmφ fixed frame installed on a desktop material testing machine (trade name: STA-1150, manufactured by Orientec Co., Ltd.), and a metal needle (manufactured by Orientec Co., Ltd.) with a diameter of 1.0mm on the sample surface It was lowered until it penetrated at a constant speed of 50 mm / min. The maximum load (N) at this time was measured at five or more arbitrary locations, and the average value was defined as the average puncture strength.

Figure 2011165949
Figure 2011165949

<電解コンデンサ>
陽極に化成エッチングされたアルミニウム箔、陰極に未化成のエッチングアルミニウム箔を用い、これらの間に、実施例1〜12及び比較例1〜9のセパレータをそれぞれ挟んで巻回し、巻回素子を作製した。1,2,3,4−テトラメチルイミダゾリニウム・フタル酸塩の濃度を30質量%になるようにγ−ブチロラクトンに溶解させた電解液を巻回素子に注入し、封口して、実施例1〜12及び比較例1〜9の電解コンデンサを作製した。
<Electrolytic capacitor>
Using an aluminum foil subjected to chemical etching on the anode and an unchemically etched aluminum foil as the cathode, the separators of Examples 1 to 12 and Comparative Examples 1 to 9 are respectively sandwiched between them to produce a winding element. did. An electrolytic solution in which γ-butyrolactone was dissolved so that the concentration of 1,2,3,4-tetramethylimidazolinium phthalate was 30% by mass was injected into the winding element and sealed. Electrolytic capacitors 1 to 12 and Comparative Examples 1 to 9 were produced.

実施例及び比較例の電解コンデンサについて、下記の試験方法により評価を行い、その結果を表3に示した。   The electrolytic capacitors of Examples and Comparative Examples were evaluated by the following test methods, and the results are shown in Table 3.

<ESR>
電解コンデンサのESRを20℃、1kHzの周波数でLCRメーターを用いて測定し、100個の平均値を算出した。
<ESR>
The ESR of the electrolytic capacitor was measured using an LCR meter at a frequency of 20 ° C. and 1 kHz, and an average value of 100 capacitors was calculated.

<ばらつき>
電解コンデンサのESRの標準偏差をばらつきの指標とした。標準偏差の値が小さいほどばらつきが小さく優れている。
<Variation>
The standard deviation of ESR of the electrolytic capacitor was used as an index of variation. The smaller the standard deviation value, the smaller the variation and the better.

<ショート不良率>
陽極と陰極の間に実施例及び比較例のセパレータを挟んで巻回素子を作製し、電解液を含浸しないで両極間の導通の有無をテスターで確認した。100個の巻回素子に占める導通した巻回素子の割合をショート不良率とした。
<Short defective rate>
A winding element was produced by sandwiching the separators of Examples and Comparative Examples between the anode and the cathode, and the presence or absence of conduction between both electrodes was confirmed by a tester without impregnating the electrolyte. The proportion of conductive winding elements in 100 winding elements was defined as a short-circuit defect rate.

<リフロー後不良率>
電解コンデンサを260℃の半田浴に30秒間漬けてリフロー処理し、取り出して放冷した後、ESRを測定した。セパレータが溶解や変形するなどしてショートしたり、ESRが異常値を示した電解コンデンサの割合をリフロー後不良率とした。
<Defect rate after reflow>
The electrolytic capacitor was immersed in a solder bath at 260 ° C. for 30 seconds, subjected to reflow treatment, taken out and allowed to cool, and then ESR was measured. The ratio of electrolytic capacitors in which the separator was short-circuited due to melting or deformation or the ESR showed an abnormal value was defined as the defective rate after reflow.

Figure 2011165949
Figure 2011165949

実施例1〜12のセパレータは、アクリル短繊維と、変法濾水度0〜250mlの溶剤紡糸セルロース繊維とを必須成分として含有してなり、空孔率62.0〜86.0%の湿式不織布からなるため、平均突刺強度が強く優れていた。実施例1〜12のセパレータを具備した実施例1〜12の電解コンデンサは、ショート不良率とESRが低く、ESRのばらつきが小さく優れていた。   The separators of Examples 1 to 12 contain acrylic short fibers and solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml as essential components, and are wet with a porosity of 62.0 to 86.0%. Since it consists of a nonwoven fabric, the average puncture strength was strong and excellent. The electrolytic capacitors of Examples 1 to 12 including the separators of Examples 1 to 12 were excellent in that the short-circuit defect rate and ESR were low, and the variation in ESR was small.

