JP2011164167A - Linear actuator - Google Patents

Linear actuator Download PDF

Info

Publication number
JP2011164167A
JP2011164167A JP2010023865A JP2010023865A JP2011164167A JP 2011164167 A JP2011164167 A JP 2011164167A JP 2010023865 A JP2010023865 A JP 2010023865A JP 2010023865 A JP2010023865 A JP 2010023865A JP 2011164167 A JP2011164167 A JP 2011164167A
Authority
JP
Japan
Prior art keywords
giant magnetostrictive
magnetostrictive element
elements
linear actuator
driven member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010023865A
Other languages
Japanese (ja)
Inventor
Hide Hosoe
秀 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2010023865A priority Critical patent/JP2011164167A/en
Publication of JP2011164167A publication Critical patent/JP2011164167A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin linear actuator that is suitable for driving an optical element such as a lens. <P>SOLUTION: Cylindrical supermagnetostrictive elements 31 to 34 are arranged in magnetic field having uniform intensity in a circumferential direction, and have uniform expansion and contraction amounts. Thus, the supermagnetostrictive elements 31 to 34 are expanded and contracted without inclining an axial line. The the supermagnetostrictive elements 31 to 34 which expand and contract by supply of power to a coil 50 has a cylindrical shape, thereby increasing supporting end faces of the supermagnetostrictive elements 31 to 34. Even when large pressure is received by reaction force from a driven member 20, they have almost rotationally symmetric shape, and the supermagnetostrictive elements 31 to 34 uniformly and translationally expand in an axial line direction. They linearly move with high rigidity without inclining the driven member 20 while securing linearity without using any guide mechanism. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リニアアクチュエータに関し、特に大きな移動量を確保できるリニアアクチュエータに関する。   The present invention relates to a linear actuator, and more particularly to a linear actuator that can ensure a large amount of movement.

小さい光学部品等を高精度に移動させるリニアアクチュエータが知られている。従来のリニアアクチュエータでは、移動子の位置検出手段が外付けであるものが一般的であり、このため部品点数やコストの増大を招き、また位置検出手段を実装したリニアアクチュエータは比較的体積が大きく、かかるリニアアクチュエータを搭載する装置の大型化を招いていた。   Linear actuators that move small optical components and the like with high accuracy are known. In conventional linear actuators, the position detecting means of the moving element is generally externally attached, which increases the number of parts and costs, and the linear actuator mounted with the position detecting means has a relatively large volume. Therefore, the size of the apparatus equipped with such a linear actuator has been increased.

これに対し、特許文献1に示すように、圧電素子を用いてよりシンプルな構成を実現したリニアアクチュエータも知られている。かかるリニアアクチュエータは、所定の電気信号を与えることによってその電気信号に応じた変位を発生する圧電素子の積層方向すなわち変位方向の一方の端面に棒状の係合部材が固定されており、また被駆動部材に固定された板ばねの弾発力によって被駆動部材の摺接穴が係合部材に圧接され、係合部材と被駆動部材とが摩擦係合するようになっている。   On the other hand, as shown in Patent Document 1, there is also known a linear actuator that realizes a simpler configuration using a piezoelectric element. In such a linear actuator, a rod-shaped engaging member is fixed to one end face in the stacking direction of the piezoelectric elements, that is, the displacement direction, which generates a displacement according to the predetermined electric signal, and is driven. The sliding contact hole of the driven member is pressed against the engaging member by the elastic force of the leaf spring fixed to the member, and the engaging member and the driven member are frictionally engaged.

圧電素子に高周波電流を付与して繰り返し膨縮させることにより、係合部材を微小に往復移動させることができる。ここで、係合部材がゆっくり移動するときには、被駆動部材は、摩擦係合部における摩擦力によって係合部材とともに移動する。一方、係合部材がある程度以上速く移動して慣性力が摩擦係合部の摩擦力より大きくなったときには、摩擦係合部において滑りが生じ、被駆動部材は静止または略静止したまま、係合部材だけが移動する。したがって、係合部材の一方向の移動時には、被駆動部材を係合部材とともに一体的に移動して送る一方、係合部材の他方向の移動時には、滑りによって被駆動部材を静止または略静止させたまま係合部材を移動させ、これを繰り返すことによって、被駆動部材を一方向に間欠的に移動させることができる。   By applying a high frequency current to the piezoelectric element and repeatedly expanding and contracting, the engaging member can be reciprocated minutely. Here, when the engaging member moves slowly, the driven member moves together with the engaging member by the frictional force in the friction engaging portion. On the other hand, when the engaging member moves faster than a certain degree and the inertial force becomes larger than the frictional force of the friction engaging portion, slipping occurs in the friction engaging portion, and the driven member remains engaged or remains substantially stationary. Only the member moves. Therefore, when the engagement member moves in one direction, the driven member is moved together with the engagement member and sent, while when the engagement member moves in the other direction, the driven member is made stationary or substantially stationary by sliding. The driven member can be intermittently moved in one direction by moving the engaging member while keeping it repeated.

ところで、従来のリニアアクチュエータで用いられる圧電素子は、比較的安価で入手しやすいという利点があるが、一般的に駆動には数100Vの高電圧が必要な割に、変位量が1μm程度と非常に小さく、小型軽量にすると絶縁性や変位量が低下し、信頼性や機能が低下するという問題がある。また、圧電素子は容量成分が大きく、駆動時に遅れが生じやすいこと、クリープ特性などがあり一定では無いため位置検出とフィードバック回路が必要なことなどにより、小型軽量なアクチュエータには使いにくい材料であったといえる。これに対し、特許文献2には、超磁歪素子を用いたリニアアクチュエータが開示されている。   By the way, although the piezoelectric element used with the conventional linear actuator has the advantage that it is comparatively cheap and is easy to acquire, generally the displacement amount is about 1 micrometer, although a high voltage of several hundred volts is required for a drive. However, if it is made small, small and light, there is a problem that the insulation and displacement amount are lowered, and the reliability and function are lowered. Piezoelectric elements are difficult to use for small and light actuators because they have large capacitance components, are prone to delay during driving, and have creep characteristics that are not constant and require a position detection and feedback circuit. It can be said that. On the other hand, Patent Document 2 discloses a linear actuator using a giant magnetostrictive element.

特開平04−69070号公報Japanese Patent Laid-Open No. 04-69070 特開平06−140684号公報Japanese Patent Laid-Open No. 06-140684

特許文献2に示すような超磁歪素子は、コイルに付与した電流により生じた磁界中で膨縮する性質を有するが、わずか数Vで駆動できるので、圧電素子に比べると回路負担が遙かに軽く、他の回路との整合性も取り易いという利点がある。また、負荷がリアクタンスのため高速駆動ができ、非接触で駆動できること、かつ変位量や発生力も圧電素子などに比べ遙かに大きいこと、さらに耐熱性が380℃と高いため回路基板の半田付けリフロー炉(260℃程)に直接投入することも可能であり、耐リフロー性があることから、リニアアクチュエータの駆動源としてもすぐれている。このような超磁歪素子を使うことで、駆動電圧を、圧電素子で用いる数百Vから数ボルトへ一挙に低減でき、これにより湿度や絶縁不良により感電や漏電、他の素子の破壊などを防止でき、安全性が非常に高いリニアアクチュエータを実現できる。   A giant magnetostrictive element as shown in Patent Document 2 has a property of expanding and contracting in a magnetic field generated by a current applied to a coil, but since it can be driven with only a few V, the circuit burden is much larger than that of a piezoelectric element. There is an advantage that it is light and easy to match with other circuits. In addition, the load can be driven at high speed due to reactance, can be driven in a non-contact manner, and the displacement and generated force are much larger than those of piezoelectric elements, etc. Further, the heat resistance is high at 380 ° C. It can also be directly put into a furnace (about 260 ° C.) and has reflow resistance, so it is excellent as a drive source for a linear actuator. By using such a giant magnetostrictive element, the drive voltage can be reduced from several hundred volts used for piezoelectric elements to several volts at a stroke, thereby preventing electric shock, electric leakage, destruction of other elements due to humidity or insulation failure. And a highly safe linear actuator can be realized.

ところが、特許文献2に示されたリニアアクチュエータは、超磁歪素子の歪みを拡大して最終的にシャフトの推力に変換するものであるため、用途によっては使いにくいという問題がある。例えば撮像装置において、フォーカスやズームのためレンズなどを駆動するために、特許文献2に示されたリニアアクチュエータを用いる場合、推力を与えられたシャフトでレンズのフランジ又はその近傍の一点を押すことになるため、レンズの光軸が傾く恐れがあり、それによりコマ収差が発生して撮像画像の画質を低下させる恐れがある。又、近年では撮像装置付き携帯電話の普及が著しいが、より薄形のボディに対してオートフォーカスやズーム機能を実現したいという要請もある。   However, the linear actuator disclosed in Patent Document 2 has a problem that it is difficult to use depending on the application because it enlarges the distortion of the giant magnetostrictive element and finally converts it into the thrust of the shaft. For example, in an imaging apparatus, when the linear actuator disclosed in Patent Document 2 is used to drive a lens or the like for focusing or zooming, it is necessary to push a flange of the lens or a point in the vicinity thereof with a shaft provided with thrust. Therefore, there is a possibility that the optical axis of the lens is tilted, which may cause coma aberration and reduce the image quality of the captured image. In recent years, mobile phones with imaging devices have been widely used, but there is also a demand for realizing an autofocus and zoom function for a thinner body.

本発明は、かかる従来技術の問題点に鑑みてなされたものであり、レンズなどの光学素子の駆動に好適であり、薄形化を図れるリニアアクチュエータの提供を目的とする。   The present invention has been made in view of the problems of the prior art, and is intended to provide a linear actuator that is suitable for driving an optical element such as a lens and can be thinned.

請求項1に記載のリニアアクチュエータは、筒状の超磁歪素子と、前記超磁歪素子の軸線直交方向外側に前記超磁歪素子と略同軸に配置されたコイルとを有し、前記コイルから発生した磁界により前記超磁歪素子を駆動することにより、固定部に対して被駆動部材を移動させることを特徴とする。   The linear actuator according to claim 1 has a cylindrical super magnetostrictive element and a coil disposed substantially coaxially with the super magnetostrictive element on the outer side in the direction perpendicular to the axis of the super magnetostrictive element, and is generated from the coil The driven member is moved relative to the fixed portion by driving the giant magnetostrictive element with a magnetic field.

本発明によれば、前記超磁歪素子の軸線直交方向外側に前記コイルを略同軸に配したため、外部から前記コイルに給電されたときに前記コイルで発生する磁界は、その内側にある前記超磁歪素子全体に作用して、膨縮させることができる。このとき、前記超磁歪素子が筒状であれば、周方向に一様な強度の磁界中に配置されることとなり、前記超磁歪素子を軸線が傾くことなく膨縮させることができる。又、前記コイルに給電することで膨縮する前記超磁歪素子の形状を筒状としたことにより、前記超磁歪素子の支持端面が増加し、被駆動部材からの反力により大きな力を受けても略回転対象形状のため、軸線方向に均一に並進膨張できる構造とすることができ、また何らガイド機構を用いることなく直進性を確保して、被駆動部材を傾くことなく高剛性で直進運動させることができる。これによって、被駆動部材に傾きやねじれを与えること無く一方向に高精度に進退する構造を実現できるので、例えば光学素子のオートフォーカスやズームあるいは手ブレ補正などの用途にも、信頼性の高い確実な動作を提供できる。尚、筒状とは好ましくは円筒状であるが、角筒状であっても良く、更には周方向の一部が切り欠かれた形状でも良い。又、梃子は変位を拡大する為に用いられるとは限らず変位を縮小するためにも使うこともでき、この場合は変位量のダイナミックレンジは小さくなるが、高精度かつ高剛性に微小移動を行うことができる。   According to the present invention, since the coil is arranged substantially coaxially on the outer side in the direction orthogonal to the axis of the giant magnetostrictive element, the magnetic field generated in the coil when the coil is fed from the outside is the giant magnetostrictive on the inside. It acts on the whole element and can be expanded and contracted. At this time, if the giant magnetostrictive element is cylindrical, it is arranged in a magnetic field having a uniform strength in the circumferential direction, and the giant magnetostrictive element can be expanded and contracted without tilting the axis. Further, since the shape of the giant magnetostrictive element that expands and contracts by supplying power to the coil is made cylindrical, the support end surface of the giant magnetostrictive element increases, and a large force is received by the reaction force from the driven member. However, because it has a substantially rotating shape, it can be structured to be able to translate and expand evenly in the axial direction, and it can ensure straightness without using any guide mechanism, and it can move straightly with high rigidity without tilting the driven member. Can be made. As a result, it is possible to realize a structure that advances and retreats in one direction with high accuracy without giving tilt or twist to the driven member, so that it is highly reliable for applications such as auto focus, zoom or camera shake correction of optical elements, for example. Reliable operation can be provided. The cylindrical shape is preferably a cylindrical shape, but may be a rectangular tube shape, or may be a shape in which a part of the circumferential direction is cut away. In addition, the insulator is not necessarily used for enlarging the displacement but can also be used for reducing the displacement. In this case, the dynamic range of the displacement is reduced, but the minute movement with high accuracy and high rigidity can be performed. It can be carried out.

請求項2に記載のリニアアクチュエータは、請求項1に記載の発明において、前記超磁歪素子はN個(Nは2以上の整数)配置され、各超磁歪素子の径が異なっており、且つ各超磁歪素子は同軸に配置されており、軸線直交方向外側からn(nは1以上且つN−1以下の整数)番目の前記超磁歪素子の変位は、軸線直交方向外側から(n+1)番目の前記超磁歪素子に梃子を介して伝達されるようになっていることを特徴とする。   A linear actuator according to a second aspect is the invention according to the first aspect, wherein the number of the giant magnetostrictive elements (N is an integer of 2 or more) is arranged, the diameters of the giant magnetostrictive elements are different, and The giant magnetostrictive element is coaxially arranged, and the displacement of the nth (n is an integer not less than 1 and not more than N−1) th of the giant magnetostrictive element from the outside in the axis orthogonal direction is the (n + 1) th from the outside in the axis orthogonal direction. It is transmitted to the giant magnetostrictive element through an insulator.

本発明によれば、軸線直交方向外側の前記超磁歪素子の変位が前記梃子により軸線直交方向内側の前記超磁歪素子側に倍加されて拡大されながら、最終的に被駆動部材に伝達される。前記超磁歪素子は一般的に発生力が大きいため、このような梃子を用いることにより、被駆動部材からの反力が倍加されて逆方向に伝達されても軸線直交方向外側の前記超磁歪素子の大きな縮長を招く恐れが少ないので、結果として被駆動部材の大きな変位を実現できる。   According to the present invention, the displacement of the giant magnetostrictive element on the outer side in the direction orthogonal to the axis is doubled and enlarged by the insulator toward the giant magnetostrictive element on the inner side in the direction perpendicular to the axis, and finally transmitted to the driven member. Since the giant magnetostrictive element generally has a large generated force, even if the reaction force from the driven member is doubled and transmitted in the reverse direction by using such an insulator, the giant magnetostrictive element outside the axis orthogonal direction is used. As a result, a large displacement of the driven member can be realized.

請求項3に記載のリニアアクチュエータは、請求項2に記載の発明において、最も外周側にある前記超磁歪素子の一端は、前記固定部に連結され、最も内周側にある前記超磁歪素子の一端は、前記被駆動部材に連結されていることを特徴とする。最外周にある前記超磁歪素子の変位量が前記梃子に入力され倍加された上で、外周から2つ目の前記超磁歪素子に伝達され、その変位を重畳した変位が前記梃子で倍加された上で、更に外周から3つ目の前記超磁歪素子に伝達され、・・・というように、漸次変位量を拡大できる。これにより、前記固定部に対して前記被駆動部材を大きなストロークで移動させることができる。   A linear actuator according to a third aspect of the present invention is the invention according to the second aspect, wherein one end of the super magnetostrictive element on the outermost peripheral side is connected to the fixed portion, and the super magnetostrictive element on the innermost peripheral side is One end is connected to the driven member. The displacement amount of the giant magnetostrictive element at the outermost periphery is input to the insulator and doubled, and then transmitted to the second giant magnetostrictive element from the outer periphery, and the displacement superimposed on the displacement is doubled by the insulator. Above, it is further transmitted to the third giant magnetostrictive element from the outer periphery, and so on, so that the gradual displacement amount can be increased. Thereby, the driven member can be moved with a large stroke with respect to the fixed portion.

請求項4に記載のリニアアクチュエータは、請求項2又は3に記載の発明において、前記n番目の超磁歪素子と、前記(n+1)番目の超磁歪素子とを連結する梃子は複数個設けられ、周方向に等間隔に配置されていることを特徴とする。これにより、高精度に同軸性を維持しつつ、軸線直交方向外側の前記超磁歪素子の変位を、軸線直交方向内側の前記超磁歪素子側に伝達することができる。   The linear actuator according to claim 4 is the invention according to claim 2 or 3, wherein a plurality of insulators for connecting the nth giant magnetostrictive element and the (n + 1) th giant magnetostrictive element are provided, It arrange | positions at equal intervals in the circumferential direction, It is characterized by the above-mentioned. Thereby, the displacement of the super magnetostrictive element on the outer side in the axis orthogonal direction can be transmitted to the super magnetostrictor side on the inner side in the axis orthogonal direction while maintaining coaxiality with high accuracy.

梃子の腕部分は、n番目の超磁歪素子の変位を(n+1)番目へ伝達するために、撓むことなく剛性が高い必要があるが、これを支持する支点部分については、柔軟で繰り返し曲げに対する耐性を高くする必要があるので、剛性を低くする必要がある。図2,3にあるように、n番目の超磁歪素子と(n+1)番目の超磁歪素子間の橋渡し部材は、幅を広く取り厚くして剛体として機能するようにするが、その支点部分は薄くして容易に曲がるようになっている。即ち、後述する弾性ヒンジが梃子の支点部分に相当し、固定部に対して梃子の橋渡し部を連結する、少なくとも橋渡し部より剛性が低くなっている部分である。尚、支点部分はナイフエッジでも良い。   In order to transmit the displacement of the nth giant magnetostrictive element to the (n + 1) th, the insulator arm part needs to have high rigidity without bending, but the fulcrum part that supports this is flexible and repeatedly bent. Since it is necessary to increase the resistance to the resistance, it is necessary to reduce the rigidity. As shown in FIGS. 2 and 3, the bridging member between the nth giant magnetostrictive element and the (n + 1) th giant magnetostrictive element is made wide and thick so as to function as a rigid body. Thin and bend easily. That is, an elastic hinge, which will be described later, corresponds to a fulcrum portion of the lever, and is a portion that connects the bridge portion of the lever to the fixed portion and has a rigidity lower than at least the bridge portion. The fulcrum part may be a knife edge.

この梃子の外形を円周全体にリング状にして、各超磁歪素子の端面が全面で梃子に接着されるようにすると、梃子はより剛性が高くなるが、同時に変位に伴ってリングの内側と外側でねじれる力が発生するので、超磁歪曲素子に大きな力がかかり破損する危険が高まることと、梃子の支点部分の剛性も大きくなるので、曲がりにくくなって変位量が減少したり動作の信頼性が低下したりする。   If the outer shape of the insulator is formed in a ring shape around the entire circumference so that the end face of each giant magnetostrictive element is bonded to the insulator over the entire surface, the rigidity of the insulator becomes higher. Since a twisting force is generated on the outside, there is an increased risk that the giant magnetostrictive element will be damaged, and the rigidity of the fulcrum part of the insulator will also increase. The sex will be reduced.

そのため、図3のように円周に対して等配に4か所配置すると、超磁歪曲素子の変位に対して捩れる力や支点の剛性が高くなることが無いので、確実な動作の上で良い。円周等配置となる梃子の数は、本実施例の4個でなくとも6個や8個でもよく、3個や5個などの奇数個でも、確実な変位量拡大と伝達、および高い直進性と長寿命を確保できるので良い。   For this reason, as shown in FIG. 3, when four places are arranged at equal intervals with respect to the circumference, the twisting force against the displacement of the giant magnetostrictive element and the rigidity of the fulcrum do not increase. Good. The number of insulators arranged around the circumference may be six or eight instead of the four in the present embodiment, and even if an odd number such as three or five, the displacement can be surely increased and transmitted, and high linearity can be achieved. And long life can be secured.

請求項5に記載のリニアアクチュエータは、請求項1〜4のいずれかに記載の発明において、光学素子の駆動に用いられることを特徴とする。本発明のリニアアクチュエータは、特に光学部材の駆動に好適であるが、駆動された被駆動部材の傾きを抑制したい用途であればいずれにも適用可能である。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the linear actuator is used for driving an optical element. The linear actuator of the present invention is particularly suitable for driving an optical member, but can be applied to any application where it is desired to suppress the tilt of a driven member to be driven.

本発明によれば、レンズなどの光学素子の駆動に好適であり、薄形化を図れるリニアアクチュエータを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is suitable for the drive of optical elements, such as a lens, and can provide the linear actuator which can attain thickness reduction.

本実施の形態にかかるリニアアクチュエータの斜視図である。It is a perspective view of the linear actuator concerning this Embodiment. 本実施の形態にかかるリニアアクチュエータの断面図である。It is sectional drawing of the linear actuator concerning this Embodiment. 超磁歪素子と梃子との関係を示す斜視図である。It is a perspective view which shows the relationship between a giant magnetostrictive element and an insulator.

以下、図面を参照して本発明の実施の形態について説明する。図1は、本実施の形態にかかるリニアアクチュエータの斜視図であり、図2は、本実施の形態にかかるリニアアクチュエータの断面図である。図3は、超磁歪素子と梃子との関係を示す斜視図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a linear actuator according to this embodiment, and FIG. 2 is a cross-sectional view of the linear actuator according to this embodiment. FIG. 3 is a perspective view showing the relationship between the giant magnetostrictive element and the insulator.

図2において、本実施の形態のリニアアクチュエータは、フレームなどに固定される固定部である非磁性の筐体10と、被駆動部材20と、超磁歪素子31〜34と、梃子41〜43と、コイル50とを有する。筐体10は、矩形板状の天板11及び底板12と、天板11及び底板12とを外側で連結する角筒状の側板13とを有する。天板11及び底板12は、それぞれ中央に開口11a、12aを備えており、開口12aの内周にはレンズLS2が固定されている。側板13の外周にはコイル50が巻回されており、コイル50は図1に示すように外部電源DCからの給電を受けるようになっている。天板11及び底板12を円筒形状とし、側板13を円筒形状としても良い。   In FIG. 2, the linear actuator of the present embodiment includes a nonmagnetic casing 10 that is a fixed portion fixed to a frame or the like, a driven member 20, giant magnetostrictive elements 31 to 34, and insulators 41 to 43. And a coil 50. The housing 10 includes a rectangular plate-shaped top plate 11 and a bottom plate 12, and a rectangular tube-shaped side plate 13 that connects the top plate 11 and the bottom plate 12 on the outside. The top plate 11 and the bottom plate 12 are provided with openings 11a and 12a in the center, respectively, and a lens LS2 is fixed to the inner periphery of the opening 12a. A coil 50 is wound around the outer periphery of the side plate 13, and the coil 50 receives power from an external power source DC as shown in FIG. The top plate 11 and the bottom plate 12 may have a cylindrical shape, and the side plate 13 may have a cylindrical shape.

4つの超磁歪素子31〜34は、それぞれ径が異なっている円筒形状をなしており、各軸線が側板13の軸線に一致するようにして同軸に配置されている。超磁歪素子31〜34は、半径方向外側の超磁歪素子の肉厚が、半径方向内側の超磁歪素子の肉厚より大きいと好ましいが、等しい肉厚でも良い。   The four giant magnetostrictive elements 31 to 34 have cylindrical shapes with different diameters, and are arranged coaxially so that each axis coincides with the axis of the side plate 13. In the giant magnetostrictive elements 31 to 34, it is preferable that the thickness of the radially outer giant magnetostrictive element is larger than the thickness of the radially inner giant magnetostrictive element, but may be equal.

最も半径方向外側の超磁歪素子31の上端は、筐体10の天板11の下面に固着されており、その下端は梃子41の外方端に連結されている。梃子41の内方端は、外側から2番目の超磁歪素子32の下端に連結されており、その上端は梃子42の外方端に連結されている。梃子42の内方端は、外側から3番目の超磁歪素子33の上端に連結されており、その下端は梃子43の外方端に連結されている。梃子43の内方端は、最も半径方向内側の超磁歪素子34の下端に連結されており、その上端は略円筒状の被駆動部材20の下端に連結されている。   The upper end of the outermost magnetostrictive element 31 is fixed to the lower surface of the top plate 11 of the housing 10, and the lower end is connected to the outer end of the insulator 41. The inner end of the insulator 41 is connected to the lower end of the second giant magnetostrictive element 32 from the outside, and the upper end is connected to the outer end of the insulator 42. The inner end of the insulator 42 is connected to the upper end of the third giant magnetostrictive element 33 from the outside, and the lower end is connected to the outer end of the insulator 43. The inner end of the insulator 43 is connected to the lower end of the innermost magnetostrictive element 34 in the radial direction, and the upper end thereof is connected to the lower end of the substantially cylindrical driven member 20.

被駆動部材20は、筐体10の天板11の開口11a内に配置され、内周にレンズLS1を取り付けている。レンズLS1の光軸はレンズLS2の光軸と一致している。天板11の下面における開口11aの周囲には、段部11bが形成され、ここに配置されたコイルバネ70が、被駆動部材20を図2で下方に向かって付勢している。   The driven member 20 is disposed in the opening 11a of the top plate 11 of the housing 10, and a lens LS1 is attached to the inner periphery. The optical axis of the lens LS1 coincides with the optical axis of the lens LS2. A step portion 11b is formed around the opening 11a on the lower surface of the top plate 11, and a coil spring 70 disposed therein urges the driven member 20 downward in FIG.

長方形板状の梃子41〜43は、図3に示すように(但し梃子42は図3で不図示)、隣接する超磁歪素子31〜34の端部同士を連結するようにして、各4つずつ周方向に等間隔に配置されている。図2に示すように、梃子41は、弾性ヒンジ41aにより底板12の上面に揺動可能に取り付けられ、梃子42は、弾性ヒンジ42aにより天板11の下面に揺動可能に取り付けられ、梃子43は、弾性ヒンジ43aにより底板12の上面に揺動可能に取り付けられている。ここで、各梃子41〜43は、その弾性ヒンジ41a〜43aから、半径方向外側の超磁歪素子の取り付け部までの長さ(A)が、半径方向内側の超磁歪素子の取り付け部までの長さ(B)より短くなるように、レバー比が設定されている。   As shown in FIG. 3 (however, the insulator 42 is not shown in FIG. 3), the rectangular plate-like insulators 41 to 43 are connected to the ends of the adjacent giant magnetostrictive elements 31 to 34, respectively. They are arranged at equal intervals in the circumferential direction. As shown in FIG. 2, the insulator 41 is swingably attached to the upper surface of the bottom plate 12 by an elastic hinge 41a, and the insulator 42 is swingably attached to the lower surface of the top plate 11 by an elastic hinge 42a. Is swingably attached to the upper surface of the bottom plate 12 by an elastic hinge 43a. Here, each of the insulators 41 to 43 has a length (A) from the elastic hinges 41a to 43a to the attaching portion of the super magnetostrictive element on the radially outer side to the attaching portion of the super magnetostrictive element on the radially inner side. The lever ratio is set so as to be shorter than (B).

本実施の形態にかかるリニアアクチュエータの動作について説明する。本実施の形態にかかるリニアアクチュエータは、デジタルカメラや携帯電話に搭載される撮像装置において、オートフォーカスやズーム機能を発揮するレンズ駆動のために用いることができる。不図示の制御装置より、レンズLS1を光軸方向に移動させる信号が出されたとき、外部電源DCからコイル50に給電され、これにより4つの超磁歪素子31〜34が伸張する。   The operation of the linear actuator according to this embodiment will be described. The linear actuator according to the present embodiment can be used for driving a lens that exhibits an autofocus and zoom function in an imaging device mounted on a digital camera or a mobile phone. When a signal for moving the lens LS1 in the optical axis direction is output from a control device (not shown), power is supplied to the coil 50 from the external power source DC, and thereby the four giant magnetostrictive elements 31 to 34 expand.

ここで、図2において、最も半径方向外側の超磁歪素子31の上端が、筐体10の天板11の下面に固着されているので、その変位量全てが下端を介して梃子41に伝達され、そのレバー比で拡大された変位量で、外側から2番目の超磁歪素子32の下端を押し上げる。これに超磁歪素子32の変位量が重畳されて、その上端から梃子42に伝達され、更にそのレバー比で拡大された変位量で、外側から3番目の超磁歪素子33の上端を押し下げる。これに超磁歪素子33の変位量が重畳されて、その下端から梃子43に伝達され、更にそのレバー比で拡大された変位量で、最も内側の超磁歪素子34の下端を押し上げる。これに超磁歪素子33の変位量が重畳されて、その上端を介して被駆動部材20をコイルバネ70の付勢力に抗して押し上げるので、レンズLS1は光軸方向に移動することができる。コイル50に給電される電流の大きさを制御することにより、コイル内部に発生する磁界の強度を変えることができるので、レンズLS1の光軸方向の移動量を調整し制御することができる。   Here, in FIG. 2, since the upper end of the outermost magnetostrictive element 31 in the radial direction is fixed to the lower surface of the top plate 11 of the casing 10, all the displacement is transmitted to the insulator 41 via the lower end. The lower end of the second giant magnetostrictive element 32 from the outside is pushed up by the displacement amount enlarged by the lever ratio. The amount of displacement of the giant magnetostrictive element 32 is superimposed on this, transmitted from the upper end to the insulator 42, and further pushed down the upper end of the third giant magnetostrictive element 33 from the outside with the amount of displacement enlarged by the lever ratio. The amount of displacement of the giant magnetostrictive element 33 is superimposed on this, transmitted from the lower end to the insulator 43, and further pushed up the lower end of the innermost giant magnetostrictive element 34 with the amount of displacement enlarged by the lever ratio. Since the displacement amount of the giant magnetostrictive element 33 is superimposed on this and the driven member 20 is pushed up against the urging force of the coil spring 70 via its upper end, the lens LS1 can move in the optical axis direction. By controlling the magnitude of the current supplied to the coil 50, the strength of the magnetic field generated inside the coil can be changed, so that the amount of movement of the lens LS1 in the optical axis direction can be adjusted and controlled.

一方、外部電源DCからコイル50への給電を中断すると、4つの超磁歪素子31〜34が元の状態に収縮するので、コイルバネ70の付勢力に従い、レンズLS1と共に被駆動部材20は元の位置に戻るようになっている。   On the other hand, when the power supply from the external power source DC to the coil 50 is interrupted, the four giant magnetostrictive elements 31 to 34 contract to the original state, so that the driven member 20 together with the lens LS1 follows the biasing force of the coil spring 70. To come back.

本実施の形態によれば、超磁歪素子31〜34の軸線直交方向外側にコイル50を略同軸に配したため、外部電源DCからコイル50に給電されたときにコイル50で発生する磁界は、その内側にある全ての超磁歪素子31〜34に作用して、膨縮させることができる。超磁歪素子31〜34は円筒状であるので、周方向にも径方向にも一様な強度の磁界中に配置され、膨縮量が均一となる。これにより超磁歪素子31〜34を軸線が傾くことなく膨縮させることができる。又、コイル50に給電することで膨縮する超磁歪素子31〜34の形状を筒状としたことにより、超磁歪素子31〜34の支持端面が増加し、被駆動部材20からの反力により大きな力を受けても略回転対象形状のため、軸線方向に均一に並進膨張できる構造とすることができ、また何らガイド機構を用いることなく直進性を確保して、被駆動部材20を傾くことなく高剛性で直進運動させることができる。これによって、被駆動部材20に傾きやねじれを与えること無く一方向に高精度に進退する構造を実現できるので、オートフォーカスやズームあるいは手ブレ補正などの用途にも、信頼性の高い確実な動作を提供できる。   According to the present embodiment, since the coil 50 is arranged substantially coaxially on the outer side in the direction orthogonal to the axis of the giant magnetostrictive elements 31 to 34, the magnetic field generated in the coil 50 when the coil 50 is fed from the external power source DC is It acts on all the giant magnetostrictive elements 31 to 34 on the inner side and can be expanded and contracted. Since the giant magnetostrictive elements 31 to 34 are cylindrical, they are arranged in a magnetic field having a uniform strength both in the circumferential direction and in the radial direction, and the amount of expansion / contraction is uniform. Thereby, the giant magnetostrictive elements 31 to 34 can be expanded and contracted without tilting the axis. In addition, since the shape of the giant magnetostrictive elements 31 to 34 that expand and contract by supplying power to the coil 50 is cylindrical, the support end surfaces of the giant magnetostrictive elements 31 to 34 are increased, and the reaction force from the driven member 20 Even if it receives a large force, it can be made into a structure that can be translated and expanded uniformly in the axial direction because of its substantially rotational shape, and it can tilt the driven member 20 without using any guide mechanism to ensure straightness. High rigidity and straight movement. As a result, it is possible to realize a structure that advances and retreats in one direction with high accuracy without giving tilt or twist to the driven member 20, so that reliable and reliable operation is possible for applications such as autofocus, zoom, or camera shake correction. Can provide.

更に、本実施の形態によれば、4つの梃子41〜43が、周方向に等間隔に配置されているので、超磁歪素子31〜34の膨縮時における同軸性を維持することができる。尚、超磁歪素子は4つに限らず3つ或いは5つ以上でもよい。   Furthermore, according to the present embodiment, since the four insulators 41 to 43 are arranged at equal intervals in the circumferential direction, the coaxiality at the time of expansion / contraction of the giant magnetostrictive elements 31 to 34 can be maintained. The number of giant magnetostrictive elements is not limited to four, and may be three or five or more.

また、被駆動部材20と超磁歪素子31との固定部を、リング状になって広がりを有する端面としているため、被駆動部材との結合においても確実な突き当てを確保でき、膨縮による送り軸方向に対して精度良く固定することができる。以上のように、本実施の形態により直進性が良く高精度で高変位量を確保できるリニアアクチュエータが実現できる。   In addition, since the fixed portion between the driven member 20 and the giant magnetostrictive element 31 is a ring-shaped end surface that has a spread, reliable abutment can be ensured even in connection with the driven member, and the feed by expansion and contraction can be ensured. It can be fixed with high accuracy in the axial direction. As described above, according to the present embodiment, it is possible to realize a linear actuator that has good straightness, high accuracy, and high displacement.

以下、本発明者の検討結果について述べる。図1〜3に示す構造を参照し、略円筒状の超磁歪素子の数をN個とし、最外周に配置された超磁歪素子の一端が固定され、最内周の超磁歪素子の一端が被駆動部材に固定されている場合を考える。その他の超磁歪素子の端面は、弾性ヒンジによる梃子に取り付けられており、この梃子の拡大率をn倍とおくと、最終変位拡大率Mは、
M=n・exp(N−1)+n・exp(N−2)+・・・+n+1 (1)
で表され等比級数となる。従って、最終変位拡大率Mは以下のように書き換えられる。
M=(1−n・exp(N))/(1−n) (2)
Hereinafter, the examination results of the present inventors will be described. 1 to 3, the number of substantially cylindrical super magnetostrictive elements is N, one end of the super magnetostrictive element arranged on the outermost periphery is fixed, and one end of the innermost super magnetostrictive element is Consider the case where it is fixed to a driven member. The end face of the other giant magnetostrictive element is attached to an insulator by an elastic hinge. When the enlargement ratio of this insulator is set to n times, the final displacement enlargement ratio M is
M = n · exp (N−1) + n · exp (N−2) +... + N + 1 (1)
It is expressed as a geometric series. Accordingly, the final displacement enlargement ratio M is rewritten as follows.
M = (1-n · exp (N)) / (1-n) (2)

例えば、ここで超磁歪素子数Nが4であり、梃子の拡大率nを2とすると、最終拡大率Mは式(2)により15倍となる。超磁歪素子の磁界による変位量は、大凡1000ppm/kOeであり、直径10mmで330回巻のコイルに80mAの電流を流して発生する磁界が1kOeに相当するので、この条件で超磁歪素子の初期厚みを1mmとして最終変位量Dを計算すると、
D=1mm×1000ppm/kOe×1kOe×15倍=15μm (3)
となり、わずか1mmの厚みで15μmの変位量を創出できることになる。また、梃子の拡大率nを3とし駆動電流を150mAとした場合には、最終拡大率Mは40倍となり、最終変位量Dは75μmとなって、極めて大きな変位量を得ることができる。
For example, if the number of giant magnetostrictive elements N is 4 and the enlargement factor n of the insulator is 2, the final enlargement factor M is 15 times according to the equation (2). The amount of displacement due to the magnetic field of the giant magnetostrictive element is approximately 1000 ppm / kOe, and the magnetic field generated by flowing a current of 80 mA through a 330-turn coil having a diameter of 10 mm corresponds to 1 kOe. When the final displacement D is calculated with a thickness of 1 mm,
D = 1 mm × 1000 ppm / kOe × 1 kOe × 15 times = 15 μm (3)
Thus, a displacement of 15 μm can be created with a thickness of only 1 mm. Further, when the enlargement factor n of the insulator is 3 and the drive current is 150 mA, the final enlargement factor M is 40 times and the final displacement amount D is 75 μm, and an extremely large displacement amount can be obtained.

しかるに、このような大きな変位を発生させても、その膨張や収縮の軌跡に傾きやねじれなどがあると、被駆動部材の送り直進精度は得られない。これに対し、超磁歪素子の形状を円筒状(又は角筒状でもよい)で回転対称性が良い形状とすれば、膨張や収縮が軸方向に均一に行われるので、被移動部材が傾いたり回ったりすることが無い。   However, even if such a large displacement is generated, if the trajectory of expansion or contraction is inclined or twisted, it is not possible to obtain the straight movement accuracy of the driven member. On the other hand, if the giant magnetostrictive element has a cylindrical shape (or may be a rectangular tube shape) and has a good rotational symmetry, expansion and contraction are uniformly performed in the axial direction, and the moved member is inclined. There is no turning.

以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定
して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。
The present invention has been described above with reference to the embodiments. However, the present invention should not be construed as being limited to the above-described embodiments, and can be modified or improved as appropriate.

10 筐体
11 天板
11a 開口
11b 段部
12 底板
12a 開口
13 側板
20 被駆動部材
31〜34 超磁歪素子
41〜43 梃子
41a〜43a 弾性ヒンジ
50 コイル
70 コイルバネ
LS1 レンズ
LS2 レンズ
DESCRIPTION OF SYMBOLS 10 Case 11 Top plate 11a Opening 11b Step part 12 Bottom plate 12a Opening 13 Side plate 20 Driven member 31-34 Giant magnetostrictive element 41-43 Insulator 41a-43a Elastic hinge 50 Coil 70 Coil spring LS1 Lens LS2 Lens

Claims (5)

筒状の超磁歪素子と、前記超磁歪素子の軸線直交方向外側に前記超磁歪素子と略同軸に配置されたコイルとを有し、前記コイルから発生した磁界により前記超磁歪素子を駆動することにより、固定部に対して被駆動部材を移動させることを特徴とするリニアアクチュエータ。   A cylindrical super magnetostrictive element; and a coil disposed substantially coaxially with the super magnetostrictive element on the outer side in the direction orthogonal to the axis of the super magnetostrictive element, and driving the super magnetostrictive element by a magnetic field generated from the coil. To move the driven member with respect to the fixed portion. 前記超磁歪素子はN個(Nは2以上の整数)配置され、各超磁歪素子の径が異なっており、且つ各超磁歪素子は同軸に配置されており、軸線直交方向外側からn(nは1以上且つN−1以下の整数)番目の前記超磁歪素子の変位は、軸線直交方向外側から(n+1)番目の前記超磁歪素子に梃子を介して伝達されるようになっていることを特徴とする請求項1に記載のリニアアクチュエータ。   The number of the giant magnetostrictive elements is N (N is an integer of 2 or more), the diameters of the giant magnetostrictive elements are different, and the giant magnetostrictive elements are coaxially arranged, and n (n The displacement of the first giant magnetostrictive element is transmitted from the outer side in the direction perpendicular to the axis to the (n + 1) th giant magnetostrictive element via an insulator. The linear actuator according to claim 1. 最も外周側にある前記超磁歪素子の一端は、前記固定部に連結され、最も内周側にある前記超磁歪素子の一端は、前記被駆動部材に連結されていることを特徴とする請求項2に記載のリニアアクチュエータ。   The one end of the giant magnetostrictive element on the outermost peripheral side is connected to the fixed portion, and the one end of the giant magnetostrictive element on the innermost peripheral side is connected to the driven member. 2. The linear actuator according to 2. 前記n番目の超磁歪素子と、前記(n+1)番目の超磁歪素子とを連結する梃子は複数個設けられ、周方向に等間隔に配置されていることを特徴とする請求項2又は3に記載のリニアアクチュエータ。   4. The insulator according to claim 2, wherein a plurality of insulators connecting the n-th giant magnetostrictive element and the (n + 1) -th giant magnetostrictive element are provided and arranged at equal intervals in the circumferential direction. The linear actuator described. 光学素子の駆動に用いられることを特徴とする請求項1〜4のいずれかに記載のリニアアクチュエータ。   The linear actuator according to claim 1, wherein the linear actuator is used for driving an optical element.
JP2010023865A 2010-02-05 2010-02-05 Linear actuator Pending JP2011164167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023865A JP2011164167A (en) 2010-02-05 2010-02-05 Linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023865A JP2011164167A (en) 2010-02-05 2010-02-05 Linear actuator

Publications (1)

Publication Number Publication Date
JP2011164167A true JP2011164167A (en) 2011-08-25

Family

ID=44594962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023865A Pending JP2011164167A (en) 2010-02-05 2010-02-05 Linear actuator

Country Status (1)

Country Link
JP (1) JP2011164167A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543401A (en) * 2019-09-20 2021-03-23 统雷有限公司 Double-voice-coil linear translator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543401A (en) * 2019-09-20 2021-03-23 统雷有限公司 Double-voice-coil linear translator
EP3796062B1 (en) * 2019-09-20 2023-11-01 Thorlabs Inc. Dual voice coil linear translator

Similar Documents

Publication Publication Date Title
KR100501196B1 (en) lens driving device
JP4530163B2 (en) Focus adjustment device and imaging device
KR101044109B1 (en) Camera module
KR20160096132A (en) Zoom/focus device and zoom lens
JP2007139862A (en) Lens driving mechanism
JP2017502356A (en) Zoom lens driving device and zoom lens provided with the same
JP2007122051A (en) Lens transfer device
CN103916045A (en) Stepping type rotation driving device and method on basis of piezoelectric ceramics
US7729066B2 (en) Lens unit
US8824071B2 (en) Lens barrel and camera
US20150234153A1 (en) Reflective varifocal lens and imaging system including the same
JP2005275270A (en) Lens barrel and imaging apparatus
JP2008220097A (en) Drive arrangement
KR20150098188A (en) Reflective varifocal lens and imaging system including the same
JP2010246277A (en) Linear drive unit
JP5321132B2 (en) Driving device and lens driving device
US8169723B2 (en) Vibration actuator, lens barrel and camera
JP2011164167A (en) Linear actuator
JP4995760B2 (en) LENS DEVICE AND IMAGING DEVICE
JP5292529B2 (en) Lens actuator
JP2007181261A (en) Drive unit and camera module
JP2008245467A (en) Drive device
JP2012042979A (en) Imaging device
JP2007316441A (en) Auto-focusing lens driving mechanism
JP6948102B2 (en) Linear drive, camera and electronic equipment