JP2011163759A - Cooker - Google Patents

Cooker Download PDF

Info

Publication number
JP2011163759A
JP2011163759A JP2011109514A JP2011109514A JP2011163759A JP 2011163759 A JP2011163759 A JP 2011163759A JP 2011109514 A JP2011109514 A JP 2011109514A JP 2011109514 A JP2011109514 A JP 2011109514A JP 2011163759 A JP2011163759 A JP 2011163759A
Authority
JP
Japan
Prior art keywords
infrared
heated
infrared intensity
temperature
temperature detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011109514A
Other languages
Japanese (ja)
Other versions
JP5232268B2 (en
Inventor
Akira Miyato
章 宮藤
Katsuhiko Fukui
克彦 福井
Kenichiro Takahashi
健一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011109514A priority Critical patent/JP5232268B2/en
Publication of JP2011163759A publication Critical patent/JP2011163759A/en
Application granted granted Critical
Publication of JP5232268B2 publication Critical patent/JP5232268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooker accurately detecting the temperature of a heating object regardless of the difference of material quality of the heating object by accurately detecting infrared rays to be detected by an infrared intensity detecting means with a reduced risk of degrading the durability of the infrared intensity detecting means. <P>SOLUTION: A heated body 15 for temperature detection abutting on the heating object N is provided, and the infrared intensity detecting means 13 is provided to detect the intensity of infrared rays radiated from the heated body 15 for temperature detection. An arithmetic means is configured to compute the temperature of the heating object N from the intensity of infrared rays detected by the infrared intensity detecting means 13, and a support member 16 supporting the heated body 15 for temperature detection and the infrared intensity detecting means 13 includes a cylindrical part 18. The infrared intensity detecting means 13 is provided bridging inside the cylindrical part 18, and a ventilating type cooling means 26 is provided for ventilating the inside of the cylindrical part 18 with cooling air. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被加熱物を加熱する加熱手段と、前記被加熱物の温度を検出するための赤外線強度を検出する赤外線強度検出手段と、その赤外線強度検出手段により検出された赤外線強度に基づいて前記被加熱物の温度を演算する演算手段とを備えた加熱調理器に関する。   The present invention is based on heating means for heating an object to be heated, infrared intensity detecting means for detecting infrared intensity for detecting the temperature of the object to be heated, and infrared intensity detected by the infrared intensity detecting means. The present invention relates to a heating cooker provided with a calculation means for calculating the temperature of the object to be heated.

従来では、ガス燃焼式のバーナからなる加熱手段によって被加熱物を加熱するように構成された加熱調理器において、次のように構成されたものがあった。
すなわち、前記赤外線強度検出手段が、被加熱物から放射される赤外線であって且つ異なる2つの波長域の赤外線を対象として前記赤外線強度を検出するように構成され、前記演算手段が、検出した2つの波長域の赤外線強度、及び、予め実験により求めて記憶されている2つの波長域の赤外線強度の比率と温度との相関関係に基づいて、被加熱物の温度を演算する構成として、被加熱物の材質の違いに関係なく被加熱物の温度を検出することができるようにしたものがあった(例えば、特許文献1参照。)。
Conventionally, a cooking device configured to heat an object to be heated by a heating means including a gas combustion type burner has been configured as follows.
That is, the infrared intensity detecting means is configured to detect the infrared intensity for infrared rays emitted from an object to be heated and having two different wavelength ranges, and the computing means detects 2 As a configuration for calculating the temperature of the object to be heated based on the infrared intensity in one wavelength range and the correlation between the temperature and the ratio of the infrared intensity in the two wavelength ranges previously obtained and stored through experiments. There is one that can detect the temperature of an object to be heated regardless of the difference in the material of the object (for example, see Patent Document 1).

又、別の従来例として、石英ガラスやサファイヤ等からなる透光性耐熱部材の上部側に被加熱物が載置され、前記透光性耐熱部材の下方側に設けられた電磁誘導式の加熱手段によって被加熱物を加熱するように構成された加熱調理器において、次のように構成されたものがあった。
すなわち、被加熱物を載置支持するための透光性耐熱部材における上部面に、黒い塗料を塗付するか又は黒色の板状の部材を備えることにより被加熱物の底部に接当する温度検知用加熱部を構成して、前記赤外線強度検出手段が、透光性耐熱部材を挟んで温度検知用加熱部と対向する位置に透光性耐熱部材に接当する状態で配置され、前記温度検知用加熱部の下面から透光性耐熱部材を通して放射される赤外線を検出するように構成され、その赤外線強度検出手段にて検出される赤外線強度に基づいて被加熱物の温度を検出するように構成したものがあった(例えば、特許文献2参照。)。
As another conventional example, an object to be heated is placed on the upper side of a translucent heat-resistant member made of quartz glass, sapphire, etc., and electromagnetic induction heating is provided on the lower side of the translucent heat-resistant member. In a cooking device configured to heat an object to be heated by means, there has been configured as follows.
That is, the temperature at which the top surface of the translucent heat-resistant member for placing and supporting the object to be heated is coated with black paint or provided with a black plate-like member so as to contact the bottom of the object to be heated. A heating part for detection is configured, and the infrared intensity detecting means is disposed in contact with the translucent heat-resistant member at a position facing the heating part for temperature detection across the translucent heat-resistant member, and the temperature It is configured to detect infrared rays radiated from the lower surface of the detection heating part through the translucent heat-resistant member, and detects the temperature of the object to be heated based on the infrared intensity detected by the infrared intensity detection means. There was what was constituted (for example, refer to patent documents 2).

特開2002−340339号公報JP 2002-340339 A 特開2003−121261号公報JP 2003-121261 A

上記特許文献1に記載される構成では、2つの波長域の赤外線強度の比率と温度との相関関係が予め設定して記憶している特性と同じ特性を有する被加熱物であれば、被加熱物の温度を適正に検出することは可能であるが、計測対象となる被加熱物における2つの波長域の赤外線強度の比率と温度との相関関係が予め設定して記憶している特性とは異なる場合には、被加熱物の温度を精度よく検出することができない不利があった。   In the configuration described in Patent Document 1, if the object to be heated has the same characteristics as the characteristics stored in advance, the correlation between the ratio of the infrared intensity in the two wavelength ranges and the temperature is to be heated. Although it is possible to properly detect the temperature of an object, the relationship between the ratio of the infrared intensity in the two wavelength regions and the temperature in the heated object to be measured is preset and stored. If they are different, there is a disadvantage that the temperature of the object to be heated cannot be accurately detected.

特許文献2に記載される構成では、前記赤外線強度検出手段は、前記温度検知用加熱部から放射された赤外線の強度を検出するようにしているので、被加熱物の材質の違いによる計測の誤差は無いが、この特許文献2に記載される構成では、温度検知用加熱部は、被加熱物を載置支持するための透光性耐熱部材の上部面に黒い塗料を塗付するか又は黒色の板状の部材を備えるような構成になっているから、被加熱物の底部が少しでも凹んだり、反っていたりした場合、被加熱物底部の温度と温度検知用加熱部の温度に大きな乖離が生じる(被加熱物の方が温度が高くなる)ので、被加熱物の温度を精度よく検出することができない。また、前記温度検知用加熱部から放射された赤外線は、天板を構成する透光性耐熱部材を通過したのちに赤外線強度検出手段によって検出される構成であるから、被加熱物から放射される赤外線が透光性耐熱部材を透過する際に赤外線強度が減衰するので、それだけS/N(信号対雑音)比が低下して赤外線強度の検出精度が低下するという不利がある。しかも、透光性耐熱部材を通して赤外線強度検出手段に対して被加熱物からの熱が伝わり易く、赤外線強度検出手段が高温の状態になり耐久性が低いものとなる不利もある。   In the configuration described in Patent Document 2, since the infrared intensity detecting means detects the intensity of infrared rays emitted from the temperature detection heating unit, measurement error due to the difference in the material of the object to be heated. However, in the configuration described in Patent Document 2, the temperature detection heating unit applies black paint or black on the upper surface of the translucent heat-resistant member for placing and supporting the object to be heated. Therefore, if the bottom of the object to be heated is slightly depressed or warped, there is a large difference between the temperature of the object to be heated and the temperature of the temperature detection heating part. Since the temperature of the object to be heated is higher, the temperature of the object to be heated cannot be accurately detected. In addition, since the infrared radiation emitted from the temperature detection heating section is detected by the infrared intensity detecting means after passing through the light-transmissive heat-resistant member constituting the top plate, it is emitted from the object to be heated. Since infrared intensity is attenuated when infrared rays pass through the translucent heat-resistant member, there is a disadvantage that the S / N (signal-to-noise) ratio is lowered and the detection accuracy of the infrared intensity is lowered accordingly. In addition, heat from an object to be heated is easily transmitted to the infrared intensity detecting means through the translucent heat-resistant member, and there is a disadvantage that the infrared intensity detecting means is in a high temperature state and durability is low.

本発明の目的は、赤外線強度検出手段の耐久性を低下させるおそれが少ない状態で、赤外線強度検出手段にて検出対象となる赤外線を精度よく検出して、被加熱物の材質の違いにかかわらず被加熱物の温度を精度よく検出することが可能となる加熱調理器を提供する点にある。   The object of the present invention is to detect the infrared rays to be detected with high accuracy by the infrared intensity detection means in a state where there is little possibility of lowering the durability of the infrared intensity detection means, regardless of the material of the object to be heated. It is in the point which provides the heating cooker which becomes possible [detecting the temperature of a to-be-heated object accurately].

本発明に係る加熱調理器は、被加熱物を加熱する加熱手段と、前記被加熱物の温度を検出するための赤外線強度を検出する赤外線強度検出手段と、その赤外線強度検出手段により検出された赤外線強度に基づいて前記被加熱物の温度を演算する演算手段とを備えたものであって、その第1特徴構成は、
前記被加熱物に接当して加熱される温度検知用被加熱体が設けられ、
前記赤外線強度検出手段が、前記温度検知用被加熱体から放射されて赤外線通過用空間を通して導入される赤外線の強度を検出するように設けられ、
前記演算手段が、前記赤外線強度検出手段にて検出される赤外線強度、及び、その赤外線強度検出手段にて検出される赤外線強度と前記温度検知用被加熱体における温度との関係を示す情報から前記被加熱物の温度を演算するように構成されており、
前記温度検知用被加熱体と前記赤外線強度検出手段とを前記被加熱物に対する接近離間方向に一体的に移動可能な状態で支持する支持部材が設けられており、
前記温度検知用被加熱体が、板状に形成されて、上面が前記被加熱物の底部に接当し、且つ、下面から赤外線を放射するように設けられ、
前記赤外線強度検出手段が、前記温度検知用被加熱体の下面から放射される赤外線を検出するように設けられており、
前記支持部材が、
前記赤外線通過用空間を内部に備える状態で筒状に形成された筒状部を備え、その筒状部の上部開口を覆う状態で前記温度検知用被加熱体を備えて構成され、
且つ、前記筒状部の内部に前記赤外線強度検出手段を橋架して備えて、前記温度検知用被加熱体の下面から放射される赤外線を前記赤外線通過用空間を通して前記赤外線強度検出手段に導入し、前記温度検知用被加熱体以外の他物から放射した赤外線を遮蔽して前記赤外線強度検出手段に入射することを阻止するように構成されており、
前記赤外線強度検出手段並びに前記支持部材の内面を冷却する冷却風を前記筒状部の内部を通して通風させる通風式の冷却手段が設けられている点にある。
A heating cooker according to the present invention is detected by a heating means for heating an object to be heated, an infrared intensity detecting means for detecting an infrared intensity for detecting the temperature of the object to be heated, and the infrared intensity detecting means. And a calculation means for calculating the temperature of the object to be heated based on the infrared intensity, the first characteristic configuration is:
There is provided a heated body for temperature detection that is heated in contact with the heated object,
The infrared intensity detection means is provided so as to detect the intensity of infrared rays emitted from the temperature sensing object and introduced through the infrared passage space;
From the information indicating the infrared intensity detected by the infrared intensity detecting means, and the relationship between the infrared intensity detected by the infrared intensity detecting means and the temperature in the temperature detection target body, the calculating means It is configured to calculate the temperature of the object to be heated,
A support member is provided for supporting the temperature detection target body and the infrared intensity detection means in a state in which the temperature detection target body and the infrared intensity detection unit are integrally movable in the approaching / separating direction with respect to the target object.
The temperature detection target is formed in a plate shape, the upper surface is in contact with the bottom of the object to be heated, and is provided so as to emit infrared rays from the lower surface.
The infrared intensity detecting means is provided so as to detect infrared rays emitted from the lower surface of the temperature sensing object;
The support member is
It is provided with a tubular portion formed in a cylindrical shape with the infrared passage space provided therein, and is configured to include the heated body for temperature detection in a state of covering an upper opening of the tubular portion,
In addition, the infrared intensity detection means is bridged inside the cylindrical portion, and infrared rays radiated from the lower surface of the temperature detection target are introduced into the infrared intensity detection means through the infrared passage space. , Configured to shield infrared rays radiated from other than the object to be heated for temperature detection and prevent the infrared rays from being incident on the infrared intensity detecting means,
Ventilation type cooling means is provided for passing cooling air for cooling the infrared intensity detecting means and the inner surface of the support member through the inside of the cylindrical portion.

第1特徴構成によれば、前記温度検知用被加熱体が被加熱物に接当して加熱され、その温度検知用被加熱体から放射されて赤外線通過用空間を通して導入される赤外線の強度を赤外線強度検出手段が検出することになるが、そのとき、温度検知用被加熱体は、被加熱物に接当して加熱されて被加熱物の温度と同じか又はほぼ同じ温度になっている。そして、演算手段は、赤外線強度検出手段にて検出される赤外線強度、及び、その赤外線強度検出手段にて検出される赤外線強度と温度検知用被加熱体における温度との関係を示す情報から被加熱物の温度を演算するのである。   According to the first characteristic configuration, the temperature detection target object is heated by contact with the object to be heated, and the intensity of infrared rays emitted from the temperature detection target object and introduced through the infrared passage space is increased. The infrared intensity detection means will detect, but at that time, the heated object for temperature detection is in contact with the object to be heated and heated to the same temperature as or substantially the same as the temperature of the object to be heated. . Then, the computing means is heated from the information indicating the infrared intensity detected by the infrared intensity detecting means and the relationship between the infrared intensity detected by the infrared intensity detecting means and the temperature in the temperature detection target. The temperature of the object is calculated.

前記赤外線強度検出手段にて検出される赤外線強度と温度検知用被加熱体における温度との関係を示す情報としては、例えば、予め実験によって温度検知用被加熱体の温度と赤外線強度検出手段にて検出される赤外線強度との関係を計測して、それらの計測結果をマップデータとして記憶することで対応できる。又、前記赤外線強度検出手段にて検出される赤外線強度と温度検知用被加熱体における温度との関係を示す情報として、前記温度検知用被加熱体の輻射率を用いることもできる。   As information indicating the relationship between the infrared intensity detected by the infrared intensity detecting means and the temperature in the temperature detection target object, for example, the temperature of the temperature detection target object and the infrared intensity detection means are previously determined by experiment. This can be dealt with by measuring the relationship with the detected infrared intensity and storing the measurement results as map data. Further, as information indicating the relationship between the infrared intensity detected by the infrared intensity detecting means and the temperature in the temperature detection target, the emissivity of the temperature detection target can be used.

そして、赤外線強度検出手段にて検出される赤外線強度と温度検知用被加熱体における温度との関係は、被加熱物の材質の違いには無関係であるから、被加熱物の材質の違いにかかわらず精度よく被加熱物の温度を求めることが可能となる。   The relationship between the infrared intensity detected by the infrared intensity detecting means and the temperature in the temperature detection target is not related to the difference in the material of the object to be heated. Therefore, the temperature of the object to be heated can be obtained accurately.

また、このような構成にすれば、温度検知用加熱体は被加熱物の底部が少々凹んでいたり、反ったりしていても、常に接当して加熱されるため、被加熱物の底部の形状にかかわらず、精度よく温度を求めることが可能となる。   Further, with such a configuration, the temperature detection heating body is always contacted and heated even if the bottom of the object to be heated is slightly recessed or warped, so that the bottom of the object to be heated is heated. Regardless of the shape, the temperature can be obtained accurately.

前記赤外線強度検出手段は、温度検知用被加熱体から放射されて赤外線通過用空間を通して導入される赤外線の強度を検出するものであるから、温度検知用被加熱体から放射される赤外線は減衰することなく、赤外線強度検出手段にて受光できるので、赤外線の強度を精度よく検出することができる。しかも、赤外線強度検出手段と温度検知用被加熱体との間は空間であるから、温度検知用被加熱体から赤外線強度検出手段に熱が伝わり難いものとなり、赤外線強度検出手段が高温状態になるおそれは少なく、耐久性を低下させるおそれは少ないものになる。   Since the infrared intensity detection means detects the intensity of infrared rays emitted from the temperature detection target body and introduced through the infrared passage space, the infrared radiation emitted from the temperature detection target object is attenuated. Without being received by the infrared intensity detecting means, the infrared intensity can be detected with high accuracy. In addition, since there is a space between the infrared intensity detection means and the temperature detection heated body, it is difficult for heat to be transferred from the temperature detection heated body to the infrared intensity detection means, and the infrared intensity detection means is in a high temperature state. There is little risk and there is little risk of reducing durability.

従って、赤外線強度検出手段の耐久性を低下させるおそれが少ない状態で、赤外線強度検出手段にて検出対象となる赤外線を精度よく検出して、被加熱物の材質の違いにかかわらず被加熱物の温度を精度よく検出することが可能となる加熱調理器を提供できるに至った。
また、温度検知用被加熱体が板状に形成されて上面が前記被加熱物の底部に接当し、下面から赤外線を放射するように設けられるから、被加熱物によって加熱される熱が下面側に伝わり易いものとなり、下面の温度は被加熱物の温度と同じか又はそれに近い温度となる。その結果、赤外線強度検出手段によって検出される赤外線強度に基づいて被加熱物の温度を精度よく求めることが可能となる。
さらに、前記支持部材が筒状に形成された筒状部を備えており、その筒状部の上部開口を覆う状態で温度検知用被加熱体を備え、筒状部の内部に位置する状態で赤外線強度検出手段が備えられる。そして、温度検知用被加熱体の下面から放射される赤外線が赤外線通過用空間を通して赤外線強度検出手段に導入されて適切に検出され、温度検知用被加熱体以外の他物から放射した赤外線を遮蔽して赤外線強度検出手段に入射することが阻止されることになる。
すなわち、温度検知用被加熱体と赤外線強度検出手段とを一体的に支持するための支持部材を筒状に構成して、温度検知用被加熱体と赤外線強度検出手段とを適切な位置に配備することで、温度検知用被加熱体以外の他物から放射した赤外線を遮蔽して検出誤差を少なくしながら、温度検知用被加熱体の下面から放射される赤外線の強度を適切に検出することが可能となる。
加えて、通風式の冷却手段によって冷却風が通風されることで、赤外線強度検出手段が冷却されるので、赤外線強度検出手段が冷却されて温度上昇することが抑制されて耐久性を向上することが可能であり、温度の変動に起因した計測誤差を少なくすることも可能となる。又、冷却風によって支持部材の内面が冷却されるので、支持部材の内面が温度上昇することにより赤外線の放射が多くなることを回避して、温度検知用被加熱体の下面から放射される赤外線の強度を適切に検出することが可能となる。
Therefore, in a state where there is little risk of lowering the durability of the infrared intensity detection means, the infrared intensity detection means accurately detects the infrared rays to be detected, and regardless of the material of the heated object, It came to be able to provide the cooking device which can detect temperature accurately.
In addition, since the temperature detection object is formed in a plate shape and the upper surface is in contact with the bottom of the object to be heated and radiates infrared rays from the lower surface, the heat heated by the object to be heated is the lower surface. The temperature of the lower surface is the same as or close to the temperature of the object to be heated. As a result, the temperature of the object to be heated can be accurately obtained based on the infrared intensity detected by the infrared intensity detecting means.
Further, the support member includes a cylindrical portion formed in a cylindrical shape, and includes a heated body for temperature detection in a state of covering an upper opening of the cylindrical portion, and is located inside the cylindrical portion. An infrared intensity detection means is provided. Then, infrared rays radiated from the lower surface of the temperature detection target are introduced into the infrared intensity detecting means through the infrared passage space and appropriately detected, and the infrared rays radiated from other than the temperature detection target are shielded. Thus, it is prevented from entering the infrared intensity detecting means.
That is, a support member for integrally supporting the temperature detection target and the infrared intensity detection means is configured in a cylindrical shape, and the temperature detection target and the infrared intensity detection means are arranged at appropriate positions. By appropriately detecting the intensity of the infrared rays emitted from the lower surface of the temperature detection target object while shielding the infrared rays emitted from other objects than the temperature detection target object and reducing detection errors Is possible.
In addition, since the infrared intensity detecting means is cooled by the cooling air being ventilated by the ventilation type cooling means, the infrared intensity detecting means is suppressed from being cooled and the temperature rises, thereby improving the durability. It is possible to reduce measurement errors due to temperature fluctuations. In addition, since the inner surface of the support member is cooled by the cooling air, the infrared radiation emitted from the lower surface of the temperature detection target object is avoided by avoiding an increase in infrared radiation due to the temperature rise of the inner surface of the support member. It is possible to appropriately detect the intensity of.

本発明の第2特徴構成は、第1特徴構成に加えて、前記支持部材を前記被加熱物に対して接近する方向に弾性付勢する付勢手段が設けられている点にある。   According to a second characteristic configuration of the present invention, in addition to the first characteristic configuration, an urging means for elastically urging the support member in a direction approaching the object to be heated is provided.

第2特徴構成によれば、前記温度検知用被加熱体と前記赤外線強度検出手段とが、支持部材によって一体的に移動可能に支持されて、付勢手段によって被加熱物に対して接近する方向に弾性付勢される。従って、温度検知用被加熱体と赤外線強度検出手段との間の離間距離が常に一定に維持されている状態で温度検知用被加熱体が被加熱物に押し付けられる状態で接当することになり、温度検知用被加熱体が被加熱物に対して適切に接当して被加熱物の熱によって加熱されることになる。   According to the second characteristic configuration, the temperature detection target object and the infrared intensity detection unit are supported by the support member so as to be integrally movable, and the biasing unit approaches the object to be heated. Is elastically biased. Therefore, the temperature detection heated body is pressed against the object to be heated while the separation distance between the temperature detection heated body and the infrared intensity detection means is always maintained constant. The heated body for temperature detection is appropriately brought into contact with the heated object and is heated by the heat of the heated object.

尚、温度検知用被加熱体は被加熱物の熱によって加熱されることができればよいので、強い力で押し付ける必要はなく付勢手段の付勢力は小さい力で済ませることが可能であり、軽量の被加熱物であっても付勢手段の付勢力によって被加熱物が浮き上がる等の不利のない状態で使用できるものとなる。   In addition, since the heated object for temperature detection should just be heated with the heat | fever of a to-be-heated material, it is not necessary to press with a strong force, and the urging | biasing force of an urging means can be completed with a small force, and it is lightweight. Even the object to be heated can be used in a state where there is no disadvantage such as the object to be heated is lifted by the urging force of the urging means.

本発明の第3特徴構成は、第1特徴構成に加えて、前記温度検知用被加熱体が、前記被加熱物の底部に接当する熱伝導率の高い材料にて構成される板状の本体部と、その本体部の下面側に高輻射率の材料を塗付して形成される赤外線放射部とを備えて構成されている点にある。   In addition to the first characteristic configuration, the third characteristic configuration of the present invention is a plate-like configuration in which the temperature detection target is made of a material having high thermal conductivity that contacts the bottom of the target object. The main body portion and an infrared radiation portion formed by applying a high emissivity material on the lower surface side of the main body portion are provided.

第3特徴構成によれば、熱伝導率の高い材料にて構成される板状の本体部が被加熱物に接当するので、被加熱物の熱が伝わり易いものになる。そして、本体部の下面側の赤外線放射部は高輻射率の材料にて構成されるから、本体部に伝えられた熱によって赤外線を多く放射することができ、被加熱物の温度を極力精度よく検出することが可能となる。
しかも、赤外線放射部は、本体部の下面側に高輻射率の材料を塗付して形成されるものであるから、例えば高輻射率の材料からなる硬質の板体を本体部に貼り付けたり接着させるような場合に比べて作成が容易であり、低コスト化を図ることが可能となる。
According to the 3rd characteristic structure, since the plate-shaped main-body part comprised with a material with high heat conductivity contacts a to-be-heated material, it becomes what becomes easy to transmit the heat of a to-be-heated material. And since the infrared radiation part on the lower surface side of the main body is made of a material with a high emissivity, it can radiate a lot of infrared rays by the heat transmitted to the main body, and the temperature of the object to be heated is as accurate as possible. It becomes possible to detect.
In addition, since the infrared radiation portion is formed by applying a high emissivity material to the lower surface side of the main body, for example, a hard plate made of a high emissivity material is attached to the main body. Compared to the case of bonding, it is easier to create, and the cost can be reduced.

本発明の第4特徴構成は、第1特徴構成に加えて、前記支持部材の内面が低輻射率に構成されている点にある。   According to a fourth characteristic configuration of the present invention, in addition to the first characteristic configuration, the inner surface of the support member is configured to have a low emissivity.

第4特徴構成によれば、支持部材の内面が低輻射率に構成されているから、支持部材の内面からは赤外線の放射が少ない状態になるので、支持部材自身から放射される赤外線による計測誤差を少なくして、赤外線強度検出手段により温度検知用被加熱体の下面から放射される赤外線の強度を適切に検出することが可能となる。   According to the fourth characteristic configuration, since the inner surface of the support member is configured to have a low emissivity, there is little infrared radiation from the inner surface of the support member, so measurement error due to infrared radiation radiated from the support member itself Thus, it is possible to appropriately detect the intensity of the infrared ray emitted from the lower surface of the temperature detection object by the infrared intensity detection means.

本発明の第5特徴構成は、第1特徴構成に加えて、前記筒状部が、内側に位置する内筒部材と、その内筒部材との間に空間を形成する状態で外側に位置する外筒部材とを備えて構成され、且つ、前記外筒部材の上部開口を覆う状態で前記温度検知用被加熱体を保持し、前記内筒部材の内部に位置する状態で前記赤外線強度検出手段を備えて構成され、
前記通風式の冷却手段が、前記内筒部材の内部を通して上方側に向けて通風し、且つ、前記内筒部材の上端部と前記温度検知用被加熱体との間に形成された通風用の開放部を通過させ、さらに、前記内筒部材と前記外筒部材との間に形成された空間を通して下方側に向けて通風させて外部に排出する状態で、前記冷却風を通風させるように構成されている点にある。
According to a fifth characteristic configuration of the present invention, in addition to the first characteristic configuration, the cylindrical portion is positioned outside in a state in which a space is formed between the inner cylindrical member positioned inside and the inner cylindrical member. The infrared intensity detecting means configured to hold the temperature detection target body in a state of covering an upper opening of the outer cylinder member and located inside the inner cylinder member. Configured with
The ventilating cooling means ventilates upward through the inside of the inner cylinder member, and is used for ventilation between the upper end portion of the inner cylinder member and the temperature detection target to be heated. The cooling air is passed in a state of passing through the open portion and further venting downward through the space formed between the inner cylinder member and the outer cylinder member and discharging to the outside. It is in the point.

第5特徴構成によれば、前記筒状部が内筒部材と外筒部材とを備えて構成され、外筒部材の上部開口を覆う状態で温度検知用被加熱体を保持し、内筒部材の内部に位置する状態で赤外線強度検出手段が備えられる。そして、冷却手段が、内筒部材の内部を通して上方側に向けて通風し、且つ、内筒部材の上端部と温度検知用被加熱体との間に形成された通風用の開放部を通過させ、さらに、内筒部材と外筒部材との間に形成された空間を通して下方側に向けて通風させて外部に排出する状態で、冷却風を通風させることになる。   According to the fifth characteristic configuration, the cylindrical portion includes an inner cylinder member and an outer cylinder member, holds the heated body for temperature detection in a state of covering the upper opening of the outer cylinder member, and the inner cylinder member Infrared intensity detection means is provided in a state of being located inside. Then, the cooling means ventilates upward through the inside of the inner cylinder member, and passes through an opening portion for ventilation formed between the upper end portion of the inner cylinder member and the temperature detection target to be heated. Further, the cooling air is ventilated in a state where the air is vented downward through the space formed between the inner cylinder member and the outer cylinder member and discharged to the outside.

つまり、冷却風が内筒部材の内部を通過するときに赤外線強度検出手段が冷却され、又、冷却風が内筒部材と外筒部材との間に形成された空間を通して通風されるので、外筒部材が加熱手段による熱によって加熱されることがあっても、その熱が内筒部材の内部にまで伝わることを有効に阻止して、赤外線強度検出手段が温度上昇を抑制することができる。   That is, the infrared intensity detecting means is cooled when the cooling air passes through the inside of the inner cylinder member, and the cooling air is ventilated through the space formed between the inner cylinder member and the outer cylinder member. Even if the cylindrical member is heated by the heat from the heating means, it is possible to effectively prevent the heat from being transmitted to the inside of the inner cylindrical member, and the infrared intensity detecting means can suppress the temperature rise.

本発明の第6特徴構成は、第1特徴構成〜第5特徴構成のいずれかに加えて、前記赤外線強度検出手段が、1.5μm以上且つ1.8μm以下の範囲内、2.0μm以上且つ2.4μm以下の範囲内、3.1μm以上且つ4.2μm以下の範囲内、又は、8.0μm以上且つ12.0μm以下の範囲内における波長域の赤外線の強度を検出するように構成されている点にある。   According to a sixth feature configuration of the present invention, in addition to any of the first feature configuration to the fifth feature configuration, the infrared intensity detection means is in a range of 1.5 μm to 1.8 μm, 2.0 μm to It is configured to detect the intensity of infrared rays in a wavelength range within a range of 2.4 μm or less, within a range of 3.1 μm or more and 4.2 μm or less, or within a range of 8.0 μm or more and 12.0 μm or less. There is in point.

第6特徴構成によれば、赤外線が空気中を通過するときに空気中に含まれる二酸化炭素(CO2)及び水分(H2O)により吸収されて減衰するおそれが少ない状態で適切に温度検知用被加熱体から放射された赤外線強度を検出することが可能となる。 According to the sixth feature, when the infrared rays pass through the air, the temperature is appropriately detected in a state in which the infrared rays are absorbed by the carbon dioxide (CO 2 ) and moisture (H 2 O) contained in the air and are less likely to be attenuated. It is possible to detect the infrared intensity emitted from the object to be heated.

空気中には二酸化炭素や水分が気体の状態で存在する。そして、温度検知用被加熱体から放射されて赤外線通過用空間を通して赤外線強度検出手段に導入される際に、空気中に存在する二酸化炭素や水分により赤外線が吸収されることになる。
説明を加えると、図5に示すように、1.5μm以上且つ1.8μm以下の範囲内、2.0μm以上且つ2.4μm以下の範囲内、3.1μm以上且つ4.2μm以下の範囲内、又は、8.0μm以上且つ12.0μm以下の範囲内を除く波長範囲内にて二酸化炭素や水分により赤外線が吸収されることになる。従って、上記したような波長範囲内の波長にて赤外線強度を検出すると、温度検知用被加熱体から放射される赤外線強度を検出するときにおけるノイズ発生の原因となる。
In the air, carbon dioxide and moisture exist in a gaseous state. And when it is radiated | emitted from the to-be-heated body for temperature detection, and is introduce | transduced into an infrared intensity detection means through the space for infrared rays passage, infrared rays will be absorbed by the carbon dioxide and water | moisture content which exist in the air.
In addition, as shown in FIG. 5, within the range of 1.5 μm to 1.8 μm, within the range of 2.0 μm to 2.4 μm, within the range of 3.1 μm to 4.2 μm. Or, infrared rays are absorbed by carbon dioxide or moisture within a wavelength range excluding the range of 8.0 μm or more and 12.0 μm or less. Therefore, if the infrared intensity is detected at a wavelength within the wavelength range as described above, it will cause noise when detecting the infrared intensity emitted from the temperature detection target.

そこで、赤外線強度検出手段により赤外線強度を検出する場合、上記したような二酸化炭素や水分により赤外線が吸収されないか又は吸収され難い波長範囲の赤外線を検出するようにしている。このようにして正確な赤外線強度を検出することが可能となる。   Therefore, when the infrared intensity is detected by the infrared intensity detection means, infrared rays in a wavelength range in which the infrared rays are not absorbed or hardly absorbed by the carbon dioxide and moisture as described above are detected. In this way, accurate infrared intensity can be detected.

上記波長域の赤外線の赤外線強度を検出するための赤外線強度検出手段としては、検知対象の赤外線の波長が0.8μmから2.6μmの範囲内である場合には、Ge(ゲルマニウム)若しくはInGaAs(インジウムガリウムヒ素)を赤外線セルとして用いた赤外線センサを、検知対象の赤外線の波長が1.5μmから5.0μmの範囲内である場合には、PbS(硫化鉛)若しくはPbSe(セレン化鉛)を赤外線セルとして用いた赤外線センサを利用することができる。また、検知対象の赤外線の波長が9μmから11.5μmの範囲内である場合には、HgCdTe(水銀カドミウムテルル)を赤外線セルとして用いた赤外線センサを利用することができる。また、すべての波長域において熱型の赤外線セルであるサーモパイルや昇電素子を利用することができる。   As an infrared intensity detection means for detecting the infrared intensity of infrared rays in the above-mentioned wavelength range, Ge (germanium) or InGaAs (inGaAs (when the wavelength of infrared rays to be detected is in the range of 0.8 μm to 2.6 μm) When an infrared sensor using indium gallium arsenide) is used as an infrared cell, if the wavelength of infrared rays to be detected is in the range of 1.5 μm to 5.0 μm, PbS (lead sulfide) or PbSe (lead selenide) is used. An infrared sensor used as an infrared cell can be used. Moreover, when the wavelength of the infrared rays to be detected is in the range of 9 μm to 11.5 μm, an infrared sensor using HgCdTe (mercury cadmium telluride) as an infrared cell can be used. In addition, a thermopile or a power raising element that is a thermal infrared cell can be used in all wavelength regions.

コンロの概略構成図Schematic configuration diagram of the stove 支持部材の縦断側面図Longitudinal side view of support member 支持部材の横断平面図Transverse plan view of support member 温度検知用被加熱体の温度と赤外線検出部の出力との関係を示す図The figure which shows the relationship between the temperature of the to-be-heated body for temperature detection, and the output of an infrared detection part 波長吸収を示すスペクトル分布図Spectral distribution chart showing wavelength absorption 別実施形態の概略構成図Schematic configuration diagram of another embodiment

以下、図面に基づいて、本発明に係る加熱調理器をガス燃焼式のコンロに適用した場合
の実施形態を説明する。
図1に示すように、コンロは、円形の加熱用の開口1aを有する平板状の天板1、開口1aの上方に離間させて加熱対象物調理用の鍋等の被加熱物Nを載置可能な五徳2、その五徳2上に載置される被加熱物Nを加熱する加熱手段としてのバーナ3、そのバーナ3の作動を制御する燃焼制御部4等を備えて構成されている。
Hereinafter, an embodiment in the case of applying a cooking device according to the present invention to a gas combustion type stove will be described based on the drawings.
As shown in FIG. 1, the stove places a flat top plate 1 having a circular heating opening 1a and a heated object N such as a pot for cooking an object to be heated, spaced above the opening 1a. A possible virtues 2, a burner 3 as a heating means for heating an object N to be heated placed on the virtues 2, a combustion control unit 4 for controlling the operation of the burner 3, and the like are provided.

前記バーナ3は、ブンゼン燃焼式の内炎式バーナであり、燃料供給路5を通じて供給される燃料ガスGを噴出するガスノズル6、そのガスノズル6から燃料ガスGが噴出されると共に、その燃料ガスGの噴出に伴う吸引作用により燃焼用空気Aが供給される混合管7、及び、内周部に混合気を噴出する複数の炎口8を備えて、前記混合管7から混合気が供給される環状ケーシング部材9等を備えて構成され、前記バーナ3は、前記開口1aの下方に位置させて設けられている。   The burner 3 is a Bunsen combustion type internal flame type burner. The gas nozzle 6 ejects the fuel gas G supplied through the fuel supply passage 5, the fuel gas G is ejected from the gas nozzle 6, and the fuel gas G The mixing tube 7 to which the combustion air A is supplied by the suction action accompanying the ejection of the gas and the plurality of flame ports 8 that eject the air-fuel mixture to the inner peripheral portion are provided, and the air-fuel mixture is supplied from the mixing tube 7. An annular casing member 9 and the like are provided, and the burner 3 is provided below the opening 1a.

このバーナ3においては、混合管7から環状ケーシング部材9内に供給された燃料ガスGと空気Aとの混合気が炎口8から環状ケーシング部材9の中心に向けて略水平方向に噴出され、その噴出された燃料ガスGと空気Aとの混合気が燃焼して、火炎Fが前記開口1aを通って上向きに形成される。   In the burner 3, the mixture of the fuel gas G and the air A supplied from the mixing pipe 7 into the annular casing member 9 is ejected from the flame port 8 toward the center of the annular casing member 9 in a substantially horizontal direction. The mixture of the jetted fuel gas G and air A burns, and a flame F is formed upward through the opening 1a.

前記燃料供給路5には、前記ガスノズル6への燃料ガスGの供給を断続する燃料供給断続弁10と、ガスノズル6への燃料ガスGの供給量を調節する燃料供給量調節弁11とが設けられ、バーナ3の環状ケーシング部材9内の下方には、開口1aを介して落下した煮零れ等を受けるための汁受皿12が設けられる。   The fuel supply path 5 is provided with a fuel supply intermittent valve 10 for intermittently supplying the fuel gas G to the gas nozzle 6 and a fuel supply amount adjusting valve 11 for adjusting the supply amount of the fuel gas G to the gas nozzle 6. In the lower part of the annular casing member 9 of the burner 3, a juice receiving tray 12 is provided for receiving boiled food that has fallen through the opening 1a.

さらに、このコンロには、天板1の下方側に位置し且つ汁受皿12の中央部に位置して被加熱物Nに接当して加熱される温度検知用被加熱体15から放射された赤外線の強度を検出する赤外線強度検出手段としての赤外線強度検出部13が設けられ、その赤外線強度検出部13により検出された赤外線の強度に基づいて被加熱物Nの温度を演算する演算手段としての演算部14が設けられている。   Furthermore, this stove was radiated from a temperature detection heated body 15 that is located on the lower side of the top plate 1 and located in the center of the juice receiving tray 12 and that is heated in contact with the heated object N. An infrared intensity detection unit 13 is provided as an infrared intensity detection unit that detects the intensity of infrared rays. The calculation unit calculates the temperature of the object to be heated N based on the infrared intensity detected by the infrared intensity detection unit 13. A calculation unit 14 is provided.

被加熱物Nに接当して加熱される温度検知用被加熱体15が設けられ、赤外線強度検出部13が、温度検知用被加熱体15から放射されて赤外線通過用空間を通して導入される赤外線の強度を検出するように設けられ、演算部14が、赤外線強度検出部13にて検出される赤外線強度、及び、その赤外線強度検出部13にて検出される赤外線強度と温度検知用被加熱体15における温度との関係を示す情報から被加熱物Nの温度を演算するように構成されている。   A temperature detecting body 15 to be heated in contact with the object N to be heated is provided, and the infrared intensity detector 13 is radiated from the temperature detecting body 15 and introduced through the infrared passage space. The infrared intensity detected by the infrared intensity detector 13 and the infrared intensity detected by the infrared intensity detector 13 and the heated object for temperature detection are provided. 15 is configured to calculate the temperature of the object N to be heated from information indicating the relationship with the temperature at 15.

又、温度検知用被加熱体15と赤外線強度検出部13とを被加熱物Nに対する接近離間方向としての上下方向に一体的に移動可能な状態で支持する支持部材16と、その支持部材16を被加熱物Nに対して接近する方向に弾性付勢する付勢手段としてのコイルバネ17とが設けられている。   Further, a support member 16 that supports the temperature detection target body 15 and the infrared intensity detection unit 13 in a state in which the temperature detection target body 15 and the infrared intensity detection unit 13 are integrally movable in a vertical direction as an approaching / separating direction with respect to the target object N, and A coil spring 17 is provided as an urging means that urges the object to be heated N in an approaching direction.

そして、前記支持部材16が、前記赤外線通過用空間を内部に備える状態で筒状に形成された筒状部18を備え、その筒状部18の上部開口を覆う状態で温度検知用被加熱体15を備えて構成され、且つ、筒状部18の内部に位置する状態で赤外線強度検出部13を備え、温度検知用被加熱体15の下面から放射される赤外線を赤外線通過用空間を通して赤外線強度検出部13に導入し、温度検知用被加熱体15以外の他物から放射した赤外線を遮蔽して赤外線強度検出部13に入射することを阻止するように構成されている。   And the said support member 16 is provided with the cylindrical part 18 formed in the cylinder shape in the state which has the said infrared passage space inside, and the to-be-heated body for temperature detection in the state which covers the upper opening of the cylindrical part 18 15 and is provided with an infrared intensity detection unit 13 in a state of being located inside the cylindrical part 18, and infrared intensity emitted from the lower surface of the temperature detection target body 15 through the infrared passage space. The infrared ray is introduced into the detection unit 13 and shielded from the infrared rays radiated from other than the temperature detection target object 15 and is prevented from entering the infrared intensity detection unit 13.

説明を加えると、図2に示すように、前記筒状部18が、内側に位置する内筒部材19と、その内筒部材19との間に空間を形成する状態で外側に位置する外筒部材20とを備えて構成され、且つ、外筒部材20の上部開口を覆う状態で温度検知用被加熱体15を保持し、内筒部材19の内部に赤外線強度検出部13を位置する状態で備えて構成されている。   In other words, as shown in FIG. 2, the cylindrical portion 18 has an inner cylindrical member 19 positioned on the inner side and an outer cylinder positioned on the outer side in a state of forming a space between the inner cylindrical member 19. The member 20 is configured so as to hold the temperature detection target body 15 in a state of covering the upper opening of the outer cylinder member 20, and the infrared intensity detection unit 13 is located inside the inner cylinder member 19. It is prepared for.

前記支持部材16は、軸芯が上下方向に向く状態で同芯状に設けられた内筒部材19及び外筒部材20からなる二重筒構造に構成された大径の筒状部18と、その二重筒構造の筒状部18の下方側に連なる小径のスライド軸部21とを一体的に連結して構成されている。筒状部18の下端部に位置する中継用板体22は、内筒部材19、外筒部材20及びスライド軸部21を夫々一定的に連結する連結部材としての機能を備えている。   The support member 16 has a large-diameter cylindrical portion 18 configured in a double cylindrical structure composed of an inner cylindrical member 19 and an outer cylindrical member 20 provided concentrically with the axial core facing in the vertical direction; A small-diameter slide shaft portion 21 connected to the lower side of the cylindrical portion 18 of the double cylinder structure is integrally connected. The relay plate 22 positioned at the lower end of the cylindrical portion 18 has a function as a connecting member that connects the inner cylindrical member 19, the outer cylindrical member 20, and the slide shaft portion 21 to each other.

前記温度検知用被加熱体15は、板状に形成されて、外筒部材20の上部開口を塞ぐように外筒部材20の上端部に固定状態で取り付けて保持されており、上面が被加熱物Nの底部に接当し、且つ、下面から赤外線を放射するように設けられている。又、前記内筒部材19の上端部と赤外線強度検出部13との間は離間させてあり、内筒部材19に対して被加熱物Nからの熱が直接伝わらないようにしている。   The temperature detection heated body 15 is formed in a plate shape, and is attached and held in a fixed state at the upper end portion of the outer cylinder member 20 so as to close the upper opening of the outer cylinder member 20, and the upper surface is heated. It is provided so as to be in contact with the bottom of the object N and to emit infrared rays from the lower surface. Further, the upper end portion of the inner cylinder member 19 and the infrared intensity detection unit 13 are separated from each other so that heat from the heated object N is not directly transmitted to the inner cylinder member 19.

前記筒状部18における内筒部材19の内部側であって且つ上下方向の中間部に位置させて、ブラケット23を介して内筒部材19に位置固定される状態で赤外線強度検出部13が設けられている。赤外線強度検出部13は、温度検知用被加熱体15の下方に位置することになり、温度検知用被加熱体15の下面から放射した赤外線を検出することになる。   The infrared intensity detection unit 13 is provided in a state of being positioned on the inner side of the inner cylinder member 19 in the cylindrical part 18 and in an intermediate part in the vertical direction and being fixed to the inner cylinder member 19 via the bracket 23. It has been. The infrared intensity detection unit 13 is positioned below the temperature detection target body 15 and detects infrared radiation radiated from the lower surface of the temperature detection target object 15.

そして、前記支持部材16を被加熱物Nに対して接近する方向としての上方に向けて弾性付勢する付勢手段としてのコイルバネ17が設けられている。説明を加えると、スライド軸部21が固定部側のボス部24に対して上下方向にスライド自在に内嵌する構成となっており、支持部材16全体が上下方向にスライド移動自在に支持される構成となっている。そして、前記コイルバネ17がスライド軸部21に外嵌装着されて固定部側のボス部24の上端部と中継用板体22との間に介装される構成となっている。   A coil spring 17 is provided as a biasing means that elastically biases the support member 16 upward as a direction in which the support member 16 approaches the object to be heated N. In other words, the slide shaft portion 21 is fitted into the boss portion 24 on the fixed portion side so as to be slidable in the vertical direction, and the entire support member 16 is supported so as to be slidable in the vertical direction. It has a configuration. The coil spring 17 is externally fitted to the slide shaft portion 21 and is interposed between the upper end portion of the boss portion 24 on the fixed portion side and the relay plate 22.

つまり、コイルバネ17によって支持部材16が上方に移動付勢される構成となっており、スライド軸部21の下端部に設けられた接当規制部25がボス部24の下端部に接当して設定位置で位置規制してそれ以上の上方移動を規制する構成となっている。この設定位置では、五徳2に被加熱物Nが載置されていない状態では、支持部材16の上端部が五徳2に載置される被加熱物Nの底部の位置よりも少し上方に位置するようになっており、五徳2に被加熱物Nが載置されると被加熱物Nの底部に温度検知用被加熱体15が確実に接当して付勢力にて押し当てる構成となっている。   That is, the support member 16 is configured to be moved upward and biased by the coil spring 17, and the contact restriction portion 25 provided at the lower end portion of the slide shaft portion 21 contacts the lower end portion of the boss portion 24. The position is restricted at the set position, and further upward movement is restricted. In this set position, in a state where the heated object N is not placed on the virtues 2, the upper end portion of the support member 16 is positioned slightly above the position of the bottom of the heated object N placed on the virtues 2. Thus, when the object N to be heated is placed on the virtues 2, the temperature detection object 15 is reliably brought into contact with the bottom of the object N and pressed by the urging force. Yes.

前記温度検知用被加熱体15は、被加熱物Nの底部に接当する熱伝導率の高い材料にて構成される板状の本体部15aと、その本体部15aの下面側に高輻射率の材料を塗付して形成される赤外線放射部15bとを備えて構成されている。具体的には、図2に示すように、前記板状の本体部15aは熱伝導率の高い材質、例えばステンレスによって構成され、そのステンレス製の本体部15aの下面側に高輻射率の材料としての黒色の塗料を塗付して赤外線放射部15bを形成する構成となっている。つまり、赤外線放射部15bは黒体にできるだけ近い高輻射率になるように構成されている。   The temperature detection target body 15 includes a plate-like main body portion 15a made of a material having high thermal conductivity contacting the bottom portion of the target object N, and a high emissivity on the lower surface side of the main body portion 15a. And an infrared radiation portion 15b formed by applying the above material. Specifically, as shown in FIG. 2, the plate-like main body 15a is made of a material having high thermal conductivity, for example, stainless steel, and a high emissivity material is formed on the lower surface side of the stainless steel main body 15a. The infrared radiation portion 15b is formed by applying a black paint. That is, the infrared radiation portion 15b is configured to have a high emissivity as close as possible to a black body.

又、前記内筒部材19及び外筒部材20の内面が低輻射率に構成されている。つまり、この内筒部材19及び外筒部材20は、例えば、ステンレス、鉄、アルミ等の金属材で構成することになるが、その内面は光沢面となるように表面加工が施されている。このように構成することにより、低輻射率にして赤外線の輻射強度ができるだけ少なくなるようにしている。   The inner surfaces of the inner cylinder member 19 and the outer cylinder member 20 are configured to have a low emissivity. That is, the inner cylinder member 19 and the outer cylinder member 20 are made of, for example, a metal material such as stainless steel, iron, or aluminum, but the inner surface thereof is subjected to surface processing so as to become a glossy surface. With this configuration, the radiation intensity of infrared rays is made as low as possible with a low radiation rate.

前記赤外線強度検出部13並びに前記支持部材16の内面を冷却する冷却風を前記筒状部18の内部を通して通風させる通風式の冷却手段の一例としての送風ファン26が設けられている。すなわち、図2に示すように、スライド軸部21が筒状に形成されて、このスライド軸部21の内部空間S1が通風路として利用され、このスライド軸部21の内部空間S1は、内筒部材19の内部空間S2と連通している。そして、スライド軸部21の内部空間S1に向けて供給管27を介して冷却風を供給する送風ファン26が設けられ、この送風ファン26により生起された冷却風は供給管27を通してスライド軸部21の内部空間S1に供給されるように構成されている。そして、中継用板体22における内筒部材19と外筒部材20との間の空間に対応する領域には、図3に示すように、均等に小径の孔を多数形成した排出部28が形成されている。   A blower fan 26 is provided as an example of ventilation-type cooling means for allowing cooling air to cool the inner surfaces of the infrared intensity detection unit 13 and the support member 16 through the inside of the cylindrical part 18. That is, as shown in FIG. 2, the slide shaft portion 21 is formed in a cylindrical shape, and the internal space S1 of the slide shaft portion 21 is used as an air passage, and the internal space S1 of the slide shaft portion 21 is an inner cylinder. The member 19 communicates with the internal space S2. A blower fan 26 that supplies cooling air to the internal space S1 of the slide shaft portion 21 via the supply pipe 27 is provided, and the cooling air generated by the blower fan 26 passes through the supply pipe 27 and the slide shaft portion 21. It is comprised so that it may be supplied to internal space S1. And in the area | region corresponding to the space between the inner cylinder member 19 and the outer cylinder member 20 in the board | plate member 22 for a relay, as shown in FIG. 3, the discharge part 28 in which many small diameter holes were formed uniformly is formed. Has been.

従って、送風ファン26により生起された冷却風は、内筒部材19の内部空間S2を通して上方側に向けて通風され、内筒部材19の上端部と赤外線強度検出部13との間に形成された通風用の開放部S3を通過させて、内筒部材19と外筒部材20との間の空間S4に流入し、その内筒部材19と外筒部材20との間の空間S4を通して下方側に向けて通風され、排出部28から外部に排出される。尚、排出部28は均等に小径の孔を多数形成することによって、冷却風が特定の箇所に偏ることなくほぼ均等に通風するようにしている。この冷却風により前記赤外線強度検出部13並びに前記支持部材16の内面が冷却されることになる。   Accordingly, the cooling air generated by the blower fan 26 is passed upward through the internal space S <b> 2 of the inner cylinder member 19, and is formed between the upper end portion of the inner cylinder member 19 and the infrared intensity detection unit 13. Passing through the ventilation opening S3, it flows into the space S4 between the inner cylinder member 19 and the outer cylinder member 20, and passes downward through the space S4 between the inner cylinder member 19 and the outer cylinder member 20. The air is ventilated toward the outside and discharged from the discharge unit 28 to the outside. The discharge portion 28 is formed with a large number of small-diameter holes so that the cooling air can flow substantially uniformly without being biased to a specific location. The cooling air cools the infrared intensity detector 13 and the inner surface of the support member 16.

前記内筒部材19の内部空間S2のうちの温度検知用被加熱体15から赤外線強度検出部13に至るまでの空間が赤外線通過用空間に対応する。   Of the internal space S2 of the inner cylinder member 19, the space from the heated body 15 for temperature detection to the infrared intensity detection unit 13 corresponds to the infrared passage space.

次に、赤外線強度検出部13の構成について説明する。
この赤外線強度検出部13は、所定の波長域の赤外線のみを選択的に透過させるバンドパスフィルター29と、そのバンドパスフィルター29を通過した赤外線を検出する赤外線検出素子30とを備えて構成されている。尚、赤外線検出素子30以外にも信号処理用の種々の電気回路も備えられるが、ここでは説明は省略する。
Next, the configuration of the infrared intensity detection unit 13 will be described.
The infrared intensity detection unit 13 includes a bandpass filter 29 that selectively transmits only infrared rays in a predetermined wavelength range, and an infrared detection element 30 that detects infrared rays that have passed through the bandpass filter 29. Yes. In addition to the infrared detection element 30, various electric circuits for signal processing are also provided, but the description thereof is omitted here.

前記バンドパスフィルター29により選択的に透過させる波長域としては、空気中に存在する二酸化炭素(CO2)や水分(H2O)により赤外線が吸収されないか又は吸収され難い波長範囲として設定している。 The wavelength range selectively transmitted by the bandpass filter 29 is set as a wavelength range in which infrared rays are not absorbed or hardly absorbed by carbon dioxide (CO 2 ) or moisture (H 2 O) present in the air. Yes.

説明を加えると、図5に示すように、1.5μm以上且つ1.8μm以下の範囲内、2.0μm以上且つ2.4μm以下の範囲内、3.1μm以上且つ4.2μm以下の範囲内、又は、8.0μm以上且つ12.0μm以下の範囲内を除く波長範囲内にて二酸化炭素や水分により赤外線が吸収されることになる。つまり、上記した各波長範囲が、空気中に存在する二酸化炭素や水分により赤外線が吸収されないか又は吸収され難い波長範囲に対応する。   In addition, as shown in FIG. 5, within the range of 1.5 μm to 1.8 μm, within the range of 2.0 μm to 2.4 μm, within the range of 3.1 μm to 4.2 μm. Or, infrared rays are absorbed by carbon dioxide or moisture within a wavelength range excluding the range of 8.0 μm or more and 12.0 μm or less. That is, each wavelength range described above corresponds to a wavelength range in which infrared rays are not absorbed or hardly absorbed by carbon dioxide and moisture present in the air.

そこで、バンドパスフィルター29により選択的に透過させる波長域として、1.5μm以上且つ1.8μm以下の範囲内、2.0μm以上且つ2.4μm以下の範囲内、3.1μm以上且つ4.2μm以下の範囲内、又は、8.0μm以上且つ12.0μm以下の範囲内のいずれかの波長域が設定される。   Therefore, the wavelength range selectively transmitted by the bandpass filter 29 is in the range of 1.5 μm to 1.8 μm, in the range of 2.0 μm to 2.4 μm, 3.1 μm to 4.2 μm. Any wavelength range within the following range or within a range of 8.0 μm or more and 12.0 μm or less is set.

次に、前記赤外線検出素子30について説明を加える。
赤外線検出素子30としては、検知対象の赤外線の波長が0.8μmから2.6μmの範囲内である場合には、Ge(ゲルマニウム)若しくはInGaAs(インジウムガリウムヒ素)を赤外線セルとして用いたもの、検知対象の赤外線の波長が1.5μmから5.0μmの範囲内である場合には、PbS(硫化鉛)若しくはPbSe(セレン化鉛)を赤外線セルとして用いたもの、また、検知対象の赤外線の波長が9μmから11.5μmの範囲内である場合には、比較的高価であるがHgCdTe(水銀カドミウムテルル)を赤外線セルとして用いたものを利用することができる。また、すべての波長域において熱型の赤外線セルであるサーモパイルや昇電素子を利用することができる。
Next, the infrared detection element 30 will be described.
As the infrared detecting element 30, when the wavelength of the infrared ray to be detected is in the range of 0.8 μm to 2.6 μm, Ge (germanium) or InGaAs (indium gallium arsenide) is used as the infrared cell, When the target infrared wavelength is in the range of 1.5 μm to 5.0 μm, PbS (lead sulfide) or PbSe (lead selenide) is used as the infrared cell, and the infrared wavelength of the detection target Is in the range of 9 μm to 11.5 μm, it is relatively expensive, but one using HgCdTe (mercury cadmium tellurium) as an infrared cell can be used. In addition, a thermopile or a power raising element that is a thermal infrared cell can be used in all wavelength regions.

説明を加えると、PbS(硫化鉛)又はPbSe(セレン化鉛)を赤外線セルとして用いて構成した赤外線検出素子30は、1.5μmから5.0μmの範囲内の赤外線を常温(300K)の動作温度にて検出可能であり、しかも、3.1μm以上且つ4.2μm以下の範囲内の赤外線に対する感度が比較的高くて検出出力が大きい。従って、設定される波長域を3.1μm以上且つ4.2μm以下の範囲内に設定する場合、赤外線検出素子30を、PbS(硫化鉛)又はPbSe(セレン化鉛)を赤外線セルとして用いて構成するのが好ましい。   In addition, the infrared detection element 30 configured by using PbS (lead sulfide) or PbSe (lead selenide) as an infrared cell operates infrared rays in the range of 1.5 μm to 5.0 μm at room temperature (300 K). Detection is possible at temperature, and the sensitivity to infrared rays in the range of 3.1 μm or more and 4.2 μm or less is relatively high and the detection output is large. Therefore, when setting the wavelength range to be set within the range of 3.1 μm or more and 4.2 μm or less, the infrared detection element 30 is configured using PbS (lead sulfide) or PbSe (lead selenide) as an infrared cell. It is preferable to do this.

次に、前記演算部14により被加熱物Nの温度を求める処理について説明する。
この演算部14は、赤外線強度検出部13にて検出される赤外線強度、及び、その赤外線強度検出部13にて検出される赤外線強度と温度検知用被加熱体15における温度との関係を示す情報から被加熱物の温度を演算するように構成されている。
Next, a process for obtaining the temperature of the object N to be heated by the calculation unit 14 will be described.
The calculation unit 14 is information indicating the infrared intensity detected by the infrared intensity detection unit 13 and the relationship between the infrared intensity detected by the infrared intensity detection unit 13 and the temperature in the temperature detection target 15. From this, the temperature of the object to be heated is calculated.

このコンロでは、赤外線強度検出部13にて赤外線強度が検出される検出対象物は前記温度検知用被加熱体15であり常に同じ物体である。従って、予め実験により、温度検知用被加熱体15を被加熱物Nにより加熱して温度検知用被加熱体15の温度を異ならせて、夫々異なる温度であるときの赤外線強度検出部13にて赤外線強度を検出して、例えば図4に示すように、検出される赤外線強度と温度検知用被加熱体15の温度との関係をマップデータとして求めて、図示しない記憶手段に記憶させておくのである。   In this stove, the detection object whose infrared intensity is detected by the infrared intensity detection unit 13 is the temperature detection object 15 and is always the same object. Therefore, by the experiment, the temperature detection target object 15 is heated by the object N to be heated, and the temperature of the temperature detection target object 15 is varied. For example, as shown in FIG. 4, the infrared intensity is detected, and the relationship between the detected infrared intensity and the temperature of the temperature detection object 15 is obtained as map data and stored in a storage means (not shown). is there.

そして、五徳2に被加熱物Nが載置されてバーナ3により加熱されている被加熱物Nの温度を検出するときには、被加熱物Nによって加熱される温度検知用被加熱体15から放射される赤外線の強度を赤外線強度検出部13にて検出して、演算部14が、赤外線強度検出部13にて検出された赤外線強度と前記マップデータとから、そのときの温度検知用被加熱体15の温度を演算にて求め、その温度検知用被加熱体15の温度から被加熱物Nの温度を求めるのである。   And when detecting the temperature of the to-be-heated object N by which the to-be-heated object N is mounted in Gotoku 2 and heated by the burner 3, it is radiated | emitted from the to-be-heated object 15 for temperature detection heated by the to-be-heated object N. The infrared intensity detecting unit 13 detects the intensity of infrared rays to be detected, and the calculating unit 14 determines the temperature detection target object 15 from the infrared intensity detected by the infrared intensity detecting unit 13 and the map data. The temperature of the object to be heated N is obtained from the temperature of the object 15 for temperature detection.

前記演算部14にて求められた温度は、前記燃焼制御部4に出力され、燃焼制御部4は、この演算部14にて求められる温度に基づいて、前記燃料供給断続弁10、前記燃料供給量調節弁11等を制御することにより、被加熱物Nの自動温度制御、被加熱物Nの過昇温時の緊急停止制御等を行うように構成されている。   The temperature determined by the calculation unit 14 is output to the combustion control unit 4, and the combustion control unit 4 performs the fuel supply intermittent valve 10, the fuel supply based on the temperature calculated by the calculation unit 14. By controlling the quantity control valve 11 and the like, it is configured to perform automatic temperature control of the object N to be heated, emergency stop control when the object N is overheated, and the like.

〔別実施形態〕
以下、別実施形態を列記する。
[Another embodiment]
Hereinafter, other embodiments are listed.

(1)上記実施形態では、前記演算手段としての演算部14が、前記赤外線強度検出手段にて検出される赤外線強度と温度検知用被加熱体15における温度との関係として、予め実験によって、温度検知用被加熱体15を加熱したときの赤外線強度検出部13にて検出される赤外線の強度と温度検知用被加熱体15の温度との関係をマップデータとして記憶するようにしたが、このような構成に代えて、次のように構成してもよい。 (1) In the embodiment described above, the calculation unit 14 serving as the calculation unit determines the relationship between the infrared intensity detected by the infrared intensity detection unit and the temperature of the temperature detection target body 15 by experiments in advance. The relationship between the infrared intensity detected by the infrared intensity detection unit 13 when the detection object 15 is heated and the temperature of the temperature detection object 15 is stored as map data. Instead of such a configuration, the following configuration may be used.

すなわち、前記赤外線強度検出手段にて検出される赤外線強度と温度検知用被加熱体15における温度との関係として、前記温度検知用被加熱体15の輻射率の情報を用いて、その情報と赤外線強度検出手段の検出情報とから被加熱物の温度を求める構成としてもよい。   That is, as the relationship between the infrared intensity detected by the infrared intensity detecting means and the temperature in the temperature detection target 15, the information and the infrared are used using the information on the emissivity of the temperature detection target 15. It is good also as a structure which calculates | requires the temperature of a to-be-heated object from the detection information of an intensity | strength detection means.

説明を加えると、温度検知用被加熱体15から放射される赤外線強度は、同じ温度の黒体から放射される赤外線強度に温度検知用被加熱体15の輻射率を乗算した値と同じである。又、黒体から放射される赤外線の強度と温度との関係はプランクの法則で与えられる一律に定まる関係がある。従って、温度検知用被加熱体15から放射される赤外線強度を検出すると、その検出された赤外線強度から被加熱物の温度を求めることができるのである。   In other words, the infrared intensity radiated from the temperature detection target 15 is the same as the value obtained by multiplying the infrared intensity radiated from the black body at the same temperature by the emissivity of the temperature detection target 15. . In addition, the relationship between the intensity of infrared rays emitted from the black body and the temperature has a uniform relationship given by Planck's law. Accordingly, when the infrared intensity radiated from the temperature detection object 15 is detected, the temperature of the object to be heated can be obtained from the detected infrared intensity.

そこで、前記演算手段が、前記赤外線強度検出手段にて検出される赤外線強度と温度検知用被加熱体における温度との関係として、前記温度検知用被加熱体の輻射率の情報を用いて、その情報と赤外線強度検出手段の検出情報とから被加熱物の温度を求める構成とすることができる。   Therefore, the calculation means uses the information on the emissivity of the temperature detection target object as the relationship between the infrared intensity detected by the infrared intensity detection means and the temperature of the temperature detection target object. It can be set as the structure which calculates | requires the temperature of a to-be-heated object from information and the detection information of an infrared intensity detection means.

(2)上記実施形態では、前記加熱手段として、混合気を環状ケーシング部材から内向きに噴出させて燃焼させる内炎式バーナにて構成するものを示したが、このような構成に代えて、図6に示すように、混合気を外向き上方に噴出させるブンゼン燃焼式のバーナ3を備えたコンロとして構成してもよい。この構成では、バーナ3の中央部に上下方向に貫通する貫通孔31が形成されており、この貫通孔31を通して上記実施形態と同様な、上部に温度検知用被加熱体15を備えて内部に赤外線強度検出部13を内部に備える支持部材16を挿通させる状態で設ける構成となる。 (2) In the above-described embodiment, the heating unit is configured by an internal flame type burner that injects and burns the air-fuel mixture inward from the annular casing member, but instead of such a configuration, As shown in FIG. 6, you may comprise as a stove provided with the Bunsen combustion type burner 3 which spouts air-fuel mixture upwards outward. In this configuration, a through-hole 31 penetrating in the vertical direction is formed in the central portion of the burner 3, and the temperature detecting heated body 15 is provided in the upper portion through the through-hole 31 as in the above embodiment. It becomes the structure provided in the state which inserts the support member 16 which equips the inside with the infrared intensity detection part 13. FIG.

(3)上記実施形態では、前記支持部材を被加熱物に対して接近する方向に弾性付勢する付勢手段としてコイルバネを用いたが、コイルバネに限らず、板バネを用いたり、ゴム等弾性復帰力を利用する構成など各種の形態で実施できる。又、このような付勢手段を設けることなく、前記支持部材を位置固定状態に設けて、五徳が被加熱物の重量によって弾性的に下降することが可能な構成にしてもよい。 (3) In the above embodiment, the coil spring is used as the biasing means for elastically biasing the support member toward the object to be heated. However, the coil spring is not limited to the coil spring, and a rubber spring or other elastic material such as rubber is used. It can be implemented in various forms such as a configuration using a restoring force. Further, without providing such an urging means, the support member may be provided in a fixed position so that the virtues can be elastically lowered by the weight of the object to be heated.

(4)上記実施形態では、前記支持部材によって前記温度検知用被加熱体を被加熱物に対して接近離間方向に移動自在に支持する構成としたが、このような構成に代えて、例えば、被加熱物を天板にて載置支持する構成とし、その天板の一部を前記温度検知用被加熱体にて構成して、温度検知用被加熱体の上面に被加熱物が接当し、前記温度検知用被加熱体の下面から赤外線通過用空間を通して放射される赤外線を赤外線検出手段により検出する構成としてもよい。 (4) In the above-described embodiment, the temperature detection target heating member is supported by the support member so as to be movable in the approaching / separating direction with respect to the target heating object. The object to be heated is placed on and supported by the top plate, and a part of the top plate is configured by the temperature detection target object, so that the target object contacts the upper surface of the temperature detection target object. And it is good also as a structure which detects the infrared rays radiated | emitted through the space for infrared passage from the lower surface of the said to-be-heated body for temperature detection by an infrared detection means.

(5)上記実施形態では、前記温度検知用被加熱体が、前記被加熱物の底部に接当する熱伝導率の高い材料にて構成される板状の本体部と、その本体部の下面側に高輻射率の材料を塗付して形成される赤外線放射部とを備えて構成されるものを例示したが、このような構成に代えて、高輻射率の材料からなる硬質の板体を前記本体部に貼り付けたりあるいは接着させることにより一体化させて温度検知用被加熱体を構成するものでもよい。 (5) In the said embodiment, the said to-be-heated body for temperature detection comprises the plate-shaped main-body part comprised with the material with high heat conductivity which contacts the bottom part of the said to-be-heated material, and the lower surface of the main-body part. An example of a structure including an infrared radiation portion formed by applying a high emissivity material on the side is illustrated, but instead of such a configuration, a hard plate made of a high emissivity material May be integrated by sticking or adhering to the main body portion to constitute the temperature detection target.

(6)上記実施形態では、前記加熱手段としてガス燃焼式のバーナにて構成したが、加熱手段はバーナに限定されるものではなく、例えば赤熱発光するハロゲンランプを用いたもの、電気抵抗線を内蔵したシーズヒータを用いたもの、又は、電磁誘導加熱を行う磁界発生コイルを用いたもの等、電気式加熱部にて構成しても良い。 (6) In the above embodiment, a gas combustion burner is used as the heating means. However, the heating means is not limited to the burner. For example, a heating lamp using a halogen lamp that emits red heat or an electric resistance wire is used. You may comprise by an electric heating part, such as what uses the built-in sheathed heater, or the thing using the magnetic field generation coil which performs electromagnetic induction heating.

3 加熱手段
13 赤外線強度検出手段
14 演算手段
15 温度検知用被加熱体
16 支持部材
17 付勢手段
18 筒状部
19 内筒部材
20 外筒部材
26 冷却手段
DESCRIPTION OF SYMBOLS 3 Heating means 13 Infrared intensity detection means 14 Calculation means 15 Heated object for temperature detection 16 Support member 17 Energizing means 18 Cylindrical part 19 Inner cylinder member 20 Outer cylinder member 26 Cooling means

Claims (6)

被加熱物を加熱する加熱手段と、前記被加熱物の温度を検出するための赤外線強度を検出する赤外線強度検出手段と、その赤外線強度検出手段により検出された赤外線強度に基づいて前記被加熱物の温度を演算する演算手段とを備えた加熱調理器であって、
前記被加熱物に接当して加熱される温度検知用被加熱体が設けられ、
前記赤外線強度検出手段が、前記温度検知用被加熱体から放射されて赤外線通過用空間を通して導入される赤外線の強度を検出するように設けられ、
前記演算手段が、前記赤外線強度検出手段にて検出される赤外線強度、及び、その赤外線強度検出手段にて検出される赤外線強度と前記温度検知用被加熱体における温度との関係を示す情報から前記被加熱物の温度を演算するように構成されており、
前記温度検知用被加熱体と前記赤外線強度検出手段とを前記被加熱物に対する接近離間方向に一体的に移動可能な状態で支持する支持部材が設けられており、
前記温度検知用被加熱体が、板状に形成されて、上面が前記被加熱物の底部に接当し、且つ、下面から赤外線を放射するように設けられ、
前記赤外線強度検出手段が、前記温度検知用被加熱体の下面から放射される赤外線を検出するように設けられており、
前記支持部材が、
前記赤外線通過用空間を内部に備える状態で筒状に形成された筒状部を備え、その筒状部の上部開口を覆う状態で前記温度検知用被加熱体を備えて構成され、
且つ、前記筒状部の内部に前記赤外線強度検出手段を橋架して備えて、前記温度検知用被加熱体の下面から放射される赤外線を前記赤外線通過用空間を通して前記赤外線強度検出手段に導入し、前記温度検知用被加熱体以外の他物から放射した赤外線を遮蔽して前記赤外線強度検出手段に入射することを阻止するように構成されており、
前記赤外線強度検出手段並びに前記支持部材の内面を冷却する冷却風を前記筒状部の内部を通して通風させる通風式の冷却手段が設けられている加熱調理器。
A heating means for heating the object to be heated, an infrared intensity detection means for detecting an infrared intensity for detecting the temperature of the object to be heated, and the object to be heated based on the infrared intensity detected by the infrared intensity detection means A cooking device comprising a computing means for computing the temperature of
There is provided a heated body for temperature detection that is heated in contact with the heated object,
The infrared intensity detection means is provided so as to detect the intensity of infrared rays emitted from the temperature sensing object and introduced through the infrared passage space;
From the information indicating the infrared intensity detected by the infrared intensity detecting means, and the relationship between the infrared intensity detected by the infrared intensity detecting means and the temperature in the temperature detection target body, the calculating means It is configured to calculate the temperature of the object to be heated,
A support member is provided for supporting the temperature detection target body and the infrared intensity detection means in a state in which the temperature detection target body and the infrared intensity detection unit are integrally movable in the approaching / separating direction with respect to the target object.
The temperature detection target is formed in a plate shape, the upper surface is in contact with the bottom of the object to be heated, and is provided so as to emit infrared rays from the lower surface.
The infrared intensity detecting means is provided so as to detect infrared rays emitted from the lower surface of the temperature sensing object;
The support member is
It is provided with a tubular portion formed in a cylindrical shape with the infrared passage space provided therein, and is configured to include the heated body for temperature detection in a state of covering an upper opening of the tubular portion,
In addition, the infrared intensity detection means is bridged inside the cylindrical portion, and infrared rays radiated from the lower surface of the temperature detection target are introduced into the infrared intensity detection means through the infrared passage space. , Configured to shield infrared rays radiated from other than the object to be heated for temperature detection and prevent the infrared rays from being incident on the infrared intensity detecting means,
A heating cooker provided with ventilation type cooling means for passing cooling air for cooling the infrared intensity detection means and the inner surface of the support member through the inside of the cylindrical portion.
前記支持部材を前記被加熱物に対して接近する方向に弾性付勢する付勢手段が設けられている請求項1記載の加熱調理器。   The cooking device according to claim 1, further comprising an urging unit that elastically urges the support member in a direction approaching the object to be heated. 前記温度検知用被加熱体が、
前記被加熱物の底部に接当する熱伝導率の高い材料にて構成される板状の本体部と、その本体部の下面側に高輻射率の材料を塗付して形成される赤外線放射部とを備えて構成されている請求項1記載の加熱調理器。
The temperature detection object to be heated is
Infrared radiation formed by applying a plate-shaped main body portion made of a material having high thermal conductivity in contact with the bottom of the object to be heated and applying a high emissivity material to the lower surface side of the main body portion. The cooking device according to claim 1, further comprising a portion.
前記支持部材の内面が低輻射率に構成されている請求項1記載の加熱調理器。   The cooking device according to claim 1, wherein an inner surface of the support member is configured to have a low emissivity. 前記筒状部が、内側に位置する内筒部材と、その内筒部材との間に空間を形成する状態で外側に位置する外筒部材とを備えて構成され、且つ、前記外筒部材の上部開口を覆う状態で前記温度検知用被加熱体を保持し、前記内筒部材の内部に位置する状態で前記赤外線強度検出手段を備えて構成され、
前記通風式の冷却手段が、前記内筒部材の内部を通して上方側に向けて通風し、且つ、前記内筒部材の上端部と前記温度検知用被加熱体との間に形成された通風用の開放部を通過させ、さらに、前記内筒部材と前記外筒部材との間に形成された空間を通して下方側に向けて通風させて外部に排出する状態で、前記冷却風を通風させるように構成されている請求項1記載の加熱調理器。
The cylindrical portion includes an inner cylindrical member positioned on the inner side, and an outer cylindrical member positioned on the outer side in a state in which a space is formed between the inner cylindrical member and the outer cylindrical member. The temperature detection target is held in a state of covering the upper opening, and is configured to include the infrared intensity detection means in a state of being located inside the inner cylinder member,
The ventilating cooling means ventilates upward through the inside of the inner cylinder member, and is used for ventilation between the upper end portion of the inner cylinder member and the temperature detection target to be heated. The cooling air is passed in a state of passing through the open portion and further venting downward through the space formed between the inner cylinder member and the outer cylinder member and discharging to the outside. The cooking device according to claim 1.
前記赤外線強度検出手段が、1.5μm以上且つ1.8μm以下の範囲内、2.0μm以上且つ2.4μm以下の範囲内、3.1μm以上且つ4.2μm以下の範囲内、又は、8.0μm以上且つ12.0μm以下の範囲内における波長域の赤外線の強度を検出するように構成されている請求項1〜5のいずれか1項に記載の加熱調理器。   7. the infrared intensity detecting means is in the range of 1.5 μm or more and 1.8 μm or less, in the range of 2.0 μm or more and 2.4 μm or less, in the range of 3.1 μm or more and 4.2 μm or less, or The cooking device according to any one of claims 1 to 5, wherein the cooking device is configured to detect the intensity of infrared rays in a wavelength range within a range of 0 µm or more and 12.0 µm or less.
JP2011109514A 2011-05-16 2011-05-16 Cooker Expired - Fee Related JP5232268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011109514A JP5232268B2 (en) 2011-05-16 2011-05-16 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011109514A JP5232268B2 (en) 2011-05-16 2011-05-16 Cooker

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006088696A Division JP4767061B2 (en) 2006-03-28 2006-03-28 Cooker

Publications (2)

Publication Number Publication Date
JP2011163759A true JP2011163759A (en) 2011-08-25
JP5232268B2 JP5232268B2 (en) 2013-07-10

Family

ID=44594644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011109514A Expired - Fee Related JP5232268B2 (en) 2011-05-16 2011-05-16 Cooker

Country Status (1)

Country Link
JP (1) JP5232268B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049600A1 (en) * 2013-10-02 2015-04-09 BSH Bosch und Siemens Hausgeräte GmbH Gas cooking point, a hob arrangement and method for operating a gas cooking point
WO2017085580A1 (en) * 2015-11-17 2017-05-26 BSH Hausgeräte GmbH Gas cooker and cooking hob arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144232A (en) * 1984-08-08 1986-03-03 Matsushita Electric Ind Co Ltd Electric oven
JP2002323377A (en) * 2001-04-25 2002-11-08 Nippon Crucible Co Ltd In-furnace temperature measuring device
JP2002340339A (en) * 2001-03-16 2002-11-27 Osaka Gas Co Ltd Cooking stove
JP2004060976A (en) * 2002-07-29 2004-02-26 Rinnai Corp Stove burner with pan bottom temperature sensor
JP2005249307A (en) * 2004-03-04 2005-09-15 Rinnai Corp Stove pan bottom temperature sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144232A (en) * 1984-08-08 1986-03-03 Matsushita Electric Ind Co Ltd Electric oven
JP2002340339A (en) * 2001-03-16 2002-11-27 Osaka Gas Co Ltd Cooking stove
JP2002323377A (en) * 2001-04-25 2002-11-08 Nippon Crucible Co Ltd In-furnace temperature measuring device
JP2004060976A (en) * 2002-07-29 2004-02-26 Rinnai Corp Stove burner with pan bottom temperature sensor
JP2005249307A (en) * 2004-03-04 2005-09-15 Rinnai Corp Stove pan bottom temperature sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049600A1 (en) * 2013-10-02 2015-04-09 BSH Bosch und Siemens Hausgeräte GmbH Gas cooking point, a hob arrangement and method for operating a gas cooking point
WO2017085580A1 (en) * 2015-11-17 2017-05-26 BSH Hausgeräte GmbH Gas cooker and cooking hob arrangement
US10697642B2 (en) 2015-11-17 2020-06-30 BSH Hausgeräte GmbH Gas cooker and cooking HOB arrangement

Also Published As

Publication number Publication date
JP5232268B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2009001540A1 (en) Induction cooker
JP2017190939A (en) Gas cooking stove having temperature sensing function
JP5232268B2 (en) Cooker
JP5315089B2 (en) Induction heating cooker
JP5286144B2 (en) Induction heating cooker
JP5728413B2 (en) Induction heating cooker
JP5138791B2 (en) Heating cooker
JP4557736B2 (en) Stove
JP5286141B2 (en) Induction heating cooker
JP4767061B2 (en) Cooker
JP6129680B2 (en) Induction heating cooker
JP5372839B2 (en) Induction heating cooker
JP2011192244A (en) Heat sensor
JP6198411B2 (en) Temperature measuring device
JP2008084854A (en) Induction heating cooker
JP5209383B2 (en) Induction heating cooker
JP6037854B2 (en) Stove, operating method of stove, estimation method of heating container material used on stove, and estimation method of heating container material
JP5459080B2 (en) Induction heating cooker
JP2009176751A (en) Induction heating cooker
JP6506568B2 (en) Induction cooker
JP5209399B2 (en) Induction heating cooker
JP2009266506A (en) Induction heating cooker
JP2005249307A (en) Stove pan bottom temperature sensor
JP5921283B2 (en) Temperature measuring device and cooking device
JP2012038442A (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5232268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees