JP2011165338A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2011165338A
JP2011165338A JP2010023361A JP2010023361A JP2011165338A JP 2011165338 A JP2011165338 A JP 2011165338A JP 2010023361 A JP2010023361 A JP 2010023361A JP 2010023361 A JP2010023361 A JP 2010023361A JP 2011165338 A JP2011165338 A JP 2011165338A
Authority
JP
Japan
Prior art keywords
water
water level
fuel cell
storage unit
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010023361A
Other languages
Japanese (ja)
Inventor
Yukitsugu Masumoto
幸嗣 桝本
Masami Hamaso
正美 濱走
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010023361A priority Critical patent/JP2011165338A/en
Publication of JP2011165338A publication Critical patent/JP2011165338A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system which takes measures in the case that a water level of a water accumulation part increases or decreases unexpectedly due to an abnormality of a valve. <P>SOLUTION: The fuel cell system S includes: a fuel cell 12; and a water supply device 30 having the water accumulation part T for accumulating water used by the fuel cell 12, and a water level control means Z for conducting water-level maintaining control to maintain a water level in the water accumulation part T in a predetermined range. The water level control means Z carries out abnormality elimination control in which operating states of an opening/closing valve V and a water pump 34 are controlled so that water passes through the opening/closing valve V when a state that the water level in the water accumulation part T cannot be maintained in the predetermined range even if the water level maintaining control is conducted is detected. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料電池で利用する水を貯留する水貯留部における水位を所定範囲内に維持する水位維持制御を行う燃料電池システムに関する。   The present invention relates to a fuel cell system that performs water level maintenance control that maintains a water level within a predetermined range in a water storage unit that stores water used in a fuel cell.

アノード及びカソードで構成される燃料電池を備える燃料電池システムでは、アノードに供給されるガスを加湿するため、カソードに供給されるガスを加湿するため、燃料電池を冷却するため等の様々な目的で水が利用される。例えば、特許文献1に記載の燃料電池システムは水貯留部を備え、その水貯留部に貯留してある水が、水蒸気改質に用いる水蒸気を供給するため(加えて、アノードに供給されるガスを加湿するため)、カソードに供給されるガスを加湿するため、燃料電池を冷却するために利用されている。   In a fuel cell system including a fuel cell composed of an anode and a cathode, the gas supplied to the anode is humidified, the gas supplied to the cathode is humidified, and the fuel cell is cooled for various purposes. Water is used. For example, the fuel cell system described in Patent Document 1 includes a water storage unit, and water stored in the water storage unit supplies water vapor used for steam reforming (in addition, gas supplied to the anode) In order to humidify the gas supplied to the cathode, it is used to cool the fuel cell.

加えて、特許文献1に記載の燃料電池システムでは、水貯留部における水位は水位計によって監視され、水貯留部の水位の制御が行われる。例えば、特許文献1の図5には、水貯留部に供給可能な水を貯留する補充用水貯留部、補充用水貯留部及び水貯留部の間を連結する水路、水路を開閉可能な開閉弁、及び、水路の中の水を付勢可能な水ポンプが記載されている。そして、水貯留部の水位が下限水位未満となった場合には、水ポンプを運転し及び弁の開度を調節して補充用水貯留部から水貯留部へ水を供給している。   In addition, in the fuel cell system described in Patent Document 1, the water level in the water storage unit is monitored by a water level meter, and the water level of the water storage unit is controlled. For example, FIG. 5 of Patent Document 1 includes a supplementary water storage unit that stores water that can be supplied to the water storage unit, a water channel that connects between the supplementary water storage unit and the water storage unit, an on-off valve that can open and close the water channel, And the water pump which can energize the water in a waterway is described. And when the water level of a water storage part becomes less than a minimum water level, the water pump is drive | operated and the opening degree of a valve is adjusted, and water is supplied to the water storage part from the supplementary water storage part.

国際公開第01/071837号(図5)International Publication No. 01/071837 (Figure 5)

特許文献1に記載の燃料電池システムでは、補充用水貯留部及び水貯留部の間を連結する水路に設けられた開閉弁に異常が発生した場合の対策が講じられていない。例えば、開閉弁としての電磁弁は、プランジャが弁座に対して相対移動可能に配置され、プランジャが弁座に対して当接する位置に移動したときに閉弁し及びプランジャが弁座から離れる位置に移動したときに開弁するように構成されている。プランジャの移動は、プランジャを一方向に付勢し続けるバネと、プランジャに対する吸引力を調整可能な吸引子(電磁石)とによって制御される。通常、プランジャは、バネによって吸引子から離れる方向に移動させられており、吸引子から吸引されたとき、プランジャは、バネ力に抗して吸引子に付着する方向に移動する。このような電磁弁において、プランジャと弁座との間に異物が噛み込まれたとき、閉弁操作を行っているにも拘わらず予期せず開弁状態となる場合がある。他にも、例えば、開弁状態から閉弁状態に切り換えるために吸引子による吸引力を小さくして、バネ力によってプランジャを移動させようとしても、そのバネ力が開弁状態における流体の供給圧に負けてプランジャが吸引子に付着した状態のままになることにより予期せず閉弁状態に切り換わらないことも起こり得る。そして、このように弁が予期しない状態となっていると、水貯留部の水位が予期せず上昇又は低下する可能性もある。   In the fuel cell system described in Patent Document 1, no countermeasure is taken when an abnormality occurs in the on-off valve provided in the water channel connecting between the replenishment water storage unit and the water storage unit. For example, an electromagnetic valve as an on-off valve is a position where the plunger is disposed so as to be able to move relative to the valve seat, and is closed when the plunger moves to a position where it abuts against the valve seat and the plunger is separated from the valve seat. It is configured to open when it moves to. The movement of the plunger is controlled by a spring that continues to urge the plunger in one direction and an attractor (electromagnet) that can adjust the attractive force to the plunger. Usually, the plunger is moved in a direction away from the suction element by a spring. When the plunger is sucked from the suction element, the plunger moves in a direction to adhere to the suction element against the spring force. In such an electromagnetic valve, when a foreign object is caught between the plunger and the valve seat, the valve may be unexpectedly opened despite the valve closing operation. In addition, for example, even if an attempt is made to move the plunger by a spring force by reducing the suction force by the suction element in order to switch from the valve open state to the valve closed state, the spring force is applied to the fluid supply pressure in the valve open state. If the plunger remains attached to the suction element, the valve may not be unexpectedly switched to the closed state. And when the valve is in an unexpected state in this way, the water level in the water reservoir may rise or fall unexpectedly.

例えば、水貯留部の水が、アノードに供給されるガスを加湿するため、及び、カソードに供給されるガスを加湿するために用いられている場合、その水位が上昇すると燃料電池セルに水が浸入する可能性がある。その場合、燃料電池セルからの出力電圧が低下するという問題が生じ得る。或いは、水貯留部の水位が低下すると燃料電池セルに供給される水分が減少して、アノードとカソードとの間の電解質におけるイオン伝導性能が低下するため、燃料電池セルからの出力電圧が低下するという問題が生じ得る。
また或いは、水貯留部の水が、燃料電池の冷却水として用いられている場合には、その水位の低下に伴って冷却水の流量が不足し、燃料電池セルの温度が上昇して出力電圧が低下するといった問題が生じ得る。
For example, when the water in the water storage part is used to humidify the gas supplied to the anode and to humidify the gas supplied to the cathode, when the water level rises, water is supplied to the fuel cell. There is a possibility of intrusion. In that case, the problem that the output voltage from a fuel cell falls may arise. Alternatively, when the water level in the water storage unit decreases, the water supplied to the fuel cell decreases, and the ionic conduction performance in the electrolyte between the anode and the cathode decreases, so the output voltage from the fuel cell decreases. The problem can arise.
Alternatively, when the water in the water storage part is used as cooling water for the fuel cell, the flow rate of the cooling water becomes insufficient as the water level decreases, the temperature of the fuel cell rises, and the output voltage There may be a problem that the value decreases.

このように、水貯留部の水位が予期せず上昇又は低下した場合の対策が講じられていない燃料電池システムでは、燃料電池の出力電圧の低下や故障を避けるために、燃料電池の発電運転を停止せざるを得ない。   Thus, in a fuel cell system in which measures are not taken when the water level in the water reservoir rises or falls unexpectedly, in order to avoid a decrease in the output voltage or failure of the fuel cell, the power generation operation of the fuel cell is performed. I have to stop.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、水貯留部の水位が弁の異常により予期せず上昇又は低下した場合の対策が講じられた燃料電池システムを提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel cell system in which measures are taken when the water level in the water storage section unexpectedly rises or falls due to a valve abnormality. In the point.

上記目的を達成するための本発明に係る燃料電池システムの特徴構成は、
燃料電池と、
前記燃料電池で利用する水を貯留する水貯留部と、
前記水貯留部に供給可能な水を貯留する補充用水貯留部、前記補充用水貯留部及び前記水貯留部の間を連結する水路、前記水路を開閉可能な開閉弁、前記水路の中の水を付勢可能な水ポンプ、及び、前記開閉弁及び前記水ポンプの動作を制御して前記水貯留部における水位を所定範囲内に維持する水位維持制御を行う水位制御手段を有する水供給装置と、を備え、
前記水位制御手段は、前記水位維持制御を行っても前記水貯留部における水位を所定範囲内に維持できない状態が検出された場合に、前記開閉弁を水が通過するように前記開閉弁及び前記水ポンプの動作状態を制御する異常解消制御を行う点にある。
The characteristic configuration of the fuel cell system according to the present invention for achieving the above object is as follows:
A fuel cell;
A water reservoir for storing water used in the fuel cell;
A replenishment water storage unit that stores water that can be supplied to the water storage unit, a water channel that connects between the replenishment water storage unit and the water storage unit, an on-off valve that can open and close the water channel, and water in the water channel An energizable water pump, and a water supply device having water level control means for controlling the operation of the on-off valve and the water pump to maintain the water level in the water reservoir within a predetermined range; With
When the water level control means detects a state in which the water level in the water storage part cannot be maintained within a predetermined range even if the water level maintenance control is performed, the on-off valve and the on-off valve are arranged so that water passes through the on-off valve. It is in the point of performing abnormality elimination control that controls the operating state of the water pump.

水位維持制御を行っても水貯留部における水位を所定範囲内に維持できない状態が検出された場合、その異常は、弁が異物を噛み込むことにより閉弁操作を行っているにも拘わらず開弁状態となることにより発生している可能性がある。
本特徴構成によれば、水位制御手段が、開閉弁を水が通過するように開閉弁及び水ポンプの動作状態を制御する異常解消制御を行うため、開閉弁を通過する水の圧力で異物が開閉弁から流れ出すことを期待できる。本願において、開閉弁の動作状態の制御には、開弁・閉弁制御の他に開度制御を含み、水ポンプの動作状態の制御には、停止と作動とを切り換える制御の他に、作動又は停止している状態のまま維持する制御を含む。その結果、その後は開閉弁が正常に動作すると考えられ、これにより、その後は水貯留部における水位を所定範囲内に維持できると考えられる。これに基づいて、燃料電池の発電運転の継続が可能となる。
従って、水貯留部の水位が弁の異常により予期せず上昇又は低下した場合の対策が講じられた燃料電池システムを提供できる。
If it is detected that the water level in the water reservoir cannot be maintained within the specified range even if the water level maintenance control is performed, the abnormality is opened despite the valve closing operation due to the valve biting in a foreign object. This may be caused by the valve state.
According to this feature configuration, the water level control means performs the abnormality elimination control for controlling the operation state of the on-off valve and the water pump so that water passes through the on-off valve. It can be expected to flow out of the on-off valve. In the present application, the control of the operation state of the on-off valve includes the opening degree control in addition to the valve opening / closing control, and the control of the operation state of the water pump is not only the control for switching between the stop and the operation, but also the operation. Or control including maintaining the stopped state is included. As a result, it is considered that the on-off valve operates normally thereafter, so that the water level in the water reservoir can be maintained within a predetermined range thereafter. Based on this, the power generation operation of the fuel cell can be continued.
Therefore, it is possible to provide a fuel cell system in which measures are taken when the water level in the water storage section unexpectedly rises or falls due to valve abnormality.

本発明に係る燃料電池システムの別の特徴構成は、前記水位制御手段は、前記異常解消制御において、前記開閉弁を通過する水の流速を繰り返し増減させるように前記開閉弁及び前記水ポンプの動作状態を制御する点にある。   Another feature of the fuel cell system according to the present invention is that the water level control means operates the on-off valve and the water pump so as to repeatedly increase or decrease the flow rate of water passing through the on-off valve in the abnormality elimination control. The point is to control the state.

上記特徴構成によれば、開閉弁を通過する水の流速が増減を繰り返すことで異物が動くことを期待でき、最終的には異物が開閉弁から流れ出すことを期待できる。   According to the above characteristic configuration, it can be expected that the foreign matter moves by repeatedly increasing and decreasing the flow rate of the water passing through the on-off valve, and finally the foreign matter can be expected to flow out of the on-off valve.