比較例1のセパレータは、変法濾水度0〜250mlの溶剤紡糸セルロース繊維を含有せず、変法濾水度260mlの溶剤紡糸セルロース繊維を含有してなるため、セパレータの貫通孔が大きくなり、電極箔のバリが貫通しやすくなったため、該セパレータを具備した比較例1の電解コンデンサはショート不良率がやや高かった。また、セパレータ内で電解液が偏ったため、ESRのばらつきが大きくなった。   Since the separator of Comparative Example 1 does not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and contains solvent-spun cellulose fibers having a modified freeness of 260 ml, the separator has a large through-hole. Since the burr of the electrode foil was easily penetrated, the electrolytic capacitor of Comparative Example 1 provided with the separator had a slightly high short-circuit defect rate. In addition, since the electrolyte was biased in the separator, the ESR variation was large.

比較例2のセパレータはアクリル短繊維を含有せず、空孔率が86.0%を超えていたため、突刺強度が著しく弱く、電極箔のバリが貫通しやすく、該セパレータを具備した比較例2の電解コンデンサはショート不良率が高かった。また、セパレータ内で電解液が偏ったため、ESRのばらつきが大きくなった。   Since the separator of Comparative Example 2 did not contain acrylic short fibers and the porosity exceeded 86.0%, the puncture strength was remarkably weak, and the burr of the electrode foil was easy to penetrate. Comparative Example 2 provided with the separator The electrolytic capacitor had a high short-circuit defect rate. In addition, since the electrolyte was biased in the separator, the ESR variation was large.

比較例3のセパレータは空孔率が62.0%未満だったため、電解液の保持量が不十分になり、該セパレータを具備した比較例3の電解コンデンサはESRが高くなった。   Since the separator of Comparative Example 3 had a porosity of less than 62.0%, the amount of electrolyte retained was insufficient, and the electrolytic capacitor of Comparative Example 3 equipped with the separator had high ESR.

比較例4及び8のセパレータは、変法濾水度0〜250mlの溶剤紡糸セルロース繊維を全く含有しないため、貫通孔が大きく、電極箔のバリが貫通しやすく、該セパレータを具備した比較例4及び8の電解コンデンサはショート不良率が高かった。また、セパレータ内で電解液が偏ったため、ESRのばらつきが大きくなった。   Since the separators of Comparative Examples 4 and 8 do not contain any solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml, Comparative Example 4 having a large through-hole and easy penetration of burr on the electrode foil. The electrolytic capacitors No. 8 and No. 8 had a high short-circuit defect rate. In addition, since the electrolyte was biased in the separator, the ESR variation was large.

比較例5のセパレータは、アクリル短繊維を含有せず、耐電解液性に問題のあるポリエステル短繊維を主に含有してなるため、ポリエステル短繊維がリフロー処理時に電解液に溶解してしまい、該セパレータを具備した比較例5の電解コンデンサはリフロー後不良率が100%になった。   The separator of Comparative Example 5 does not contain acrylic short fibers, and mainly contains polyester short fibers having a problem with the electrolytic solution resistance. Therefore, the polyester short fibers are dissolved in the electrolytic solution during the reflow treatment, The electrolytic capacitor of Comparative Example 5 provided with the separator had a defect rate of 100% after reflow.

比較例6のセパレータは、アクリル短繊維を含有せず、変法濾水度80mlの溶剤紡糸セルロース繊維100%からなるため、突刺強度が弱く、該セパレータを具備した比較例6の電解コンデンサはショート不良率が高めであった。   Since the separator of Comparative Example 6 does not contain short acrylic fibers and is composed of 100% solvent-spun cellulose fiber having a modified freeness of 80 ml, the puncture strength is weak, and the electrolytic capacitor of Comparative Example 6 equipped with the separator is short. The defective rate was high.

比較例7のセパレータは、アクリル短繊維と変法濾水度0〜250mlの溶剤紡糸セルロース繊維とを含有するが、空孔率が86.0%を超えているため、該セパレータを具備した比較例7の電解コンデンサはショート不良率が高めであった。   The separator of Comparative Example 7 contains acrylic short fibers and solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, but the porosity is more than 86.0%. The electrolytic capacitor of Example 7 had a high short-circuit defect rate.

比較例9のセパレータは、アクリル短繊維と、変法濾水度0〜250mlの溶剤紡糸セルロース繊維を含有せず、カナダ標準濾水度640ml(変法濾水度800ml)のマニラ麻とエスパルトからなるため突刺強度が弱く、該セパレータを具備した比較例9の電解コンデンサはショート不良率が高めであった。また、セパレータ内で電解液が偏ったため、ESRのばらつきが大きかった。   The separator of Comparative Example 9 does not contain short acrylic fibers, solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, and consists of Manila hemp and esparto having a Canadian standard freeness of 640 ml (modified freeness of 800 ml). Therefore, the puncture strength was weak, and the electrolytic capacitor of Comparative Example 9 equipped with the separator had a high short-circuit defect rate. Moreover, since the electrolyte was biased in the separator, the ESR variation was large.

Claims (2)

ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度が0〜250mlの溶剤紡糸セルロース繊維とアクリル短繊維とを必須成分として含有してなり、空孔率が62.0〜86.0%である湿式不織布からなることを特徴とする電解コンデンサ用セパレータ。   A solvent having a modified freeness of 0 to 250 ml measured according to JIS P8121, except that an 80-mesh wire mesh having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as the sieve plate, and the sample concentration is 0.1%. A separator for an electrolytic capacitor, comprising a spun cellulose fiber and an acrylic short fiber as essential components, and comprising a wet nonwoven fabric having a porosity of 62.0 to 86.0%. 請求項1に記載の電解コンデンサ用セパレータを具備してなる電解コンデンサ。   An electrolytic capacitor comprising the electrolytic capacitor separator according to claim 1.
JP2010027739A 2010-02-10 2010-02-10 Electrolytic capacitor separator and electrolytic capacitor using the same Expired - Fee Related JP5485739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027739A JP5485739B2 (en) 2010-02-10 2010-02-10 Electrolytic capacitor separator and electrolytic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027739A JP5485739B2 (en) 2010-02-10 2010-02-10 Electrolytic capacitor separator and electrolytic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2011165949A true JP2011165949A (en) 2011-08-25
JP5485739B2 JP5485739B2 (en) 2014-05-07

Family

ID=44596267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027739A Expired - Fee Related JP5485739B2 (en) 2010-02-10 2010-02-10 Electrolytic capacitor separator and electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JP5485739B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207250A (en) * 2012-03-29 2013-10-07 Nippon Kodoshi Corp Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2014103158A (en) * 2012-11-16 2014-06-05 Nippon Kodoshi Corp Separator for electrolytic capacitor and aluminum electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093350A1 (en) * 2000-05-29 2001-12-06 Mitsubishi Paper Mills Limited Separator for electrochemical device and method for producing the same, and electrochemical device
JP2006049797A (en) * 2004-07-06 2006-02-16 Asahi Kasei Corp Separator for electric storage device
JP2007067389A (en) * 2005-08-03 2007-03-15 Mitsubishi Paper Mills Ltd Separator for electrochemical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093350A1 (en) * 2000-05-29 2001-12-06 Mitsubishi Paper Mills Limited Separator for electrochemical device and method for producing the same, and electrochemical device
JP2006049797A (en) * 2004-07-06 2006-02-16 Asahi Kasei Corp Separator for electric storage device
JP2007067389A (en) * 2005-08-03 2007-03-15 Mitsubishi Paper Mills Ltd Separator for electrochemical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207250A (en) * 2012-03-29 2013-10-07 Nippon Kodoshi Corp Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2014103158A (en) * 2012-11-16 2014-06-05 Nippon Kodoshi Corp Separator for electrolytic capacitor and aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP5485739B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP6674956B2 (en) Electrochemical element separator and electrochemical element
WO2016010085A1 (en) Separator for power storage device, and power storage device using same
JP6412805B2 (en) Separator and aluminum electrolytic capacitor
WO2015092898A1 (en) Capacitor separator and capacitor
JP2008186707A (en) Separator for electrochemical element
WO2014098180A1 (en) Separator for aluminium electrolytic capacitor, and aluminium electrolytic capacitor
JP4938640B2 (en) separator
KR102583728B1 (en) Separator for electrochemical devices and electrochemical devices
JP4869875B2 (en) Separator for condenser
JP2010239094A (en) Separator for electrolytic capacitor, and electrolytic capacitor
JP2000331663A (en) Separator, and electrolytic capacitor, electric double layer capacitor, nonaqueous battery using the separator
JP5485739B2 (en) Electrolytic capacitor separator and electrolytic capacitor using the same
JP2015133389A (en) Separator, and capacitor using the separator
JP7012425B2 (en) Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP5695474B2 (en) Separator for solid electrolytic capacitor and solid electrolytic capacitor using the same
JP5695475B2 (en) Electrolytic capacitor separator and electrolytic capacitor using the same
JP2014036075A (en) Separator for electrolytic capacitor and electrolytic capacitor
JP2014103158A (en) Separator for electrolytic capacitor and aluminum electrolytic capacitor
WO2020137675A1 (en) Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2008098291A (en) Separator for capacitor
JP2014222706A (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP6338449B2 (en) Aluminum electrolytic capacitor separator and aluminum electrolytic capacitor
JP2013207250A (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2024122009A (en) Separator for solid electrolytic capacitor or hybrid electrolytic capacitor, and solid electrolytic capacitor or hybrid electrolytic capacitor
JP2015041712A (en) Separator for solid electrolytic capacitor and solid electrolytic capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140220

R150 Certificate of patent or registration of utility model

Ref document number: 5485739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees