JP2011163286A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2011163286A
JP2011163286A JP2010029092A JP2010029092A JP2011163286A JP 2011163286 A JP2011163286 A JP 2011163286A JP 2010029092 A JP2010029092 A JP 2010029092A JP 2010029092 A JP2010029092 A JP 2010029092A JP 2011163286 A JP2011163286 A JP 2011163286A
Authority
JP
Japan
Prior art keywords
nox
catalyst
reduction catalyst
exhaust gas
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010029092A
Other languages
Japanese (ja)
Inventor
Mitsuru Hosoya
満 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2010029092A priority Critical patent/JP2011163286A/en
Publication of JP2011163286A publication Critical patent/JP2011163286A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the NOx reduction ratio without increasing the dimensions of an exhaust emission control device over the whole. <P>SOLUTION: The exhaust emission control device includes an NOx absorption/reduction catalyst 12 on the way of an exhaust pipe 11, and is configured to reduce NOx to control exhaust emission by adding a gas oil 4 (fuel) as a reducing agent on an upstream side of the NOx absorption/reduction catalyst 12. The NOx absorption/reduction catalyst 12 is formed by molding a catalyst raw material itself into a flow-through type honeycomb shape without using a carrier, and the shaped body is burned to form a porous structure, in which exhaust gas 9 can pass through. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、排気管の途中に装備した排気浄化用触媒により排気浄化を図ることが行われており、この種の排気浄化用触媒としては、排気空燃比がリーンの時に排気ガス中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し、排気ガス中のO2濃度が低下した時に未燃HCやCO等の介在によりNOxを分解放出して還元浄化する性質を備えたNOx吸蔵還元触媒が知られている。 Conventionally, exhaust purification is carried out with an exhaust purification catalyst installed in the middle of the exhaust pipe. As this type of exhaust purification catalyst, NOx in exhaust gas is oxidized when the exhaust air-fuel ratio is lean. Thus, a NOx occlusion reduction catalyst having the property of temporarily storing in the form of nitrate and decomposing and releasing NOx through the intervention of unburned HC, CO, etc. when the O 2 concentration in the exhaust gas decreases is reduced and purified. Are known.

そして、斯かるNOx吸蔵還元触媒においては、NOxの吸蔵量が増大して飽和量に達してしまうと、それ以上のNOxを吸蔵できなくなるため、定期的にNOx吸蔵還元触媒に流入する排気ガスのO2濃度を低下させてNOxを分解放出させる必要がある。 In such a NOx occlusion reduction catalyst, when the occlusion amount of NOx increases and reaches the saturation amount, no more NOx can be occluded, so that the exhaust gas flowing into the NOx occlusion reduction catalyst periodically It is necessary to decompose and release NOx by reducing the O 2 concentration.

例えば、ガソリン機関に使用した場合であれば、機関の運転空燃比を低下(機関をリッチ空燃比で運転)することにより、排気ガス中のO2濃度を低下し且つ排気ガス中の未燃HCやCO等の還元成分を増加してNOxの分解放出を促すことができるが、NOx吸蔵還元触媒をディーゼル機関の排気浄化装置として使用した場合には機関をリッチ空燃比で運転することが困難である。 For example, when used in a gasoline engine, the operating air-fuel ratio of the engine is reduced (the engine is operated at a rich air-fuel ratio), thereby reducing the O 2 concentration in the exhaust gas and unburned HC in the exhaust gas. It is possible to promote the decomposition and release of NOx by increasing reducing components such as CO and CO. However, when the NOx storage reduction catalyst is used as an exhaust purification device of a diesel engine, it is difficult to operate the engine at a rich air-fuel ratio. is there.

このため、NOx吸蔵還元触媒の上流側で排気ガス中に燃料(HC)を添加する手段を新たに設け、これにより添加された燃料を還元剤としてNOx吸蔵還元触媒上でO2と反応させ、排気ガス中のO2濃度を積極的に低下させてNOx吸蔵還元触媒の再生を図る必要がある(例えば、特許文献1参照)。 For this reason, a means for adding fuel (HC) to the exhaust gas upstream of the NOx storage reduction catalyst is newly provided, and the added fuel reacts with O 2 on the NOx storage reduction catalyst as a reducing agent, It is necessary to actively reduce the O 2 concentration in the exhaust gas to regenerate the NOx storage reduction catalyst (see, for example, Patent Document 1).

特開2000−356127号公報JP 2000-356127 A

しかしながら、従来におけるNOx吸蔵還元触媒は、コージェライト担体にコーティングして作られていたため、これまで以上の高いNOx低減率を実現するべく触媒量を増やそうとした場合に、該触媒量の増加分に見合うコージェライト担体の大幅な容積増加を招いてしまうことになり、排気浄化装置全体の大型化が避けられなくなってしまうという問題があった。   However, since the conventional NOx occlusion reduction catalyst is made by coating a cordierite carrier, when an attempt is made to increase the amount of catalyst to achieve a higher NOx reduction rate than before, the increase in the amount of catalyst will be increased. There is a problem that a substantial increase in the volume of the corresponding cordierite carrier is caused, and an increase in the size of the entire exhaust gas purification apparatus cannot be avoided.

本発明は上述の実情に鑑みてなしたもので、排気浄化装置全体の大型化を招くことなくNOx低減率の向上を図ることを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the NOx reduction rate without causing an increase in the size of the entire exhaust gas purification apparatus.

本発明は、排気管の途中にNOx吸蔵還元触媒を装備し且つ該NOx吸蔵還元触媒の上流側に還元剤として燃料を添加してNOxを還元浄化するように構成した排気浄化装置であって、前記NOx吸蔵還元触媒を担体を使用せずに触媒原料自体をフロースルーのハニカム型に成型し且つその成型体を排気ガスが通過可能な多孔質構造を成すように焼成して構成したことを特徴とするものである。   The present invention is an exhaust emission control device equipped with a NOx storage reduction catalyst in the middle of an exhaust pipe and configured to reduce and purify NOx by adding fuel as a reducing agent upstream of the NOx storage reduction catalyst, The NOx occlusion reduction catalyst is formed by molding the catalyst raw material itself into a flow-through honeycomb type without using a carrier and firing the molded body so as to form a porous structure through which exhaust gas can pass. It is what.

而して、このようにすれば、担体を使用せずに触媒原料自体を成型してNOx吸蔵還元触媒としているので、これまで担体に占められていた容積分を全て触媒原料として増やすことが可能となり、排気浄化装置全体の大型化を招くことなく触媒量を大幅に増加することが可能となる。   Thus, in this way, since the catalyst raw material itself is molded without using a carrier to form a NOx occlusion reduction catalyst, it is possible to increase all the volume previously occupied by the carrier as a catalyst raw material. Thus, the amount of catalyst can be greatly increased without increasing the overall size of the exhaust purification device.

しかも、フロースルーのハニカム型とした成型体を排気ガスが通過可能な多孔質構造を成すように焼成しているので、NOx吸蔵還元触媒を通る排気ガスの拡散性が改善されると共に、該排気ガスと触媒との接触面積が大幅に増加されることになり、単位触媒量当たりのNOx低減性能が従来より大幅に向上されることになる。   Moreover, since the flow-through honeycomb-shaped molded body is fired so as to form a porous structure through which exhaust gas can pass, the diffusibility of exhaust gas passing through the NOx storage reduction catalyst is improved and the exhaust The contact area between the gas and the catalyst will be greatly increased, and the NOx reduction performance per unit catalyst amount will be greatly improved as compared with the prior art.

また、本発明においては、NOx吸蔵還元触媒の格子状に区画された各流路の入口を交互に目封じし且つ入口が目封じされていない流路の出口を目封じして前記各流路を区画する仕切壁を通過した排気ガスのみが下流側へ排出されるように構成し、前記NOx吸蔵還元触媒に排気ガス中のパティキュレートを捕集するフィルタ機能を持たせることが好ましい。   Further, in the present invention, the inlets of the respective channels partitioned in a lattice pattern of the NOx occlusion reduction catalyst are alternately sealed, and the outlets of the channels whose inlets are not sealed are sealed, and the respective channels It is preferable that only the exhaust gas that has passed through the partition wall partitioning the exhaust gas is discharged to the downstream side, and the NOx occlusion reduction catalyst has a filter function for collecting particulates in the exhaust gas.

このようにすれば、NOx吸蔵還元触媒をパティキュレートフィルタとしても活用することが可能となるので、新たにパティキュレートフィルタの搭載空間を確保しなくてもパティキュレートの捕集を行うことが可能となり、しかも、その内部に捕集されたパティキュレートをNOx吸蔵還元触媒の脱硫処理時に燃焼除去してしまうことが可能となる。   In this way, since the NOx storage reduction catalyst can be used as a particulate filter, it becomes possible to collect particulates without securing a new particulate filter mounting space. In addition, it is possible to burn and remove the particulates collected in the interior during the desulfurization treatment of the NOx storage reduction catalyst.

尚、NOx吸蔵還元触媒の触媒原料としては、例えば、白金とロジウムを担持したアルミナに炭酸バリウムと炭酸カリウムを混合したものを用いることが可能であり、このような触媒原料を用いれば、NOx吸蔵還元触媒を担体を使用せずに触媒原料だけで良好に成型することが可能となる。   As the catalyst raw material for the NOx occlusion reduction catalyst, for example, it is possible to use a mixture of barium carbonate and potassium carbonate on alumina supporting platinum and rhodium. If such a catalyst raw material is used, NOx occlusion catalyst can be used. It becomes possible to form the reduction catalyst satisfactorily by using only the catalyst raw material without using a carrier.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、担体を使用せずに触媒原料自体を成型してNOx吸蔵還元触媒としたことによって、これまで担体に占められていた容積分を全て触媒原料として増やすことができ、しかも、フロースルーのハニカム型とした成型体を排気ガスが通過可能な多孔質構造を成すように焼成したことによって、NOx吸蔵還元触媒を通る排気ガスの拡散性を改善し且つ該排気ガスと触媒との接触面積を大幅に増加して単位触媒量当たりのNOx低減性能を従来より大幅に向上することができるので、排気浄化装置全体の大型化を招くことなくNOx低減率の向上を図ることができる。   (I) According to the invention described in claim 1 of the present invention, since the catalyst raw material itself is molded without using a carrier to form a NOx occlusion reduction catalyst, the volume occupied by the carrier so far is reduced. All of this can be increased as a catalyst raw material, and the diffusibility of exhaust gas passing through the NOx occlusion reduction catalyst is achieved by firing a flow-through honeycomb-shaped molded body so as to form a porous structure through which exhaust gas can pass. And the contact area between the exhaust gas and the catalyst can be greatly increased, and the NOx reduction performance per unit catalyst amount can be greatly improved as compared with the prior art. The NOx reduction rate can be improved.

(II)本発明の請求項2に記載の発明によれば、NOx吸蔵還元触媒をパティキュレートフィルタとしても活用することができるので、新たにパティキュレートフィルタの搭載空間を確保しなくてもパティキュレートの捕集を行うことができ、しかも、その内部に捕集されたパティキュレートをNOx吸蔵還元触媒の脱硫処理時に燃焼除去してしまうことができる。   (II) According to the invention described in claim 2 of the present invention, the NOx occlusion reduction catalyst can also be used as a particulate filter. Therefore, the particulates can be obtained without newly securing a space for mounting the particulate filter. In addition, the particulates trapped inside can be burned and removed during the desulfurization treatment of the NOx storage reduction catalyst.

(III)本発明の請求項3に記載の発明によれば、NOx吸蔵還元触媒を担体を使用せずに触媒原料だけで良好に成型することができ、しかも、担体を使用しないことで液相の炭酸カリウムが担体側へ移動してNOx吸蔵性能が低下する不具合を未然に回避することもできる。   (III) According to the invention described in claim 3 of the present invention, the NOx occlusion reduction catalyst can be satisfactorily molded only from the catalyst raw material without using the carrier, and the liquid phase can be obtained by using no carrier. It is also possible to avoid the problem that the potassium carbonate moves to the carrier side and NOx occlusion performance decreases.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1のNOx吸蔵還元触媒の詳細を示す一部を切り欠いた斜視図である。FIG. 2 is a perspective view with a part cut away showing details of the NOx occlusion reduction catalyst of FIG. 1. NOx低減率を従来のNOx吸蔵還元触媒と比較したグラフである。It is the graph which compared NOx reduction rate with the conventional NOx storage reduction catalyst. 本発明の別の形態例を示す概略図である。It is the schematic which shows another form example of this invention.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、図1中1はディーゼルエンジンを示し、該ディーゼルエンジン1はターボチャージャ2を備えたものとなっていて、エアクリーナ3から導かれた吸気4が吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気4がインタークーラ6へと送られて冷却され、該インタークーラ6から更に吸気マニホールド7へと吸気4が導かれてディーゼルエンジン1の各気筒8に分配されるようになっている。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In FIG. 1, reference numeral 1 denotes a diesel engine. The diesel engine 1 includes a turbocharger 2, and intake air guided from an air cleaner 3. 4 is sent to the compressor 2 a of the turbocharger 2 through the intake pipe 5, and the intake air 4 pressurized by the compressor 2 a is sent to the intercooler 6 to be cooled, and further from the intercooler 6 to the intake manifold 7. The intake 4 is guided to the cylinder 8 and distributed to each cylinder 8 of the diesel engine 1.

このディーゼルエンジン1の各気筒8から排出された排気ガス9は、排気マニホールド10を介しターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排気ガス9が排気管(排気流路)11へ導かれて該排気管11途中のNOx吸蔵還元触媒12を通され、該NOx吸蔵還元触媒12でNOxを低減された上で車外へ排出されるようになっている。   The exhaust gas 9 discharged from each cylinder 8 of the diesel engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 10, and the exhaust gas 9 that has driven the turbine 2b is exhausted (exhaust flow path). 11 is passed through the NOx occlusion reduction catalyst 12 in the middle of the exhaust pipe 11, and after the NOx occlusion is reduced by the NOx occlusion reduction catalyst 12, it is discharged outside the vehicle.

このNOx吸蔵還元触媒12の入側の排気管11には、軽油タンク13から軽油14(燃料)をポンプ15により導いてNOx吸蔵還元触媒12へ向け噴射する燃料添加装置16が設けられており、この燃料添加装置16により添加される軽油14を還元剤として前記NOx吸蔵還元触媒12の再生が図られるようにしてある。   The exhaust pipe 11 on the inlet side of the NOx storage reduction catalyst 12 is provided with a fuel addition device 16 that guides the light oil 14 (fuel) from the light oil tank 13 by the pump 15 and injects it toward the NOx storage reduction catalyst 12. The NOx occlusion reduction catalyst 12 is regenerated using the light oil 14 added by the fuel addition device 16 as a reducing agent.

ここで、図2に示しているように、前記NOx吸蔵還元触媒12は、従来の如きコージェライト担体を使用せずに、白金とロジウムを担持したアルミナに炭酸バリウムと炭酸カリウムを混合したものを触媒原料として、該触媒原料自体をフロースルーのハニカム型に成型し、その成型体を排気ガス9が通過可能な多孔質構造を成すように焼成して構成したものとなっている。   Here, as shown in FIG. 2, the NOx occlusion reduction catalyst 12 is a mixture of barium carbonate and potassium carbonate in alumina supporting platinum and rhodium without using a conventional cordierite carrier. As the catalyst material, the catalyst material itself is molded into a flow-through honeycomb type, and the molded body is fired so as to form a porous structure through which the exhaust gas 9 can pass.

尚、触媒原料をフロースルーのハニカム型に成型するに際しては、触媒原料を従来周知の押し出し機に入れてスクリュにより混練しながら吐出口から押し出し、該吐出口に装着したダイの開口形状によりフロースルーのハニカム型に触媒原料が成型されるようにしておけば良く、また、多孔質構造を成すように焼成するに際しては、焼成時の高温条件下で焼失して空隙を成す樹脂やカーボン等の粒を造孔材として触媒原料に混合しておけば良い。   When forming the catalyst raw material into a flow-through honeycomb type, the catalyst raw material is put into a conventionally known extruder and extruded from a discharge port while kneading with a screw, and the flow through is performed depending on the shape of the die attached to the discharge port. It is sufficient that the catalyst raw material is molded into the honeycomb type, and when firing so as to form a porous structure, particles of resin, carbon, etc. that are burned down under high temperature conditions at the time of firing to form voids May be mixed with the catalyst raw material as a pore former.

而して、このようにすれば、コージェライト担体を使用せずに触媒原料自体を成型してNOx吸蔵還元触媒12としているので、これまでコージェライト担体に占められていた容積分を全て触媒原料として増やすことが可能となり、排気浄化装置全体の大型化を招くことなく触媒量を大幅に増加することが可能となる。   Thus, in this way, since the catalyst raw material itself is molded without using the cordierite carrier to form the NOx occlusion reduction catalyst 12, all of the volume previously occupied by the cordierite carrier is used as the catalyst raw material. As a result, the amount of catalyst can be significantly increased without increasing the size of the entire exhaust gas purification apparatus.

しかも、フロースルーのハニカム型とした成型体を排気ガス9が通過可能な多孔質構造を成すように焼成しているので、NOx吸蔵還元触媒12を通る排気ガス9の拡散性が改善されると共に、該排気ガス9と触媒との接触面積が大幅に増加されることになり、単位触媒量当たりのNOx低減性能が従来より大幅に向上されることになる。   In addition, since the flow-through honeycomb-shaped molded body is fired so as to form a porous structure through which the exhaust gas 9 can pass, the diffusibility of the exhaust gas 9 passing through the NOx storage reduction catalyst 12 is improved. As a result, the contact area between the exhaust gas 9 and the catalyst is greatly increased, and the NOx reduction performance per unit catalyst amount is greatly improved as compared with the prior art.

ここで、更に付言しておくと、本形態例では、白金とロジウムを担持したアルミナに炭酸バリウムと炭酸カリウムを混合したものを触媒原料としているため、これまでのようにコージェライト担体を使用すれば、液相の炭酸カリウム(炭酸バリウムは固相)がコージェライト担体側へ移動してNOx吸蔵能力が低下する心配があるが、このような心配がコージェライト担体を使用しないことで回避されるというメリットもある。   Here, it should be further noted that in this embodiment, since the catalyst raw material is a mixture of barium carbonate and potassium carbonate on alumina supporting platinum and rhodium, the cordierite carrier can be used as before. For example, there is a concern that liquid phase potassium carbonate (barium carbonate is a solid phase) moves to the cordierite carrier side and the NOx occlusion ability decreases, but such a concern is avoided by not using the cordierite carrier. There is also a merit.

従って、上記形態例によれば、コージェライト担体を使用せずに触媒原料自体を成型してNOx吸蔵還元触媒12としたことによって、これまでコージェライト担体に占められていた容積分を全て触媒原料として増やすことができ、しかも、フロースルーのハニカム型とした成型体を排気ガス9が通過可能な多孔質構造を成すように焼成したことによって、NOx吸蔵還元触媒12を通る排気ガス9の拡散性を改善し且つ該排気ガス9と触媒との接触面積を大幅に増加して単位触媒量当たりのNOx低減性能を従来より大幅に向上することができるので、排気浄化装置全体の大型化を招くことなくNOx低減率の向上を図ることができる。   Therefore, according to the above embodiment, the catalyst raw material itself is molded without using the cordierite carrier to form the NOx occlusion reduction catalyst 12, so that all the volume occupied by the cordierite carrier up to now is taken as the catalyst raw material. Furthermore, the diffusibility of the exhaust gas 9 passing through the NOx occlusion reduction catalyst 12 is obtained by calcining the flow-through honeycomb-shaped molded body so as to form a porous structure through which the exhaust gas 9 can pass. In addition, the contact area between the exhaust gas 9 and the catalyst can be greatly increased, and the NOx reduction performance per unit catalyst amount can be greatly improved as compared with the prior art. Therefore, the NOx reduction rate can be improved.

事実、本発明者による検証実験では、図3にグラフで示す通り、コージェライト担体に触媒原料をコーティングして構成した従来のNOx吸蔵還元触媒(図3中に曲線Aで示す)と比較して、触媒原料自体を成型して焼成した本形態例のNOx吸蔵還元触媒(図3中に曲線Bで示す)の方が、活性を持つ全ての温度域で高いNOx低減率を得られることが確認されている。   In fact, in the verification experiment by the present inventor, as shown by a graph in FIG. 3, compared with a conventional NOx occlusion reduction catalyst (shown by curve A in FIG. 3) formed by coating a catalyst raw material on a cordierite carrier. It is confirmed that the NOx occlusion reduction catalyst (shown by curve B in FIG. 3) of the present embodiment in which the catalyst raw material itself is molded and calcined can obtain a higher NOx reduction rate in all active temperature ranges. Has been.

また、図4は本発明の他の形態例を示すもので、本形態例においては、NOx吸蔵還元触媒12の格子状に区画された各流路12aの入口を交互に目封じし且つ入口が目封じされていない流路12aの出口を目封じして前記各流路12aを区画する仕切壁12bを通過した排気ガス9のみが下流側へ排出されるように構成し、前記NOx吸蔵還元触媒12に排気ガス9中のパティキュレートを捕集するフィルタ機能を持たせたものとしている。   FIG. 4 shows another embodiment of the present invention. In this embodiment, the inlets of the respective flow paths 12a partitioned in a lattice pattern of the NOx storage reduction catalyst 12 are alternately sealed and the inlets are closed. The NOx occlusion reduction catalyst is configured such that only the exhaust gas 9 passing through the partition wall 12b partitioning each flow path 12a by sealing the outlet of the unsealed flow path 12a is discharged to the downstream side. 12 is provided with a filter function for collecting particulates in the exhaust gas 9.

このようにすれば、NOx吸蔵還元触媒12をパティキュレートフィルタとしても活用することが可能となるので、新たにパティキュレートフィルタの搭載空間を確保しなくてもパティキュレートの捕集を行うことが可能となり、しかも、その内部に捕集されたパティキュレートをNOx吸蔵還元触媒12の脱硫処理時に燃焼除去してしまうことが可能となる。   In this way, the NOx occlusion reduction catalyst 12 can be used as a particulate filter, so it is possible to collect particulates without newly securing a particulate filter mounting space. In addition, it is possible to burn and remove the particulates collected in the NOx storage reduction catalyst 12 during the desulfurization process.

即ち、ディーゼルエンジン1の排気ガス9中には、燃料の軽油中に含まれる硫黄分に由来したSO2ガスが存在しているため、このSO2ガスがNOx吸蔵還元触媒12上でNOxと同様に酸化して硫酸塩として吸蔵されてしまうことが避けられないが、この硫酸塩は硝酸塩と比べて安定であるため、NOx吸蔵還元触媒12を再生させるべく燃料添加を実行しても、該NOx吸蔵還元触媒12に吸蔵されている硫酸塩が一部しか放出されずに残留してしまう結果、NOx吸蔵還元触媒12のNOx吸蔵サイトの回復割合が小さくなって吸蔵能力が低下してしまうという問題がある。 That is, in the exhaust gas 9 of the diesel engine 1, SO 2 gas derived from the sulfur content contained in the light oil of the fuel is present, so this SO 2 gas is similar to NOx on the NOx occlusion reduction catalyst 12. However, since this sulfate is more stable than nitrate, even if fuel is added to regenerate the NOx storage reduction catalyst 12, the NOx is stored. As a result of the fact that only a part of the sulfate stored in the storage reduction catalyst 12 is released and remains, the recovery rate of the NOx storage site of the NOx storage reduction catalyst 12 becomes small, and the storage capacity decreases. There is.

そこで、例えばディーゼルエンジン1をアイドリング状態等として排気ガス9の流量を絞り込んだ上、NOx吸蔵還元触媒12の入側に燃料添加装置16により軽油14を断続的に添加し、この軽油14をNOx吸蔵還元触媒12上で酸素と反応させて周囲のO2濃度を下げると共に、その反応熱により触媒床温度を脱硫温度条件の650〜700℃まで上げ、NOx吸蔵還元触媒12から硫酸塩をSO2ガスとして放出させる脱硫処理が行われる。 Therefore, for example, the diesel engine 1 is set in an idling state, and the flow rate of the exhaust gas 9 is narrowed down. Then, the light oil 14 is intermittently added to the inlet side of the NOx storage reduction catalyst 12 by the fuel addition device 16, and this light oil 14 is stored in the NOx. with lowering the O 2 concentration in the surrounding oxygen is reacted on the reduction catalyst 12 to raise the catalyst bed temperature due to the reaction heat up to 650 to 700 ° C. desulfurization temperature, SO 2 gas sulfate from the NOx storage-reduction catalyst 12 The desulfurization process to be released as is performed.

この際、NOx吸蔵還元触媒12の内部に捕集されたパティキュレートは、脱硫温度条件の650〜700℃に触媒床温度が上昇する過程で約600℃近辺から燃え始め、実質的にSO2ガスの放出が始まる頃には、その大半が燃焼除去されてしまうことになる。 At this time, the particulates trapped inside the NOx occlusion reduction catalyst 12 start to burn from around 600 ° C. in the process of raising the catalyst bed temperature to the desulfurization temperature condition of 650 to 700 ° C., and substantially SO 2 gas. Most of it will be burned away by the beginning of the release.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust emission control device of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

9 排気ガス
11 排気管
12 NOx吸蔵還元触媒
12a 流路
12b 仕切壁
14 軽油(燃料)
16 燃料添加装置
9 exhaust gas 11 exhaust pipe 12 NOx storage reduction catalyst 12a flow path 12b partition wall 14 light oil (fuel)
16 Fuel addition device

Claims (3)

排気管の途中にNOx吸蔵還元触媒を装備し且つ該NOx吸蔵還元触媒の上流側に還元剤として燃料を添加してNOxを還元浄化するように構成した排気浄化装置であって、前記NOx吸蔵還元触媒を担体を使用せずに触媒原料自体をフロースルーのハニカム型に成型し且つその成型体を排気ガスが通過可能な多孔質構造を成すように焼成して構成したことを特徴とする排気浄化装置。   An exhaust purification apparatus equipped with a NOx storage reduction catalyst in the middle of an exhaust pipe and configured to reduce and purify NOx by adding fuel as a reducing agent upstream of the NOx storage reduction catalyst, the NOx storage reduction Exhaust gas purification characterized in that the catalyst raw material itself is molded into a flow-through honeycomb type without using a carrier, and the molded body is fired to form a porous structure through which exhaust gas can pass. apparatus. NOx吸蔵還元触媒の格子状に区画された各流路の入口を交互に目封じし且つ入口が目封じされていない流路の出口を目封じして前記各流路を区画する仕切壁を通過した排気ガスのみが下流側へ排出されるように構成し、前記NOx吸蔵還元触媒に排気ガス中のパティキュレートを捕集するフィルタ機能を持たせたことを特徴とする請求項1に記載の排気浄化装置。   The inlet of each flow path partitioned in a lattice pattern of the NOx occlusion reduction catalyst is alternately sealed, and the outlet of the flow path where the inlet is not sealed is sealed, and passes through the partition wall partitioning each flow path. 2. The exhaust gas according to claim 1, wherein only the exhaust gas is discharged to the downstream side, and the NOx occlusion reduction catalyst is provided with a filter function for collecting particulates in the exhaust gas. Purification equipment. 白金とロジウムを担持したアルミナに炭酸バリウムと炭酸カリウムを混合して触媒原料としたことを特徴とする請求項1又は2に記載の排気浄化装置。   The exhaust emission control device according to claim 1 or 2, wherein barium carbonate and potassium carbonate are mixed with alumina supporting platinum and rhodium to form a catalyst raw material.
JP2010029092A 2010-02-12 2010-02-12 Exhaust emission control device Pending JP2011163286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010029092A JP2011163286A (en) 2010-02-12 2010-02-12 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029092A JP2011163286A (en) 2010-02-12 2010-02-12 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2011163286A true JP2011163286A (en) 2011-08-25

Family

ID=44594247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029092A Pending JP2011163286A (en) 2010-02-12 2010-02-12 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2011163286A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120392A (en) * 2001-10-19 2003-04-23 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2003184546A (en) * 2001-10-06 2003-07-03 Omg Ag & Co Kg Method and device for catalytic conversion of gaseous pollutant in exhaust gas of combustion engine
JP2004527372A (en) * 2001-05-09 2004-09-09 ヴァルティオン テクンニィルリネン ツッツキムスケスクス Catalysts and methods for catalytic reduction of nitrogen oxides
WO2009093071A1 (en) * 2008-01-23 2009-07-30 Johnson Matthey Public Limited Company Catalysed filter
JP2009214095A (en) * 2008-02-11 2009-09-24 Okayama Univ Catalyst and method for removing nitrogen oxide in exhaust gas from diesel engine by using unburnt carbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004527372A (en) * 2001-05-09 2004-09-09 ヴァルティオン テクンニィルリネン ツッツキムスケスクス Catalysts and methods for catalytic reduction of nitrogen oxides
JP2003184546A (en) * 2001-10-06 2003-07-03 Omg Ag & Co Kg Method and device for catalytic conversion of gaseous pollutant in exhaust gas of combustion engine
JP2003120392A (en) * 2001-10-19 2003-04-23 Toyota Motor Corp Exhaust emission control device of internal combustion engine
WO2009093071A1 (en) * 2008-01-23 2009-07-30 Johnson Matthey Public Limited Company Catalysed filter
JP2009214095A (en) * 2008-02-11 2009-09-24 Okayama Univ Catalyst and method for removing nitrogen oxide in exhaust gas from diesel engine by using unburnt carbon

Similar Documents

Publication Publication Date Title
AU2009255128B2 (en) Exhaust gas purifier and system for exhaust gas purification
KR100814204B1 (en) Exhaust gas system
JP5630025B2 (en) Diesel engine exhaust purification device and exhaust purification method
US20080241032A1 (en) Catalyzing Lean NOx Filter and Method of Using Same
JP2007291980A (en) Exhaust emission control device
JP2011149400A (en) Exhaust emission control device and exhaust emission control method for diesel engine
KR20120095747A (en) Multi-functional particulate filter and exhaust gas filtering device using this
KR101497468B1 (en) Apparatus for Treating Exhaust Gas and Toxic Substance Reduction System of Treating Exhaust Gas
US10041391B2 (en) Apparatus for purifying exhaust gas
JP2008215093A (en) Exhaust gas cleaning filter and automobile equipped with the same
KR101786698B1 (en) Catalyzed particulate filter
JP2007117864A (en) Particulate filter
JP2006348884A (en) Exhaust emission control device
JP4877574B2 (en) Exhaust gas purification device for internal combustion engine
JP2011163286A (en) Exhaust emission control device
JP2011169264A (en) Exhaust emission control device
KR101427933B1 (en) Catalytic converter of internal combustion engine and apparatus of purifying exhaust gas provided with the same
JP3876905B2 (en) Desulfurization control method for exhaust gas purification system and exhaust gas purification system
JP2008121493A (en) Exhaust emission control device
JP2007291981A (en) Exhaust emission control device
JP2009216021A (en) Exhaust emission control device
JP2009220033A (en) Catalyst device for cleaning exhaust gas
CN110709588B (en) Exhaust gas treatment device for engine and manufacturing method thereof
JP2018062882A (en) Exhaust emission control system
KR101755510B1 (en) Device for purifying exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304