本発明に係る燃料電池システムの更に別の特徴構成は、
燃料電池と、
前記燃料電池で利用する水を貯留する水貯留部と、
前記水貯留部に供給可能な水を貯留する補充用水貯留部、前記補充用水貯留部及び前記水貯留部の間を連結する水路、前記水路を開閉可能な開閉弁、前記水路の中の水を付勢可能な水ポンプ、及び、前記開閉弁及び前記水ポンプの動作を制御して前記水貯留部における水位を所定範囲内に維持する水位維持制御を行う水位制御手段を有する水供給装置と、を備え、
前記水位制御手段は、前記水位維持制御を行っても前記水貯留部における水位を所定範囲内に維持できない状態が検出された場合に、前記開閉弁への通電状態を変化させる異常解消制御を行う点にある。
Still another characteristic configuration of the fuel cell system according to the present invention is:
A fuel cell;
A water reservoir for storing water used in the fuel cell;
A replenishment water storage unit that stores water that can be supplied to the water storage unit, a water channel that connects between the replenishment water storage unit and the water storage unit, an on-off valve that can open and close the water channel, and water in the water channel An energizable water pump, and a water supply device having water level control means for controlling the operation of the on-off valve and the water pump to maintain the water level in the water reservoir within a predetermined range; With
The water level control means performs abnormality elimination control to change the energization state of the on-off valve when a state in which the water level in the water storage unit cannot be maintained within a predetermined range is detected even if the water level maintenance control is performed. In the point.

水位維持制御を行っても水貯留部における水位を所定範囲内に維持できない状態が検出された場合、その異常は、開閉弁のプランジャが吸引子に付着したままになることにより開弁操作を行っているにも拘わらず閉弁状態となることにより又は閉弁操作を行っているにも拘わらず開弁状態となることにより発生している可能性がある。
本特徴構成によれば、水位制御手段が、開閉弁への通電状態を変化させる異常解消制御を行うため、開閉弁のプランジャと吸引子との間の吸引力が変化して、プランジャと吸引子とが離れることを期待できる。その結果、その後は開閉弁が正常に動作すると考えられ、これにより、その後は水貯留部における水位を所定範囲内に維持できると考えられる。これに基づいて、燃料電池の発電運転の継続が可能となる。
従って、水貯留部の水位が弁の異常により予期せず上昇又は低下した場合の対策が講じられた燃料電池システムを提供できる。
If it is detected that the water level in the water reservoir cannot be maintained within the specified range even if the water level maintenance control is performed, the abnormality is caused by the valve opening operation by the plunger of the on-off valve remaining attached to the suction element. However, it may be caused by the valve closing state despite the fact that the valve is closed or by the valve opening state despite the valve closing operation being performed.
According to this characteristic configuration, the water level control means performs abnormality elimination control that changes the energization state of the on-off valve, so the suction force between the plunger of the on-off valve and the suction element changes, and the plunger and the suction element Can be expected to leave. As a result, it is considered that the on-off valve operates normally thereafter, so that the water level in the water reservoir can be maintained within a predetermined range thereafter. Based on this, the power generation operation of the fuel cell can be continued.
Therefore, it is possible to provide a fuel cell system in which measures are taken when the water level in the water storage section unexpectedly rises or falls due to valve abnormality.

本発明に係る燃料電池システムの更に別の特徴構成は、前記水位制御手段は、前記異常解消制御において、前記開閉弁への通電量を繰り返し増減させる点にある。   Still another characteristic configuration of the fuel cell system according to the present invention is that the water level control means repeatedly increases or decreases the energization amount to the on-off valve in the abnormality elimination control.

上記特徴構成によれば、開閉弁のプランジャと吸引子との間の吸引力が増減を繰り返すことでプランジャが吸引子に対して動くことを期待でき、最終的にはプランジャと吸引子とが離れることを期待できる。   According to the above characteristic configuration, the plunger can be expected to move relative to the suction element by repeatedly increasing and decreasing the suction force between the plunger of the on-off valve and the suction element, and finally the plunger and the suction element are separated. I can expect that.

本発明に係る燃料電池システムの更に別の特徴構成は、前記水位制御手段は、前記異常解消制御を行った後、前記水位維持制御を行う点にある。   Still another characteristic configuration of the fuel cell system according to the present invention is that the water level control means performs the water level maintenance control after performing the abnormality elimination control.

上記特徴構成によれば、異常解消制御によって正常に動作させる措置が行われた開閉弁を用いて、水貯留部における水位を所定範囲内に戻す制御が行われる。   According to the above characteristic configuration, the control for returning the water level in the water reservoir to a predetermined range is performed using the on-off valve that has been properly operated by the abnormality elimination control.

第1実施形態の燃料電池システムの概略構成図である。It is a schematic block diagram of the fuel cell system of 1st Embodiment. 第2実施形態の燃料電池システムの概略構成図である。It is a schematic block diagram of the fuel cell system of 2nd Embodiment. 第3実施形態の燃料電池システムの概略構成図である。It is a schematic block diagram of the fuel cell system of 3rd Embodiment.

<第1実施形態>
以下に図面を参照して第1実施形態の燃料電池システムについて説明する。
図1は、第1実施形態の燃料電池システムの概略構成図である。本実施形態の燃料電池システムS1(S)は、燃料電池発電装置10A(10)と、水供給装置30A(30)と、各装置10A、30Aの運転を制御する制御手段Zとを備える。
以下、燃料電池発電装置10Aの構成と水供給装置30Aの構成について説明する。
<First Embodiment>
The fuel cell system according to the first embodiment will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of the fuel cell system according to the first embodiment. The fuel cell system S1 (S) of the present embodiment includes a fuel cell power generation device 10A (10), a water supply device 30A (30), and a control means Z that controls the operation of each of the devices 10A and 30A.
Hereinafter, the configuration of the fuel cell power generation device 10A and the configuration of the water supply device 30A will be described.

〔燃料電池発電装置の構成〕
燃料電池発電装置10Aは、アノード12a、カソード12b、並びに、アノード12a及びカソード12bの間に設けられる電解質12cで構成される燃料電池12を備える。更に、本実施形態の燃料電池発電装置10Aには、メタンなどの炭化水素系のガスやアルコールなどの原燃料を改質して水素を主成分とするガスを生成する改質装置11が設けられている。燃料電池12は、アノード12a及びカソード12bの間に電解質12cを挟んで形成されるセルを複数個重ねたセルスタックの形態で構成される。尚、図1では、簡略化のため単一のセルのみを記載している。アノード12aには改質装置11で生成された水素を主成分とするガスが供給される。カソード12bには酸素(空気)が供給される。
[Configuration of fuel cell power generator]
The fuel cell power generator 10A includes a fuel cell 12 including an anode 12a, a cathode 12b, and an electrolyte 12c provided between the anode 12a and the cathode 12b. Furthermore, the fuel cell power generator 10A of the present embodiment is provided with a reformer 11 that reforms a hydrocarbon-based gas such as methane or a raw fuel such as alcohol to generate a gas mainly composed of hydrogen. ing. The fuel cell 12 is configured in the form of a cell stack in which a plurality of cells formed by sandwiching an electrolyte 12c between an anode 12a and a cathode 12b are stacked. In FIG. 1, only a single cell is shown for simplicity. A gas mainly composed of hydrogen generated by the reformer 11 is supplied to the anode 12a. Oxygen (air) is supplied to the cathode 12b.

更に、燃料電池発電装置10Aは、燃料電池12で利用する水を貯留する水貯留部Tとして、アノード用加湿水貯留部13とカソード用加湿水貯留部14とを備える。アノード12aに供給されるガスは、供給途中でアノード用加湿水貯留部13に貯留されている水に接触して加湿される。つまり、アノード用加湿水貯留部13は、アノード12aに供給されるガスを加湿するアノード用加湿器Waとして機能する。同様に、カソード12bに供給されるガスは、供給途中でカソード用加湿水貯留部14に貯留されている水に接触して加湿される。つまり、カソード用加湿水貯留部14は、カソード12bに供給されるガスを加湿するカソード用加湿器Wbとして機能する。   Further, the fuel cell power generation device 10 </ b> A includes an anode humidified water reservoir 13 and a cathode humidified water reservoir 14 as a water reservoir T that stores water used in the fuel cell 12. The gas supplied to the anode 12a is humidified in contact with the water stored in the humidification water storage section 13 for anode during the supply. That is, the anode humidified water storage unit 13 functions as an anode humidifier Wa that humidifies the gas supplied to the anode 12a. Similarly, the gas supplied to the cathode 12b comes into contact with the water stored in the cathode humidified water storage section 14 and is humidified during the supply. In other words, the cathode humidifying water reservoir 14 functions as a cathode humidifier Wb that humidifies the gas supplied to the cathode 12b.

アノード用加湿水貯留部13には、水位が上限水位未満となり且つ下限水位以上となるアノード用所定範囲内にあるか否かを検出可能なセンサ、即ち、貯留されている水が上限水位以上になっているか否かを検出可能なレベルセンサ13aと、貯留されている水が下限水位未満となっているか否かを検出可能なレベルセンサ13bとが設けられている。同様に、カソード用加湿水貯留部14にも、水位が上限水位未満となり且つ下限水位以上となるカソード用所定範囲内にあるか否かを検出可能なセンサ、即ち、貯留されている水が上限水位以上になっているか否かを検出可能なレベルセンサ14aと、貯留されている水が下限水位未満となっているか否かを検出可能なレベルセンサ14bとが設けられている。
アノード用加湿水貯留部13の容量とカソード用加湿水貯留部14の容量とは同じであってもよく或いは異なっていてもよい。また、アノード用加湿水貯留部13における上記アノード用所定範囲(上限水位及び下限水位)とカソード用加湿水貯留部14における上記カソード用所定範囲(上限水位及び下限水位)とは各別に設定されている。
The anode humidified water storage unit 13 is a sensor capable of detecting whether or not the water level is within a predetermined range for the anode where the water level is less than the upper limit water level and equal to or higher than the lower limit water level, that is, the stored water exceeds the upper limit water level. A level sensor 13a capable of detecting whether or not the water is stored and a level sensor 13b capable of detecting whether or not the stored water is below the lower limit water level. Similarly, a sensor capable of detecting whether the water level is within a predetermined range for the cathode where the water level is lower than the upper limit water level and equal to or higher than the lower limit water level, that is, the stored water is the upper limit in the cathode humidified water storage unit 14. A level sensor 14a capable of detecting whether or not the water level is equal to or higher than the water level and a level sensor 14b capable of detecting whether or not the stored water is lower than the lower limit water level are provided.
The capacity of the anode humidified water storage section 13 and the capacity of the cathode humidified water storage section 14 may be the same or different. Further, the predetermined range for anode (upper limit water level and lower limit water level) in the humidifying water reservoir for anode 13 and the predetermined range for cathode (upper limit water level and lower limit water level) in the humidified water reservoir for cathode 14 are set separately. Yes.

〔水供給装置の構成〕
水供給装置30Aは、水貯留部Tとしてのアノード用加湿水貯留部13及びカソード用加湿水貯留部14に供給可能な水を貯留する補充用水貯留部32と、補充用水貯留部32とアノード用加湿水貯留部13及びカソード用加湿水貯留部14との間を連結する水路33、35、36、37、水路35、36、37を開閉可能な開閉弁としての電磁弁V(Va、Vb、Vc)、及び、水路33、35、36、37の中の水を付勢可能な水ポンプ34を備える。また、制御手段Zは、水供給装置30Aの水貯留部Tにおける水位を所定範囲内に維持する水位維持制御を行う水位制御手段として機能する。
[Configuration of water supply device]
The water supply device 30 </ b> A includes a supplementary water storage unit 32 that stores water that can be supplied to the anode humidification water storage unit 13 and the cathode humidification water storage unit 14 as the water storage unit T, and the supplementary water storage unit 32 and anode. Solenoid valves V (Va, Vb, V, V, V) that can open and close water channels 33, 35, 36, and 37, and water channels 35, 36, and 37 that connect between the humidified water storage unit 13 and the cathode humidified water storage unit 14. Vc) and a water pump 34 capable of energizing water in the water channels 33, 35, 36, 37. Moreover, the control means Z functions as a water level control means for performing water level maintenance control for maintaining the water level in the water storage section T of the water supply device 30A within a predetermined range.

本実施形態において、水供給装置30Aは、補充用水貯留部32とアノード用加湿水貯留部13及びカソード用加湿水貯留部14との間を連結する水路として、循環水路33とアノード用給水路35とアノード用排水路36とカソード用給排水路37を備える。例えば、循環水路33では、補充用水貯留部32に貯留されている水が水ポンプ34で補充用水貯留部32の外部に取り出された後で再び補充用水貯留部32に戻るように連続的又は断続的に循環させられる。   In the present embodiment, the water supply device 30 </ b> A includes a circulation water channel 33 and an anode water supply channel 35 as water channels that connect the replenishment water storage unit 32, the anode humidification water storage unit 13, and the cathode humidification water storage unit 14. And an anode drainage channel 36 and a cathode water supply / drainage channel 37. For example, in the circulation channel 33, the water stored in the replenishment water storage unit 32 is continuously or intermittently returned to the replenishment water storage unit 32 after being taken out of the replenishment water storage unit 32 by the water pump 34. Circulated.

アノード用給水路35は循環水路33及びアノード用加湿水貯留部13の間を接続するように設けられており、補充用水貯留部32から循環水路33を経由してアノード用加湿水貯留部13に給水するときに用いられる。アノード用給水路35の途中には、アノード用給水路35を開閉可能なアノード用給水電磁弁Vaが設けられている。   The anode water supply channel 35 is provided so as to connect between the circulation water channel 33 and the anode humidified water storage unit 13. The anode water supply channel 35 is connected to the anode humidification water storage unit 13 via the circulation water channel 33 from the replenishment water storage unit 32. Used when supplying water. In the middle of the anode water supply channel 35, an anode water supply electromagnetic valve Va capable of opening and closing the anode water supply channel 35 is provided.

アノード用排水路36はアノード用加湿水貯留部13及び補充用水貯留部32の間を接続するように設けられており、アノード用加湿水貯留部13から補充用水貯留部32に排水するときに用いられる。アノード用排水路36の途中には、アノード用排水路36を開閉可能なアノード用排水電磁弁Vbが設けられている。   The anode drainage channel 36 is provided so as to connect between the anode humidifying water reservoir 13 and the supplementary water reservoir 32 and is used when draining from the anode humidifying water reservoir 13 to the supplementary water reservoir 32. It is done. In the middle of the anode drainage channel 36, an anode drainage electromagnetic valve Vb capable of opening and closing the anode drainage channel 36 is provided.

カソード用給排水路37は、アノード用給水路35及びカソード用加湿水貯留部14の間を接続するように設けられており、補充用水貯留部32から循環水路33及びアノード用給水路35を経由してカソード用加湿水貯留部14に給水するとき及びカソード用加湿水貯留部14からアノード用給水路35及び循環水路33を経由して補充用水貯留部32に排水するときに兼用される。カソード用給排水路37の途中には、カソード用給排水路37を開閉可能なカソード用給排水電磁弁Vcが設けられている。   The cathode water supply / drainage channel 37 is provided so as to connect between the anode water supply channel 35 and the cathode humidified water storage unit 14, and passes from the replenishment water storage unit 32 through the circulation water channel 33 and the anode water supply channel 35. This is also used when supplying water to the humidifying water reservoir for cathode 14 and when draining from the humidifying water reservoir for cathode 14 to the replenishing water storing portion 32 via the anode water supply channel 35 and the circulation water channel 33. In the middle of the cathode water supply / drainage channel 37, a cathode water supply / drainage electromagnetic valve Vc capable of opening and closing the cathode water supply / drainage channel 37 is provided.

水供給装置30Aは、循環水路33の途中にイオン交換樹脂装置31を備える。燃料電池発電装置10Aにおいて発電が行われている通常時運転中は、アノード用給水電磁弁Vaとアノード用排水電磁弁Vbとカソード用給排水電磁弁Vcとは閉じられており、アノード用加湿水貯留部13及びカソード用加湿水貯留部14の何れも補充用水貯留部32とは隔離されている。
水供給装置30Aは、燃料電池発電装置10Aの通常時運転中は、水ポンプ34を動作させた状態で補充用水貯留部32に貯留されている水を循環水路33を循環させる。つまり、補充用水貯留部32に貯留されている水は、循環水路33を循環する間にイオン交換樹脂装置31を通過するため、継続的にイオン交換処理を施されている。その結果、アノード用加湿水貯留部13及びカソード用加湿水貯留部14に供給される水はイオン交換処理が施された状態の水であることが確保される。
The water supply device 30 </ b> A includes an ion exchange resin device 31 in the middle of the circulation water channel 33. During normal operation when power generation is performed in the fuel cell power generation apparatus 10A, the anode water supply electromagnetic valve Va, the anode water discharge electromagnetic valve Vb, and the cathode water supply and discharge electromagnetic valve Vc are closed, and the humidified water storage for the anode is stored. Both the unit 13 and the cathode humidified water storage unit 14 are isolated from the replenishment water storage unit 32.
During the normal operation of the fuel cell power generator 10A, the water supply device 30A circulates the water stored in the replenishment water storage unit 32 through the circulation channel 33 while the water pump 34 is operated. That is, since the water stored in the replenishment water storage unit 32 passes through the ion exchange resin device 31 while circulating in the circulation water channel 33, the ion exchange process is continuously performed. As a result, it is ensured that the water supplied to the anode humidified water reservoir 13 and the cathode humidified water reservoir 14 is water that has been subjected to the ion exchange treatment.

〔燃料電池発電装置の通常時運転〕
燃料電池発電装置10Aの発電運転を継続すると、アノード用加湿水貯留部13の水位及びカソード用加湿水貯留部14の水位は低下してくる。これは、アノード12aに供給されるガスを加湿するためにアノード用加湿水貯留部13の水が利用され、カソード12bに供給されるガスを加湿するためにカソード用加湿水貯留部14の水が利用されるからである。そのため、制御手段Zは、アノード用加湿水貯留部13に貯留されている水が下限水位未満となっているか否かを検出可能なレベルセンサ13bの出力結果に基づいて、下限水位未満となったと判定すると後述するようなアノード用加湿水貯留部13への給水処理を行う。同様に、制御手段Zは、カソード用加湿水貯留部14に貯留されている水が下限水位未満となっているか否かを検出可能なレベルセンサ14bの出力結果に基づいて、下限水位未満となったと判定すると後述するようなカソード用加湿水貯留部14への給水処理を行う。
[Normal operation of fuel cell power generator]
If the power generation operation of the fuel cell power generator 10A is continued, the water level in the anode humidified water storage section 13 and the water level in the cathode humidified water storage section 14 will decrease. This is because the water in the anode humidified water reservoir 13 is used to humidify the gas supplied to the anode 12a, and the water in the cathode humidified water reservoir 14 is used to humidify the gas supplied to the cathode 12b. This is because it is used. Therefore, when the control means Z became less than the lower limit water level based on the output result of the level sensor 13b which can detect whether the water stored in the humidification water storage part 13 for anodes is less than a lower limit water level. If it determines, the water supply process to the humidification water storage part 13 for anodes mentioned later is performed. Similarly, the control means Z becomes less than the lower limit water level based on the output result of the level sensor 14b that can detect whether or not the water stored in the humidified water reservoir for cathode 14 is less than the lower limit water level. If it is determined that the water has been supplied, a water supply process to the humidifying water reservoir for cathode 14 as described later is performed.

加えて、本実施形態の燃料電池システムS1では、定期的に、アノード用加湿水貯留部13に貯留されている水の少なくとも一部分の入れ換え、及び、カソード用加湿水貯留部14に貯留されている水の少なくとも一部分の入れ換えが行われる。その際、制御手段Zは、後述するような、アノード用加湿水貯留部13からの排水処理、及び、カソード用加湿水貯留部14からの排水処理を行う。アノード用加湿水貯留部13及びカソード用加湿水貯留部14に貯留されている水を入れ換える目的としては、アノード12aに供給されるガス中の成分及びカソード12bに供給されるガス中の成分が各加湿水貯留部13、14に貯留されている水に溶け込み、水の電気伝導度が上昇してしまったままの状態で利用されることを防止する点にある。   In addition, in the fuel cell system S1 of the present embodiment, at least a part of the water stored in the anode humidified water storage unit 13 is periodically replaced and stored in the cathode humidified water storage unit 14. At least a portion of the water is replaced. At that time, the control means Z performs the waste water treatment from the humidifying water reservoir for anode 13 and the waste water treatment from the humidifying water reservoir for cathode 14 as described later. For the purpose of replacing the water stored in the humidifying water reservoir 13 for the anode and the humidifying water reservoir 14 for the cathode, the components in the gas supplied to the anode 12a and the components in the gas supplied to the cathode 12b are different. It exists in the point which melt | dissolves in the water currently stored by the humidification water storage parts 13 and 14, and is utilized in the state where the electrical conductivity of water has risen.

以下に、制御手段Zが、燃料電池発電装置10Aの通常時運転中に行う、水貯留部Tにおける水位を所定範囲内に維持するための水位維持制御(アノード用加湿水貯留部13への給水処理、アノード用加湿水貯留部13からの排水処理、カソード用加湿水貯留部14への給水処理、カソード用加湿水貯留部14からの排水処理)の内容について説明する。   Below, the control means Z performs the water level maintenance control (water supply to the anode humidified water storage unit 13) for maintaining the water level in the water storage unit T within a predetermined range, which is performed during the normal operation of the fuel cell power generator 10A. The contents of the treatment, the drainage treatment from the humidification water reservoir for anode 13, the water supply treatment to the humidification water reservoir for cathode 14, and the drainage treatment from the humidification water reservoir for cathode 14) will be described.

〔アノード用加湿水貯留部への給水処理〕
制御手段Zは、レベルセンサ13bの検出結果に基づいて上述のようにアノード用加湿水貯留部13の水位が下限水位未満となったと判定すると、水ポンプ34を動作させた状態でアノード用給水路35に設けられているアノード用給水電磁弁Vaを開操作する。本実施形態において、制御手段Zは、水ポンプ34からの単位時間当たりの水の送出量を一定に制御して、アノード用給水電磁弁Vaを所定時間開操作することで、下限水位以上且つ上限水位未満となるレベルにまで給水する。つまり、制御手段Zは、アノード用加湿水貯留部13への給水量を給水時間で管理する。その結果、補充用水貯留部32からアノード用加湿水貯留部13へ所定量の水が供給されて、アノード用加湿水貯留部13における水位がアノード用所定範囲内に維持される。
このように、燃料電池発電装置10Aの通常時運転中において、アノード用加湿水貯留部13に貯留されている水の水位は、上限水位以上になることはなく、且つ、下限水位未満となる状態が第1設定時間以上継続することはない。この第1設定時間は、アノード用加湿水貯留部13の水位が下限水位未満となったことが検出されてから、上記給水処理によりアノード用加湿水貯留部13の水位が下限水位以上になるまでの時間に相当する。
[Water supply to the humidified water reservoir for the anode]
When the control means Z determines that the water level of the humidifying water reservoir for anode 13 has become lower than the lower limit water level based on the detection result of the level sensor 13b as described above, the anode water supply channel with the water pump 34 operated. The anode water supply electromagnetic valve Va provided at 35 is opened. In the present embodiment, the control means Z controls the amount of water delivered per unit time from the water pump 34 to be constant and opens the anode water supply electromagnetic valve Va for a predetermined time, so that the upper limit water level is exceeded. Supply water to a level below the water level. That is, the control means Z manages the water supply amount to the humidification water storage part 13 for anodes by water supply time. As a result, a predetermined amount of water is supplied from the replenishment water reservoir 32 to the anode humidified water reservoir 13, and the water level in the anode humidified water reservoir 13 is maintained within the anode predetermined range.
In this way, during the normal operation of the fuel cell power generation device 10A, the water level stored in the anode humidified water storage unit 13 does not exceed the upper limit water level and is lower than the lower limit water level. Does not continue beyond the first set time. The first set time is from when it is detected that the water level of the humidifying water reservoir for anode 13 is less than the lower limit water level until the water level of the humidifying water reservoir for anode 13 becomes equal to or higher than the lower limit water level by the water supply process. Is equivalent to

〔カソード用加湿水貯留部への給水処理〕
制御手段Zは、レベルセンサ14bの検出結果に基づいて上述のようにカソード用加湿水貯留部14の水位が下限水位未満となったと判定すると、水ポンプ34を動作させた状態でカソード用給水路に設けられているカソード用給排水電磁弁Vcを開操作する。本実施形態において、制御手段Zは、水ポンプ34からの単位時間当たりの水の送出量を一定に制御して、カソード用給排水電磁弁Vcを所定時間開操作することで下限水位以上且つ上限水位未満となるレベルにまで給水する。つまり、制御手段Zは、カソード用加湿水貯留部14への給水量を給水時間で管理する。その結果、補充用水貯留部32からカソード用加湿水貯留部14へ所定量の水が供給されて、カソード用加湿水貯留部14における水位がカソード用所定範囲内に維持される。
このように、燃料電池発電装置10Aの通常時運転中において、カソード用加湿水貯留部14に貯留されている水の水位は、上限水位以上になることはなく、且つ、下限水位未満となる状態が第2設定時間以上継続することはない。この第2設定時間は、カソード用加湿水貯留部14の水位が下限水位未満となったことが検出されてから、上記給水処理によりカソード用加湿水貯留部14の水位が下限水位以上になるまでの時間に相当する。
[Water supply to the humidified water reservoir for the cathode]
If the control means Z determines that the water level of the humidifying water reservoir for cathode 14 is lower than the lower limit water level based on the detection result of the level sensor 14b as described above, the water supply channel for cathode is operated with the water pump 34 being operated. The cathode water supply / drainage electromagnetic valve Vc provided at the opening is opened. In the present embodiment, the control means Z controls the amount of water delivered per unit time from the water pump 34 to be constant and opens the cathode water supply / drainage electromagnetic valve Vc for a predetermined time, thereby opening the upper limit water level above the lower limit water level. Supply water to a level that is less than That is, the control means Z manages the water supply amount to the cathode humidified water storage unit 14 by the water supply time. As a result, a predetermined amount of water is supplied from the replenishment water reservoir 32 to the cathode humidified water reservoir 14, and the water level in the cathode humidified water reservoir 14 is maintained within the predetermined range for the cathode.
As described above, during the normal operation of the fuel cell power generation device 10A, the water level stored in the cathode humidified water storage unit 14 does not exceed the upper limit water level and is lower than the lower limit water level. Does not continue beyond the second set time. The second set time is from when it is detected that the water level of the humidifying water reservoir for cathode 14 is less than the lower limit water level until the water level of the humidifying water reservoir for cathode 14 becomes equal to or higher than the lower limit water level by the water supply process. Is equivalent to

〔アノード用加湿水貯留部からの排水処理〕
制御手段Zは、アノード用加湿水貯留部13に貯留されている水の入れ換えタイミング(例えば、10分に1回のタイミングなど)になると、アノード用排水路36に設けられているアノード用排水電磁弁Vbを、例えばアノード用加湿水貯留部13の水位が下限水位未満となるまで開操作する。アノード用排水路36は循環水路33と隔離されているため、水ポンプ34は動作させたままでもよい。その結果、アノード用加湿水貯留部13から補充用水貯留部32への排水が行われる。但し、アノード用加湿水貯留部13の水を全て排出するのではなく、アノード用加湿水貯留部13に流入する改質ガス(水素)を加湿できるだけの水をアノード用加湿水貯留部13に残しておく必要がある。
制御手段Zは、上記排水処理が完了すると、上述したアノード用加湿水貯留部13への給水処理を行って、イオン交換処理が施された水を補充用水貯留部32からアノード用加湿水貯留部13へ供給する。この排水処理が行われてアノード用加湿水貯留部13の水位が下限水位未満となってから、給水処理によりアノード用加湿水貯留部13の水位が下限水位以上になるまでの時間は上記第1設定時間に相当する。
[Drainage treatment from humidified water reservoir for anode]
When the control means Z reaches the replacement timing of the water stored in the humidifying water storage section 13 for anodes (for example, once every 10 minutes, etc.), the draining electromagnetic for anode provided in the anode drain passage 36 is provided. For example, the valve Vb is opened until the water level of the humidified water reservoir for anode 13 is less than the lower limit water level. Since the anode drainage channel 36 is isolated from the circulating water channel 33, the water pump 34 may remain operated. As a result, drainage from the humidifying water reservoir for anode 13 to the supplementary water reservoir 32 is performed. However, not all of the water in the anode humidified water storage unit 13 is discharged, but water that can humidify the reformed gas (hydrogen) flowing into the anode humidified water storage unit 13 is left in the anode humidified water storage unit 13. It is necessary to keep.
When the waste water treatment is completed, the control unit Z performs the water supply process to the anode humidified water storage unit 13 and supplies the ion-exchanged water from the replenishment water storage unit 32 to the anode humidified water storage unit. 13 is supplied. The time from when the drainage treatment is performed and the water level of the humidification water reservoir for anode 13 becomes less than the lower limit water level until the water level of the humidification water reservoir for anode 13 becomes equal to or higher than the lower limit water level by the water supply treatment is the first time. Corresponds to the set time.

〔カソード用加湿水貯留部からの排水処理〕
制御手段Zは、カソード用加湿水貯留部14に貯留されている水の入れ換えタイミング(例えば、10分に1回のタイミングなど)になると、水ポンプ34を停止させた状態でカソード用給排水路37に設けられているカソード用給排水電磁弁Vcを、例えばカソード用加湿水貯留部14の水位が下限水位未満となるまで開操作する。その結果、カソード用加湿水貯留部14から循環水路33への排水が行われる。但し、カソード用加湿水貯留部14の水を全て排出するのではなく、カソード用加湿水貯留部14に流入する酸素(空気)を加湿できるだけの水をカソード用加湿水貯留部14に残しておく必要がある。
制御手段Zは、上記排水処理が完了すると、上述したカソード用加湿水貯留部14への給水処理を行ってイオン交換処理が施された水を補充用水貯留部32からカソード用加湿水貯留部14へ供給する。この排水処理が行われてカソード用加湿水貯留部14の水位が下限水位未満となってから、給水処理によりカソード用加湿水貯留部14の水位が下限水位以上になるまでの時間は上記第2設定時間に相当する。
[Drainage treatment from humidified water storage for cathode]
When it is time to replace the water stored in the cathode humidified water storage section 14 (for example, once every 10 minutes), the control means Z stops the water pump 34 and stops the water supply / drain channel 37 for the cathode. For example, the cathode water supply / drainage electromagnetic valve Vc is opened until the water level of the humidification water reservoir for cathode 14 becomes less than the lower limit water level. As a result, drainage from the humidifying water reservoir for cathode 14 to the circulation water channel 33 is performed. However, not all the water in the cathode humidified water storage unit 14 is discharged, but water that can humidify oxygen (air) flowing into the cathode humidified water storage unit 14 is left in the cathode humidified water storage unit 14. There is a need.
When the waste water treatment is completed, the control unit Z performs the water supply process to the cathode humidified water storage unit 14 described above to supply the ion-exchanged water from the replenishment water storage unit 32 to the cathode humidified water storage unit 14. To supply. The time from when the drainage treatment is performed and the water level of the humidifying water reservoir for cathode 14 becomes less than the lower limit water level until the water level of the humidifying water reservoir for cathode 14 becomes equal to or higher than the lower limit water level due to the water supply treatment is the second time. Corresponds to the set time.

以上のように、制御手段Zが、燃料電池発電装置10Aの通常時運転中において上述のような水位維持制御を行っていれば、アノード用加湿水貯留部13及びカソード用加湿水貯留部14に貯留されている水の水位は上限水位以上になることはなく、且つ、アノード用加湿水貯留部13の水位が下限水位未満となる状態が第1設定時間以上継続すること及びカソード用加湿水貯留部14の水位が下限水位未満となる状態が第2設定時間以上継続することはない。そこで、制御手段Zは、水位維持制御を行ってもアノード用加湿水貯留部13又はカソード用加湿水貯留部14における水位を所定範囲内に維持できない状態が検出された場合(即ち、上限水位以上になったことを検出した場合、及び、アノード用加湿水貯留部13の水位が下限水位未満となる状態が第1設定時間以上継続したこと又はカソード用加湿水貯留部14の水位が下限水位未満となる状態が第2設定時間以上継続したことを検出した場合)には、異常が発生したと判定する。   As described above, if the control unit Z performs the water level maintenance control as described above during the normal operation of the fuel cell power generation apparatus 10A, the anode humidification water storage unit 13 and the cathode humidification water storage unit 14 are provided. The water level of the stored water never exceeds the upper limit water level, and the state in which the water level of the humidification water storage section for anode 13 is less than the lower limit water level continues for the first set time or more and the humidification water storage for cathode The state in which the water level of the section 14 is less than the lower limit water level does not continue for the second set time or longer. Therefore, the control means Z detects that the water level in the anode humidified water reservoir 13 or the cathode humidified water reservoir 14 cannot be maintained within a predetermined range even if the water level maintenance control is performed (that is, above the upper limit water level). And when the state in which the water level of the humidifying water reservoir for anode 13 is lower than the lower limit water level continues for the first set time or more, or the water level of the humidifying water reservoir for cathode 14 is lower than the lower limit water level. Is detected), it is determined that an abnormality has occurred.

本実施形態において、上記異常は、何れも弁(アノード用給水電磁弁Va、アノード用排水電磁弁Vb、カソード用給排水電磁弁Vc)の異常に起因すると推測する。つまり、制御手段Zは、アノード用加湿水貯留部13又はカソード用加湿水貯留部14の水位がこれらの弁の異常により予期せず上昇又は低下したと推測する。
以下に、これらの弁の異常によりアノード用加湿水貯留部13又はカソード用加湿水貯留部14に貯留されている水の水位が上限水位以上になる異常、及び、アノード用加湿水貯留部13の水位が下限水位未満となる状態が第1設定時間以上継続する異常或いはカソード用加湿水貯留部14の水位が下限水位未満となる状態が第2設定時間以上継続する異常が発生する理由について説明する。
In the present embodiment, it is assumed that the above abnormalities are caused by abnormalities in the valves (anode water supply electromagnetic valve Va, anode drainage electromagnetic valve Vb, cathode water supply electromagnetic valve Vc). That is, the control means Z estimates that the water level of the anode humidified water reservoir 13 or the cathode humidified water reservoir 14 has unexpectedly increased or decreased due to an abnormality of these valves.
Below, abnormalities in which the water level stored in the humidifying water reservoir for anode 13 or the humidifying water reservoir for cathode 14 becomes higher than the upper limit water level due to the abnormality of these valves, and the humidifying water reservoir for anode 13 The reason why an abnormality in which the state where the water level is less than the lower limit water level continues for the first set time or an abnormality in which the state where the water level in the cathode humidifying water reservoir 14 is less than the lower limit water level continues for the second set time or more will be described. .

〔アノード用加湿水貯留部の水位が上限水位以上になる異常〕
この異常は、アノード用給水電磁弁Vaを閉操作したにも拘わらず開弁している場合に生じ得る。
具体的には、制御手段Zは、アノード用給水電磁弁Vaを閉操作することで、アノード用加湿水貯留部13への給水を停止しようとする。しかし、例えばアノード用給水電磁弁Vaが異物を噛み込むことで実際には開弁状態となっている場合がある。この場合、燃料電池発電装置10Aの通常時運転中は上述した水位維持制御において水ポンプ34を停止させる時間帯を除いて水ポンプ34が連続的に動作しているため、予期せず開弁状態となっているアノード用給水電磁弁Vaを通過した水がアノード用加湿水貯留部13に供給され続ける。その結果、アノード用加湿水貯留部13の水位が上限水位以上になる異常が発生する。
[Abnormal humidity level in the humidified water reservoir for the anode exceeds the upper limit level]
This abnormality may occur when the anode water supply electromagnetic valve Va is opened despite being closed.
Specifically, the control means Z attempts to stop water supply to the anode humidified water storage unit 13 by closing the anode water supply electromagnetic valve Va. However, for example, the anode water supply electromagnetic valve Va may actually be in an open state due to biting of foreign matter. In this case, during the normal operation of the fuel cell power generator 10A, the water pump 34 is continuously operated except for the time period during which the water pump 34 is stopped in the above-described water level maintenance control. The water that has passed through the anode water supply electromagnetic valve Va continues to be supplied to the anode humidified water reservoir 13. As a result, an abnormality occurs in which the water level of the anode humidified water storage unit 13 becomes equal to or higher than the upper limit water level.

〔アノード用加湿水貯留部の水位が下限水位未満となる状態が第1設定時間以上継続する異常〕
この異常は、アノード用給水電磁弁Vaを開操作したにも拘わらず閉弁している場合、あるいは、アノード用排水電磁弁Vbを閉操作したにも拘わらず開弁している場合に生じ得る。
具体的には、制御手段Zは、アノード用給水電磁弁Vaを開操作することで、アノード用加湿水貯留部13への給水を開始しようとする。しかし、例えばアノード用給水電磁弁Vaのプランジャが吸引子に付着したままになることにより開弁操作を行っているにも拘わらず閉弁状態となっている場合がある。この場合、アノード用加湿水貯留部13への給水が行われないため、アノード用加湿水貯留部13の水位が下限水位未満となる状態が第1設定時間以上継続する異常が発生する。
或いは、制御手段Zは、アノード用排水電磁弁Vbを閉操作することで、アノード用加湿水貯留部13からの排水を停止しようとする。しかし、例えばアノード用排水電磁弁Vbが異物を噛み込むことで実際には開弁状態となっている場合がある。この場合、アノード用加湿水貯留部13からアノード用排水電磁弁Vbを通過した水が補充用水貯留部32へ排水され続ける。その結果、アノード用加湿水貯留部13の水位が下限水位未満となる状態が第1設定時間以上継続する異常が発生する。
[Abnormality in which the water level of the humidifying water reservoir for anode is below the lower limit water level continues for the first set time or longer]
This abnormality may occur when the anode water supply electromagnetic valve Va is closed despite being opened, or when the anode drainage electromagnetic valve Vb is closed but opened. .
Specifically, the control means Z tries to start water supply to the anode humidified water storage unit 13 by opening the anode water supply electromagnetic valve Va. However, for example, the plunger of the anode water supply electromagnetic valve Va may remain in a closed state despite the fact that the plunger is still attached to the suction element, even though the valve opening operation is being performed. In this case, since the water supply to the humidification water storage part 13 for anodes is not performed, the abnormality which the state where the water level of the humidification water storage part 13 for anodes becomes less than a minimum water level continues more than 1st setting time generate | occur | produces.
Alternatively, the control means Z attempts to stop drainage from the anode humidified water storage section 13 by closing the anode drain electromagnetic valve Vb. However, for example, the anode drain electromagnetic valve Vb may actually be in an open state due to a foreign object biting in. In this case, the water that has passed through the anode humidifying water storage section 13 and the anode drain electromagnetic valve Vb continues to be drained to the supplementary water storage section 32. As a result, an abnormality occurs in which the state in which the water level of the humidifying water reservoir for anode 13 is less than the lower limit water level continues for the first set time or longer.

〔カソード用加湿水貯留部の水位が上限水位以上になる異常〕
この異常は、カソード用給排水電磁弁Vcを閉操作したにも拘わらず開弁している場合に生じ得る。
具体的には、制御手段Zは、カソード用給排水電磁弁Vcを閉操作することで、カソード用加湿水貯留部14への給水を停止しようとする。しかし、例えばカソード用給排水電磁弁Vcが異物を噛み込むことで実際には開弁状態となっている場合がある。この場合、燃料電池発電装置10Aの通常時運転中は上述した水位維持制御において水ポンプ34を停止させる時間帯を除いて水ポンプ34が連続的に動作しているため、予期せず開弁状態となっているカソード用給排水電磁弁Vcを通過した水がカソード用加湿水貯留部14に供給され続ける。その結果、カソード用加湿水貯留部14の水位が上限水位以上になる異常が発生する。
(Abnormality when the water level in the humidifying water reservoir for the cathode exceeds the upper limit level)
This abnormality may occur when the cathode water supply / drainage electromagnetic valve Vc is opened despite being closed.
Specifically, the control means Z attempts to stop the water supply to the cathode humidified water storage section 14 by closing the cathode water supply / drainage electromagnetic valve Vc. However, for example, the cathode water supply / drainage electromagnetic valve Vc may actually be in an open state due to the biting of foreign matter. In this case, during the normal operation of the fuel cell power generator 10A, the water pump 34 is continuously operated except for the time period during which the water pump 34 is stopped in the above-described water level maintenance control. The water that has passed through the cathode water supply / drainage electromagnetic valve Vc continues to be supplied to the cathode humidification water reservoir 14. As a result, an abnormality occurs in which the water level of the humidifying water reservoir for cathode 14 becomes equal to or higher than the upper limit water level.

〔カソード用加湿水貯留部の水位が下限水位未満となる状態が第2設定時間以上継続する異常〕
この異常は、カソード用給排水電磁弁Vcを開操作したにも拘わらず閉弁している場合に生じ得る。
具体的には、制御手段Zは、カソード用給排水電磁弁Vcを開操作することで、カソード用加湿水貯留部14への給水を開始しようとする。しかし、例えばカソード用給排水電磁弁Vcのプランジャが吸引子に付着したままになることにより開弁操作を行っているにも拘わらず閉弁状態となっている場合がある。この場合、カソード用加湿水貯留部14への給水が行われないため、カソード用加湿水貯留部14の水位が下限水位未満となる状態が第2設定時間以上継続する異常が発生する。
[Abnormality in which the water level in the humidifying water reservoir for the cathode is below the lower limit water level continues for the second set time or longer]
This abnormality may occur when the cathode water supply / drainage electromagnetic valve Vc is opened but closed.
Specifically, the control means Z tries to start the water supply to the cathode humidified water storage unit 14 by opening the cathode water supply / drainage electromagnetic valve Vc. However, for example, the plunger of the cathode water supply / drainage electromagnetic valve Vc may remain in a closed state despite the fact that the plunger is still attached to the suction element, even though the valve opening operation is being performed. In this case, since water supply to the humidification water reservoir 14 for cathodes is not performed, the abnormality which the state where the water level of the humidification water storage part 14 for cathodes becomes less than a minimum water level continues more than 2nd setting time generate | occur | produces.

以上のように、閉操作したにも拘わらず開弁している異常、及び、開操作したにも拘わらず閉弁している異常の何れかを原因として、アノード用加湿水貯留部13又はカソード用加湿水貯留部14に貯留されている水の水位が上限水位以上になる異常及び下限水位未満となる状態が第1設定時間或いは第2設定時間以上継続する異常が発生し得る。
本実施形態において、制御手段Zは上記異常を解消するために以下の異常解消制御を行う。そして、制御手段Zは、異常解消制御を行った後、水位維持制御(給水処理及び排水処理)を適宜行うことで水貯留部Tにおける水位を所定範囲内に維持する。
As described above, the humidified water reservoir for anode 13 or the cathode is caused by any one of the abnormality that is opened despite the closing operation and the abnormality that is closed despite the opening operation. An abnormality in which the water level stored in the humidifying water storage unit 14 is higher than the upper limit water level and an abnormality in which the water level is lower than the lower limit water level may continue for the first set time or the second set time.
In the present embodiment, the control means Z performs the following abnormality elimination control in order to eliminate the abnormality. And the control means Z maintains the water level in the water storage part T in a predetermined range by performing water level maintenance control (water supply process and waste water treatment) suitably after performing abnormality elimination control.

〔電磁弁が異物を噛み込むことで発生している異常に対する異常解消制御〕
上述のように、電磁弁Vが異物を噛み込むことで発生する異常には、アノード用加湿水貯留部13の水位が上限水位以上になる異常、アノード用加湿水貯留部13の水位が下限水位未満となる状態が第1設定時間以上継続する異常、カソード用加湿水貯留部の水位が上限水位以上になる異常などがある。
制御手段Zは、この異常が発生している状態が検出された場合に、電磁弁Vを水が通過するように電磁弁V及び水ポンプ34の動作状態を制御する異常解消制御を行う。具体的には、制御手段Zは、電磁弁Vを開操作する。その結果、電磁弁Vを通過する水の流速が増加するため、その水の圧力で異物が電磁弁Vから流れ出すことを期待できる。制御手段Zは、電磁弁Vの開操作に代えて、或いは、電磁弁Vの開操作に加えて、水ポンプ34からの水の吐出量を増加させてもよい。この場合も、電磁弁Vを通過する水の流速が増加するため、その水の圧力で異物が電磁弁Vから流れ出すことを期待できる。
[Abnormality elimination control for abnormalities caused by the electromagnetic valve biting in foreign matter]
As described above, the abnormality that occurs when the electromagnetic valve V bites in the foreign matter includes an abnormality in which the water level of the humidifying water reservoir for anode 13 becomes higher than the upper limit water level, and the water level of the humidifying water reservoir for anode 13 is lower than the lower limit water level There are abnormalities in which the state of being less than or equal to the first set time or abnormalities in which the water level in the cathode humidified water reservoir is higher than or equal to the upper limit water level.
When the state where this abnormality has occurred is detected, the control means Z performs abnormality elimination control for controlling the operation state of the electromagnetic valve V and the water pump 34 so that water passes through the electromagnetic valve V. Specifically, the control means Z opens the electromagnetic valve V. As a result, the flow rate of water passing through the electromagnetic valve V increases, so that foreign matter can be expected to flow out of the electromagnetic valve V with the pressure of the water. The control means Z may increase the discharge amount of water from the water pump 34 instead of the opening operation of the electromagnetic valve V or in addition to the opening operation of the electromagnetic valve V. Also in this case, since the flow velocity of the water passing through the electromagnetic valve V increases, it can be expected that foreign matter flows out of the electromagnetic valve V with the pressure of the water.

更に、制御手段Zは、電磁弁Vを通過する水の流速を繰り返し増減させるように電磁弁V及び水ポンプ34の動作状態を制御する異常解消制御を行ってもよい。具体的には、制御手段Zは、電磁弁Vの開操作と閉操作とを交互に繰り返すことや、水ポンプ34からの水の吐出量の増減を交互に繰り返すことで、電磁弁Vを通過する水の流速を繰り返し増減させることができる。電磁弁Vを通過する水の流速が増減を繰り返すことで異物が動くことを期待でき、最終的には異物が電磁弁Vから流れ出すことを期待できる。   Furthermore, the control means Z may perform abnormality elimination control for controlling the operation states of the electromagnetic valve V and the water pump 34 so as to repeatedly increase or decrease the flow rate of water passing through the electromagnetic valve V. Specifically, the control means Z passes through the solenoid valve V by alternately repeating the opening and closing operations of the solenoid valve V or alternately increasing and decreasing the amount of water discharged from the water pump 34. The flow rate of water can be repeatedly increased or decreased. It can be expected that the foreign matter moves as the flow rate of the water passing through the solenoid valve V repeatedly increases and decreases, and finally the foreign matter can be expected to flow out of the solenoid valve V.

〔電磁弁のプランジャが吸引子に付着したままになることで発生している異常に対する異常解消制御〕
上述のように、電磁弁Vのプランジャが吸引子に付着したままになることで発生している異常には、アノード用加湿水貯留部13の水位が下限水位未満となる状態が第1設定時間以上継続する異常、カソード用加湿水貯留部の水位が下限水位未満となる状態が第2設定時間以上継続する異常などがある。
制御手段Zは、この異常が発生している状態が検出された場合に、電磁弁Vへの通電状態を変化させる異常解消制御を行う。その結果、電磁弁Vのプランジャと吸引子との間の吸引力が変化するため、プランジャと吸引子とが離れることを期待できる。更に、制御手段Zは電磁弁Vへの通電量を繰り返し増減させる異常解消制御を行ってもよい。この場合、電磁弁Vのプランジャと吸引子との間の吸引力が増減を繰り返すことでプランジャが吸引子に対して動くことを期待でき、最終的にはプランジャと吸引子とが離れることを期待できる。
[Abnormality elimination control for abnormalities occurring when the plunger of the solenoid valve remains attached to the attractor]
As described above, the abnormality that occurs when the plunger of the electromagnetic valve V remains attached to the attractor is such that the state where the water level of the humidifying water reservoir for anode 13 is less than the lower limit water level is the first set time. There are abnormalities that continue as described above, abnormalities in which the water level of the humidifying water reservoir for the cathode is less than the lower limit water level, and the like that continues for the second set time or longer.
The control means Z performs abnormality elimination control for changing the energization state of the solenoid valve V when the state where this abnormality occurs is detected. As a result, since the attraction force between the plunger of the electromagnetic valve V and the attractor changes, it can be expected that the plunger and the attractor are separated. Furthermore, the control means Z may perform abnormality elimination control that repeatedly increases or decreases the energization amount to the electromagnetic valve V. In this case, the plunger can be expected to move relative to the attractor by repeatedly increasing and decreasing the attracting force between the plunger of the solenoid valve V and the attractor, and finally the plunger and the attractor are expected to be separated. it can.

以上のように、制御手段Zが異常解消制御を行うことで、その後は電磁弁Vが正常に動作する、即ち、その後は水貯留部Tにおける水位を所定範囲内に維持できるとの想定に基づいて、燃料電池12の発電運転の継続が可能となる。   As described above, the control means Z performs the abnormality elimination control, and thereafter the solenoid valve V operates normally, that is, based on the assumption that the water level in the water reservoir T can be maintained within the predetermined range thereafter. Thus, the power generation operation of the fuel cell 12 can be continued.

<第2実施形態>
第2実施形態の燃料電池システムは、燃料電池発電装置の構成が第1実施形態の燃料電池発電装置と異なっている。以下に第2実施形態の燃料電池システムについて説明するが、第1実施形態と同様の構成については説明を省略する。
Second Embodiment
The fuel cell system of the second embodiment is different from the fuel cell power generator of the first embodiment in the configuration of the fuel cell power generator. The fuel cell system of the second embodiment will be described below, but the description of the same configuration as that of the first embodiment will be omitted.

図2は、第2実施形態の燃料電池システムの概略構成図である。本実施形態の燃料電池システムS2(S)は、燃料電池発電装置10B(10)と、水供給装置30B(30)と、各装置10B、30Bの運転を制御する制御手段Zとを備える。本実施形態において、燃料電池12にはアノード12a及びカソード12bの間に電解質12cを挟んで形成されるセルを冷却可能な冷却部12dが設けられている。つまり、アノード12a及びカソード12bの間に電解質12cを挟んで形成されるセル及び冷却部12dが複数個重ねられたセルスタックの形態で構成される。   FIG. 2 is a schematic configuration diagram of the fuel cell system according to the second embodiment. The fuel cell system S2 (S) of the present embodiment includes a fuel cell power generation device 10B (10), a water supply device 30B (30), and a control means Z that controls the operation of each of the devices 10B and 30B. In the present embodiment, the fuel cell 12 is provided with a cooling unit 12d capable of cooling a cell formed by sandwiching the electrolyte 12c between the anode 12a and the cathode 12b. That is, a cell stack is formed in which a plurality of cells formed by sandwiching the electrolyte 12c and the cooling unit 12d are stacked between the anode 12a and the cathode 12b.

冷却部12dにはカソード用加湿水貯留部14に貯留されている水の一部が冷却水ポンプ21によって付勢されながら冷却水循環路20を介して供給される。冷却部12dから出た水は冷却水循環路20を通ってアノード用加湿水貯留部13に至り、アノード用加湿水貯留部13に貯留されている水と熱交換する。但し、冷却水循環路20を流れる水と、アノード用加湿水貯留部13に貯留されている水とは熱交換するのみで混ざることはない。アノード用加湿水貯留部13で熱交換した後の水は冷却水循環路20を通ってカソード用加湿水貯留部14に戻り、カソード用加湿水貯留部14に貯留されている水と混合される。このように、カソード用加湿水貯留部14に貯留される水が冷却水として流通する冷却水循環路20は、カソード用加湿水貯留部14から冷却部12dとアノード用加湿水貯留部13とを順に通ってカソード用加湿水貯留部14に戻る流路を構成する。その結果、燃料電池12の冷却部12dで回収された熱はアノード用加湿水貯留部13に貯留される水に渡されて、アノード用加湿水貯留部13に貯留される水の温度上昇に利用される。   A portion of the water stored in the cathode humidified water storage section 14 is supplied to the cooling section 12d through the cooling water circulation path 20 while being energized by the cooling water pump 21. The water discharged from the cooling unit 12d reaches the anode humidified water storage unit 13 through the cooling water circulation path 20, and exchanges heat with the water stored in the anode humidified water storage unit 13. However, the water flowing through the cooling water circulation path 20 and the water stored in the humidifying water storage section 13 for anode are not mixed by merely exchanging heat. The water after the heat exchange in the anode humidified water storage unit 13 returns to the cathode humidified water storage unit 14 through the cooling water circulation path 20 and is mixed with the water stored in the cathode humidified water storage unit 14. Thus, the cooling water circulation path 20 through which the water stored in the cathode humidifying water storage unit 14 circulates as the cooling water is the cathode humidifying water storing unit 14 to the cooling unit 12d and the anode humidifying water storing unit 13 in order. A flow path that passes back to the cathode humidified water reservoir 14 is formed. As a result, the heat recovered by the cooling unit 12d of the fuel cell 12 is transferred to the water stored in the anode humidified water storage unit 13 and used to increase the temperature of the water stored in the anode humidified water storage unit 13. Is done.

本実施形態の燃料電池システムS2は、上述したような、燃料電池12を冷却できる装置構成及びアノード用加湿水貯留部13に貯留されている水を昇温できる装置構成を備えている点で第1実施形態の燃料電池システムS1と異なっており、他の装置構成並びに運転形態は第1実施形態の燃料電池システムS1と同様である。   The fuel cell system S2 of the present embodiment is provided with the device configuration that can cool the fuel cell 12 and the device configuration that can raise the temperature of the water stored in the humidifying water storage section 13 for the anode as described above. It is different from the fuel cell system S1 of the first embodiment, and other device configurations and operation modes are the same as the fuel cell system S1 of the first embodiment.

<第3実施形態>
以下に図面を参照して第3実施形態の燃料電池システムについて説明するが、上記実施形態と同様の構成については説明を省略する。
図3は、第3実施形態の燃料電池システムの概略構成図である。本実施形態の燃料電池システムS3(S)は、燃料電池発電装置10C(10)と、水供給装置30C(30)と、各装置10C、30Cの運転を制御する制御手段Zとを備える。
以下、燃料電池発電装置10Cの構成と水供給装置30Cの構成について説明する。
<Third Embodiment>
The fuel cell system according to the third embodiment will be described below with reference to the drawings, but the description of the same configuration as the above embodiment will be omitted.
FIG. 3 is a schematic configuration diagram of the fuel cell system according to the third embodiment. The fuel cell system S3 (S) of the present embodiment includes a fuel cell power generation device 10C (10), a water supply device 30C (30), and a control means Z that controls the operation of each of the devices 10C and 30C.
Hereinafter, the configuration of the fuel cell power generation device 10C and the configuration of the water supply device 30C will be described.

〔燃料電池発電装置の構成〕
燃料電池発電装置10Cは、上記実施形態で説明したのと同様の燃料電池12を備える。更に、本実施形態の燃料電池発電装置10Cは、燃料電池12を冷却可能な冷却水を貯留する冷却水貯留部19(本発明の「燃料電池12で利用する水を貯留する水貯留部T」の一例)と、冷却水が冷却水ポンプ18によって付勢されて燃料電池12及び熱交換器15を順に流通するように構成される冷却水循環路17とを備える。加えて、燃料電池発電装置10Cは、燃料電池12の排熱を回収可能な排熱回収装置16と、排熱回収用熱媒が熱媒ポンプ23によって付勢されて熱交換器15を流通するように構成される熱媒循環路22を備える。冷却水と排熱回収用熱媒とは熱交換器15において熱交換する。つまり、燃料電池12から熱を受け取った冷却水は熱交換器15において排熱回収用熱媒と熱交換し、結果として、燃料電池12の排熱が排熱回収装置16で回収される。
[Configuration of fuel cell power generator]
The fuel cell power generator 10C includes the same fuel cell 12 as described in the above embodiment. Furthermore, the fuel cell power generation device 10C of the present embodiment includes a cooling water storage unit 19 that stores cooling water that can cool the fuel cell 12 ("water storage unit T that stores water used in the fuel cell 12" of the present invention). And a cooling water circulation path 17 configured so that the cooling water is energized by the cooling water pump 18 and flows through the fuel cell 12 and the heat exchanger 15 in order. In addition, the fuel cell power generation device 10 </ b> C circulates through the heat exchanger 15 by the exhaust heat recovery device 16 that can recover the exhaust heat of the fuel cell 12, and the exhaust heat recovery heat medium energized by the heat medium pump 23. A heat medium circulation path 22 configured as described above is provided. The cooling water and the heat medium for exhaust heat recovery exchange heat in the heat exchanger 15. That is, the cooling water that has received heat from the fuel cell 12 exchanges heat with the exhaust heat recovery heat medium in the heat exchanger 15, and as a result, the exhaust heat of the fuel cell 12 is recovered by the exhaust heat recovery device 16.

冷却水貯留部19には、水位が上限水位と下限水位との間の所定範囲内にあるか否かを検出可能なセンサ、即ち、貯留されている冷却水が上限水位以上になっているか否かを検出可能なレベルセンサ19aと、貯留されている冷却水が下限水位未満となっているか否かを検出可能なレベルセンサ19bとが設けられている。   The cooling water storage unit 19 has a sensor capable of detecting whether or not the water level is within a predetermined range between the upper limit water level and the lower limit water level, that is, whether or not the stored cooling water is equal to or higher than the upper limit water level. And a level sensor 19b capable of detecting whether or not the stored coolant is below the lower limit water level.

〔水供給装置の構成〕
水供給装置30Cは、水貯留部Tとしての冷却水貯留部19に供給可能な水を貯留する補充用水貯留部32と、補充用水貯留部32と冷却水貯留部19との間を連結する水路(循環水路33)、その水路33を開閉可能な電磁弁V(Vd,Ve)、及び、水路33の中の水を付勢可能な水ポンプ34を備える。本実施形態において、補充用水貯留部32に貯留されている水は、循環水路33を通ってイオン交換樹脂装置31及び冷却水貯留部19を順に流通可能である。循環水路33の一部分は補充用水貯留部32から冷却水貯留部19へ水を供給するための給水路33aとして機能し、循環水路33の別の一部分は冷却水貯留部19から補充用水貯留部32へ水を排出するときの排水路33bとして機能する。給水路33aの途中には、給水路33aを開閉可能な給水用電磁弁Vdが設けられている。排水路33bの途中には、排水路33bを開閉可能な排水用電磁弁Veが設けられている。補充用水貯留部32に貯留されている水は、冷却水貯留部19に供給される際にイオン交換樹脂装置31を通過してイオン交換処理が施される。
[Configuration of water supply device]
The water supply device 30 </ b> C includes a supplementary water storage unit 32 that stores water that can be supplied to the cooling water storage unit 19 as the water storage unit T, and a water channel that connects the supplementary water storage unit 32 and the cooling water storage unit 19. (Circulation water channel 33), a solenoid valve V (Vd, Ve) capable of opening and closing the water channel 33, and a water pump 34 capable of energizing water in the water channel 33. In this embodiment, the water stored in the replenishment water storage unit 32 can flow through the ion exchange resin device 31 and the cooling water storage unit 19 in order through the circulation water channel 33. A part of the circulating water channel 33 functions as a water supply channel 33 a for supplying water from the supplementary water storage unit 32 to the cooling water storage unit 19, and another part of the circulating water channel 33 is supplied from the cooling water storage unit 19 to the supplementary water storage unit 32. It functions as a drainage channel 33b when draining water. In the middle of the water supply passage 33a, a water supply electromagnetic valve Vd capable of opening and closing the water supply passage 33a is provided. In the middle of the drainage channel 33b, a drainage electromagnetic valve Ve that can open and close the drainage channel 33b is provided. When the water stored in the replenishment water storage unit 32 is supplied to the cooling water storage unit 19, it passes through the ion exchange resin device 31 and is subjected to an ion exchange process.

〔燃料電池発電装置の通常時運転〕
燃料電池発電装置10Cにおいて発電が行われている通常時運転中は、冷却水ポンプ18及び熱媒ポンプ23は動作しており、燃料電池12の冷却(即ち、燃料電池12からの排熱回収)が行われている。
冷却水貯留部19に貯留されている冷却水の水位は、燃料電池発電装置10Cの通常時運転中は、通常であれば増減しない。そのため、燃料電池発電装置10Cの通常時運転中は、給水用電磁弁Vdと排水用電磁弁Veとは閉じられており、冷却水貯留部19は補充用水貯留部32とは隔離されている。また、補充用水貯留部32に貯留されている水を付勢可能な水ポンプ34も停止されている。つまり、燃料電池発電装置10Cは冷却水に関して水自立運転を行うことができる。
[Normal operation of fuel cell power generator]
During normal operation when power generation is being performed in the fuel cell power generation device 10C, the cooling water pump 18 and the heat medium pump 23 are operated, and the fuel cell 12 is cooled (that is, exhaust heat is recovered from the fuel cell 12). Has been done.
The level of the cooling water stored in the cooling water storage unit 19 does not increase or decrease if it is normal during the normal operation of the fuel cell power generation device 10C. Therefore, during the normal operation of the fuel cell power generator 10C, the water supply electromagnetic valve Vd and the drainage electromagnetic valve Ve are closed, and the cooling water storage unit 19 is isolated from the replenishment water storage unit 32. Further, the water pump 34 capable of energizing the water stored in the replenishment water storage unit 32 is also stopped. That is, the fuel cell power generation device 10C can perform water self-sustained operation with respect to the cooling water.

以下に、制御手段Zが、燃料電池発電装置10Cの通常時運転中に行う、水貯留部Tにおける水位を所定範囲内に維持するための水位維持制御(冷却水貯留部19への給水処理、冷却水貯留部19からの排水処理)の内容について説明する。   Below, the control means Z performs the water level maintenance control (the water supply process to the cooling water storage part 19 in order to maintain the water level in the water storage part T in a predetermined range) during the normal operation of the fuel cell power generator 10C. The contents of the waste water treatment from the cooling water storage unit 19 will be described.

〔冷却水貯留部からの排水処理〕
制御手段Zは、冷却水貯留部19に貯留されている水の入れ換えタイミングになると、水ポンプ34を停止した状態で、排水路33bに設けられている排水用電磁弁Veを、例えば冷却水貯留部19の水位が下限水位未満となるまで開操作する。冷却水貯留部19に貯留されている水を入れ換える目的としては、冷却水貯留部19に貯留されている水の電気伝導度が上昇してしまったままの状態で利用されることを防止する点にある。その結果、冷却水貯留部19から補充用水貯留部32への排水が行われる。但し、冷却水貯留部19の水を全て排出するのではなく、燃料電池12に冷却水として送出できるだけの水を冷却水貯留部19に残しておく必要がある。
制御手段Zは、上記排水処理が完了すると、後述する冷却水貯留部19への給水処理を行って、イオン交換処理が施された水を冷却水貯留部19へ供給する。この排水処理が行われて冷却水貯留部19の水位が下限水位未満となってから、後述する給水処理により冷却水貯留部19の水位が下限水位以上になるまでの時間を第3設定時間とする。
[Drainage treatment from cooling water reservoir]
When the timing of replacement of the water stored in the cooling water storage unit 19 is reached, the control unit Z switches the electromagnetic valve Ve for drainage provided in the drainage channel 33b to the cooling water storage, for example, with the water pump 34 stopped. Opening operation is performed until the water level of the part 19 becomes less than the lower limit water level. The purpose of replacing the water stored in the cooling water storage unit 19 is to prevent the water stored in the cooling water storage unit 19 from being used in a state where the electrical conductivity has been increased. It is in. As a result, drainage from the cooling water reservoir 19 to the supplementary water reservoir 32 is performed. However, instead of discharging all of the water in the cooling water reservoir 19, it is necessary to leave in the cooling water reservoir 19 enough water to be sent to the fuel cell 12 as cooling water.
When the waste water treatment is completed, the control unit Z performs a water supply process to a cooling water storage unit 19 described later, and supplies the water subjected to the ion exchange process to the cooling water storage unit 19. The time until the water level of the cooling water storage unit 19 becomes equal to or higher than the lower limit water level by the water supply process described later after the drainage treatment is performed and the water level of the cooling water storage unit 19 becomes less than the lower limit water level is referred to as a third set time. To do.

〔冷却水貯留部への給水処理〕
制御手段Zは、レベルセンサ19bの検出結果に基づいて冷却水貯留部19の水位が下限水位未満となったと判定すると、冷却水貯留部19への給水処理を行うタイミングであると判定する。本実施形態において、冷却水貯留部19への給水処理を行うタイミングになるのは、上述した排水処理を行うことで水位が低下したタイミングである。制御手段Zは、冷却水貯留部19への給水処理を行うタイミングになったと判定すると、水ポンプ34を動作させた状態で給水路33aに設けられている給水用電磁弁Vdを開操作する。本実施形態において、制御手段Zは、水ポンプ34からの単位時間当たりの水の送出量を一定に制御して、給水用電磁弁Vdを所定時間開操作することで、下限水位以上且つ上限水位未満となるレベルにまで給水する。つまり、制御手段Zは、給水量を給水時間で管理する。その結果、補充用水貯留部32から冷却水貯留部19へ所定量の水が供給されて、冷却水貯留部19における水位が所定範囲内に維持される。
[Water supply treatment to cooling water reservoir]
When it is determined that the water level of the cooling water storage unit 19 has become lower than the lower limit water level based on the detection result of the level sensor 19b, the control unit Z determines that it is time to perform a water supply process to the cooling water storage unit 19. In the present embodiment, the timing for performing the water supply process to the cooling water storage unit 19 is the timing at which the water level is lowered by performing the above-described drainage process. When the control means Z determines that it is time to perform the water supply process to the cooling water storage unit 19, the control means Z opens the water supply electromagnetic valve Vd provided in the water supply path 33a with the water pump 34 operated. In the present embodiment, the control means Z controls the water delivery amount per unit time from the water pump 34 to be constant and opens the water supply electromagnetic valve Vd for a predetermined time, so that it is equal to or higher than the lower limit water level and the upper limit water level. Supply water to a level that is less than That is, the control means Z manages the water supply amount by the water supply time. As a result, a predetermined amount of water is supplied from the replenishment water storage unit 32 to the cooling water storage unit 19, and the water level in the cooling water storage unit 19 is maintained within a predetermined range.

このように、燃料電池発電装置10Cの通常時運転中において上述した水位維持制御が行われることで、冷却水貯留部19に貯留されている水の水位は、下限水位未満となる状態が第3設定時間以上継続することはない。また、冷却水貯留部19で冷却水のオーバーフローが発生したときに水位が継続的に上限水位以上となり得る時間を第4設定時間とすると、燃料電池発電装置10Cの通常時運転中において上述した水位維持制御が行われることで、冷却水貯留部19に貯留されている水の水位は、上限水位以上となる状態が第4設定時間以上継続することはない。
そこで、制御手段Zは、水位維持制御を行っても冷却水貯留部19における水位を所定範囲内に維持できない状態が検出された場合に、即ち、上限水位以上になった状態が第4設定時間以上継続したこと、又は、下限水位未満となる状態が第3設定時間以上継続したことを検出した場合には、異常が発生したと判定する。
Thus, when the water level maintenance control described above is performed during the normal operation of the fuel cell power generation device 10C, the water level stored in the cooling water storage unit 19 is lower than the lower limit water level in the third state. It will not last longer than the set time. Further, assuming that the time during which the water level can continuously exceed the upper limit water level when the cooling water overflow occurs in the cooling water storage unit 19 is the fourth set time, the water level described above during the normal operation of the fuel cell power generation device 10C. By performing the maintenance control, the state in which the water level stored in the cooling water storage unit 19 is equal to or higher than the upper limit water level does not continue for the fourth set time or longer.
Therefore, the control means Z detects that a state in which the water level in the cooling water storage unit 19 cannot be maintained within the predetermined range even if the water level maintenance control is performed, that is, a state where the water level is equal to or higher than the upper limit water level is the fourth set time. It is determined that an abnormality has occurred when it is detected that the state has been continued or the state of being lower than the lower limit water level has continued for the third set time or longer.

本実施形態では、上限水位以上になった状態が第4設定時間以上継続したような異常、又は、下限水位未満となる状態が第3設定時間以上継続したような異常は、何れも弁(給水用電磁弁Vd、排水用電磁弁Ve)の異常に起因すると推測する。つまり、制御手段Zは、冷却水貯留部19の水位がこれらの弁の異常により予期せず上昇又は低下したと推測する。
以下に、これらの弁の異常により冷却水貯留部19に貯留されている水の水位が上限水位以上になる状態が第4設定時間以上継続する異常及び下限水位未満となる状態が第3設定時間以上継続する異常が発生する理由について説明する。
In the present embodiment, any abnormality (such as an abnormality in which the state of being above the upper limit water level has continued for the fourth set time or an abnormality in which the state of being below the lower limit water level has been continued for the third set time or longer is a valve (water supply). This is presumed to be caused by the abnormality of the electromagnetic valve Vd for drainage and the electromagnetic valve Ve for drainage. That is, the control means Z estimates that the water level in the cooling water reservoir 19 has unexpectedly increased or decreased due to the abnormality of these valves.
Below, the state where the water level stored in the cooling water storage unit 19 due to the abnormality of these valves is equal to or higher than the upper limit water level continues for the fourth set time or less, and the state where the water level is lower than the lower limit water level is the third set time. The reason why an abnormality that continues is described above will be described.

〔冷却水貯留部の水位が上限水位以上になる状態が第4設定時間以上継続する異常〕
この異常は、給水用電磁弁Vdを閉操作したにも拘わらず開弁している場合に生じ得る。
具体的には、制御手段Zは、給水用電磁弁Vdを閉操作することで、冷却水貯留部19への給水を停止しようとする。しかし、例えば給水用電磁弁Vdが異物を噛み込むことで実際には開弁状態となっている場合がある。この場合、水ポンプ34が未だ動作していれば或いは水ポンプ34を停止したとしても給水路33aの水圧が大きければ、予期せず開弁状態となっている給水用電磁弁Vdを通過した水が冷却水貯留部19に供給されることもある。その結果、冷却水貯留部19の水位が上限水位以上になる状態が第4設定時間以上継続する異常が発生する。
[Abnormality in which the water level in the cooling water storage part is equal to or higher than the upper limit water level for the fourth set time or longer]
This abnormality may occur when the water supply electromagnetic valve Vd is opened despite being closed.
Specifically, the control means Z attempts to stop the water supply to the cooling water reservoir 19 by closing the water supply electromagnetic valve Vd. However, for example, the water supply electromagnetic valve Vd may actually be in an open state due to a foreign object. In this case, if the water pump 34 is still operating or if the water pressure in the water supply passage 33a is high even if the water pump 34 is stopped, the water that has passed through the water supply electromagnetic valve Vd that is unexpectedly opened is shown in FIG. May be supplied to the cooling water reservoir 19. As a result, an abnormality occurs in which the state where the water level of the cooling water storage unit 19 is equal to or higher than the upper limit water level continues for the fourth set time or longer.

〔冷却水貯留部の水位が下限水位未満となる状態が第3設定時間以上継続する異常〕
この異常は、給水用電磁弁Vdを開操作したにも拘わらず閉弁している場合、あるいは、排水用電磁弁Veを閉操作したにも拘わらず開弁している場合に生じ得る。
具体的には、制御手段Zは、水ポンプ34を動作させた状態で給水用電磁弁Vdを開操作することで、冷却水貯留部19への給水を開始しようとする。しかし、例えば給水用電磁弁Vdのプランジャが吸引子に付着したままになることにより開弁操作を行っているにも拘わらず閉弁状態となっている場合がある。この場合、冷却水貯留部19への給水が行われないため、冷却水貯留部19の水位が下限水位未満となる状態が第3設定時間以上継続する異常が発生する。
或いは、制御手段Zは、排水用電磁弁Veを閉操作することで、冷却水貯留部19からの排水を停止しようとする。しかし、例えば排水用電磁弁Veが異物を噛み込むことで実際には開弁状態となっている場合がある。この場合、冷却水貯留部19から排水用電磁弁Veを通過した水が補充用水貯留部32へ排水され続ける。その結果、冷却水貯留部19の水位が下限水位未満となる状態が第3設定時間以上継続する異常が発生する。
[Abnormality where the water level in the cooling water reservoir is below the lower limit water level continues for the third set time or longer]
This abnormality may occur when the water supply electromagnetic valve Vd is opened despite being opened, or when the drainage electromagnetic valve Ve is closed even when opened.
Specifically, the control unit Z attempts to start water supply to the cooling water storage unit 19 by opening the water supply electromagnetic valve Vd while the water pump 34 is operated. However, for example, the plunger of the water supply electromagnetic valve Vd may remain in a closed state despite the fact that the plunger is left attached to the suction element, even though the valve opening operation is being performed. In this case, since water supply to the cooling water storage part 19 is not performed, the abnormality which the state where the water level of the cooling water storage part 19 becomes less than a minimum water level continues more than 3rd setting time generate | occur | produces.
Alternatively, the control means Z attempts to stop the drainage from the cooling water reservoir 19 by closing the drainage electromagnetic valve Ve. However, for example, the drainage electromagnetic valve Ve may actually be in the open state due to the foreign object biting in. In this case, the water that has passed through the drainage electromagnetic valve Ve from the cooling water reservoir 19 continues to be drained to the replenishment water reservoir 32. As a result, an abnormality occurs in which the state in which the water level of the cooling water storage unit 19 is less than the lower limit water level continues for the third set time or longer.

以上のように、閉操作したにも拘わらず開弁している異常、及び、開操作したにも拘わらず閉弁している異常の何れかを原因として、冷却水貯留部19に貯留されている水の水位が上限水位以上になる状態が第4設定時間以上継続する異常及び下限水位未満となる状態が第3設定時間以上継続する異常が発生し得る。
本実施形態において、制御手段Zは上記異常を解消するために以下の異常解消制御を行う。そして、制御手段Zは、異常解消制御を行った後、水位維持制御(給水処理及び排水処理)を適宜行うことで水貯留部Tにおける水位を所定範囲内に維持する。
As described above, it is stored in the cooling water storage unit 19 due to either the abnormality that has been opened despite the closing operation or the abnormality that has been closed despite the opening operation. An abnormality in which the state where the water level in the water is equal to or higher than the upper limit water level continues for the fourth set time or an abnormality in which the state where the water level is lower than the lower limit water level continues for the third set time or more may occur.
In the present embodiment, the control means Z performs the following abnormality elimination control in order to eliminate the abnormality. And the control means Z maintains the water level in the water storage part T in a predetermined range by performing water level maintenance control (water supply process and waste water treatment) suitably after performing abnormality elimination control.

〔電磁弁が異物を噛み込むことで発生している異常に対する異常解消制御〕
上述のように、電磁弁Vが異物を噛み込むことで発生している異常には、冷却水貯留部32の水位が上限水位以上になる状態が第4設定時間以上継続する異常、冷却水貯留部32の水位が下限水位未満となる状態が第3設定時間以上継続する異常などがある。
制御手段Zは、この異常が発生している状態が検出された場合に、電磁弁Vを水が通過するように電磁弁V及び水ポンプ34の動作状態を制御する異常解消制御を行う。具体的には、制御手段Zは、電磁弁Vを開操作する。その結果、電磁弁Vを通過する水の流速が増加するため、その水の圧力で異物が電磁弁Vから流れ出すことを期待できる。制御手段Zは、電磁弁Vの開操作に代えて、或いは、電磁弁Vの開操作に加えて、水ポンプ34からの水の吐出量を増加させてもよい。この場合も、電磁弁Vを通過する水の流速が増加するため、その水の圧力で異物が電磁弁Vから流れ出すことを期待できる。
[Abnormality elimination control for abnormalities caused by the electromagnetic valve biting in foreign matter]
As described above, the abnormality that occurs due to the electromagnetic valve V biting in the foreign material includes an abnormality in which the state where the water level of the cooling water storage unit 32 is equal to or higher than the upper limit water level continues for the fourth set time or longer. There is an abnormality in which the state where the water level of the part 32 is less than the lower limit water level continues for the third set time or longer.
When the state where this abnormality has occurred is detected, the control means Z performs abnormality elimination control for controlling the operation state of the electromagnetic valve V and the water pump 34 so that water passes through the electromagnetic valve V. Specifically, the control means Z opens the electromagnetic valve V. As a result, the flow rate of water passing through the electromagnetic valve V increases, so that foreign matter can be expected to flow out of the electromagnetic valve V with the pressure of the water. The control means Z may increase the discharge amount of water from the water pump 34 instead of the opening operation of the electromagnetic valve V or in addition to the opening operation of the electromagnetic valve V. Also in this case, since the flow velocity of the water passing through the electromagnetic valve V increases, it can be expected that foreign matter flows out of the electromagnetic valve V with the pressure of the water.

更に、制御手段Zは、電磁弁Vを通過する水の流速を繰り返し増減させるように電磁弁V及び水ポンプ34の動作状態を制御する異常解消制御を行ってもよい。具体的には、制御手段Zは、電磁弁Vの開操作と閉操作とを交互に繰り返すことや、水ポンプ34からの水の吐出量の増減を交互に繰り返すことで、電磁弁Vを通過する水の流速を繰り返し増減させることができる。電磁弁Vを通過する水の流速が増減を繰り返すことで異物が動くことを期待でき、最終的には異物が電磁弁Vから流れ出すことを期待できる。   Furthermore, the control means Z may perform abnormality elimination control for controlling the operation states of the electromagnetic valve V and the water pump 34 so as to repeatedly increase or decrease the flow rate of water passing through the electromagnetic valve V. Specifically, the control means Z passes through the solenoid valve V by alternately repeating the opening and closing operations of the solenoid valve V or alternately increasing and decreasing the amount of water discharged from the water pump 34. The flow rate of water can be repeatedly increased or decreased. It can be expected that the foreign matter moves as the flow rate of the water passing through the solenoid valve V repeatedly increases and decreases, and finally the foreign matter can be expected to flow out of the solenoid valve V.

〔電磁弁のプランジャが吸引子に付着したままになることで発生している異常に対する異常解消制御〕
上述のように、電磁弁Vのプランジャが吸引子に付着したままになることで発生している異常には、冷却水貯留部32の水位が下限水位未満となる状態が第3設定時間以上継続する異常がある。
制御手段Zは、この異常が発生している状態が検出された場合に、電磁弁Vへの通電状態を変化させる異常解消制御を行う。その結果、電磁弁Vのプランジャと吸引子との間の吸引力が変化するため、プランジャと吸引子とが離れることを期待できる。更に、制御手段Zは電磁弁Vへの通電量を繰り返し増減させる異常解消制御を行ってもよい。この場合、電磁弁Vのプランジャと吸引子との間の吸引力が増減を繰り返すことでプランジャが吸引子に対して動くことを期待でき、最終的にはプランジャと吸引子とが離れることを期待できる。
[Abnormality elimination control for abnormalities occurring when the plunger of the solenoid valve remains attached to the attractor]
As described above, the abnormality in which the plunger of the electromagnetic valve V remains attached to the suction element continues the state in which the water level of the cooling water storage unit 32 is lower than the lower limit water level for the third set time or longer. There is an abnormality to do.
The control means Z performs abnormality elimination control for changing the energization state of the solenoid valve V when the state where this abnormality occurs is detected. As a result, since the attraction force between the plunger of the electromagnetic valve V and the attractor changes, it can be expected that the plunger and the attractor are separated. Furthermore, the control means Z may perform abnormality elimination control that repeatedly increases or decreases the energization amount to the electromagnetic valve V. In this case, the plunger can be expected to move relative to the attractor by repeatedly increasing and decreasing the attracting force between the plunger of the solenoid valve V and the attractor, and finally the plunger and the attractor are expected to be separated. it can.

以上のように、制御手段Zが異常解消制御を行うことで、その後は電磁弁Vが正常に動作する、即ち、その後は水貯留部Tにおける水位を所定範囲内に維持できるとの想定に基づいて、燃料電池12の発電運転の継続が可能となる。   As described above, the control means Z performs the abnormality elimination control, and thereafter the solenoid valve V operates normally, that is, based on the assumption that the water level in the water reservoir T can be maintained within the predetermined range thereafter. Thus, the power generation operation of the fuel cell 12 can be continued.

<別実施形態>
<1>
上記実施形態において図面を参照して燃料電池システムSの構成例を説明したが、燃料電池システムSの構成は改変可能である。例えば、水供給装置30からカソード用加湿水貯留部14に水を供給する水路と、カソード用加湿水貯留部14から水供給装置30に水を排出する水路とを各別に備えるような燃料電池システムを構築してもよい。或いは、水供給装置30からアノード用加湿水貯留部13に水を供給するとき及びアノード用加湿水貯留部13から水供給装置30に水を排出するときに兼用される1つの水路を備えるような燃料電池システムを構築してもよい。このように、燃料電池システムSの内部の構成、水路の構成、弁の配置などは適宜変更可能である。
<Another embodiment>
<1>
In the above embodiment, the configuration example of the fuel cell system S has been described with reference to the drawings. However, the configuration of the fuel cell system S can be modified. For example, a fuel cell system including a water channel for supplying water from the water supply device 30 to the cathode humidified water storage unit 14 and a water channel for discharging water from the cathode humidification water storage unit 14 to the water supply device 30. May be constructed. Alternatively, it is provided with one water channel that is used when water is supplied from the water supply device 30 to the humidification water reservoir for anode 13 and when water is discharged from the humidification water storage portion for anode 13 to the water supply device 30. A fuel cell system may be constructed. Thus, the internal configuration of the fuel cell system S, the configuration of the water channel, the arrangement of the valves, and the like can be changed as appropriate.

<2>
上記実施形態では、閉弁操作を行ったにも拘わらず電磁弁Vが予期せず開弁している原因として、電磁弁Vが異物を噛み込んでいる状態を例示しているが、他の原因によって電磁弁Vが予期せず開弁していることもある。例えば、プランジャが吸引子から離れることで閉弁するような電磁弁の場合、プランジャが吸引子に付着したままになることにより閉弁操作を行っているにも拘わらず開弁状態になっていることもある。よって、制御手段Zは、閉弁操作を行ったにも拘わらず電磁弁Vが予期せず開弁していることにより水位の異常が発生している状態が検出された場合、上述した〔電磁弁のプランジャが吸引子に付着したままになることで発生している異常に対する異常解消制御〕を行ってもよい。
<2>
In the above embodiment, although the solenoid valve V is opened unexpectedly despite the valve closing operation, the state in which the solenoid valve V bites foreign matter is illustrated as an example. Depending on the cause, the solenoid valve V may open unexpectedly. For example, in the case of an electromagnetic valve that closes when the plunger moves away from the attractor, the plunger remains attached to the attractor, but the valve is opened despite the valve closing operation. Sometimes. Therefore, the control means Z, when the state where the water level abnormality has occurred due to the electromagnetic valve V opening unexpectedly despite the valve closing operation is detected, An abnormality elimination control for an abnormality occurring when the plunger of the valve remains attached to the suction element may be performed.

<3>
上記実施形態では、制御手段Zが、水貯留部Tにおける水位を所定範囲内に維持できない状態(即ち、水貯留部Tの水位に異常が発生した状態)が検出されたと判定する基準を幾つか例示したが、他の基準に基づいて、水貯留部Tにおける水位を所定範囲内に維持できない状態が検出されたと判定してもよい。一例を挙げると、第1実施形態では、制御手段Zは、水貯留部Tの水位が上限水位以上になったことをレベルセンサで検出したときに、水貯留部Tの水位に異常が発生した状態が検出されたと判定しているが、制御手段Zが、水貯留部Tの水位が上限水位以上になった状態が設定時間継続した場合に水貯留部Tの水位に異常が発生した状態が検出されたと判定するような改変も可能である。
<3>
In the above embodiment, the control means Z determines several criteria for determining that a state in which the water level in the water reservoir T cannot be maintained within a predetermined range (that is, a state in which an abnormality has occurred in the water level in the water reservoir T) has been detected. Although illustrated, you may determine with the state which cannot maintain the water level in the water storage part T within the predetermined range based on another reference | standard. For example, in the first embodiment, when the control unit Z detects that the water level of the water storage unit T is equal to or higher than the upper limit water level, an abnormality has occurred in the water level of the water storage unit T. Although it is determined that the state has been detected, when the control means Z continues for a set time when the water level of the water storage unit T is equal to or higher than the upper limit water level, there is a state in which an abnormality has occurred in the water level of the water storage unit T. Modifications that determine that it has been detected are also possible.

<4>
上記実施形態では、電動式の開閉弁の一例として電磁弁Vを挙げたが、弁体の開度制御が弁体を駆動するステッピングモータの動作制御によって行われるようなモーターバルブを開閉弁として用いてもよい。この場合も、弁体表面に異物が付着して、閉操作を行ったにも拘わらず水路の閉め切りができないという問題が発生することがある。この問題が発生した場合も、上述したのと同様にモーターバルブの開操作を行って(或いは、開操作と閉操作とを交互に繰り返して)、異物を排出させればよい。
<4>
In the above embodiment, the electromagnetic valve V is cited as an example of the electric on-off valve. However, a motor valve that controls the opening degree of the valve body by the operation control of the stepping motor that drives the valve body is used as the on-off valve. May be. In this case as well, there may be a problem that foreign matter adheres to the surface of the valve body and the water channel cannot be closed despite the closing operation. Even when this problem occurs, the foreign matter can be discharged by performing the opening operation of the motor valve (or alternately repeating the opening operation and the closing operation) in the same manner as described above.

本発明は、燃料電池で利用する水を貯留する水貯留部に対して補充用水貯留部から水を供給可能な水供給装置を備える燃料電池システムにおいて利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used in a fuel cell system including a water supply device that can supply water from a supplementary water storage unit to a water storage unit that stores water used in a fuel cell.

12 燃料電池
13 アノード用加湿水貯留部(水貯留部 T)
14 カソード用加湿水貯留部(水貯留部 T)
30(30A〜30C) 水供給装置
32 補充用水貯留部
33 循環水路(水路)
33a 給水路(水路)
33b 排水路(水路)
34 水ポンプ
35 アノード用給水路(水路)
36 アノード用排水路(水路)
37 カソード用給排水路(水路)
Z 制御手段(水位制御手段)
S(S1〜S3) 燃料電池システム
V 電磁弁(開閉弁)
Va アノード用給水電磁弁(電磁弁 V)
Vb アノード用排水電磁弁(電磁弁 V)
Vc カソード用給排水電磁弁(電磁弁 V)
Vd 給水用電磁弁(電磁弁 V)
Ve 排水用電磁弁(電磁弁 V)
12 Fuel cell 13 Humidified water reservoir for anode (water reservoir T)
14 Humidified water reservoir for cathode (water reservoir T)
30 (30A-30C) Water supply device 32 Replenishment water storage unit 33 Circulating water channel (water channel)
33a Water supply channel (water channel)
33b Drainage channel (water channel)
34 Water pump 35 Anode water supply channel (water channel)
36 Anode drainage channel (water channel)
37 Cathode water supply / drainage channel (water channel)
Z control means (water level control means)
S (S1-S3) Fuel cell system V Solenoid valve (open / close valve)
Va anode water supply solenoid valve (solenoid valve V)
Vb Anode drain solenoid valve (solenoid valve V)
Vc Cathode water supply / drainage solenoid valve (solenoid valve V)
Vd Solenoid valve for water supply (solenoid valve V)
Ve Solenoid valve for drainage (solenoid valve V)

Claims (5)

燃料電池と、
前記燃料電池で利用する水を貯留する水貯留部と、
前記水貯留部に供給可能な水を貯留する補充用水貯留部、前記補充用水貯留部及び前記水貯留部の間を連結する水路、前記水路を開閉可能な開閉弁、前記水路の中の水を付勢可能な水ポンプ、及び、前記開閉弁及び前記水ポンプの動作を制御して前記水貯留部における水位を所定範囲内に維持する水位維持制御を行う水位制御手段を有する水供給装置と、を備え、
前記水位制御手段は、前記水位維持制御を行っても前記水貯留部における水位を前記所定範囲内に維持できない状態が検出された場合に、前記開閉弁を水が通過するように前記開閉弁及び前記水ポンプの動作状態を制御する異常解消制御を行う燃料電池システム。
A fuel cell;
A water reservoir for storing water used in the fuel cell;
A replenishment water storage unit that stores water that can be supplied to the water storage unit, a water channel that connects between the replenishment water storage unit and the water storage unit, an on-off valve that can open and close the water channel, and water in the water channel An energizable water pump, and a water supply device having water level control means for controlling the operation of the on-off valve and the water pump to maintain the water level in the water reservoir within a predetermined range; With
When the water level control means detects that the water level in the water storage part cannot be maintained within the predetermined range even if the water level maintenance control is performed, the water level control means A fuel cell system for performing abnormality elimination control for controlling an operation state of the water pump.
前記水位制御手段は、前記異常解消制御において、前記開閉弁を通過する水の流速を繰り返し増減させるように前記開閉弁及び前記水ポンプの動作状態を制御する請求項1記載の燃料電池システム。   2. The fuel cell system according to claim 1, wherein the water level control means controls an operating state of the on-off valve and the water pump so as to repeatedly increase and decrease a flow rate of water passing through the on-off valve in the abnormality elimination control. 燃料電池と、
前記燃料電池で利用する水を貯留する水貯留部と、
前記水貯留部に供給可能な水を貯留する補充用水貯留部、前記補充用水貯留部及び前記水貯留部の間を連結する水路、前記水路を開閉可能な開閉弁、前記水路の中の水を付勢可能な水ポンプ、及び、前記開閉弁及び前記水ポンプの動作を制御して前記水貯留部における水位を所定範囲内に維持する水位維持制御を行う水位制御手段を有する水供給装置と、を備え、
前記水位制御手段は、前記水位維持制御を行っても前記水貯留部における水位を前記所定範囲内に維持できない状態が検出された場合に、前記開閉弁への通電状態を変化させる異常解消制御を行う燃料電池システム。
A fuel cell;
A water reservoir for storing water used in the fuel cell;
A replenishment water storage unit that stores water that can be supplied to the water storage unit, a water channel that connects between the replenishment water storage unit and the water storage unit, an on-off valve that can open and close the water channel, and water in the water channel An energizable water pump, and a water supply device having water level control means for controlling the operation of the on-off valve and the water pump to maintain the water level in the water reservoir within a predetermined range; With
When the water level control means detects a state where the water level in the water storage unit cannot be maintained within the predetermined range even if the water level maintenance control is performed, the water level control means performs abnormality elimination control to change the energization state of the on-off valve. Fuel cell system to perform.
前記水位制御手段は、前記異常解消制御において、前記開閉弁への通電量を繰り返し増減させる請求項3記載の燃料電池システム。   4. The fuel cell system according to claim 3, wherein the water level control means repeatedly increases or decreases the energization amount to the on-off valve in the abnormality elimination control. 前記水位制御手段は、前記異常解消制御を行った後、前記水位維持制御を行う請求項1〜4の何れか一項に記載の燃料電池システム。   The fuel cell system according to any one of claims 1 to 4, wherein the water level control means performs the water level maintenance control after performing the abnormality elimination control.
JP2010023361A 2010-02-04 2010-02-04 Fuel cell system Pending JP2011165338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023361A JP2011165338A (en) 2010-02-04 2010-02-04 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023361A JP2011165338A (en) 2010-02-04 2010-02-04 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2011165338A true JP2011165338A (en) 2011-08-25

Family

ID=44595813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023361A Pending JP2011165338A (en) 2010-02-04 2010-02-04 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2011165338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10597487B2 (en) 2011-02-04 2020-03-24 Mosca Gmbh Straps produced from renewable raw materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10597487B2 (en) 2011-02-04 2020-03-24 Mosca Gmbh Straps produced from renewable raw materials

Similar Documents

Publication Publication Date Title
JP5106867B2 (en) Fuel cell system
JP5522590B2 (en) Fuel cell system
CN108470925B (en) Fuel cell starting system and method
US8785066B2 (en) Fuel cell system and control method therefor
JP2002313403A (en) Method of discharging generated water in fuel cell system
JP2017147135A (en) Control method for fuel cell system
JP2007087779A (en) Fuel cell system
JP4844352B2 (en) Control device for fuel cell system
JP3642285B2 (en) Fuel cell system and microbial control method thereof
KR20160008179A (en) A fuel cell system
JP2011165338A (en) Fuel cell system
JP2007087623A (en) Fuel cell power generation system and method for operating same
JP5543232B2 (en) Fuel cell system
JP2011216370A (en) Fuel cell system and method of controlling the same
CN111108638B (en) Method for operating fuel cell and controller therefor
JP2020087623A (en) Fuel cell system
JP4926298B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
US11362353B2 (en) Fuel cell, control method for fuel cell, and computer readable recording medium
JP2008226712A (en) Fuel cell system and its control method
JP2006019124A (en) Fuel cell system
JP4934938B2 (en) Fuel cell separator
JP2010205654A (en) Fuel cell system
JP2006147348A (en) Fuel cell power generation device and water quality control method of the same
JP2010282929A (en) Fuel cell system
JP3873763B2 (en) Fuel cell system