JP2011164330A - Liquid crystal device and projector - Google Patents

Liquid crystal device and projector Download PDF

Info

Publication number
JP2011164330A
JP2011164330A JP2010026259A JP2010026259A JP2011164330A JP 2011164330 A JP2011164330 A JP 2011164330A JP 2010026259 A JP2010026259 A JP 2010026259A JP 2010026259 A JP2010026259 A JP 2010026259A JP 2011164330 A JP2011164330 A JP 2011164330A
Authority
JP
Japan
Prior art keywords
substrate
film thickness
insulating film
refractive index
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010026259A
Other languages
Japanese (ja)
Other versions
JP5370193B2 (en
Inventor
Akinori Masuzawa
明徳 増澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010026259A priority Critical patent/JP5370193B2/en
Publication of JP2011164330A publication Critical patent/JP2011164330A/en
Application granted granted Critical
Publication of JP5370193B2 publication Critical patent/JP5370193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal reflection type liquid crystal device which can obtain beautiful white display, excellent color balance, and bright display at a low cost and further suppress the occurrence of flicker and image persistence. <P>SOLUTION: A liquid crystal device 31 includes a first substrate 1, a second substrate 2, a liquid crystal layer 3, a reflecting electrode 4 disposed on the side facing the second substrate 2, of the first substrate 1, a first insulating film 5 disposed on the reflecting electrode 4, and a first inorganic alignment film 6 disposed on the first insulating film 5. When a refractive index of the liquid crystal layer 3 is represented by nlc and a refractive index of the first insulating film 5 is represented by n1 and a refractive index of the first inorganic alignment film 6 is represented by n2, n1c>n2>n1 is satisfied. When an optical film thickness of the first inorganic alignment film 6 is represented by r2, 50≤r2≤150 is satisfied. When an optical film thickness of the first insulating film 5 is represented by r1, -1.0173×r2+367.29≤r1≤-1.0197×r2+463.34 is satisfied. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、液晶装置およびプロジェクターに関する。   The present invention relates to a liquid crystal device and a projector.

従来、バックライト等の光源を用いることなく、外光を利用して表示を行う反射型液晶装置は、低消費電力化、小型軽量化等の観点から有利であるため、携帯性が重要視される携帯用電子機器に採用されている。プロジェクターの分野においても装置構成が簡単化する等の観点から、光変調素子として反射型液晶ライトバルブが採用されることがある。近年は、光入射側と反対側の基板上に配置される表示用電極(画素電極)を反射板で構成し、反射位置を液晶層に極力近付けるようにした、いわゆる内面反射方式の反射型液晶装置が開発され、高精細で明るい画像が実現されている。   2. Description of the Related Art Conventionally, reflective liquid crystal devices that display using external light without using a light source such as a backlight are advantageous from the viewpoint of low power consumption, small size, and light weight. It is used in portable electronic devices. In the field of projectors, a reflective liquid crystal light valve may be employed as a light modulation element from the viewpoint of simplifying the device configuration. In recent years, a reflective liquid crystal of a so-called internal reflection type in which a display electrode (pixel electrode) disposed on a substrate opposite to the light incident side is formed of a reflector and the reflection position is as close as possible to the liquid crystal layer. Devices have been developed to achieve high definition and bright images.

ところが、反射板を兼ねる画素電極における光の反射率は波長依存性を有しており、外光に含まれる赤色光、緑色光、青色光に対する反射率はそれぞれ異なる。そのため、白黒表示の場合に、本来の白色が青色味がかったり、緑色味がかったりして美しい白色を表示できないという問題がある。カラー表示の場合には、色バランスが崩れて本来の色を忠実に再現できない、あるいは特別な色補正が必要になって装置構成や駆動回路が複雑化する、などの問題がある。そこで、反射板が配置された側の基板の構成を最適化することで分光反射特性の向上を狙った液晶装置が提案されている(例えば、下記の特許文献1、2参照)。一方、反射板が配置された側と反対側の基板の構成を最適化することで反射特性の向上を狙った液晶装置が提案されている(例えば、下記の特許文献3参照)。   However, the reflectance of light at the pixel electrode that also serves as a reflector has wavelength dependency, and the reflectance for red light, green light, and blue light contained in external light is different. Therefore, in the case of black and white display, there is a problem that the original white color has a blue color or a green color and cannot display a beautiful white color. In the case of color display, there is a problem that the color balance is lost and the original color cannot be faithfully reproduced, or that special color correction is required and the device configuration and the drive circuit are complicated. Therefore, a liquid crystal device has been proposed that aims to improve spectral reflection characteristics by optimizing the configuration of the substrate on the side where the reflector is disposed (see, for example, Patent Documents 1 and 2 below). On the other hand, a liquid crystal device has been proposed that aims to improve reflection characteristics by optimizing the configuration of the substrate on the side opposite to the side on which the reflector is disposed (see, for example, Patent Document 3 below).

特開2005−156717号公報JP 2005-156717 A 特許第3557933号公報Japanese Patent No. 3557933 特開平11−174427号公報JP-A-11-174427

ところで、近年、液晶装置に用いる配向膜として、無機材料からなる配向膜の採用が検討されている。例えば、酸化シリコン膜等からなる無機配向膜を斜方蒸着法で形成すれば、ラビング処理を行うことなく十分な配向性能を発揮できる。また、無機配向膜はポリイミド等の有機材料を用いた従来の配向膜に比べて耐熱性、耐光性に優れているため、プロジェクター用途の液晶装置として好適である。そこで、無機配向膜を用いた反射型液晶装置においても、基板構成を最適化し、各色光に対して均一な反射率を得て美しい白表示や良好な色バランスを実現するとともに、明るい表示を実現したいという要求がある。   Incidentally, in recent years, the use of an alignment film made of an inorganic material has been studied as an alignment film used in a liquid crystal device. For example, when an inorganic alignment film made of a silicon oxide film or the like is formed by oblique deposition, sufficient alignment performance can be exhibited without performing a rubbing process. In addition, since the inorganic alignment film is superior in heat resistance and light resistance as compared with a conventional alignment film using an organic material such as polyimide, it is suitable as a liquid crystal device for projector applications. Therefore, even in a reflective liquid crystal device using an inorganic alignment film, the substrate configuration is optimized to obtain a uniform reflectivity for each color light to achieve beautiful white display and good color balance, as well as bright display There is a demand to do.

しかしながら、上記の特許文献1〜3はいずれも無機配向膜の使用を前提として基板構成を最適化したものではなく、特許文献1〜3から各種膜の屈折率や膜厚の最適値を知ることはできない。また、特許文献1に記載の構成では、反射板上に屈折率が異なる2層以上の誘電体層を形成しなければならず、製造コストが高騰するという問題点もある。さらに、以上の問題点の解決に加えて、フリッカーや焼き付きの発生を抑制し得る液晶装置の提供が望まれている。   However, none of the above-mentioned Patent Documents 1 to 3 optimizes the substrate configuration on the premise of using an inorganic alignment film, and knows the optimum values of the refractive index and film thickness of various films from Patent Documents 1 to 3. I can't. Moreover, in the structure described in Patent Document 1, two or more dielectric layers having different refractive indexes must be formed on the reflecting plate, and there is a problem that the manufacturing cost increases. Furthermore, in addition to solving the above problems, it is desired to provide a liquid crystal device capable of suppressing the occurrence of flicker and image sticking.

本発明は、上記の課題を解決するためになされたものであって、美しい白表示や良好な色バランス、明るい表示が低コストで得られ、さらにフリッカーや焼き付きの発生を抑制し得る内面反射方式の液晶装置を提供することを目的とする。また、このような液晶装置を用いることにより表示品位に優れたプロジェクターを提供することを目的とする。   The present invention has been made to solve the above-described problems, and can achieve beautiful white display, good color balance, bright display at a low cost, and can suppress the occurrence of flicker and image sticking. An object of the present invention is to provide a liquid crystal device. It is another object of the present invention to provide a projector with excellent display quality by using such a liquid crystal device.

上記の目的を達成するために、本発明の第1の液晶装置は、第1基板と、前記第1基板に対向配置された光透過性を有する第2基板と、前記第1基板と前記第2基板との間に挟持された液晶層と、前記第1基板の前記第2基板に対向する側に配置された反射電極と、前記反射電極上に配置された第1絶縁膜と、前記第1絶縁膜上に配置された第1無機配向膜と、を備え、前記液晶層の屈折率をnlc、前記第1絶縁膜の屈折率をn1、前記第1無機配向膜の屈折率をn2とすると、nlc>n2>n1であり、前記第1無機配向膜の光学膜厚をr2とすると、50≦r2≦150であり、前記第1絶縁膜の光学膜厚をr1とすると、
−1.0173×r2+367.29≦r1≦−1.0197×r2+463.34…(1)
であることを特徴とする。
In order to achieve the above object, a first liquid crystal device of the present invention includes a first substrate, a light-transmissive second substrate disposed opposite to the first substrate, the first substrate, and the first substrate. A liquid crystal layer sandwiched between two substrates, a reflective electrode disposed on a side of the first substrate facing the second substrate, a first insulating film disposed on the reflective electrode, and the first substrate A first inorganic alignment film disposed on one insulating film, a refractive index of the liquid crystal layer is nlc, a refractive index of the first insulating film is n1, and a refractive index of the first inorganic alignment film is n2. Then, nlc>n2> n1, and if the optical thickness of the first inorganic alignment film is r2, 50 ≦ r2 ≦ 150, and if the optical thickness of the first insulating film is r1,
−1.0173 × r2 + 367.29 ≦ r1 ≦ −1.0197 × r2 + 463.34 (1)
It is characterized by being.

本発明の第2の液晶装置は、第1基板と、前記第1基板に対向配置された光透過性を有する第2基板と、前記第1基板と前記第2基板との間に挟持された液晶層と、前記第1基板の前記第2基板に対向する側に配置された反射電極と、前記反射電極上に配置された第1絶縁膜と、前記第1絶縁膜上に配置された第1無機配向膜と、を備え、前記液晶層の屈折率をnlc、前記第1絶縁膜の屈折率をn1、前記第1無機配向膜の屈折率をn2とすると、nlc>n1>n2であり、前記第1無機配向膜の光学膜厚をr2とすると、50≦r2≦150であり、前記第1絶縁膜の光学膜厚をr1とすると、
−0.7651×r2+325.61≦r1≦−0.7587×r2+429.96…(2)
であることを特徴とする。
A second liquid crystal device according to the present invention is sandwiched between a first substrate, a second substrate having optical transparency disposed opposite to the first substrate, and the first substrate and the second substrate. A liquid crystal layer; a reflective electrode disposed on a side of the first substrate facing the second substrate; a first insulating film disposed on the reflective electrode; and a first electrode disposed on the first insulating film. Nlc>n1> n2, where nlc is the refractive index of the liquid crystal layer, n1 is the refractive index of the first insulating film, and n2 is the refractive index of the first inorganic alignment film. When the optical film thickness of the first inorganic alignment film is r2, 50 ≦ r2 ≦ 150, and when the optical film thickness of the first insulating film is r1,
−0.7651 × r2 + 325.61 ≦ r1 ≦ −0.7587 × r2 + 429.96 (2)
It is characterized by being.

ここで、本発明の第1、第2の液晶装置において、第1絶縁膜の光学膜厚r1は、第1絶縁膜の実膜厚(物理的膜厚)をd1としたときに、r1=n1×d1で表わされる。同様に、第1無機配向膜の光学膜厚r2は、第1無機配向膜の実膜厚(物理的膜厚)をd2としたときに、r2=n2×d2で表わされる。また、本発明の第1、第2の液晶装置において、液晶層、第1絶縁膜、第1無機配向膜の屈折率とは、屈折率が異方性を有している場合にはそれら複数の屈折率の平均値を指す。また、本発明で言うところの「屈折率」は、波長550nmの光に対する屈折率と定義する。   Here, in the first and second liquid crystal devices of the present invention, the optical film thickness r1 of the first insulating film is such that when the actual film thickness (physical film thickness) of the first insulating film is d1, r1 = It is represented by n1 × d1. Similarly, the optical film thickness r2 of the first inorganic alignment film is represented by r2 = n2 × d2, where d2 is the actual film thickness (physical film thickness) of the first inorganic alignment film. In the first and second liquid crystal devices of the present invention, the refractive index of the liquid crystal layer, the first insulating film, and the first inorganic alignment film is a plurality of the refractive indexes when the refractive index has anisotropy. It means the average value of the refractive index. The “refractive index” as used in the present invention is defined as the refractive index for light having a wavelength of 550 nm.

本発明者は、反射電極上に第1絶縁膜、第1無機配向膜を順次積層した第1基板の構成を前提として、第1無機配向膜の光学膜厚r2を50≦r2≦150と設定し、第1絶縁膜の光学膜厚を変化させたときの光の波長域毎の光反射率をシミュレーションによって求めた。その結果、上述した液晶層、第1絶縁膜、第1無機配向膜の各屈折率の大小関係に応じて、第1無機配向膜の光学膜厚を適宜設定した上で第1絶縁膜の光学膜厚を上記(1)式、または(2)式の条件を満足する値に設定すれば、いずれの波長域においても比較的高い光反射率が得られ、かつ、各色光の光反射率の差が比較的小さくなることを見出した。具体的なシミュレーション結果については後述する。   The inventor sets the optical film thickness r2 of the first inorganic alignment film as 50 ≦ r2 ≦ 150 on the premise of the configuration of the first substrate in which the first insulating film and the first inorganic alignment film are sequentially laminated on the reflective electrode. Then, the light reflectance for each wavelength range of light when the optical film thickness of the first insulating film was changed was obtained by simulation. As a result, the optical thickness of the first insulating film is set after appropriately setting the optical film thickness of the first inorganic alignment film in accordance with the magnitude relationship among the refractive indexes of the liquid crystal layer, the first insulating film, and the first inorganic alignment film. If the film thickness is set to a value that satisfies the conditions of the above formula (1) or (2), a relatively high light reflectance can be obtained in any wavelength range, and the light reflectance of each color light can be obtained. We found that the difference was relatively small. Specific simulation results will be described later.

以上の構成とすることにより、美しい白表示や良好な色バランス、明るい表示を実現可能な液晶装置が得られる。また、本発明の第1、第2の液晶装置の構成によれば、反射電極上に1層の絶縁膜のみを形成すれば済むため、複数の誘電体層を必要とする上記特許文献1の構成に比べて製造コストを低減できる。また、第1絶縁膜が比較的厚い絶縁膜となるため、フリッカーや焼き付きの低減効果が十分に得られる。   With the above configuration, a liquid crystal device capable of realizing beautiful white display, good color balance, and bright display can be obtained. Further, according to the configuration of the first and second liquid crystal devices of the present invention, since only one insulating film needs to be formed on the reflective electrode, the above-mentioned Patent Document 1 that requires a plurality of dielectric layers is required. Manufacturing costs can be reduced compared to the configuration. In addition, since the first insulating film becomes a relatively thick insulating film, the effect of reducing flicker and image sticking can be sufficiently obtained.

本発明の第1の液晶装置において、前記第1無機配向膜は、基板法線方向から見た屈折率が異方性を有し、2つの屈折率のうちの大きい方の屈折率をn2maxとしたときに、nlc>n2max>n1の関係を満たす構成であっても良い。
例えば第1無機配向膜を斜方蒸着法で形成した場合など、基板法線方向から見た屈折率が異方性を有する場合がある。その場合、大きい方の屈折率n2maxがnlc>n2max>n1の関係を満たしさえすれば、必然的に平均の屈折率n2はnlc>n2>n1の関係を満たすことになる。したがって、複数の屈折率を把握しなくともよく、大きい方の屈折率だけを把握すればよいため、製造条件等の設定が容易になる。
In the first liquid crystal device of the present invention, the first inorganic alignment film has an anisotropy in refractive index viewed from the normal direction of the substrate, and the larger one of the two refractive indices is n2max. In this case, a configuration satisfying the relationship of nlc>n2max> n1 may be used.
For example, when the first inorganic alignment film is formed by oblique deposition, the refractive index viewed from the normal direction of the substrate may have anisotropy. In this case, as long as the larger refractive index n2max satisfies the relationship nlc>n2max> n1, the average refractive index n2 necessarily satisfies the relationship nlc>n2> n1. Therefore, it is not necessary to grasp a plurality of refractive indexes, and it is only necessary to grasp the larger refractive index, so that the manufacturing conditions and the like can be easily set.

同様に、本発明の第2の液晶装置において、前記第1無機配向膜は、基板法線方向から見た屈折率が異方性を有し、2つの屈折率のうちの大きい方の屈折率をn2maxとしたときに、nlc>n1>n2maxの関係を満たす構成であっても良い。   Similarly, in the second liquid crystal device of the present invention, the first inorganic alignment film has an anisotropy in refractive index viewed from the normal direction of the substrate, and the larger refractive index of the two refractive indexes. When n is 2nmax, a configuration satisfying the relationship of nlc> n1> n2max may be used.

本発明の第3の液晶装置は、第1基板と、前記第1基板に対向配置された光透過性を有する第2基板と、前記第1基板と前記第2基板との間に挟持された液晶層と、前記第1基板の前記第2基板に対向する側に配置された反射電極と、前記第2基板の前記第1基板に対向する側に配置された透明電極と、前記透明電極上に配置された第2絶縁膜と、前記第2絶縁膜上に配置された第2無機配向膜と、を備え、前記液晶層の屈折率をnlc、前記透明電極の屈折率をnt、前記第2絶縁膜の屈折率をn3、前記第2無機配向膜の屈折率をn4とすると、nt>nlc>n4>n3であり、前記透明電極の光学膜厚をrtとすると、220≦rt≦276であり、前記第2無機配向膜の光学膜厚をr4とすると、50≦r4≦150であり、前記第2絶縁膜の光学膜厚をr3とすると、
−1.0189×r4+212.05≦r3≦−1.016×r4+325.64…(3)
であることを特徴とする。
A third liquid crystal device according to the present invention is sandwiched between a first substrate, a second substrate having optical transparency disposed opposite to the first substrate, and the first substrate and the second substrate. A liquid crystal layer, a reflective electrode disposed on a side of the first substrate facing the second substrate, a transparent electrode disposed on a side of the second substrate facing the first substrate, and the transparent electrode And a second inorganic alignment film disposed on the second insulating film, wherein the liquid crystal layer has a refractive index nlc, the transparent electrode has a refractive index nt, 2 If the refractive index of the insulating film is n3, the refractive index of the second inorganic alignment film is n4, nt>nlc>n4> n3, and if the optical film thickness of the transparent electrode is rt, 220 ≦ rt ≦ 276 When the optical film thickness of the second inorganic alignment film is r4, 50 ≦ r4 ≦ 150, and the second absolute alignment film If the optical film thickness of the edge film is r3,
−1.0189 × r4 + 212.05 ≦ r3 ≦ −1.016 × r4 + 325.64 (3)
It is characterized by being.

本発明の第4の液晶装置は、第1基板と、前記第1基板に対向配置された光透過性を有する第2基板と、前記第1基板と前記第2基板との間に挟持された液晶層と、前記第1基板の前記第2基板に対向する側に配置された反射電極と、前記第2基板の前記第1基板に対向する側に配置された透明電極と、前記透明電極上に配置された第2絶縁膜と、前記第2絶縁膜上に配置された第2無機配向膜と、を備え、前記液晶層の屈折率をnlc、前記透明電極の屈折率をnt、前記第2絶縁膜の屈折率をn3、前記第2無機配向膜の屈折率をn4とすると、nt>nlc>n3>n4であり、前記透明電極の光学膜厚をrtとすると、220≦rt≦276であり、前記第2無機配向膜の光学膜厚をr4とすると、50≦r4≦150であり、前記第2絶縁膜の光学膜厚をr3とすると、
−0.8401×r4+189.76≦r3≦−0.8323×r4+302.7…(4)
であることを特徴とする。
A fourth liquid crystal device of the present invention is sandwiched between a first substrate, a second substrate having optical transparency disposed opposite to the first substrate, and the first substrate and the second substrate. A liquid crystal layer, a reflective electrode disposed on a side of the first substrate facing the second substrate, a transparent electrode disposed on a side of the second substrate facing the first substrate, and the transparent electrode And a second inorganic alignment film disposed on the second insulating film, wherein the liquid crystal layer has a refractive index nlc, the transparent electrode has a refractive index nt, 2 If the refractive index of the insulating film is n3, the refractive index of the second inorganic alignment film is n4, nt>nlc>n3> n4, and the optical film thickness of the transparent electrode is rt, 220 ≦ rt ≦ 276. When the optical film thickness of the second inorganic alignment film is r4, 50 ≦ r4 ≦ 150, and the second absolute alignment film If the optical film thickness of the edge film is r3,
−0.8401 × r4 + 189.76 ≦ r3 ≦ −0.8323 × r4 + 302.7 (4)
It is characterized by being.

ここで、本発明の第3、第4の液晶装置において、透明電極の光学膜厚rtは、透明電極の実膜厚(物理的膜厚)をdtとしたときに、rt=nt×dtで表わされる。同様に、第2絶縁膜の光学膜厚r3は、第2絶縁膜の実膜厚(物理的膜厚)をd3としたときに、r3=n3×d3で表わされる。同様に、第2無機配向膜の光学膜厚r4は、第2無機配向膜の実膜厚(物理的膜厚)をd4としたときに、r4=n4×d4で表わされる。また、本発明の第1、第2の液晶装置において、液晶層、第2絶縁膜、第2無機配向膜の屈折率とは、屈折率が異方性を有している場合にはそれら複数の屈折率の平均値を指す。また、本発明で言うところの「屈折率」は、波長550nmの光に対する屈折率と定義する。   Here, in the third and fourth liquid crystal devices of the present invention, the optical film thickness rt of the transparent electrode is rt = nt × dt, where dt is the actual film thickness (physical film thickness) of the transparent electrode. Represented. Similarly, the optical film thickness r3 of the second insulating film is represented by r3 = n3 × d3, where d3 is the actual film thickness (physical film thickness) of the second insulating film. Similarly, the optical film thickness r4 of the second inorganic alignment film is represented by r4 = n4 × d4, where d4 is the actual film thickness (physical film thickness) of the second inorganic alignment film. In the first and second liquid crystal devices of the present invention, the refractive index of the liquid crystal layer, the second insulating film, and the second inorganic alignment film is a plurality of the refractive indexes when the refractive index has anisotropy. It means the average value of the refractive index. The “refractive index” as used in the present invention is defined as the refractive index for light having a wavelength of 550 nm.

本発明者は、上述の第1基板側の構成のみならず、光透過性を有する第2基板側の光透過率を最適化することで、液晶装置全体として波長域によらずに均一で高い光反射率を得ようと考えた。
そこで、反射電極を形成した第1基板と、透明電極上に第2絶縁膜、第2無機配向膜を順次積層した第2基板と、を備えた構成を前提として、透明電極の光学膜厚rtを220≦rt≦276と設定し、第2無機配向膜の光学膜厚r4を50≦r4≦150と設定し、第2絶縁膜の光学膜厚を変化させたときの光の波長域毎の光透過率をシミュレーションによって求めた。その結果、上述した液晶層、透明電極、第2絶縁膜、第2無機配向膜の各屈折率の大小関係に応じて、第2無機配向膜の光学膜厚を所定の値に設定した上で第2絶縁膜の光学膜厚を上記(3)式、または(4)式の条件を満足する値に設定すれば、いずれの波長域においても比較的高い光透過率が得られ、かつ、各色光の光透過率の差が比較的小さくなることを見出した。具体的なシミュレーション結果については後述する。
The present inventor optimizes not only the above-mentioned configuration on the first substrate side but also the light transmittance on the second substrate side having light transmittance, so that the entire liquid crystal device is uniform and high regardless of the wavelength range. I wanted to get light reflectivity.
Therefore, on the premise of a configuration including a first substrate on which a reflective electrode is formed and a second substrate in which a second insulating film and a second inorganic alignment film are sequentially stacked on the transparent electrode, the optical film thickness rt of the transparent electrode is assumed. Is set to 220 ≦ rt ≦ 276, the optical film thickness r4 of the second inorganic alignment film is set to 50 ≦ r4 ≦ 150, and the optical film thickness of the second insulating film is changed for each wavelength region of light. The light transmittance was determined by simulation. As a result, after setting the optical film thickness of the second inorganic alignment film to a predetermined value in accordance with the magnitude relationship of the refractive indexes of the liquid crystal layer, the transparent electrode, the second insulating film, and the second inorganic alignment film described above. If the optical film thickness of the second insulating film is set to a value satisfying the condition of the above formula (3) or (4), a relatively high light transmittance can be obtained in any wavelength range, and each color It has been found that the difference in light transmittance is relatively small. Specific simulation results will be described later.

以上の構成とすることにより、美しい白表示や良好な色バランス、明るい表示を実現可能な液晶装置が得られる。また、本発明の第3、第4の液晶装置の構成によれば、透明電極上に1層の絶縁膜のみを形成すれば済むため、複数の誘電体層を必要とする上記特許文献1の構成に比べて製造コストを低減できる。また、第2絶縁膜が比較的厚い絶縁膜となるため、フリッカーや焼き付きの低減効果が十分に得られる。   With the above configuration, a liquid crystal device capable of realizing beautiful white display, good color balance, and bright display can be obtained. Further, according to the configurations of the third and fourth liquid crystal devices of the present invention, since only one insulating film needs to be formed on the transparent electrode, the above-mentioned Patent Document 1 that requires a plurality of dielectric layers is required. Manufacturing costs can be reduced compared to the configuration. In addition, since the second insulating film becomes a relatively thick insulating film, the effect of reducing flicker and image sticking can be sufficiently obtained.

本発明の第3の液晶装置において、前記第2無機配向膜は、基板法線方向から見た屈折率が異方性を有し、2つの屈折率のうちの大きい方の屈折率をn4maxとしたときに、nt>nlc>n4max>n3の関係を満たす構成であっても良い。
例えば第2無機配向膜を斜方蒸着法で形成した場合など、基板法線方向から見た屈折率が異方性を有する場合がある。その場合、大きい方の屈折率n4maxがnt>nlc>n4max>n3の関係を満たしさえすれば、必然的に平均の屈折率n4はnt>nlc>n4>n3の関係を満たすことになる。したがって、複数の屈折率を把握しなくともよく、大きい方の屈折率だけを把握すればよいため、製造条件等の設定が容易になる。
In the third liquid crystal device of the present invention, the second inorganic alignment film has an anisotropy in refractive index viewed from the normal direction of the substrate, and the larger refractive index of the two refractive indexes is n4max. In this case, a configuration satisfying the relationship of nt>nlc>n4max> n3 may be used.
For example, when the second inorganic alignment film is formed by oblique deposition, the refractive index viewed from the normal direction of the substrate may have anisotropy. In that case, as long as the larger refractive index n4max satisfies the relationship of nt>nlc>n4max> n3, the average refractive index n4 necessarily satisfies the relationship of nt>nlc>n4> n3. Therefore, it is not necessary to grasp a plurality of refractive indexes, and it is only necessary to grasp the larger refractive index, so that the manufacturing conditions and the like can be easily set.

同様に、本発明の第4の液晶装置において、前記第2無機配向膜は、基板法線方向から見た屈折率が異方性を有し、2つの屈折率のうちの大きい方の屈折率をn4maxとしたときに、nt>nlc>n3>n4maxの関係を満たす構成であっても良い。   Similarly, in the fourth liquid crystal device of the present invention, the second inorganic alignment film has an anisotropy in refractive index viewed from the normal direction of the substrate, and the larger refractive index of the two refractive indexes. It may be a configuration satisfying the relationship of nt> nlc> n3> n4max, where n4max is set.

本発明の第1〜第4の液晶装置において、前記第1絶縁膜もしくは前記第2絶縁膜が、CVD法もしくは蒸着法で形成されたシリコン酸化膜であり、前記第1無機配向膜もしくは前記第2無機配向膜が、斜方蒸着法で形成されたシリコン酸化膜であっても良い。
この構成によれば、一般的な材料、一般的な手法を用いて本発明の構成を容易に実現することができ、低コスト化に寄与できる。
In the first to fourth liquid crystal devices of the present invention, the first insulating film or the second insulating film is a silicon oxide film formed by a CVD method or a vapor deposition method, and the first inorganic alignment film or the first insulating film is formed. 2 The inorganic alignment film may be a silicon oxide film formed by oblique vapor deposition.
According to this configuration, the configuration of the present invention can be easily realized by using a general material and a general method, which can contribute to cost reduction.

本発明のプロジェクターは、光源と、前記光源からの光を変調する光変調素子と、前記光変調素子によって形成された画像を投射する投射光学系と、を備え、前記光変調素子が、本発明の液晶装置で構成されたことを特徴とする。
この構成によれば、光変調素子が、均一で高い光反射率を有する本発明の液晶装置で構成されているため、表示品位に優れたプロジェクターを実現することができる。
The projector of the present invention includes a light source, a light modulation element that modulates light from the light source, and a projection optical system that projects an image formed by the light modulation element, and the light modulation element is the present invention. It is characterized by comprising the above liquid crystal device.
According to this configuration, since the light modulation element includes the liquid crystal device of the present invention having a uniform and high light reflectance, a projector having excellent display quality can be realized.

本発明の第1実施形態の液晶装置を示す断面図である。It is sectional drawing which shows the liquid crystal device of 1st Embodiment of this invention. 同、液晶装置の第1無機配向膜の屈折率異方性を説明する図である。It is a figure explaining the refractive index anisotropy of the 1st inorganic alignment film of a liquid crystal device similarly. 第1絶縁膜の有無で光反射率の波長依存性を比較したグラフである。It is the graph which compared the wavelength dependence of the light reflectivity by the presence or absence of the 1st insulating film. 所定の第1無機配向膜厚における光反射率の第1絶縁膜厚依存性を示すグラフである。It is a graph which shows the 1st insulating film thickness dependence of the light reflectivity in predetermined | prescribed 1st inorganic alignment film thickness. 図4とは異なる第1無機配向膜厚における光反射率の第1絶縁膜厚依存性を示すグラフである。It is a graph which shows the 1st insulating film thickness dependence of the light reflectivity in the 1st inorganic orientation film thickness different from FIG. 図4とは異なる第1無機配向膜厚における光反射率の第1絶縁膜厚依存性を示すグラフである。It is a graph which shows the 1st insulating film thickness dependence of the light reflectivity in the 1st inorganic orientation film thickness different from FIG. 最適な光反射率が得られる第1無機配向膜厚と第1絶縁膜厚との関係を示すグラフである。It is a graph which shows the relationship between the 1st inorganic orientation film thickness and the 1st insulating film thickness from which an optimal light reflectance is obtained. 本発明の第2実施形態の液晶装置を示す断面図である。It is sectional drawing which shows the liquid crystal device of 2nd Embodiment of this invention. 同、液晶装置の第1無機配向膜の屈折率異方性を説明する図である。It is a figure explaining the refractive index anisotropy of the 1st inorganic alignment film of a liquid crystal device similarly. 第1絶縁膜の有無で光反射率の波長依存性を比較したグラフである。It is the graph which compared the wavelength dependence of the light reflectivity by the presence or absence of the 1st insulating film. 所定の第1無機配向膜厚における光反射率の第1絶縁膜厚依存性を示すグラフである。It is a graph which shows the 1st insulating film thickness dependence of the light reflectivity in predetermined | prescribed 1st inorganic alignment film thickness. 図11とは異なる第1無機配向膜厚における光反射率の第1絶縁膜厚依存性を示すグラフである。It is a graph which shows the 1st insulating film thickness dependence of the light reflectivity in the 1st inorganic orientation film thickness different from FIG. 図11とは異なる第1無機配向膜厚における光反射率の第1絶縁膜厚依存性を示すグラフである。It is a graph which shows the 1st insulating film thickness dependence of the light reflectivity in the 1st inorganic orientation film thickness different from FIG. 最適な光反射率が得られる第1無機配向膜厚と第1絶縁膜厚との関係を示すグラフである。It is a graph which shows the relationship between the 1st inorganic orientation film thickness and the 1st insulating film thickness from which an optimal light reflectance is obtained. 本発明の第3実施形態の液晶装置を示す断面図である。It is sectional drawing which shows the liquid crystal device of 3rd Embodiment of this invention. 第2絶縁膜の有無で光透過率の波長依存性を比較したグラフである。It is the graph which compared the wavelength dependence of the light transmittance with the presence or absence of the 2nd insulating film. 所定の第2無機配向膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in predetermined | prescribed 2nd inorganic orientation film thickness. 図17とは異なる第2無機配向膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulating film thickness dependence of the light transmittance in the 2nd inorganic orientation film thickness different from FIG. 図17とは異なる第2無機配向膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulating film thickness dependence of the light transmittance in the 2nd inorganic orientation film thickness different from FIG. 最適な光透過率が得られる第2無機配向膜厚と第2絶縁膜厚との関係を示すグラフである。It is a graph which shows the relationship between the 2nd inorganic alignment film thickness and 2nd insulating film thickness in which optimal light transmittance is obtained. 所定の第2無機配向膜厚、所定の透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in a predetermined 2nd inorganic orientation film thickness and a predetermined transparent electrode film thickness. 図21とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 図21とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 図21とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 図21とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 図21〜図25とは異なる第2無機配向膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulating film thickness dependence of the light transmittance in the 2nd inorganic orientation film thickness different from FIGS. 図26とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 図26とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 図26とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 図26とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 図26とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 図21〜図25とは異なる第2無機配向膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulating film thickness dependence of the light transmittance in the 2nd inorganic orientation film thickness different from FIGS. 図32とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 図32とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 図32とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 図32とは異なる透明電極膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the transparent electrode film thickness different from FIG. 本発明の第4実施形態の液晶装置を示す断面図である。It is sectional drawing which shows the liquid crystal device of 4th Embodiment of this invention. 第2絶縁膜の有無で光透過率の波長依存性を比較したグラフである。It is the graph which compared the wavelength dependence of the light transmittance with the presence or absence of the 2nd insulating film. 所定の第2無機配向膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in predetermined | prescribed 2nd inorganic orientation film thickness. 図39とは異なる第2無機配向膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the 2nd inorganic orientation film thickness different from FIG. 図39とは異なる第2無機配向膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。It is a graph which shows the 2nd insulation film thickness dependence of the light transmittance in the 2nd inorganic orientation film thickness different from FIG. 最適な光透過率が得られる第2無機配向膜厚と第2絶縁膜厚との関係を示すグラフである。It is a graph which shows the relationship between the 2nd inorganic alignment film thickness and 2nd insulating film thickness in which optimal light transmittance is obtained. 本発明のプロジェクターの一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the projector of this invention.

[第1実施形態]
以下、本発明の第1実施形態について図1〜図7を用いて説明する。
本実施形態の液晶装置は、第2基板側から入射した光を第1基板側で反射させ、再度第2基板側から射出させて表示を行う反射型液晶装置の例である。
また、以下の第1、第2実施形態は、反射電極が配置された側の第1基板の構成を最適化した例である。
図1は、本実施形態の液晶装置を示す断面図である。図2は、第1無機配向膜の屈折率異方性を説明するための図である。図3は、第1絶縁膜の有無で光反射率の波長依存性を比較したグラフである。図4〜図6は、3つの異なる第1無機配向膜厚における光反射率の第1絶縁膜厚依存性を示すグラフである。図7は、最適な光反射率が得られる第1無機配向膜厚と第1絶縁膜厚との関係を示すグラフである。
なお、以下の各図面においては、各構成要素を見やすくするため、構成要素によって寸法や縮尺を変えて示すことがある。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
The liquid crystal device of the present embodiment is an example of a reflective liquid crystal device that performs display by reflecting light incident from the second substrate side on the first substrate side and then emitting it again from the second substrate side.
Further, the following first and second embodiments are examples in which the configuration of the first substrate on the side where the reflective electrodes are arranged is optimized.
FIG. 1 is a cross-sectional view showing the liquid crystal device of this embodiment. FIG. 2 is a diagram for explaining the refractive index anisotropy of the first inorganic alignment film. FIG. 3 is a graph comparing the wavelength dependence of the light reflectance with and without the first insulating film. 4 to 6 are graphs showing the first insulating film thickness dependence of the light reflectance at three different first inorganic alignment film thicknesses. FIG. 7 is a graph showing the relationship between the first inorganic alignment film thickness and the first insulating film thickness that provide the optimum light reflectance.
In the following drawings, in order to make each component easy to see, the dimensions and scale may be changed depending on the component.

本実施形態の液晶装置31は、図1に示すように、素子基板を構成する第1基板1と、第1基板1に対向配置された対向基板を構成する、光透過性を有する第2基板2と、第1基板1と第2基板2との間に挟持された液晶層3と、を備えている。第1基板1は光透過性を有していても有していなくても良く、例えば光透過性を有するガラス基板等の他、光透過性を有していないシリコン基板等を用いても良い。第2基板2には、光透過性を有するガラス基板、石英基板等を用いる。本実施形態では、第1基板1を構成する素子基板として、画素スイッチング素子に薄膜トランジスタ(Thin Film Transistor, 以下、TFTと略記する)を採用したTFT基板を用いるが、図1においてはソース線(信号線)、ゲート線(走査線)、TFT等の図示を省略する。   As shown in FIG. 1, the liquid crystal device 31 according to the present embodiment includes a first substrate 1 that constitutes an element substrate and a second substrate having optical transparency that constitutes a counter substrate disposed opposite to the first substrate 1. 2 and a liquid crystal layer 3 sandwiched between a first substrate 1 and a second substrate 2. The first substrate 1 may or may not have light transparency. For example, a glass substrate having light transparency or a silicon substrate having no light transparency may be used. . As the second substrate 2, a light transmissive glass substrate, a quartz substrate, or the like is used. In the present embodiment, a TFT substrate employing a thin film transistor (hereinafter abbreviated as TFT) as a pixel switching element is used as an element substrate constituting the first substrate 1, but in FIG. (Line), gate line (scanning line), TFT, etc. are not shown.

第1基板1の第2基板2に対向する側の面に、反射電極4が形成されている。反射電極4の材料には、例えば光反射率が高いアルミニウム等の金属を用いることが好ましい。反射電極4上に、第1絶縁膜5、第1無機配向膜6が基板側からこの順に積層されている。   A reflective electrode 4 is formed on the surface of the first substrate 1 facing the second substrate 2. As the material of the reflective electrode 4, it is preferable to use a metal such as aluminum having a high light reflectance. On the reflective electrode 4, the 1st insulating film 5 and the 1st inorganic alignment film 6 are laminated | stacked in this order from the board | substrate side.

本実施形態では、第1絶縁膜5として、シリコン酸化膜(SiO)をプラズマCVD法により形成したものを用いる。なお、プラズマCVD法に限らず、常圧CVD法、低圧CVD法等より形成したものを用いても良い。第1絶縁膜5の実膜厚(物理的膜厚)d1は、好ましくは150nm≦d1≦280nm、一例として225nm、とする。第1絶縁膜5の屈折率n1は、1.460とする。 In the present embodiment, a silicon oxide film (SiO 2 ) formed by a plasma CVD method is used as the first insulating film 5. Note that not only the plasma CVD method but also a method formed by an atmospheric pressure CVD method, a low pressure CVD method, or the like may be used. The actual film thickness (physical film thickness) d1 of the first insulating film 5 is preferably 150 nm ≦ d1 ≦ 280 nm, for example, 225 nm. The refractive index n1 of the first insulating film 5 is 1.460.

第1無機配向膜6には、シリコン酸化膜(SiO)を斜方蒸着法により形成したものを用いる。斜方蒸着の条件は、真空度を5×10−3Paとし、基板法線方向からX軸方向(図1参照)に50度傾いた方向から蒸着を行う。斜方蒸着により無機配向膜を形成すると、図2に示すように、基板法線方向から見た(Z軸方向に無限大の位置から見た)ときに楕円状の屈折率異方性が生じる。X軸方向の屈折率(X軸方向に振動する偏光が感じる屈折率)nxは1.463(=n2max)、Y軸方向の屈折率(Y軸方向に振動する偏光が感じる屈折率)nyは1.461(=n2min)、とする。よって、第1無機配向膜6の平均屈折率n2は1.462である。第1無機配向膜6の実膜厚(物理的膜厚)d2は、好ましくは30nm≦d2≦100nm、一例として60nm、とする。 As the first inorganic alignment film 6, a silicon oxide film (SiO 2 ) formed by oblique deposition is used. The conditions for oblique vapor deposition are that the degree of vacuum is 5 × 10 −3 Pa, and vapor deposition is performed from a direction inclined by 50 degrees from the substrate normal direction to the X-axis direction (see FIG. 1). When an inorganic alignment film is formed by oblique deposition, an elliptical refractive index anisotropy occurs when viewed from the substrate normal direction (viewed from an infinite position in the Z-axis direction) as shown in FIG. . The refractive index in the X-axis direction (refractive index felt by polarized light vibrating in the X-axis direction) nx is 1.463 (= n2max), and the refractive index in the Y-axis direction (refractive index felt by polarized light vibrating in the Y-axis direction) ny is 1.461 (= n2 min). Therefore, the average refractive index n2 of the first inorganic alignment film 6 is 1.462. The actual film thickness (physical film thickness) d2 of the first inorganic alignment film 6 is preferably 30 nm ≦ d2 ≦ 100 nm, for example, 60 nm.

液晶層3の屈折率nlcは、nlc=(ne+2×no)/3(ne:異常光屈折率、no:常光屈折率)で求められ、1.52とする。したがって、本実施形態の場合、液晶層3の屈折率nlc、第1絶縁膜5の屈折率n1、第1無機配向膜6の屈折率n2の大小関係は、nlc>n2>n1となる。また、第1無機配向膜6の光学膜厚をr2とすると、r2=n2×d2であるから、r2は略44≦r2≦146となる。なお、本実施形態の場合、第1無機配向膜6の屈折率は異方性を有しているが、平均屈折率n2が上記の大小関係を満たせばよいため、第1無機配向膜6の小さい方の屈折率n2min(ny)は第1絶縁膜5の屈折率n1より小さくても良い。   The refractive index nlc of the liquid crystal layer 3 is determined by nlc = (ne + 2 × no) / 3 (ne: extraordinary light refractive index, no: ordinary light refractive index), and is 1.52. Therefore, in the present embodiment, the magnitude relationship among the refractive index nlc of the liquid crystal layer 3, the refractive index n1 of the first insulating film 5, and the refractive index n2 of the first inorganic alignment film 6 is nlc> n2> n1. Further, when the optical film thickness of the first inorganic alignment film 6 is r2, r2 = n2 × d2, and therefore r2 is approximately 44 ≦ r2 ≦ 146. In the present embodiment, the refractive index of the first inorganic alignment film 6 has anisotropy. However, since the average refractive index n2 only needs to satisfy the above magnitude relationship, The smaller refractive index n2min (ny) may be smaller than the refractive index n1 of the first insulating film 5.

一方、第2基板2の第1基板1に対向する側の面に、透明電極7が形成されている。透明電極7上には、第2無機配向膜8が形成されている。本実施形態の場合、透明電極7の材料にはITOが用いられる。また、第2無機配向膜8には、第1基板1側の第1無機配向膜6と同様、斜方蒸着法によるシリコン酸化膜が用いられる。斜方蒸着の条件も第1無機配向膜6と同じくすることが好ましいが、異なっていても良い。   On the other hand, a transparent electrode 7 is formed on the surface of the second substrate 2 facing the first substrate 1. A second inorganic alignment film 8 is formed on the transparent electrode 7. In the present embodiment, ITO is used as the material of the transparent electrode 7. The second inorganic alignment film 8 is a silicon oxide film formed by oblique vapor deposition as in the case of the first inorganic alignment film 6 on the first substrate 1 side. The oblique deposition conditions are preferably the same as those of the first inorganic alignment film 6, but may be different.

ここで、本発明者は、第1絶縁膜5が有る場合と無い場合とで光反射率の波長依存性を比較するシミュレーションを行った。その結果を図3に示す。図3において、横軸は光の波長[nm]、縦軸は液晶媒質中での光反射率[%]、である。破線の曲線は第1絶縁膜5が無い場合、実線の曲線は第1絶縁膜5が有る場合(実膜厚d1=225nm)、を示す。   Here, the present inventor performed a simulation for comparing the wavelength dependence of the light reflectance with and without the first insulating film 5. The result is shown in FIG. In FIG. 3, the horizontal axis represents the light wavelength [nm], and the vertical axis represents the light reflectance [%] in the liquid crystal medium. The dashed curve indicates the case without the first insulating film 5, and the solid curve indicates the case with the first insulating film 5 (actual film thickness d1 = 225 nm).

波長550nm(緑色光)の領域で見る限り、第1絶縁膜5が有っても無くても光反射率は殆ど変わらない。ところが、波長460nm(青色光)の領域と波長620nm(赤色光)の領域を見ると、第1絶縁膜5が有る場合の方が、第1絶縁膜5が無い場合に比べて波長460nmでの光反射率と波長620nmでの光反射率とが近い値をとる。すなわち、第1絶縁膜5が有る場合の方が、第1絶縁膜5が無い場合に比べてフラットな分光特性をとる。このことから、可視光領域に相当する広い波長域にわたって均一な光反射率を得るという観点では、第1絶縁膜5が無いよりも第1絶縁膜5が有る方が有利であることが判った。   As long as the wavelength is 550 nm (green light), the light reflectance is almost the same regardless of whether or not the first insulating film 5 is present. However, looking at the region of wavelength 460 nm (blue light) and the region of wavelength 620 nm (red light), when the first insulating film 5 is present, the wavelength at 460 nm is greater than when the first insulating film 5 is absent. The light reflectance and the light reflectance at a wavelength of 620 nm are close to each other. That is, flat spectral characteristics are obtained when the first insulating film 5 is provided, compared to when the first insulating film 5 is not provided. From this, it was found that the first insulating film 5 is more advantageous than the absence of the first insulating film 5 from the viewpoint of obtaining a uniform light reflectance over a wide wavelength range corresponding to the visible light region. .

次に、第1無機配向膜6の膜厚を変え、各膜厚における光反射率の第1絶縁膜厚依存性を比較するシミュレーションを行った。その結果を図4〜図6に示す。図4〜図6において、横軸は第1絶縁膜の物理的膜厚[nm]、縦軸は液晶媒質中での光反射率[%]、である。実線の曲線は波長460nmの光(青色光)に対する光反射率、破線の曲線は波長550nmの光(緑色光)に対する光反射率、2点鎖線の曲線は波長620nmの光(赤色光)に対する光反射率、を示す。図4は第1無機配向膜6の物理的膜厚が30nm、図5は第1無機配向膜6の物理的膜厚が65nm、図6は第1無機配向膜6の物理的膜厚が100nm、の場合である。   Next, a simulation was performed in which the film thickness of the first inorganic alignment film 6 was changed and the dependence of the light reflectance at each film thickness on the first insulating film thickness was compared. The results are shown in FIGS. 4 to 6, the horizontal axis represents the physical thickness [nm] of the first insulating film, and the vertical axis represents the light reflectance [%] in the liquid crystal medium. The solid curve is the light reflectance for light with a wavelength of 460 nm (blue light), the dashed curve is the light reflectance for light with a wavelength of 550 nm (green light), and the two-dot chain curve is the light for light with a wavelength of 620 nm (red light). Reflectivity. 4 shows a physical film thickness of the first inorganic alignment film 6 of 30 nm, FIG. 5 shows a physical film thickness of the first inorganic alignment film 6 of 65 nm, and FIG. 6 shows a physical film thickness of the first inorganic alignment film 6 of 100 nm. This is the case.

図4〜図6から明らかなように、各場合とも共通して、光反射率は、第1無機配向膜6の物理的膜厚の変化に伴い、平均値を中心として極大値、極小値を取りながら滑らかに変化する。全体的に、波長460nmの光(青色光)に対する光反射率が最も高いレベルにあり、波長550nmの光(緑色光)、波長620nmの光(赤色光)の順に光反射率が低下する。   As apparent from FIGS. 4 to 6, in each case, the light reflectance has a maximum value and a minimum value centered on the average value as the physical film thickness of the first inorganic alignment film 6 changes. It changes smoothly while taking. Overall, the light reflectance for light with a wavelength of 460 nm (blue light) is at the highest level, and the light reflectance decreases in the order of light with a wavelength of 550 nm (green light) and light with a wavelength of 620 nm (red light).

本実施形態において、第1絶縁膜5の膜厚の最適な範囲とは、光反射率が最も低い波長620nmの光(赤色光)における光反射率がその平均値(86%)以上の領域であり、かつ、人間の目の視感度が最も高い波長550nmの光(緑色光)における光反射率がその平均値(87.6%)以上の領域であり、かつ、波長460nmの光(青色光)における光反射率が低下して波長620nmの光(赤色光)および波長550nmの光(緑色光)における光反射率に最も近付いている領域、と定義する。   In the present embodiment, the optimum range of the film thickness of the first insulating film 5 is an area where the light reflectance of light (red light) having a wavelength 620 nm having the lowest light reflectance is equal to or greater than the average value (86%). In addition, the light reflectance of light with a wavelength of 550 nm (green light) having the highest visual sensitivity of the human eye is in an area where the average value (87.6%) or more and light with a wavelength of 460 nm (blue light) ) Is defined as a region that is closest to the light reflectance of light having a wavelength of 620 nm (red light) and light having a wavelength of 550 nm (green light).

この観点で判断すると、図4に示す第1無機配向膜6の膜厚d2が30nmの場合、第1絶縁膜5の膜厚の最適範囲d1は220nm≦d1≦280nm、図5に示す第1無機配向膜6の膜厚d2が65nmの場合、第1絶縁膜5の膜厚の最適範囲d1は180nm≦d1≦250nm、図6に示す第1無機配向膜6の膜厚d2が100nmの場合、第1絶縁膜5の膜厚の最適範囲d1は150nm≦d1≦220nm、となる。このように、第1無機配向膜6の膜厚d2が大きくなるのに伴って、第1絶縁膜5の膜厚d1の最適範囲は小さい側にシフトする。   Judging from this viewpoint, when the film thickness d2 of the first inorganic alignment film 6 shown in FIG. 4 is 30 nm, the optimum film thickness d1 of the first insulating film 5 is 220 nm ≦ d1 ≦ 280 nm, which is shown in FIG. When the thickness d2 of the inorganic alignment film 6 is 65 nm, the optimum range d1 of the thickness of the first insulating film 5 is 180 nm ≦ d1 ≦ 250 nm, and the thickness d2 of the first inorganic alignment film 6 shown in FIG. The optimum range d1 of the film thickness of the first insulating film 5 is 150 nm ≦ d1 ≦ 220 nm. Thus, as the film thickness d2 of the first inorganic alignment film 6 increases, the optimum range of the film thickness d1 of the first insulating film 5 shifts to the smaller side.

そこで、第1無機配向膜6の膜厚d2と第1絶縁膜5の膜厚d1の最適な組み合わせを示したのが図7である。図7において、横軸は第1無機配向膜6の光学膜厚[nm]、縦軸は第1絶縁膜5の光学膜厚[nm]、である。ここでは、横軸、縦軸ともに、各膜の屈折率と物理的膜厚との積である光学膜厚を用いた。すなわち、第1絶縁膜5の光学膜厚r1は、r1=n1×d1で表わされ、第1無機配向膜6の光学膜厚r2は、r2=n2×d2で表わされる。   FIG. 7 shows an optimum combination of the film thickness d2 of the first inorganic alignment film 6 and the film thickness d1 of the first insulating film 5. In FIG. 7, the horizontal axis represents the optical film thickness [nm] of the first inorganic alignment film 6, and the vertical axis represents the optical film thickness [nm] of the first insulating film 5. Here, the optical film thickness which is the product of the refractive index of each film and the physical film thickness is used for both the horizontal axis and the vertical axis. That is, the optical film thickness r1 of the first insulating film 5 is represented by r1 = n1 × d1, and the optical film thickness r2 of the first inorganic alignment film 6 is represented by r2 = n2 × d2.

図4〜図6の最適範囲を図7上に書き表すと、その最適範囲は、第1無機配向膜6の光学膜厚r2を通常用いる範囲である50≦r2≦150の範囲に設定したとき、2点鎖線と実線の2本の直線で挟まれた斜線を付した領域となる。斜線を付した領域を数式で表すと、第1絶縁膜5の光学膜厚r1の最適範囲は、
−1.0173×r2+367.29≦r1≦−1.0197×r2+463.34…(1)
となる。
When the optimal range of FIGS. 4 to 6 is written on FIG. 7, the optimal range is set when the optical film thickness r2 of the first inorganic alignment film 6 is set to a range of 50 ≦ r2 ≦ 150, which is a range that is normally used. This is a hatched area sandwiched between two straight lines, a two-dot chain line and a solid line. When the hatched region is expressed by a mathematical expression, the optimum range of the optical film thickness r1 of the first insulating film 5 is
−1.0173 × r2 + 367.29 ≦ r1 ≦ −1.0197 × r2 + 463.34 (1)
It becomes.

本実施形態の液晶装置31によれば、上述したように、反射電極4上に位置する第1絶縁膜5の光学膜厚r1および第1無機配向膜6の光学膜厚r2が最適化されているので、可視光領域のいずれの波長域においても比較的高い光反射率が得られ、かつ、各波長域での光反射率が比較的均一になる。これにより、美しい白表示や良好な色バランス、明るい表示を実現可能な液晶装置が実現できる。また、反射電極4上に1層の絶縁膜のみを形成すれば済むため、低コスト化を図ることができる。また、第1絶縁膜5の物理的膜厚が150nm〜280nm程度となり、比較的厚い絶縁膜となるため、フリッカーや焼き付きを十分に低減できる。   According to the liquid crystal device 31 of the present embodiment, as described above, the optical film thickness r1 of the first insulating film 5 and the optical film thickness r2 of the first inorganic alignment film 6 positioned on the reflective electrode 4 are optimized. Therefore, a relatively high light reflectance is obtained in any wavelength region of the visible light region, and the light reflectance in each wavelength region is relatively uniform. Thereby, a liquid crystal device capable of realizing beautiful white display, good color balance, and bright display can be realized. Further, since only one insulating film needs to be formed on the reflective electrode 4, the cost can be reduced. Moreover, since the physical film thickness of the first insulating film 5 is about 150 nm to 280 nm and becomes a relatively thick insulating film, flicker and image sticking can be sufficiently reduced.

[第2実施形態]
以下、本発明の第2実施形態について図8〜図14を用いて説明する。
本実施形態の液晶装置の基本構成は第1実施形態と同様であり、第1絶縁膜および第1無機配向膜の構成が第1実施形態と異なるのみである。
したがって、図8において図1と共通な構成要素には同一の符号を付し、詳細な説明は省略する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS.
The basic configuration of the liquid crystal device of this embodiment is the same as that of the first embodiment, and only the configurations of the first insulating film and the first inorganic alignment film are different from those of the first embodiment.
Therefore, in FIG. 8, the same reference numerals are given to the same components as those in FIG. 1, and detailed description will be omitted.

本実施形態の液晶装置32では、第1絶縁膜15として、第1実施形態と異なり、例えばプラズマCVD法による膜厚200nmのシリコン酸化膜(SiO)の上に蒸着法による膜厚15nmのシリコン酸化膜(SiO)を積層したものを用いる。なお、下層側のプラズマCVD法によるシリコン酸化膜は、必ずしもプラズマCVD法に限らず、常圧CVD法、低圧CVD法等より形成したものを用いても良い。したがって、第1絶縁膜15の実膜厚(物理的膜厚)d1は全体で215nmとなる。第1絶縁膜15の実膜厚(物理的膜厚)d1は、150nm≦d1≦270nmとするのが好ましい。第1絶縁膜15の屈折率(平均屈折率)n1は1.46とする。 In the liquid crystal device 32 of the present embodiment, unlike the first embodiment, as the first insulating film 15, for example, a silicon film having a film thickness of 15 nm formed by vapor deposition on a silicon oxide film (SiO 2 ) formed by plasma CVD method having a film thickness of 200 nm. A stacked layer of oxide films (SiO 2 ) is used. Note that the silicon oxide film formed by the plasma CVD method on the lower layer side is not necessarily limited to the plasma CVD method but may be formed by an atmospheric pressure CVD method, a low pressure CVD method, or the like. Therefore, the actual film thickness (physical film thickness) d1 of the first insulating film 15 is 215 nm as a whole. The actual film thickness (physical film thickness) d1 of the first insulating film 15 is preferably 150 nm ≦ d1 ≦ 270 nm. The refractive index (average refractive index) n1 of the first insulating film 15 is 1.46.

第1無機配向膜16としては、シリコン酸化膜(SiO)を斜方蒸着法により形成したものを用いる。斜方蒸着の条件は第1実施形態と異なり、真空度を5×10−3Paとし、基板法線方向からX軸方向(図8参照)に45度傾いた方向から蒸着を行う。斜方蒸着により無機配向膜を形成すると、図9に示すように、基板法線方向から見た(Z軸方向に無限大の位置から見た)ときに楕円状の屈折率異方性が生じる。X軸方向の屈折率(X軸方向に振動する偏光が感じる屈折率)nxは1.40(=n2min)、Y軸方向の屈折率(Y軸方向に振動する偏光が感じる屈折率)nyは1.42(=n2max)、とする。よって、第1無機配向膜16の平均屈折率n2は1.41である。第1無機配向膜16の実膜厚(物理的膜厚)d2は、好ましくは30nm≦d2≦100nm、一例として60nm、とする。 As the first inorganic alignment film 16, a silicon oxide film (SiO 2 ) formed by oblique deposition is used. The oblique vapor deposition conditions are different from the first embodiment, and the degree of vacuum is 5 × 10 −3 Pa, and the vapor deposition is performed from a direction inclined 45 degrees from the substrate normal direction to the X-axis direction (see FIG. 8). When an inorganic alignment film is formed by oblique deposition, an elliptical refractive index anisotropy occurs when viewed from the substrate normal direction (viewed from an infinite position in the Z-axis direction) as shown in FIG. . The refractive index in the X-axis direction (refractive index felt by polarized light vibrating in the X-axis direction) nx is 1.40 (= n2 min), and the refractive index in the Y-axis direction (refractive index felt by polarized light vibrating in the Y-axis direction) ny is It is assumed that 1.42 (= n2max). Therefore, the average refractive index n2 of the first inorganic alignment film 16 is 1.41. The actual film thickness (physical film thickness) d2 of the first inorganic alignment film 16 is preferably 30 nm ≦ d2 ≦ 100 nm, for example, 60 nm.

液晶層3の屈折率nlcは、nlc=(ne+2×no)/3(ne:異常光屈折率、no:常光屈折率)で求められ、nlcは1.52とする。したがって、本実施形態の場合、液晶層3の屈折率nlc、第1絶縁膜15の屈折率n1、第1無機配向膜16の屈折率n2の大小関係は、nlc>n1>n2となる。また、第1無機配向膜16の光学膜厚をr2とすると、r2=n2×d2であるから、r2は略42≦r2≦141となる。なお、本実施形態の場合、第1無機配向膜16の平均屈折率n2が上記の大小関係を満たせばよいため、第1無機配向膜16の大きい方の屈折率n2max(ny)は第1絶縁膜15の屈折率n1より大きくても良い。   The refractive index nlc of the liquid crystal layer 3 is obtained by nlc = (ne + 2 × no) / 3 (ne: extraordinary light refractive index, no: ordinary light refractive index), and nlc is 1.52. Therefore, in this embodiment, the magnitude relationship among the refractive index nlc of the liquid crystal layer 3, the refractive index n1 of the first insulating film 15, and the refractive index n2 of the first inorganic alignment film 16 is nlc> n1> n2. Also, assuming that the optical film thickness of the first inorganic alignment film 16 is r2, r2 = n2 × d2, so that r2 is approximately 42 ≦ r2 ≦ 141. In the present embodiment, since the average refractive index n2 of the first inorganic alignment film 16 only needs to satisfy the above magnitude relationship, the larger refractive index n2max (ny) of the first inorganic alignment film 16 is the first insulation. The refractive index n1 of the film 15 may be larger.

第1実施形態と同様、本発明者は、第1絶縁膜15が有る場合と無い場合とで光反射率の波長依存性を比較するシミュレーションを行った。その結果を図10に示す。図10において、横軸は光の波長[nm]、縦軸は液晶媒質中での光反射率[%]、である。破線の曲線は第1絶縁膜15が無い場合、実線の曲線は第1絶縁膜15が有る場合(実膜厚d1=215nm)、を示す。   Similar to the first embodiment, the present inventor performed a simulation for comparing the wavelength dependence of the light reflectance with and without the first insulating film 15. The result is shown in FIG. In FIG. 10, the horizontal axis represents the light wavelength [nm], and the vertical axis represents the light reflectance [%] in the liquid crystal medium. A broken line curve indicates the case where the first insulating film 15 is not provided, and a solid line curve indicates the case where the first insulating film 15 is provided (actual film thickness d1 = 215 nm).

波長550nm(緑色光)の領域では、第1絶縁膜15が有っても無くても光反射率は殆ど変わらない。ところが、波長460nm(青色光)の領域と波長620nm(赤色光)の領域を見ると、第1絶縁膜15が有る場合の方が、第1絶縁膜15が無い場合に比べて波長460nmでの光反射率と波長620nmでの光反射率とが近い値をとる。すなわち、第1絶縁膜15が有る場合の方が、第1絶縁膜15が無い場合に比べてフラットな分光特性をとる。このことから、第1絶縁膜15が無いよりも第1絶縁膜15が有る方が有利であることが判った。また、本実施形態では、第1実施形態よりもさらに各波長での光反射率の値が近く、よりフラットな分光特性を取る。したがって、第1無機配向膜16の屈折率n2がより小さい方が、本発明の効果が大きくなることが判った。   In the region of a wavelength of 550 nm (green light), the light reflectance hardly changes even if the first insulating film 15 is present or absent. However, looking at the region of wavelength 460 nm (blue light) and the region of wavelength 620 nm (red light), the case where the first insulating film 15 is present is the wavelength at 460 nm compared to the case where the first insulating film 15 is not present. The light reflectance and the light reflectance at a wavelength of 620 nm are close to each other. That is, flat spectral characteristics are obtained when the first insulating film 15 is provided compared to when the first insulating film 15 is not provided. From this, it was found that the presence of the first insulating film 15 is more advantageous than the absence of the first insulating film 15. Further, in the present embodiment, the light reflectance value at each wavelength is further closer than in the first embodiment, and flatter spectral characteristics are obtained. Therefore, it has been found that the effect of the present invention is increased when the refractive index n2 of the first inorganic alignment film 16 is smaller.

次に、第1無機配向膜16の膜厚を変え、各膜厚における光反射率の第1絶縁膜厚依存性を比較するシミュレーションを行った。その結果を図11〜図13に示す。図11〜図13において、横軸は第1絶縁膜15の物理的膜厚[nm]、縦軸は液晶媒質中での光反射率[%]、である。実線の曲線は波長460nmの光(青色光)に対する光反射率、破線の曲線は波長550nmの光(緑色光)に対する光反射率、2点鎖線の曲線は波長620nmの光(赤色光)に対する光反射率、をそれぞれ示す。図11は第1無機配向膜16の膜厚が30nm、図12は第1無機配向膜16の膜厚が65nm、図13は第1無機配向膜16の膜厚が100nm、の場合である。   Next, a simulation was performed in which the film thickness of the first inorganic alignment film 16 was changed and the dependence of the light reflectance at each film thickness on the first insulating film thickness was compared. The results are shown in FIGS. 11 to 13, the horizontal axis represents the physical thickness [nm] of the first insulating film 15, and the vertical axis represents the light reflectance [%] in the liquid crystal medium. The solid curve is the light reflectance for light with a wavelength of 460 nm (blue light), the dashed curve is the light reflectance for light with a wavelength of 550 nm (green light), and the two-dot chain curve is the light for light with a wavelength of 620 nm (red light). The reflectance is shown respectively. 11 shows the case where the thickness of the first inorganic alignment film 16 is 30 nm, FIG. 12 shows the case where the thickness of the first inorganic alignment film 16 is 65 nm, and FIG. 13 shows the case where the thickness of the first inorganic alignment film 16 is 100 nm.

図11〜図13から明らかなように、光反射率の第1絶縁膜厚依存性は第1実施形態と同様の挙動を示すが、第1絶縁膜厚の増減に対する光反射率の変動が第1実施形態よりも大きくなっている。第1絶縁膜15の膜厚の最適な範囲を第1実施形態と同様に判断すると、図11に示す第1無機配向膜16の膜厚d2が30nmの場合、第1絶縁膜15の膜厚の最適範囲d1は200nm≦d1≦270nm、図12に示す第1無機配向膜16の膜厚d2が65nmの場合、第1絶縁膜15の膜厚の最適範囲d1は170nm≦d1≦250nm、図13に示す第1無機配向膜16の膜厚d2が100nmの場合、第1絶縁膜15の膜厚の最適範囲d1は150nm≦d1≦220nm、となる。   As apparent from FIGS. 11 to 13, the dependency of the light reflectance on the first insulating film thickness shows the same behavior as in the first embodiment, but the variation of the light reflectance with respect to the increase and decrease of the first insulating film thickness is the first. It is larger than one embodiment. If the optimum range of the film thickness of the first insulating film 15 is determined in the same manner as in the first embodiment, when the film thickness d2 of the first inorganic alignment film 16 shown in FIG. When the film thickness d2 of the first inorganic alignment film 16 shown in FIG. 12 is 65 nm, the film thickness d2 of the first insulating film 15 is 170 nm ≦ d1 ≦ 250 nm. When the film thickness d2 of the first inorganic alignment film 16 shown in FIG. 13 is 100 nm, the optimum film thickness d1 of the first insulating film 15 is 150 nm ≦ d1 ≦ 220 nm.

そこで、第1無機配向膜厚d2と第1絶縁膜厚d1の最適な組み合わせを示したのが図14である。図14において、横軸は第1無機配向膜の光学膜厚[nm]、縦軸は第1絶縁膜の光学膜厚[nm]、である。ここでは、横軸、縦軸ともに、各膜の屈折率と物理的膜厚との積である光学膜厚を用いた。すなわち、第1絶縁膜の光学膜厚r1は、r1=n1×d1で表わされ、第1無機配向膜の光学膜厚r2は、r2=n2×d2で表わされる。   FIG. 14 shows an optimal combination of the first inorganic alignment film thickness d2 and the first insulating film thickness d1. In FIG. 14, the horizontal axis represents the optical film thickness [nm] of the first inorganic alignment film, and the vertical axis represents the optical film thickness [nm] of the first insulating film. Here, the optical film thickness which is the product of the refractive index of each film and the physical film thickness is used for both the horizontal axis and the vertical axis. That is, the optical film thickness r1 of the first insulating film is represented by r1 = n1 × d1, and the optical film thickness r2 of the first inorganic alignment film is represented by r2 = n2 × d2.

図11〜図13の最適範囲を図14上に書き表すと、その最適範囲は、第1無機配向膜16の光学膜厚r2を通常用いる範囲である50≦r2≦150の範囲に設定したとき、2点鎖線と実線とで示す2本の直線で挟まれた斜線を付した領域となる。斜線を付した領域を数式で表すと、第1絶縁膜15の光学膜厚r1の最適範囲は、
−0.7651×r2+325.61≦r1≦−0.7587×r2+429.96…(2)
となる。
When the optimum range of FIGS. 11 to 13 is written on FIG. 14, the optimum range is set when the optical film thickness r2 of the first inorganic alignment film 16 is set to a range of 50 ≦ r2 ≦ 150, which is a range that is normally used. This is a hatched area sandwiched between two straight lines indicated by a two-dot chain line and a solid line. When the hatched region is expressed by a mathematical expression, the optimum range of the optical film thickness r1 of the first insulating film 15 is
−0.7651 × r2 + 325.61 ≦ r1 ≦ −0.7587 × r2 + 429.96 (2)
It becomes.

本実施形態の液晶装置32によれば、第1実施形態と同様、第1絶縁膜15の光学膜厚r1および第1無機配向膜16の光学膜厚r2が最適化されているので、いずれの波長域でも高い光反射率が得られ、かつ、各波長域での光反射率が均一になる。これにより、美しい白表示や良好な色バランス、明るい表示を実現可能な液晶装置が得られる。また、反射電極4上に1層の絶縁膜のみを形成すれば済むため、低コスト化を図ることができる。また、第1絶縁膜15の物理的膜厚が150nm〜270nm程度となり、比較的厚い絶縁膜となるため、フリッカーや焼き付きを十分に低減できる。   According to the liquid crystal device 32 of the present embodiment, as in the first embodiment, the optical film thickness r1 of the first insulating film 15 and the optical film thickness r2 of the first inorganic alignment film 16 are optimized. High light reflectivity can be obtained even in the wavelength range, and the light reflectivity in each wavelength range becomes uniform. As a result, a liquid crystal device capable of realizing beautiful white display, good color balance, and bright display can be obtained. Further, since only one insulating film needs to be formed on the reflective electrode 4, the cost can be reduced. Further, since the physical thickness of the first insulating film 15 is about 150 nm to 270 nm and becomes a relatively thick insulating film, flicker and image sticking can be sufficiently reduced.

[第3実施形態]
以下、本発明の第3実施形態について図15〜図36を用いて説明する。
以下の第3、第4実施形態は、反射電極が配置された側と反対側の第2基板の構成を最適化した例である。
図15は、本実施形態の液晶装置を示す断面図である。図16は、第2絶縁膜の有無で光透過率の波長依存性を比較したグラフである。図17〜図19は、3つの異なる第2無機配向膜厚における光透過率の第2絶縁膜厚依存性を示すグラフである。図20は、最適な光反射率が得られる第2無機配向膜厚と第2絶縁膜厚との関係を示すグラフである。図21〜図36は、透明電極膜厚と第2無機配向膜厚の双方を振ったときの光反射率の第2絶縁膜厚依存性を示すグラフである。
本実施形態の液晶装置の基本構成は第1実施形態と同様であり、第2基板側の構成が第1実施形態と異なるのみである。
したがって、図15において図1と共通な構成要素には同一の符号を付し、詳細な説明は省略する。
[Third Embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS.
The following third and fourth embodiments are examples in which the configuration of the second substrate on the side opposite to the side where the reflective electrode is arranged is optimized.
FIG. 15 is a cross-sectional view showing the liquid crystal device of this embodiment. FIG. 16 is a graph comparing the wavelength dependency of the light transmittance with and without the second insulating film. 17 to 19 are graphs showing the second insulating film thickness dependence of the light transmittance in three different second inorganic alignment film thicknesses. FIG. 20 is a graph showing the relationship between the second inorganic alignment film thickness and the second insulating film thickness that provide the optimum light reflectance. FIG. 21 to FIG. 36 are graphs showing the second insulating film thickness dependence of the light reflectance when both the transparent electrode film thickness and the second inorganic alignment film thickness are varied.
The basic configuration of the liquid crystal device of this embodiment is the same as that of the first embodiment, and the configuration on the second substrate side is only different from that of the first embodiment.
Therefore, in FIG. 15, the same reference numerals are given to the same components as those in FIG. 1, and detailed description will be omitted.

本実施形態の液晶装置33は、図15に示すように、第2基板2の第1基板1に対向する側の面に、透明電極17が形成されている。透明電極17の材料には、光透過率が高いITO等の透明導電膜を用いることが好ましい。本実施形態の場合、具体的には、スパッタ法で形成された膜厚140nmのITOを用いる。透明電極17の実膜厚(物理的膜厚)dtは、120nm≦dt≦150nmとすることが望ましい。また、透明電極17の屈折率ntは、1.84である。透明電極17上には、第2絶縁膜18、第2無機配向膜19が基板側からこの順に積層されている。第1基板1側の構成は、第1実施形態もしくは第2実施形態と同様のものを用いることができる。   As shown in FIG. 15, the liquid crystal device 33 of the present embodiment has the transparent electrode 17 formed on the surface of the second substrate 2 facing the first substrate 1. As the material of the transparent electrode 17, it is preferable to use a transparent conductive film such as ITO having a high light transmittance. In the case of this embodiment, specifically, ITO having a film thickness of 140 nm formed by sputtering is used. The actual film thickness (physical film thickness) dt of the transparent electrode 17 is desirably 120 nm ≦ dt ≦ 150 nm. The refractive index nt of the transparent electrode 17 is 1.84. On the transparent electrode 17, the 2nd insulating film 18 and the 2nd inorganic alignment film 19 are laminated | stacked in this order from the board | substrate side. The configuration on the first substrate 1 side can be the same as that of the first embodiment or the second embodiment.

本実施形態では、第2絶縁膜18として、プラズマCVD法による膜厚100nmのシリコン酸化膜(SiO)と通常の蒸着法による膜厚10nmのシリコン酸化膜(SiO)とを基板側からこの順に積層したものを用いる。よって、第2絶縁膜18の実膜厚(物理的膜厚)d3は、合計110nmとなる。第2絶縁膜18の実膜厚(物理的膜厚)d3は、好ましくは40nm≦d3≦190nm、である。第2絶縁膜18の屈折率n3は1.460とする。 In the present embodiment, as the second insulating film 18, this silicon oxide film having a thickness of 100nm by plasma CVD silicon oxide film (SiO 2) and the film thickness 10nm by conventional vapor deposition (SiO 2) from the substrate side Those stacked in order are used. Therefore, the actual film thickness (physical film thickness) d3 of the second insulating film 18 is 110 nm in total. The actual film thickness (physical film thickness) d3 of the second insulating film 18 is preferably 40 nm ≦ d3 ≦ 190 nm. The refractive index n3 of the second insulating film 18 is 1.460.

第2無機配向膜19としては、シリコン酸化膜(SiO)を斜方蒸着法により形成したものを用いる。斜方蒸着の条件は、真空度を5×10−3Paとし、基板法線方向からX軸方向(図15参照)に50度傾いた方向から蒸着を行う。第2無機配向膜19のX軸方向の屈折率(X軸方向に振動する偏光が感じる屈折率)nxは1.463(=n4max)、Y軸方向の屈折率(Y軸方向に振動する偏光が感じる屈折率)nyは1.461(=n4min)、とする。よって、第2無機配向膜19の平均屈折率n4は1.462である。第2無機配向膜19の実膜厚(物理的膜厚)d4は、好ましくは30nm≦d2≦100nm、一例として60nm、とする。 As the second inorganic alignment film 19, a silicon oxide film (SiO 2 ) formed by oblique vapor deposition is used. The oblique deposition conditions are such that the degree of vacuum is 5 × 10 −3 Pa and the deposition is performed from a direction inclined by 50 degrees from the normal direction of the substrate to the X-axis direction (see FIG. 15). The refractive index in the X-axis direction of the second inorganic alignment film 19 (the refractive index felt by polarized light vibrating in the X-axis direction) nx is 1.463 (= n4max), and the refractive index in the Y-axis direction (polarized light vibrating in the Y-axis direction). Is assumed to be 1.461 (= n4 min). Therefore, the average refractive index n4 of the second inorganic alignment film 19 is 1.462. The actual film thickness (physical film thickness) d4 of the second inorganic alignment film 19 is preferably 30 nm ≦ d2 ≦ 100 nm, for example, 60 nm.

液晶層3の屈折率nlcは、第1、第2実施形態と同様、1.52とする。したがって、本実施形態の場合、透明電極17の屈折率nt、液晶層3の屈折率nlc、第2絶縁膜18の屈折率n3、第2無機配向膜19の屈折率n4の大小関係は、nt>nlc>n4>n3となる。また、第2無機配向膜19の光学膜厚をr4とすると、r4=n4×d4であるから、r4は略44≦r2≦146となる。なお、本実施形態の場合、第2無機配向膜19の屈折率は異方性を有しているが、平均屈折率n4が上記の大小関係を満たせばよいため、第2無機配向膜19の小さい方の屈折率n4min(ny)は第2絶縁膜18の屈折率n3より小さくても良い。   The refractive index nlc of the liquid crystal layer 3 is 1.52 as in the first and second embodiments. Therefore, in the case of the present embodiment, the magnitude relationship among the refractive index nt of the transparent electrode 17, the refractive index nlc of the liquid crystal layer 3, the refractive index n3 of the second insulating film 18, and the refractive index n4 of the second inorganic alignment film 19 is nt. > Nlc> n4> n3. Also, assuming that the optical film thickness of the second inorganic alignment film 19 is r4, r4 = n4 × d4, and therefore r4 is approximately 44 ≦ r2 ≦ 146. In the case of the present embodiment, the refractive index of the second inorganic alignment film 19 has anisotropy, but the average refractive index n4 only needs to satisfy the above magnitude relationship. The smaller refractive index n4min (ny) may be smaller than the refractive index n3 of the second insulating film 18.

ここで、本発明者は、第2絶縁膜18が有る場合と無い場合とで光透過率の波長依存性を比較するシミュレーションを行った。その結果を図16に示す。図16において、横軸は光の波長[nm]、縦軸は第2基板2から液晶層3への光透過率[%]、である。破線の曲線は第2絶縁膜18が無い場合、実線の曲線は第2絶縁膜18が有る場合(実膜厚d3=110nm)、を示す。   Here, the present inventor performed a simulation for comparing the wavelength dependence of the light transmittance with and without the second insulating film 18. The result is shown in FIG. In FIG. 16, the horizontal axis represents the light wavelength [nm], and the vertical axis represents the light transmittance [%] from the second substrate 2 to the liquid crystal layer 3. The broken curve indicates the case where the second insulating film 18 is not provided, and the solid curve indicates the case where the second insulating film 18 is provided (actual film thickness d3 = 110 nm).

波長550nm(緑色光)の領域において、第2絶縁膜18が有る場合の方が、第2絶縁膜18が無い場合に比べて光透過率が向上している。また、波長460nm(青色光)の領域と波長620nm(赤色光)の領域においても、第2絶縁膜18が有る場合の方が、第2絶縁膜18が無い場合に比べて光透過率が向上し、波長550nmでの光透過率に近い値をとる。すなわち、第2絶縁膜18が有る場合の方が、第2絶縁膜18が無い場合に比べてフラットな分光特性をとる。このことから、広い波長域にわたって均一な光透過率を得るという観点では、第2絶縁膜18が無いよりも第2絶縁膜18が有る方が有利であることが判った。   In the region of wavelength 550 nm (green light), the light transmittance is improved when the second insulating film 18 is present, compared to the case where the second insulating film 18 is not present. Further, also in the region of wavelength 460 nm (blue light) and the region of wavelength 620 nm (red light), the light transmittance is improved when the second insulating film 18 is provided compared to the case where the second insulating film 18 is not provided. The value is close to the light transmittance at a wavelength of 550 nm. That is, flat spectral characteristics are obtained when the second insulating film 18 is provided, compared to when the second insulating film 18 is not provided. From this, it was found that the presence of the second insulating film 18 is more advantageous than the absence of the second insulating film 18 from the viewpoint of obtaining uniform light transmittance over a wide wavelength range.

次に、第2無機配向膜19の膜厚を変え、各膜厚における光透過率の第2絶縁膜厚依存性を比較するシミュレーションを行った。その結果を図17〜図19に示す。図17〜図19において、横軸は第2絶縁膜18の物理的膜厚[nm]、縦軸は第2基板2から液晶層3への光透過率[%]、である。実線の曲線は波長460nmの光(青色光)に対する光透過率、破線の曲線は波長550nmの光(緑色光)に対する光透過率、2点鎖線の曲線は波長620nmの光(赤色光)に対する光透過率、を示す。図17は第2無機配向膜19の膜厚が30nm、図18は第2無機配向膜19の膜厚が65nm、図19は第2無機配向膜19の膜厚が100nm、の場合である。   Next, a simulation was performed in which the film thickness of the second inorganic alignment film 19 was changed and the dependence of the light transmittance at each film thickness on the second insulating film thickness was compared. The results are shown in FIGS. 17 to 19, the horizontal axis represents the physical thickness [nm] of the second insulating film 18, and the vertical axis represents the light transmittance [%] from the second substrate 2 to the liquid crystal layer 3. The solid curve is the light transmittance for light with a wavelength of 460 nm (blue light), the dashed curve is the light transmittance for light with a wavelength of 550 nm (green light), and the two-dot chain curve is the light for light with a wavelength of 620 nm (red light). Transmittance. 17 shows the case where the thickness of the second inorganic alignment film 19 is 30 nm, FIG. 18 shows the case where the thickness of the second inorganic alignment film 19 is 65 nm, and FIG. 19 shows the case where the thickness of the second inorganic alignment film 19 is 100 nm.

図17〜図19から明らかなように、各場合とも共通して、光透過率は、第2無機配向膜19の膜厚の増減に伴い、平均値を中心として極大値、極小値を取りながら滑らかに変化する。全体的に、波長550nmの光(緑色光)に対する光透過率が最も高いレベルにあり、波長620nmの光(赤色光)、波長460nmの光(青色光)の順に光透過率が低下する。   As is apparent from FIGS. 17 to 19, in each case, the light transmittance takes a maximum value and a minimum value centering on the average value as the film thickness of the second inorganic alignment film 19 increases and decreases. It changes smoothly. Overall, the light transmittance with respect to light with a wavelength of 550 nm (green light) is at the highest level, and the light transmittance decreases in the order of light with a wavelength of 620 nm (red light) and light with a wavelength of 460 nm (blue light).

本実施形態において、第2絶縁膜18の膜厚の最適な範囲とは、光透過率が最も低い波長460nmの光(青色光)における光透過率がその平均値(98%)以上の領域、と定義する。この領域においては、第2無機配向膜19の膜厚が変わったとしても(図17〜図19のいずれの場合も)、620nmの光(赤色光)における光透過率も平均値以上であり、かつ、波長550nmの光(緑色光)における光透過率が低下傾向にあって波長620nmの光(赤色光)および波長460nmの光(青色光)における光透過率に近付いている。   In the present embodiment, the optimal range of the film thickness of the second insulating film 18 is a region in which the light transmittance of light (blue light) having the lowest light transmittance of 460 nm is an average value (98%) or more, It is defined as In this region, even if the film thickness of the second inorganic alignment film 19 is changed (in any case of FIGS. 17 to 19), the light transmittance in 620 nm light (red light) is not less than the average value, In addition, the light transmittance of light with a wavelength of 550 nm (green light) tends to decrease and approaches the light transmittance of light with a wavelength of 620 nm (red light) and light with a wavelength of 460 nm (blue light).

この観点で判断すると、図17に示す第2無機配向膜19の膜厚d4が30nmの場合、第2絶縁膜18の膜厚の最適範囲d3は110nm≦d3≦190nm、図18に示す第2無機配向膜19の膜厚d4が65nmの場合、第2絶縁膜18の膜厚の最適範囲d3は80nm≦d3≦160nm、図19に示す第2無機配向膜19の膜厚d4が100nmの場合、第2絶縁膜18の膜厚の最適範囲d3は40nm≦d3≦120nm、となる。このように、第2無機配向膜19の膜厚d4が大きくなるのに伴って、第2絶縁膜18の膜厚d3の最適範囲は小さい側にシフトする。   Judging from this viewpoint, when the thickness d4 of the second inorganic alignment film 19 shown in FIG. 17 is 30 nm, the optimum range d3 of the thickness of the second insulating film 18 is 110 nm ≦ d3 ≦ 190 nm, and the second thickness shown in FIG. When the film thickness d4 of the inorganic alignment film 19 is 65 nm, the optimum film thickness d3 of the second insulating film 18 is 80 nm ≦ d3 ≦ 160 nm, and when the film thickness d4 of the second inorganic alignment film 19 shown in FIG. The optimum range d3 of the film thickness of the second insulating film 18 is 40 nm ≦ d3 ≦ 120 nm. Thus, as the film thickness d4 of the second inorganic alignment film 19 increases, the optimum range of the film thickness d3 of the second insulating film 18 shifts to the smaller side.

そこで、第2無機配向膜19の膜厚d4と第2絶縁膜18の膜厚d3の最適な組み合わせを示したのが図20である。図20において、横軸は第2無機配向膜19の光学膜厚[nm]、縦軸は第2絶縁膜18の光学膜厚[nm]、である。ここでは、横軸、縦軸ともに、各膜の屈折率と物理的膜厚との積である光学膜厚を用いた。すなわち、第2絶縁膜18の光学膜厚r3は、r3=n3×d3で表わされ、第2無機配向膜19の光学膜厚r4は、r4=n4×d4で表わされる。   FIG. 20 shows an optimal combination of the film thickness d4 of the second inorganic alignment film 19 and the film thickness d3 of the second insulating film 18. In FIG. 20, the horizontal axis represents the optical film thickness [nm] of the second inorganic alignment film 19, and the vertical axis represents the optical film thickness [nm] of the second insulating film 18. Here, the optical film thickness which is the product of the refractive index of each film and the physical film thickness is used for both the horizontal axis and the vertical axis. That is, the optical film thickness r3 of the second insulating film 18 is represented by r3 = n3 × d3, and the optical film thickness r4 of the second inorganic alignment film 19 is represented by r4 = n4 × d4.

図17〜図19の最適範囲を図20上に書き表すと、その最適範囲は、第2無機配向膜19の光学膜厚r4を通常用いる範囲である50≦r4≦150の範囲に設定したとき、2点鎖線と実線との2本の直線で挟まれた斜線を付した領域となる。斜線を付した領域を数式で表すと、第2絶縁膜18の光学膜厚r3の最適範囲は、
−1.0189×r4+212.05≦r3≦−1.016×r4+325.64…(3)
となる。
When the optimum range of FIGS. 17 to 19 is written on FIG. 20, the optimum range is set when the optical film thickness r4 of the second inorganic alignment film 19 is set to a range of 50 ≦ r4 ≦ 150, which is a normally used range. This is a hatched area sandwiched between two straight lines, a two-dot chain line and a solid line. When the hatched region is expressed by a mathematical expression, the optimum range of the optical film thickness r3 of the second insulating film 18 is
−1.0189 × r4 + 212.05 ≦ r3 ≦ −1.016 × r4 + 325.64 (3)
It becomes.

次に、透明電極17の膜厚を変えた上で第2無機配向膜19の膜厚を変え、各膜厚における光透過率の第2絶縁膜厚依存性を比較するシミュレーションを行った。その結果を図21〜図36に示す。図21〜図36において、横軸は第2絶縁膜18の物理的膜厚[nm]、縦軸は第2基板2から液晶層3への光透過率[%]、である。実線の曲線は波長460nmの光(青色光)に対する光透過率、破線の曲線は波長550nmの光(緑色光)に対する光透過率、2点鎖線の曲線は波長620nmの光(赤色光)に対する光透過率、を示す。   Next, after changing the film thickness of the transparent electrode 17, the film thickness of the 2nd inorganic alignment film 19 was changed, and the simulation which compares the 2nd insulation film thickness dependence of the light transmittance in each film thickness was performed. The results are shown in FIGS. In FIGS. 21 to 36, the horizontal axis represents the physical film thickness [nm] of the second insulating film 18, and the vertical axis represents the light transmittance [%] from the second substrate 2 to the liquid crystal layer 3. The solid curve is the light transmittance for light with a wavelength of 460 nm (blue light), the dashed curve is the light transmittance for light with a wavelength of 550 nm (green light), and the two-dot chain curve is the light for light with a wavelength of 620 nm (red light). Transmittance.

図21〜図25は第2無機配向膜19の膜厚d4を30nmとした場合であり、図21は透明電極17の膜厚を120nm、図22は透明電極17の膜厚を130nm、図23は透明電極17の膜厚を140nm、図24は透明電極17の膜厚を150nm、図25は透明電極17の膜厚を160nm、とした場合である。また、図26〜図31は第2無機配向膜19の膜厚d4を65nmとした場合であり、図26は透明電極17の膜厚を70nm、図27は透明電極17の膜厚を120nm、図28は透明電極17の膜厚を130nm、図29は透明電極17の膜厚を140nm、図30は透明電極17の膜厚を150nm、図31は透明電極17の膜厚を160nm、とした場合である。また、図32〜図36は第2無機配向膜19の膜厚d4を100nmとした場合であり、図32は透明電極17の膜厚を120nm、図33は透明電極17の膜厚を130nm、図34は透明電極17の膜厚を140nm、図35は透明電極17の膜厚を150nm、図36は透明電極17の膜厚を160nm、とした場合である。   21 to 25 show the case where the film thickness d4 of the second inorganic alignment film 19 is 30 nm, FIG. 21 shows the film thickness of the transparent electrode 17 is 120 nm, FIG. 22 shows the film thickness of the transparent electrode 17 is 130 nm, and FIG. FIG. 24 shows the case where the film thickness of the transparent electrode 17 is 140 nm, FIG. 24 shows the film thickness of the transparent electrode 17 is 150 nm, and FIG. 25 shows the film thickness of the transparent electrode 17 is 160 nm. 26 to 31 show the case where the film thickness d4 of the second inorganic alignment film 19 is 65 nm, FIG. 26 shows the film thickness of the transparent electrode 17 is 70 nm, FIG. 27 shows the film thickness of the transparent electrode 17 is 120 nm, 28 shows the film thickness of the transparent electrode 17 is 130 nm, FIG. 29 shows the film thickness of the transparent electrode 17 is 140 nm, FIG. 30 shows the film thickness of the transparent electrode 17 is 150 nm, and FIG. 31 shows the film thickness of the transparent electrode 17 is 160 nm. Is the case. 32 to 36 show the case where the film thickness d4 of the second inorganic alignment film 19 is 100 nm, FIG. 32 shows the film thickness of the transparent electrode 17 is 120 nm, FIG. 33 shows the film thickness of the transparent electrode 17 is 130 nm, 34 shows the case where the film thickness of the transparent electrode 17 is 140 nm, FIG. 35 shows the film thickness of the transparent electrode 17 of 150 nm, and FIG. 36 shows the film thickness of the transparent electrode 17 of 160 nm.

図から明らかなように、透明電極17の膜厚の変化に伴い、各色光に対する光透過率のレベルが変化する。特に波長460nmの光(青色光)に対する光透過率の変動が顕著である。第2無機配向膜厚d4=65nmにおいて、透明電極膜厚を70nmとした図26を見ると、波長460nmの光(青色光)に対する光透過率の平均値、および波長550nmの光(緑色光)に対する光透過率の平均値がともに95%を下回っており、光透過率の低下が顕著である。これに対して、透明電極膜厚を120nmとした図21、図27、図32を見ると、いずれの第2無機配向膜厚d4においても各色光に対する光透過率が97%を確保できている。一方、透明電極膜厚を150nmとした図24、図30、図35を見ると、いずれの第2無機配向膜厚d4においても波長460nmの光(青色光)に対する光透過率が96%を確保できているのに対し、透明電極膜厚を160nmとした図25、図31、図36を見ると、いずれの第2無機配向膜厚d4においても波長460nmの光(青色光)に対する光透過率が95%を下回り、かつ、第2絶縁膜厚の増減に対する光透過率の変動(グラフの曲線の振幅)が極度に大きくなっている。   As is apparent from the figure, as the film thickness of the transparent electrode 17 changes, the level of light transmittance for each color light changes. In particular, the variation in light transmittance with respect to light having a wavelength of 460 nm (blue light) is remarkable. Looking at FIG. 26 in which the transparent electrode film thickness is 70 nm at the second inorganic alignment film thickness d4 = 65 nm, the average value of the light transmittance for light with a wavelength of 460 nm (blue light) and light with a wavelength of 550 nm (green light) The average value of the light transmittance with respect to is less than 95%, and the decrease in the light transmittance is remarkable. On the other hand, when FIG. 21, FIG. 27 and FIG. 32 in which the transparent electrode film thickness is 120 nm are seen, the light transmittance with respect to each color light can be secured at 97% in any second inorganic alignment film thickness d4. . On the other hand, when FIG. 24, FIG. 30, and FIG. 35 in which the transparent electrode film thickness is 150 nm are observed, the light transmittance with respect to light (blue light) having a wavelength of 460 nm is secured at any second inorganic alignment film thickness d4. On the other hand, when FIG. 25, FIG. 31 and FIG. 36 in which the transparent electrode film thickness is 160 nm are seen, the light transmittance with respect to light (blue light) having a wavelength of 460 nm in any second inorganic alignment film thickness d4. Is less than 95%, and the fluctuation of the light transmittance (the amplitude of the curve in the graph) with respect to the increase or decrease of the second insulating film thickness is extremely large.

したがって、図21〜図36から、透明電極17の実膜厚(物理的膜厚)dtは120nm≦dt≦150nmとすることが望ましいと言える。これを光学膜厚rtに換算すると、透明電極17の光学膜厚rtは220nm≦rt≦276nmとすることが望ましい。   Therefore, it can be said from FIGS. 21 to 36 that the actual film thickness (physical film thickness) dt of the transparent electrode 17 is desirably 120 nm ≦ dt ≦ 150 nm. When this is converted into an optical film thickness rt, the optical film thickness rt of the transparent electrode 17 is preferably 220 nm ≦ rt ≦ 276 nm.

本実施形態の液晶装置33によれば、上述したように、透明電極17の光学膜厚rt、第2絶縁膜18の光学膜厚r3および第2無機配向膜19の光学膜厚r4が最適化されているので、可視光領域のいずれの波長域においても高い光透過率が得られ、かつ、各波長域での光透過率が比較的均一になる。これにより、美しい白表示や良好な色バランス、明るい表示を実現可能な反射型液晶装置が得られる。また、透明電極17上に1層の絶縁膜のみを形成すれば済むため、低コスト化を図ることができる。また、第2絶縁膜18の物理的膜厚が40nm〜190nm程度となり、比較的厚い絶縁膜となるため、フリッカーや焼き付きを十分に低減できる。   According to the liquid crystal device 33 of the present embodiment, as described above, the optical film thickness rt of the transparent electrode 17, the optical film thickness r3 of the second insulating film 18, and the optical film thickness r4 of the second inorganic alignment film 19 are optimized. Therefore, high light transmittance can be obtained in any wavelength region of the visible light region, and the light transmittance in each wavelength region becomes relatively uniform. Thereby, a reflective liquid crystal device capable of realizing beautiful white display, good color balance, and bright display can be obtained. Further, since only one insulating film needs to be formed on the transparent electrode 17, the cost can be reduced. In addition, since the physical thickness of the second insulating film 18 is about 40 nm to 190 nm, which is a relatively thick insulating film, flicker and image sticking can be sufficiently reduced.

[第4実施形態]
以下、本発明の第4実施形態について図37〜図42を用いて説明する。
本実施形態の液晶装置の基本構成は第3実施形態と同様であり、第2絶縁膜および第2無機配向膜の構成が第3実施形態と異なるのみである。
したがって、図37において図15と共通な構成要素には同一の符号を付し、詳細な説明は省略する。
[Fourth Embodiment]
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIGS.
The basic configuration of the liquid crystal device of this embodiment is the same as that of the third embodiment, and only the configurations of the second insulating film and the second inorganic alignment film are different from those of the third embodiment.
Therefore, in FIG. 37, the same code | symbol is attached | subjected to the same component as FIG. 15, and detailed description is abbreviate | omitted.

本実施形態の液晶装置34では、第2絶縁膜28として、プラズマCVD法による膜厚105nmのシリコン酸化膜(SiO)を用いる。第2絶縁膜28の屈折率n3は1.46とする。また、第2無機配向膜29としては、シリコン酸化膜(SiO)を斜方蒸着法により形成したものを用いる。斜方蒸着の条件は、真空度を5×10−3Paとし、基板法線方向からX軸方向(図37参照)に45度傾いた方向から蒸着を行う。第2無機配向膜29のX軸方向の屈折率(X軸方向に振動する偏光が感じる屈折率)nxは1.40(=n4min)、Y軸方向の屈折率(Y軸方向に振動する偏光が感じる屈折率)nyは1.42(=n4max)、とする。よって、第2無機配向膜29の平均屈折率n4は1.41である。第2無機配向膜29の実膜厚(物理的膜厚)d4は、好ましくは30nm≦d4≦100nm、一例として60nm、とする。なお、透明電極17は第3実施形態と同一のものを用いる。 In the liquid crystal device 34 of the present embodiment, a silicon oxide film (SiO 2 ) having a film thickness of 105 nm formed by plasma CVD is used as the second insulating film 28. The refractive index n3 of the second insulating film 28 is 1.46. Further, as the second inorganic alignment film 29, a silicon oxide film (SiO 2 ) formed by oblique deposition is used. The oblique deposition conditions are such that the degree of vacuum is 5 × 10 −3 Pa and the deposition is performed from a direction inclined 45 degrees from the substrate normal direction to the X-axis direction (see FIG. 37). The refractive index of the second inorganic alignment film 29 in the X-axis direction (refractive index felt by polarized light vibrating in the X-axis direction) nx is 1.40 (= n4 min), and the refractive index in the Y-axis direction (polarized light vibrating in the Y-axis direction). Is assumed to be 1.42 (= n4max). Therefore, the average refractive index n4 of the second inorganic alignment film 29 is 1.41. The actual film thickness (physical film thickness) d4 of the second inorganic alignment film 29 is preferably 30 nm ≦ d4 ≦ 100 nm, for example, 60 nm. The transparent electrode 17 is the same as that of the third embodiment.

液晶層3の屈折率nlcは1.52とする。したがって、本実施形態の場合、透明電極17の屈折率nt、液晶層3の屈折率nlc、第2絶縁膜28の屈折率n3、第2無機配向膜29の屈折率n4の大小関係は、nt>nlc>n3>n4となる。また、第2無機配向膜29の光学膜厚をr4とすると、r4=n4×d4であるから、r4は略42≦r2≦141となる。なお、本実施形態の場合、第2無機配向膜29の平均屈折率n4が上記の大小関係を満たせばよいため、第2無機配向膜29の大きい方の屈折率nmax(ny)は第2絶縁膜28の屈折率n3より大きくても良い。   The refractive index nlc of the liquid crystal layer 3 is 1.52. Therefore, in the present embodiment, the magnitude relationship among the refractive index nt of the transparent electrode 17, the refractive index nlc of the liquid crystal layer 3, the refractive index n3 of the second insulating film 28, and the refractive index n4 of the second inorganic alignment film 29 is nt. > Nlc> n3> n4. Further, assuming that the optical thickness of the second inorganic alignment film 29 is r4, r4 = n4 × d4, and therefore r4 is approximately 42 ≦ r2 ≦ 141. In the present embodiment, since the average refractive index n4 of the second inorganic alignment film 29 only needs to satisfy the above magnitude relationship, the larger refractive index nmax (ny) of the second inorganic alignment film 29 is the second insulation. The refractive index n3 of the film 28 may be larger.

第3実施形態と同様、本発明者は、第2絶縁膜28が有る場合と無い場合とで光透過率の波長依存性を比較するシミュレーションを行った。その結果を図38に示す。図38において、横軸は光の波長[nm]、縦軸は第2基板2から液晶層3への光透過率[%]、である。破線の曲線は第2絶縁膜28が無い場合、実線の曲線は第2絶縁膜28が有る場合(実膜厚d3=105nm)、を示す。   Similar to the third embodiment, the present inventor performed a simulation for comparing the wavelength dependence of the light transmittance with and without the second insulating film 28. The result is shown in FIG. In FIG. 38, the horizontal axis represents the light wavelength [nm], and the vertical axis represents the light transmittance [%] from the second substrate 2 to the liquid crystal layer 3. A broken line curve indicates the case where the second insulating film 28 is not provided, and a solid line curve indicates the case where the second insulating film 28 is provided (actual film thickness d3 = 105 nm).

第3実施形態と同様、波長550nm(緑色光)の領域において、第2絶縁膜28が有る場合の方が、第2絶縁膜28が無い場合に比べて光透過率が向上している。また、波長460nm(青色光)の領域と波長620nm(赤色光)の領域においても、第2絶縁膜28が有る場合の方が、第2絶縁膜28が無い場合に比べて光透過率が向上し、波長550nmでの光透過率に近い値をとる。すなわち、第2絶縁膜28が有る場合の方が、第2絶縁膜28が無い場合に比べてフラットな分光特性をとる。また、本実施形態では、第3実施形態よりもさらに各波長での光透過率の値が近く、よりフラットな分光特性を取る。したがって、第2無機配向膜29の屈折率n4がより小さい方が、本発明の効果が大きくなることが判った。   Similar to the third embodiment, in the region of wavelength 550 nm (green light), the light transmittance is improved when the second insulating film 28 is present, compared to the case where the second insulating film 28 is not present. In addition, in the region of wavelength 460 nm (blue light) and the region of wavelength 620 nm (red light), the light transmittance is improved when the second insulating film 28 is provided compared to the case where the second insulating film 28 is not provided. The value is close to the light transmittance at a wavelength of 550 nm. That is, flat spectral characteristics are obtained when the second insulating film 28 is provided, compared to when the second insulating film 28 is not provided. In the present embodiment, the light transmittance at each wavelength is further closer than in the third embodiment, and flatter spectral characteristics are obtained. Therefore, it has been found that the effect of the present invention is increased when the refractive index n4 of the second inorganic alignment film 29 is smaller.

次に、第2無機配向膜29の膜厚を変え、各膜厚における光透過率の第2絶縁膜厚依存性を比較するシミュレーションを行った。その結果を図39〜図41に示す。図39〜図41において、横軸は第2絶縁膜28の物理的膜厚[nm]、縦軸は第2基板2から液晶層3への光透過率[%]、である。実線の曲線は波長460nmの光(青色光)に対する光透過率、破線の曲線は波長550nmの光(緑色光)に対する光透過率、2点鎖線の曲線は波長620nmの光(赤色光)に対する光透過率、を示す。図39は第2無機配向膜29の膜厚が30nm、図40は第2無機配向膜29の膜厚が65nm、図41は第2無機配向膜29の膜厚が100nm、の場合である。   Next, a simulation was performed in which the film thickness of the second inorganic alignment film 29 was changed and the dependence of the light transmittance at each film thickness on the second insulating film thickness was compared. The results are shown in FIGS. 39 to 41, the horizontal axis represents the physical thickness [nm] of the second insulating film 28, and the vertical axis represents the light transmittance [%] from the second substrate 2 to the liquid crystal layer 3. The solid curve is the light transmittance for light with a wavelength of 460 nm (blue light), the dashed curve is the light transmittance for light with a wavelength of 550 nm (green light), and the two-dot chain curve is the light for light with a wavelength of 620 nm (red light). Transmittance. 39 shows the case where the film thickness of the second inorganic alignment film 29 is 30 nm, FIG. 40 shows the film thickness of the second inorganic alignment film 29 is 65 nm, and FIG. 41 shows the film thickness of the second inorganic alignment film 29 is 100 nm.

図39〜図41から明らかなように、光透過率の第2絶縁膜厚依存性は第3実施形態と同様の挙動を示すが、第2絶縁膜厚の増減に対する光透過率の変動が第3実施形態よりも大きくなっている。第2絶縁膜28の膜厚の最適な範囲を第3実施形態と同様に判断すると、図39に示す第2無機配向膜29の膜厚d4が30nmの場合、第2絶縁膜28の膜厚の最適範囲d3は100nm≦d3≦180nm、図40に示す第2無機配向膜29の膜厚d4が65nmの場合、第2絶縁膜28の膜厚の最適範囲d3は70nm≦d3≦150nm、図41に示す第2無機配向膜29の膜厚d4が100nmの場合、第2絶縁膜28の膜厚の最適範囲d3は50nm≦d3≦130nm、となる。   As is apparent from FIGS. 39 to 41, the dependency of the light transmittance on the second insulating film thickness shows the same behavior as in the third embodiment, but the variation of the light transmittance with respect to the increase and decrease of the second insulating film thickness is the first. It is larger than the third embodiment. When the optimum range of the film thickness of the second insulating film 28 is judged in the same manner as in the third embodiment, when the film thickness d4 of the second inorganic alignment film 29 shown in FIG. When the thickness d4 of the second inorganic alignment film 29 shown in FIG. 40 is 65 nm, the optimum range d3 of the thickness of the second insulating film 28 is 70 nm ≦ d3 ≦ 150 nm. When the thickness d4 of the second inorganic alignment film 29 shown in 41 is 100 nm, the optimum range d3 of the thickness of the second insulating film 28 is 50 nm ≦ d3 ≦ 130 nm.

そこで、第2無機配向膜29の膜厚d4と第2絶縁膜28の膜厚d3の最適な組み合わせを示したのが図42である。図42において、横軸は第2無機配向膜29の光学膜厚[nm]、縦軸は第2絶縁膜28の光学膜厚[nm]、である。ここでは、横軸、縦軸ともに、各膜の屈折率と物理的膜厚との積である光学膜厚を用いた。すなわち、第2絶縁膜28の光学膜厚r3は、r3=n3×d3で表わされ、第2無機配向膜29の光学膜厚r4は、r4=n4×d4で表わされる。   FIG. 42 shows an optimal combination of the film thickness d4 of the second inorganic alignment film 29 and the film thickness d3 of the second insulating film 28. In FIG. 42, the horizontal axis represents the optical film thickness [nm] of the second inorganic alignment film 29, and the vertical axis represents the optical film thickness [nm] of the second insulating film 28. Here, the optical film thickness which is the product of the refractive index of each film and the physical film thickness is used for both the horizontal axis and the vertical axis. That is, the optical film thickness r3 of the second insulating film 28 is represented by r3 = n3 × d3, and the optical film thickness r4 of the second inorganic alignment film 29 is represented by r4 = n4 × d4.

図39〜図41の最適範囲を図42上に書き表すと、その最適範囲は、第2無機配向膜29の光学膜厚r4を通常用いる範囲である50≦r4≦150の範囲に設定したとき、2点鎖線と実線との2本の直線で挟まれた斜線を付した領域となる。斜線を付した領域を数式で表すと、第2絶縁膜28の光学膜厚r3の最適範囲は、
−0.8401×r4+189.76≦r3≦−0.8323×r4+302.7…(4)
となる。
When the optimum range of FIGS. 39 to 41 is written on FIG. 42, the optimum range is set when the optical film thickness r4 of the second inorganic alignment film 29 is set to a range of 50 ≦ r4 ≦ 150, which is a range that is normally used. This is a hatched area sandwiched between two straight lines, a two-dot chain line and a solid line. When the hatched region is expressed by a mathematical expression, the optimum range of the optical film thickness r3 of the second insulating film 28 is
−0.8401 × r4 + 189.76 ≦ r3 ≦ −0.8323 × r4 + 302.7 (4)
It becomes.

本実施形態の液晶装置34によれば、第3実施形態と同様、透明電極17の光学膜厚rt、第2絶縁膜28の光学膜厚r3および第2無機配向膜29の光学膜厚r4が最適化されているので、いずれの波長域でも高い光透過率が得られ、かつ、各波長域での光透過率が均一になる。これにより、美しい白表示や良好な色バランス、明るい表示を実現可能な反射型液晶装置が得られる。また、透明電極17上に1層の絶縁膜のみを形成すれば済むため、低コスト化を図ることができる。また、第2絶縁膜28の物理的膜厚が50nm〜180nm程度となり、比較的厚い絶縁膜となるため、フリッカーや焼き付きを十分に低減できる。   According to the liquid crystal device 34 of the present embodiment, the optical film thickness rt of the transparent electrode 17, the optical film thickness r3 of the second insulating film 28, and the optical film thickness r4 of the second inorganic alignment film 29 are the same as in the third embodiment. Since it is optimized, a high light transmittance can be obtained in any wavelength region, and the light transmittance in each wavelength region becomes uniform. Thereby, a reflective liquid crystal device capable of realizing beautiful white display, good color balance, and bright display can be obtained. Further, since only one insulating film needs to be formed on the transparent electrode 17, the cost can be reduced. In addition, since the physical thickness of the second insulating film 28 is about 50 nm to 180 nm and becomes a relatively thick insulating film, flicker and image sticking can be sufficiently reduced.

[プロジェクターの実施形態]
以下、本発明のプロジェクターの一実施形態について、図43を用いて説明する。図43は本実施形態のプロジェクターの概略構成図である。
[Projector embodiment]
Hereinafter, an embodiment of the projector of the present invention will be described with reference to FIG. FIG. 43 is a schematic configuration diagram of the projector according to the present embodiment.

本実施形態のプロジェクター700は、システム光軸Lに沿って配置された光源部110、インテグレータレンズ120、偏光変換素子130から概略構成される偏光照明装置100、偏光照明装置100から射出されたS偏光光束をS偏光反射面201により反射させる偏光ビームスプリッター200、偏光ビームスプリッター200のS偏光反射面201から反射された光のうち、青色光(B光)成分を分離するダイクロイックミラー412、分離された青色光を変調する光変調素子300B、青色光が分離された後の光束のうち、赤色光(R光)の成分を反射させて分離するダイクロイックミラー413、分離された赤色光を変調する光変調素子300R、ダイクロイックミラー413を透過する残りの緑色光を変調する光変調素子300G、3つの光変調素子300R,300G,300Bにて変調された光をダイクロイックミラー412,413、偏光ビームスプリッター200にて合成し、この合成光をスクリーン600に投射する投射レンズを含む投射光学系500、から構成されている。そして、光変調素子300R,300G,300Bに上記第1〜第4実施形態の液晶装置が用いられている。   The projector 700 according to the present embodiment includes a polarization illumination device 100 that is schematically configured by a light source unit 110, an integrator lens 120, and a polarization conversion element 130 arranged along the system optical axis L, and S-polarized light emitted from the polarization illumination device 100. The polarization beam splitter 200 that reflects the light beam by the S polarization reflection surface 201, and the dichroic mirror 412 that separates the blue light (B light) component from the light reflected from the S polarization reflection surface 201 of the polarization beam splitter 200, is separated. Light modulation element 300B that modulates blue light, dichroic mirror 413 that reflects and separates red light (R light) component out of the luminous flux after blue light is separated, and light modulation that modulates the separated red light Light modulation element 3 that modulates the remaining green light that passes through element 300R and dichroic mirror 413 0G, projection optical system including a projection lens that synthesizes light modulated by the three light modulation elements 300R, 300G, and 300B by the dichroic mirrors 412 and 413 and the polarization beam splitter 200 and projects the synthesized light on the screen 600 500. The liquid crystal devices of the first to fourth embodiments are used for the light modulation elements 300R, 300G, and 300B.

本実施形態によれば、光変調素子300R,300G,300Bに、均一で高い光反射率を有する上記第1〜第4実施形態の液晶装置が用いられているので、表示品位に優れたプロジェクターを実現することができる。   According to the present embodiment, since the liquid crystal devices of the first to fourth embodiments having uniform and high light reflectance are used for the light modulation elements 300R, 300G, and 300B, a projector having excellent display quality can be obtained. Can be realized.

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。上の説明では、第1、第2実施形態で第1基板(素子基板)側の構成、第3、第4実施形態で第2基板(対向基板)側の構成について別々に述べたが、液晶装置全体としてはいずれの実施形態を組み合わせてもかまわない。ただし、双方の基板で無機配向膜の成膜条件を共通化するという観点では、第1実施形態と第3実施形態、第2実施形態と第4実施形態、という組み合わせが好ましい。より高い本発明の効果を得るという観点では、第2実施形態と第4実施形態の組み合わせが好ましい。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. In the above description, the configuration on the first substrate (element substrate) side in the first and second embodiments and the configuration on the second substrate (counter substrate) side in the third and fourth embodiments are separately described. Any embodiment may be combined for the entire apparatus. However, the combination of the first embodiment and the third embodiment, the second embodiment, and the fourth embodiment is preferable from the viewpoint of sharing the film formation conditions of the inorganic alignment film on both the substrates. From the viewpoint of obtaining a higher effect of the present invention, a combination of the second embodiment and the fourth embodiment is preferable.

また、第1基板として用いた素子基板は、TFT基板に限るものではなく、画素スイッチング素子に薄膜ダイオード(Thin Film Diode, TFDと略記する)を用いたTFD基板であっても良い。あるいは、画素スイッチング素子を持たないパッシブマトリクス型液晶装置に本発明を適用しても良い。また、反射電極は、入射光の略全てを反射するものの他、入射光の一部を反射し、一部を透過する、いわゆる半透過反射板の機能を有する電極であっても良い。その他、上記実施形態で挙げた各種膜の材料、膜厚、屈折率、製造方法等の具体的な記載はほんの一例であり、適宜変更が可能である。   The element substrate used as the first substrate is not limited to the TFT substrate, and may be a TFD substrate using a thin film diode (abbreviated as TFD) as a pixel switching element. Alternatively, the present invention may be applied to a passive matrix liquid crystal device having no pixel switching element. Further, the reflective electrode may be an electrode having a function of a so-called transflective plate that reflects a part of incident light and transmits a part of the incident light in addition to the one that reflects substantially all of the incident light. In addition, specific descriptions of materials, film thicknesses, refractive indexes, manufacturing methods, and the like of the various films mentioned in the above embodiment are merely examples, and can be changed as appropriate.

1…第1基板、2…第2基板、3…液晶層、4…反射電極、5,15…第1絶縁膜、6,16…第1無機配向膜、7,17…透明電極、8,19,29…第2無機配向膜、18,28…第2絶縁膜、31,32,33,34…液晶装置、110…光源部、300R,300G,300B…光変調素子、500…投射光学系、700…プロジェクター。   DESCRIPTION OF SYMBOLS 1 ... 1st board | substrate, 2 ... 2nd board | substrate, 3 ... Liquid crystal layer, 4 ... Reflective electrode, 5,15 ... 1st insulating film, 6,16 ... 1st inorganic alignment film, 7, 17 ... Transparent electrode, 8, DESCRIPTION OF SYMBOLS 19, 29 ... 2nd inorganic alignment film, 18, 28 ... 2nd insulating film, 31, 32, 33, 34 ... Liquid crystal device, 110 ... Light source part, 300R, 300G, 300B ... Light modulation element, 500 ... Projection optical system 700 ... Projector.

Claims (10)

第1基板と、
前記第1基板に対向配置された光透過性を有する第2基板と、
前記第1基板と前記第2基板との間に挟持された液晶層と、
前記第1基板の前記第2基板に対向する側に配置された反射電極と、
前記反射電極上に配置された第1絶縁膜と、
前記第1絶縁膜上に配置された第1無機配向膜と、を備え、
前記液晶層の屈折率をnlc、前記第1絶縁膜の屈折率をn1、前記第1無機配向膜の屈折率をn2とすると、
nlc>n2>n1であり、
前記第1無機配向膜の光学膜厚をr2とすると、
50≦r2≦150であり、
前記第1絶縁膜の光学膜厚をr1とすると、
−1.0173×r2+367.29≦r1≦−1.0197×r2+463.34
であることを特徴とする液晶装置。
A first substrate;
A second substrate having optical transparency disposed opposite to the first substrate;
A liquid crystal layer sandwiched between the first substrate and the second substrate;
A reflective electrode disposed on a side of the first substrate facing the second substrate;
A first insulating film disposed on the reflective electrode;
A first inorganic alignment film disposed on the first insulating film,
When the refractive index of the liquid crystal layer is nlc, the refractive index of the first insulating film is n1, and the refractive index of the first inorganic alignment film is n2,
nlc>n2> n1,
When the optical film thickness of the first inorganic alignment film is r2,
50 ≦ r2 ≦ 150,
When the optical film thickness of the first insulating film is r1,
−1.0173 × r2 + 367.29 ≦ r1 ≦ −1.0197 × r2 + 463.34
A liquid crystal device characterized by the above.
前記第1無機配向膜は、基板法線方向から見た屈折率が異方性を有し、2つの屈折率のうちの大きい方の屈折率をn2maxとしたときに、nlc>n2max>n1の関係を満たすことを特徴とする請求項1に記載の液晶装置。   The first inorganic alignment film has an anisotropy in the refractive index viewed from the normal direction of the substrate, and nlc> n2max> n1 when the larger one of the two refractive indexes is n2max. The liquid crystal device according to claim 1, wherein the relationship is satisfied. 第1基板と、
前記第1基板に対向配置された光透過性を有する第2基板と、
前記第1基板と前記第2基板との間に挟持された液晶層と、
前記第1基板の前記第2基板に対向する側に配置された反射電極と、
前記反射電極上に配置された第1絶縁膜と、
前記第1絶縁膜上に配置された第1無機配向膜と、を備え、
前記液晶層の屈折率をnlc、前記第1絶縁膜の屈折率をn1、前記第1無機配向膜の屈折率をn2とすると、
nlc>n1>n2であり、
前記第1無機配向膜の光学膜厚をr2とすると、
50≦r2≦150であり、
前記第1絶縁膜の光学膜厚をr1とすると、
−0.7651×r2+325.61≦r1≦−0.7587×r2+429.96
であることを特徴とする液晶装置。
A first substrate;
A second substrate having optical transparency disposed opposite to the first substrate;
A liquid crystal layer sandwiched between the first substrate and the second substrate;
A reflective electrode disposed on a side of the first substrate facing the second substrate;
A first insulating film disposed on the reflective electrode;
A first inorganic alignment film disposed on the first insulating film,
When the refractive index of the liquid crystal layer is nlc, the refractive index of the first insulating film is n1, and the refractive index of the first inorganic alignment film is n2,
nlc>n1> n2,
When the optical film thickness of the first inorganic alignment film is r2,
50 ≦ r2 ≦ 150,
When the optical film thickness of the first insulating film is r1,
−0.7651 × r2 + 325.61 ≦ r1 ≦ −0.7587 × r2 + 429.96
A liquid crystal device characterized by the above.
前記第1無機配向膜は、基板法線方向から見た屈折率が異方性を有し、2つの屈折率のうちの大きい方の屈折率をn2maxとしたときに、nlc>n1>n2maxの関係を満たすことを特徴とする請求項3に記載の液晶装置。   The first inorganic alignment film has an anisotropy in the refractive index viewed from the normal direction of the substrate, and nlc> n1> n2max, where n2max is the larger refractive index of the two refractive indexes. The liquid crystal device according to claim 3, wherein the relationship is satisfied. 第1基板と、
前記第1基板に対向配置された光透過性を有する第2基板と、
前記第1基板と前記第2基板との間に挟持された液晶層と、
前記第1基板の前記第2基板に対向する側に配置された反射電極と、
前記第2基板の前記第1基板に対向する側に配置された透明電極と、
前記透明電極上に配置された第2絶縁膜と、
前記第2絶縁膜上に配置された第2無機配向膜と、を備え、
前記液晶層の屈折率をnlc、前記透明電極の屈折率をnt、前記第2絶縁膜の屈折率をn3、前記第2無機配向膜の屈折率をn4とすると、
nt>nlc>n4>n3であり、
前記透明電極の光学膜厚をrtとすると、
220≦rt≦276であり、
前記第2無機配向膜の光学膜厚をr4とすると、
50≦r4≦150であり、
前記第2絶縁膜の光学膜厚をr3とすると、
−1.0189×r4+212.05≦r3≦−1.016×r4+325.64
であることを特徴とする液晶装置。
A first substrate;
A second substrate having optical transparency disposed opposite to the first substrate;
A liquid crystal layer sandwiched between the first substrate and the second substrate;
A reflective electrode disposed on a side of the first substrate facing the second substrate;
A transparent electrode disposed on a side of the second substrate facing the first substrate;
A second insulating film disposed on the transparent electrode;
A second inorganic alignment film disposed on the second insulating film,
When the refractive index of the liquid crystal layer is nlc, the refractive index of the transparent electrode is nt, the refractive index of the second insulating film is n3, and the refractive index of the second inorganic alignment film is n4,
nt>nlc>n4> n3,
When the optical film thickness of the transparent electrode is rt,
220 ≦ rt ≦ 276,
When the optical film thickness of the second inorganic alignment film is r4,
50 ≦ r4 ≦ 150,
When the optical film thickness of the second insulating film is r3,
−1.0189 × r4 + 212.05 ≦ r3 ≦ −1.016 × r4 + 325.64
A liquid crystal device characterized by the above.
前記第2無機配向膜は、基板法線方向から見た屈折率が異方性を有し、2つの屈折率のうちの大きい方の屈折率をn4maxとしたときに、nt>nlc>n4max>n3の関係を満たすことを特徴とする請求項5に記載の液晶装置。   The second inorganic alignment film has an anisotropy in the refractive index viewed from the substrate normal direction, and nt> nlc> n4max> when the larger one of the two refractive indices is n4max. The liquid crystal device according to claim 5, wherein the relationship n3 is satisfied. 第1基板と、
前記第1基板に対向配置された光透過性を有する第2基板と、
前記第1基板と前記第2基板との間に挟持された液晶層と、
前記第1基板の前記第2基板に対向する側に配置された反射電極と、
前記第2基板の前記第1基板に対向する側に配置された透明電極と、
前記透明電極上に配置された第2絶縁膜と、
前記第2絶縁膜上に配置された第2無機配向膜と、を備え、
前記液晶層の屈折率をnlc、前記透明電極の屈折率をnt、前記第2絶縁膜の屈折率をn3、前記第2無機配向膜の屈折率をn4とすると、
nt>nlc>n3>n4であり、
前記透明電極の光学膜厚をrtとすると、
220≦rt≦276であり、
前記第2無機配向膜の光学膜厚をr4とすると、
50≦r4≦150であり、
前記第2絶縁膜の光学膜厚をr3とすると、
−0.8401×r4+189.76≦r3≦−0.8323×r4+302.7
であることを特徴とする液晶装置。
A first substrate;
A second substrate having optical transparency disposed opposite to the first substrate;
A liquid crystal layer sandwiched between the first substrate and the second substrate;
A reflective electrode disposed on a side of the first substrate facing the second substrate;
A transparent electrode disposed on a side of the second substrate facing the first substrate;
A second insulating film disposed on the transparent electrode;
A second inorganic alignment film disposed on the second insulating film,
When the refractive index of the liquid crystal layer is nlc, the refractive index of the transparent electrode is nt, the refractive index of the second insulating film is n3, and the refractive index of the second inorganic alignment film is n4,
nt>nlc>n3> n4,
When the optical film thickness of the transparent electrode is rt,
220 ≦ rt ≦ 276,
When the optical film thickness of the second inorganic alignment film is r4,
50 ≦ r4 ≦ 150,
When the optical film thickness of the second insulating film is r3,
−0.8401 × r4 + 189.76 ≦ r3 ≦ −0.8323 × r4 + 302.7
A liquid crystal device characterized by the above.
前記第2無機配向膜は、基板法線方向から見た屈折率が異方性を有し、2つの屈折率のうちの大きい方の屈折率をn4maxとしたときに、nt>nlc>n3>n4maxの関係を満たすことを特徴とする請求項7に記載の液晶装置。   The second inorganic alignment film has an anisotropy in the refractive index viewed from the normal direction of the substrate, and nt> nlc> n3> when the larger one of the two refractive indices is n4max. The liquid crystal device according to claim 7, wherein the relationship of n4max is satisfied. 前記第1絶縁膜もしくは前記第2絶縁膜が、CVD法もしくは蒸着法で形成されたシリコン酸化膜であり、前記第1無機配向膜もしくは前記第2無機配向膜が、斜方蒸着法で形成されたシリコン酸化膜であることを特徴とする請求項1ないし8のいずれか一項に記載の液晶装置。   The first insulating film or the second insulating film is a silicon oxide film formed by a CVD method or an evaporation method, and the first inorganic alignment film or the second inorganic alignment film is formed by an oblique evaporation method. 9. The liquid crystal device according to claim 1, wherein the liquid crystal device is a silicon oxide film. 光源と、前記光源からの光を変調する光変調素子と、前記光変調素子によって形成された画像を投射する投射光学系と、を備え、
前記光変調素子が、請求項1ないし9のいずれか一項に記載の液晶装置で構成されたことを特徴とするプロジェクター。
A light source, a light modulation element that modulates light from the light source, and a projection optical system that projects an image formed by the light modulation element,
A projector, wherein the light modulation element includes the liquid crystal device according to any one of claims 1 to 9.
JP2010026259A 2010-02-09 2010-02-09 Liquid crystal device and projector Active JP5370193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026259A JP5370193B2 (en) 2010-02-09 2010-02-09 Liquid crystal device and projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026259A JP5370193B2 (en) 2010-02-09 2010-02-09 Liquid crystal device and projector

Publications (2)

Publication Number Publication Date
JP2011164330A true JP2011164330A (en) 2011-08-25
JP5370193B2 JP5370193B2 (en) 2013-12-18

Family

ID=44595080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026259A Active JP5370193B2 (en) 2010-02-09 2010-02-09 Liquid crystal device and projector

Country Status (1)

Country Link
JP (1) JP5370193B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105045006A (en) * 2015-08-17 2015-11-11 武汉华星光电技术有限公司 Liquid crystal display panel
JP2019090895A (en) * 2017-11-14 2019-06-13 セイコーエプソン株式会社 Display and liquid crystal device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174427A (en) * 1997-12-15 1999-07-02 Victor Co Of Japan Ltd Liquid crystal display device and liquid crystal projector
JP2000193965A (en) * 1998-12-25 2000-07-14 Seiko Epson Corp Liquid crystal device and electronic equipment using the same
JP2007206212A (en) * 2006-01-31 2007-08-16 Canon Inc Reflective liquid crystal display device and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174427A (en) * 1997-12-15 1999-07-02 Victor Co Of Japan Ltd Liquid crystal display device and liquid crystal projector
JP2000193965A (en) * 1998-12-25 2000-07-14 Seiko Epson Corp Liquid crystal device and electronic equipment using the same
JP2007206212A (en) * 2006-01-31 2007-08-16 Canon Inc Reflective liquid crystal display device and method for manufacturing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105045006A (en) * 2015-08-17 2015-11-11 武汉华星光电技术有限公司 Liquid crystal display panel
WO2017028297A1 (en) * 2015-08-17 2017-02-23 武汉华星光电技术有限公司 Liquid crystal display panel
CN105045006B (en) * 2015-08-17 2017-10-24 武汉华星光电技术有限公司 A kind of liquid crystal display panel
KR20180035238A (en) * 2015-08-17 2018-04-05 우한 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Flexible touch panel and OLED display panel
GB2556605A (en) * 2015-08-17 2018-05-30 Wuhan China Star Optoelectronics Technology Co Ltd Liquid crystal display panel
KR102033164B1 (en) * 2015-08-17 2019-10-16 우한 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Flexible touch panel and OLED display panel
EA035303B1 (en) * 2015-08-17 2020-05-26 Ухань Чайна Стар Оптоэлектроникс Текнолоджи Ко., Лтд Flexible touch panel and oled display panel
GB2556605B (en) * 2015-08-17 2021-04-14 Wuhan China Star Optoelectronics Technology Co Ltd Flexible touch panel and oled display panel
JP2019090895A (en) * 2017-11-14 2019-06-13 セイコーエプソン株式会社 Display and liquid crystal device
US10866445B2 (en) 2017-11-14 2020-12-15 Seiko Epson Corporation Display device and liquid crystal device

Also Published As

Publication number Publication date
JP5370193B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP4308553B2 (en) Liquid crystal display
JP4138077B2 (en) Reflective liquid crystal display device and electronic apparatus
US8625063B2 (en) Display and electronic unit having particular optical laminate
WO2000048039A1 (en) Liquid-crystal display
JP2004302135A (en) Reflection type liquid crystal display device
US20100020402A1 (en) Multilayer film
JP2009289592A (en) Display
KR101665598B1 (en) Polarizer and display device having the polarizer
JP2005156717A (en) Liquid crystal display element and liquid crystal display device
JP2007034308A (en) Liquid crystal display device and manufacturing method therefor
JP7294325B2 (en) Liquid crystal displays and electronic devices
US20040056999A1 (en) Transflective liquid crystal display device with balanced color purity
JP5737854B2 (en) Liquid crystal display
JP5370193B2 (en) Liquid crystal device and projector
US20080297712A9 (en) IPS-LCD device having optical compensation films
JP2006293307A (en) Display device, reflective liquid crystal display device, and method for manufacturing reflective layer of transflective liquid crystal display device
CN110262111A (en) The LCD and its manufacturing method of active mesomorphic internal latency device
JP2005221639A (en) Liquid crystal device and projection display device
KR20010054927A (en) Liquid crystal display with black matrix of low reflectivity
JP5405128B2 (en) Transflective liquid crystal display device
JP5178809B2 (en) Method for manufacturing liquid crystal display device
US11874552B2 (en) Display device and manufacturing method thereof
US20060077548A1 (en) Polarizer
TW201217872A (en) Projector and optical unit
JP2007178774A (en) Manufacturing method of reflection type liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5370193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350