JP2011162462A - Extract of antrodia cinnamomea fruit body and usage thereof, usage of antrocamphin a and method of inhibiting formation of inflammation inductible molecule - Google Patents

Extract of antrodia cinnamomea fruit body and usage thereof, usage of antrocamphin a and method of inhibiting formation of inflammation inductible molecule Download PDF

Info

Publication number
JP2011162462A
JP2011162462A JP2010024980A JP2010024980A JP2011162462A JP 2011162462 A JP2011162462 A JP 2011162462A JP 2010024980 A JP2010024980 A JP 2010024980A JP 2010024980 A JP2010024980 A JP 2010024980A JP 2011162462 A JP2011162462 A JP 2011162462A
Authority
JP
Japan
Prior art keywords
extract
mushroom
fruit body
production
nitric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010024980A
Other languages
Japanese (ja)
Inventor
Sheng-Yang Wang
王升陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Chung Hsing University
Original Assignee
National Chung Hsing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Chung Hsing University filed Critical National Chung Hsing University
Priority to JP2010024980A priority Critical patent/JP2011162462A/en
Publication of JP2011162462A publication Critical patent/JP2011162462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Plant Substances (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide anti-inflammatory usage of Antrodia cinnamomea fruit body derivatives. <P>SOLUTION: The Antrodia cinnamomea fruit body derivatives include an extract from Antrodia cinnamomea fruit body with ethanol, an extract from Antrodia cinnamomea fruit body with anhydrous propionic acid Antrodia cinnamomea fruit body, and Antrocamphin A. The ethanol extract, the anhydrous propionic acid extract, and the Antrocamphin A have an effect of reducing the formation of nitrogen monoxide synthetic enzyme or cyclooxygenase 2 to inhibit the formation of an inflammation inducible molecule. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ベニクスノキタケ子実体の派生物に関わり、特にベニクスノキタケ子実体の派生物による抗炎症用途(The anti−inflammatory usage of Antrodia cinnamomea fruit body derivatives)に関する。 TECHNICAL FIELD The present invention relates to a derivative of Benixunotake mushroom fruit body, and more particularly, to an anti-inflammatory use of the anti-inflammatory usage of the body of Benicus nokitake fruit body.

炎症反応は多くの病理学的状態で、主要特徴の一つになるが、細菌感染を例として、細菌表面にあるリポ多糖(lipopolysaccharide,LPS,別称:内毒素)は、宿主体内のマクロファージを活性化させるが、正常の状態で、当該活性化過程において、宿主の免疫システム全体を活性化して、病原菌を消滅する目的が達成される。しかし、一部の異常な生理的反応(疾患の発生で生じられた、または疾患発生の主因になるもの)で、活性化されたマクロファージは、過量の一酸化窒素(NO)の生成を引き起こし、宿主細胞の死亡を加速化することになるため、多くの病理学的状態で、炎症反応への制御は疾患治療の重要な一環であろう。 Inflammatory reaction is one of the main features in many pathological conditions, but lipopolysaccharide (LPS, also known as endotoxin) on the surface of bacteria activates macrophages in the host body, taking bacterial infection as an example. However, in the normal state, in the activation process, the entire immune system of the host is activated and the purpose of eliminating the pathogen is achieved. However, in some abnormal physiological reactions (those that have occurred or are a major cause of disease development), activated macrophages cause the production of excessive amounts of nitric oxide (NO), In many pathological conditions, control over the inflammatory response may be an important part of disease treatment because it will accelerate host cell death.

炎症的刺激として知られる腫瘍壊死因子−α(TNF−α)、一酸化窒素(NO)と前立腺素E(prostaglandin−E, PGEは、アラキドン酸がシクロオキシゲナーゼ(COX)ルートの代謝)で生成されたもので、それは免疫反応の重要な部分であり、例えば、敗血症または敗血症ショック(septic and hemorrhagic shock)、関節リウマチ(rheumatoid arthritis)や粥状動脈硬化(arthrosclerosis)の発症は、上述の媒介物が大量に検出された。従って、新薬の開発は、一酸化窒素合成酵素(iNOS)とシクロオキシゲナーゼ2(COX−2)の遺伝子を抑制し、リポ多糖(LPS)が誘導する情報伝達の主なレセプターまたは酵素活性を阻害して、一酸化窒素(NO)と前立腺素Eの生成を低減させることに重点が置かれている。 Tumor necrosis factor-α (TNF-α), known as inflammatory stimuli, nitric oxide (NO) and prostatin E 2 (prostaglandin-E 2 , PGE 2 is the metabolism of arachidonic acid in the cyclooxygenase (COX) route) It is an important part of the immune response, for example, the development of sepsis or septic shock, rheumatoid arthritis and arthrosclerosis A lot of things were detected. Therefore, the development of new drugs suppresses the genes for nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), and inhibits the main receptor or enzyme activity of signal transduction induced by lipopolysaccharide (LPS). , emphasis is placed on reducing the nitrogen monoxide (NO) generation of prostate element E 2.

ベニクスノキタケ(Antrodia cinnamomea)は真菌の一種で、非常に珍貴な漢方生薬として見られており、多くの科学的研究結果により、ベニクスノキタケ菌糸体からのメチルアルコール抽出物と熱水抽出物、その子実体のメチルアルコール抽出物、エタノール抽出物と無水プロピオン酸抽出物は、優れた抗ガン活性があることが分かった。そして、一部の研究によると、ベニクスノキタケの菌糸体と子実体は、幾らかのトリテルぺノイド化合物が含まれている、抗炎症の潜在力を持つ化合物であると指摘された。しかし、ベニクスノキタケ及びその含まれたトリテルぺノイド化合物が、炎症反応を制御する作用メカリズムと生理的活性を更に解明する必要がある。 Antrodia cinnamomea is a kind of fungus and is seen as a very rare Chinese herbal medicine, and many scientific research results show that methyl alcohol extract and hot water extract from Benix noctum mycelium, The fruit body methyl alcohol extract, ethanol extract and propionic anhydride extract were found to have excellent anti-cancer activity. And some studies pointed out that the mycelium and fruiting bodies of Benix nokitake are compounds with anti-inflammatory potential that contain some triterpenoid compounds. However, it is necessary to further elucidate the mechanism of action and physiological activity of Benix octopus and its included triterpenoid compounds that control the inflammatory response.

本発明は、ベニクスノキタケ子実体の派生物及びその用途を提供することを目的とし、それにより、炎症誘発性分子の生成を抑制し、優れた抗炎症機能がある。 The object of the present invention is to provide a derivative of Benicus nokitake fruiting body and its use, thereby suppressing the production of pro-inflammatory molecules and having an excellent anti-inflammatory function.

上述の目的を達成させるために、本発明は、乾燥ベニクスノキタケの子実体が提供され、該乾燥ベニクスノキタケの子実体を一定の温度で、エタノールで抽出するという手順で得られたことを特徴とするベニクスノキタケの子実体の抽出物を提供する。 In order to achieve the above-mentioned object, the present invention provides a fruit body of a dried venomus mushroom, which is obtained by a procedure of extracting the fruit body of the dried venus mushroom with ethanol at a constant temperature. It provides an extract of the fruiting body of Benicus mushroom.

本発明は、また、乾燥ベニクスノキタケの子実体が提供されており、該乾燥ベニクスノキタケの子実体を一定の温度でエタノールを抽出して、エタノール抽出物が得られるが、該エタノール抽出物を濃縮して、濃縮産物が得られ、該濃縮産物を無水プロピオン酸と水でパーティション(partition)するという手順で得られた該無水プロピオン酸抽出物というベニクスノキタケ子実体の抽出物を提供することを特徴とする。 The present invention also provides a fruit body of the dried Benix octopus, which is obtained by extracting ethanol from the fruit body of the dried Benix octopus at a constant temperature. To obtain a concentrated product, and to obtain an extract of the fruit body of Benicus edodes as the propionic anhydride extract obtained by partitioning the concentrated product with propionic anhydride and water. It is characterized by.

該乾燥の方法は、冷凍乾燥で行われていることを特徴とする。
該温度は、42〜45℃で行われていることを特徴とする。
該エタノールは、体積百分率95%のエタノールで行われていることを特徴とする。
The drying method is performed by freeze drying.
The temperature is 42 to 45 ° C.
The ethanol is characterized by being made of ethanol with a volume percentage of 95%.

該濃縮の方法は、真空濃縮で行われていることを特徴とする。
該無水プロピオン酸は、体積百分率50%の無水プロピオン酸で行われていることを特徴とする。
The concentration method is performed by vacuum concentration.
The propionic anhydride is characterized by being carried out with 50% volume percent propionic anhydride.

本発明は更に、炎症誘発性分子の生成を抑制することを特徴とする該抽出物の用途を提供する。
該抽出物は、一酸化窒素(NO)または前立腺素E(PGE)という該炎症誘発性分子を抑制することを特徴とする。
該抽出物は、一酸化窒素合成酵素とシクロオキシゲナーゼ2を減少させて、それぞれ該一酸化窒素(NO)と該前立腺素E(PGE)の生成を抑制することを特徴とする。
The present invention further provides the use of the extract characterized by suppressing the production of pro-inflammatory molecules.
The extract is characterized by inhibiting the pro-inflammatory molecule, nitric oxide (NO) or prostate element E 2 (PGE 2 ).
The extract is characterized by reducing nitric oxide synthase and cyclooxygenase 2 to suppress the production of the nitric oxide (NO) and the prostate element E 2 (PGE 2 ), respectively.

本発明は、また更に、一酸化窒素(NO)の生成を抑制することを特徴とするantrocamphin Aの用途を提供する。
該antrocamphin Aは、一酸化窒素合成酵素を減少させて、該一酸化窒素(NO)の生成を抑制することを特徴とする。
本発明は、そのうえ、前立腺素E(PGE)の生成を抑制することを特徴とするantrocamphin Aの用途を提供する。
該antrocamphin Aは、シクロオキシゲナーゼ2を減少させて、該前立腺素E(PGE)の生成を抑制することを特徴とする。
The present invention still further provides the use of antrocamfin A, which is characterized by suppressing the production of nitric oxide (NO).
The antrocampin A is characterized in that it reduces nitric oxide synthase and suppresses the production of the nitric oxide (NO).
In addition, the present invention provides an application of antrocamphin A that is characterized by inhibiting the production of prostate element E 2 (PGE 2 ).
The antrocampin A is characterized in that it reduces cyclooxygenase 2 and suppresses the production of the prostate element E 2 (PGE 2 ).

本発明は、また、被験者を請求項17に記載のいずれかの一つの抽出物またはantrocamphin Aと接触させることを含むことを特徴とする炎症誘発性分子生成の抑制方法を提供する。
該炎症誘発性分子は、一酸化窒素(NO)または前立腺素E(PGE)であることを特徴とする。
The present invention also provides a method for suppressing pro-inflammatory molecule production, comprising contacting a subject with any one of the extracts according to claim 17 or antrocampin A.
The pro-inflammatory molecule is characterized by being nitric oxide (NO) or prostate element E 2 (PGE 2 ).

上述の内容をまとめると、本発明において、ベニクスノキタケ子実体の派生物による抗炎症の効果は、本発明に掲示したベニクスノキタケ子実体の派生物による抗炎症の生理的活性及び作用メカリズムが更に明確になった。 In summary, in the present invention, the anti-inflammatory effect of the derivative of Benix nokitake fruit body in the present invention is further clarified in the physiological activity and action mechanism of the anti-inflammation caused by the derivative of Benix nokitake fruit body presented in the present invention. Became.

本発明のエタノール抽出物、無水プロピオン酸抽出物と水溶性留分が有する、一酸化窒素生成の抑制率を示すグラフ。The graph which shows the suppression rate of nitric oxide production | generation which the ethanol extract of this invention, a propionic anhydride extract, and a water-soluble fraction have. 本発明のエタノール抽出物が影響した一酸化窒素合成酵素(iNOS)の生成量を示すグラフ。The graph which shows the production amount of nitric oxide synthase (iNOS) which the ethanol extract of this invention influenced. 本発明のエタノール抽出物が影響したシクロオキシゲナーゼ2(COX−2)の生成量を示すグラフ。The graph which shows the production amount of cyclooxygenase 2 (COX-2) which the ethanol extract of this invention influenced. 本発明の無水プロピオン酸抽出物の17留分が有する、一酸化窒素生成の抑制率を示すグラフ。The graph which shows the suppression rate of a nitric oxide production | generation which 17 fractions of the propionic anhydride extract of this invention have. antrocamphin Aが影響した一酸化窒素合成酵素(iNOS)の伝令リボ核酸(mRNA)の生成量を示すグラフ。The graph which shows the production amount of the messenger ribonucleic acid (mRNA) of nitric oxide synthase (iNOS) which an antrocamphin A influenced. antrocamphin Aが影響したシクロオキシゲナーゼ2(COX−2)の伝令リボ核酸(mRNA)の生成量を示すグラフ。The graph which shows the production amount of the messenger ribonucleic acid (mRNA) of cyclooxygenase 2 (COX-2) which the antrocampin A influenced. antrocamphin Aが影響した一酸化窒素合成酵素(iNOS)の生成量を示すグラフ。The graph which shows the production amount of nitric oxide synthase (iNOS) which antrocamphin A influenced. antrocamphin Aが影響したシクロオキシゲナーゼ2(COX−2)の生成量を示すグラフ。The graph which shows the production amount of cyclooxygenase 2 (COX-2) which antrocamphin A influenced.

本発明は、ベニクスノキタケ子実体の派生物及びその用途に関わり、それにより、炎症誘発性分子の生成を抑制して、優れた抗炎症機能がある。該“派生物”とは、ベニクスノキタケ子実体の抽出物及びその成分化合物のことを意味し、もっとはっきりと言えば、本発明でいう“派生物”は、ベニクスノキタケ子実体のエタノール抽出物、無水プロピオン酸抽出物またはantrocamphin Aのことをいう。 The present invention relates to a derivative of Benicaria mushroom fruit body and its use, thereby suppressing the production of pro-inflammatory molecules and having an excellent anti-inflammatory function. The “derivative” means an extract of Benix octopus fruit body and its component compounds, and more specifically, “derivative” as used in the present invention means an ethanol extract of Benix octopus fruit body, Propionic anhydride extract or antrocampin A.

リポ多糖(lipopolysaccharide,LPS)は、脂質と多糖を共同結合して構成され、グラム陰性菌の細胞表面の主要分子で、内毒素とも言われる。リポ多糖は宿主の体内で激しい炎症反応を引き起こすが、この激しい炎症反応は通常、マクロファージで活性化された免疫反応であり、それゆえ、本発明は、リポ多糖で誘発したマウス体内またはマクロファージ株による炎症反応を実験することを、本発明におけるベニクスノキタケ子実体が抗炎症反応に関わる役割を検討するモデルとする。 Lipopolysaccharide (LPS) is composed of lipids and polysaccharides, and is a major molecule on the cell surface of Gram-negative bacteria, also called endotoxin. Lipopolysaccharide causes a severe inflammatory response in the host body, but this severe inflammatory response is usually an immune response activated by macrophages, and therefore the present invention depends on the mouse body or macrophage strain induced by lipopolysaccharide. Experimenting with an inflammatory reaction serves as a model for examining the role of the fruit body of Benix nokitake in the present invention in relation to an anti-inflammatory reaction.

以下に掲示した実施例は、本発明を詳しく説明するために挙げられた例であり、それらを以って、本発明の特許請求の範囲を制限してはならない。 The following examples are given for the purpose of illustrating the present invention in detail and should not limit the scope of the claims of the present invention.

実験設計
[材料]
本発明に使用するベニクスノキタケの子実体は、台湾高雄六亀で採集した野生株であり、牛胎児血清(FBS)はGibco BRL(Invitrogen, Grand Island, NY)から購入、ジメチルスルホキシド(DMSO), ペニシリン(penicillin)、リポ多糖(lipopolysaccharide, Escherichia coli 0127:138/LPS)MTT(3−(4,5−dimethylthiazol−2−yl)−2,5−diphenyltetrazolium bromide)とグリース試薬(Griess reagent)は、いずれもSigma−Aldrich(St Louis,MO)から購入した。本発明に使用するあらゆる化学薬品及び溶剤はいずれも試薬またはHPLCクラスである。
Experimental design [Material]
The fruit body of Benicus mushroom used in the present invention is a wild strain collected in Kaohsiung, Taiwan, and fetal bovine serum (FBS) is purchased from Gibco BRL (Invitrogen, Grand Island, NY), dimethyl sulfoxide (DMSO) , Penicillin, lipopolysaccharide, Escherichia coli 0127: 138 / LPS) MTT (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolebromide (Grease) and Grease All were purchased from Sigma-Aldrich (St Louis, MO). All chemicals and solvents used in the present invention are of reagent or HPLC class.

[実験マウス]
実験マウスは、BioLasco(台北、台湾)から購入した生後四週間のオスICR系マウス(約25〜28g)で、実験前、実験マウスを環境に慣らさせるために、温度25±2℃、相対湿度55±5%、明暗周期は12時間(より明確に言えば、毎日午前六時から午後六時を明期とする)、自由に摂食と飲水を行わせる条件下で、少なくとも一週間飼育しておいた。すべての動物実験処理は、実験動物飼育管理(Guide for the Care and Use of Laboratory Animals)、使用ガイド及び台湾の動物保護法に関する規定に従い、また現地の道徳委員から承認を得てから行われた。
[Experimental mouse]
The experimental mouse was a four-week-old male ICR mouse (about 25-28 g) purchased from BioLasco (Taipei, Taiwan). Before the experiment, the temperature was 25 ± 2 ° C. and the relative humidity was used to acclimate the experimental mouse to the environment. 55 ± 5%, light / dark cycle is 12 hours (more specifically, from 6 am to 6 pm every day), and is kept for at least one week under conditions where food and water are freely available I left it. All animal experimentation procedures were conducted in accordance with the provisions for laboratory animal care management (Guide for the Care and Use of Laboratory Animals), usage guides and animal protection laws in Taiwan, and after obtaining approval from local moral committee members.

[細胞培養]
本発明は、マウスマクロファージ株RAW 267.4で、一酸化窒素と前立腺素E(PGE)の生成量を検討した。RAW267.4細胞の培養では、まず、培養培地に培養されていた(75cm)RAW 267.4細胞を接種密度2×10cells/wellで、96孔培養プレートに接種し、それを培養箱(37℃,5%CO)に入れて培養し、培養液はATCC(American TypeCulture Collection)の意見を受けて、培養液DMEMを使用し、それに牛胎児血清(fetal bovine serum,FBS)10%を加えて、ペニシリン(penicillin,100units/ml)とストレプトマイシン(streptomycin,100g/ml)を培養する。
[Cell culture]
In the present invention, the production amounts of nitric oxide and prostatic element E 2 (PGE 2 ) were examined in the mouse macrophage strain RAW 267.4. In the culture of RAW267.4 cells, first, RAW267.4 cells cultured in the culture medium (75 cm 2 ) were inoculated into a 96-well culture plate at an inoculation density of 2 × 10 5 cells / well, and the culture box was used. (37 ° C., 5% CO 2 ), and the culture medium was obtained from ATCC (American Type Culture Collection), using the culture medium DMEM, and fetal bovine serum (FBS) 10% And penicillin (100 units / ml) and streptomycin (100 g / ml) are cultured.

[ウェスタンブロット法分析]
細胞の全蛋白質(total protein)を得てから、それと同様な量の蛋白質を5〜7%勾配電気泳動ゲル孔内(SDS−PAGE)に加えて、300mAで90分間分離(resolve)し、大きさにより分離した蛋白質ブロッティング(100V,1時間)をフッ化ポリビニリデン膜(polyvinylidene difluoride,PVDF,Immobilon, Millipore,Bedford,MA)に転写したあと、フッ化ポリビニリデン膜を、ブロッキング緩衝液で(blocking buffer, 10%w/v脱脂乳粉末をTBST 緩衝液の中に入れて)1時間作用する。
[Western blot analysis]
After obtaining the total protein of the cell, a similar amount of protein is added to the 5-7% gradient electrophoresis gel pore (SDS-PAGE) and resolved at 300 mA for 90 minutes. After the protein blotting (100 V, 1 hour) separated by the above was transferred to a polyvinylidene fluoride membrane (PVDF, Immobilon, Millipore, Bedford, MA), the polyvinylidene fluoride membrane was blocked with a blocking buffer (blocking) buffer, 10% w / v skim milk powder in TBST buffer) and act for 1 hour.

それから、フッ化ポリビニリデン膜を抗一酸化窒素合成酵素の抗体溶液(anti−iNOS,1:1000,Cayman Chemicals)または抗シクロオキシゲナーゼ2の抗体溶液(anti−COX−2,1:1000,Cayman Chemicals)に浸かり、それから、TBST 緩衝液0.1%(Tween20 0.1%含有のTBS緩衝液)で二回洗浄して、非特異的(non−specific)結合の抗体抗原を洗い落とす。
その後、フッ化ポリビニリデン膜を西洋わさびペルオキシダーゼ(horseradish peroxidase)の抗ウサギ二級抗体溶液(anti−rabbit secondary antibodies)に浸かったあと、化学発光試薬(enhanced chemiluminescene regents,ECL,Pierce)を加えて、各組の蛍光強度を検出し、そしてβ−アクチン(β−actin)の生成量を蛋白の制御対照にする。
Then, the polyvinylidene fluoride membrane is applied to an anti-nitrogen oxide synthase antibody solution (anti-iNOS, 1: 1000, Cayman Chemicals) or an anti-cyclooxygenase 2 antibody solution (anti-COX-2, 1: 1000, Cayman Chemicals). And then washed twice with TBST buffer 0.1% (TBS buffer containing 0.1% Tween 20) to wash off non-specifically bound antibody antigens.
Then, after immersing the polyvinylidene fluoride membrane in an anti-rabbit secondary antibody solution of horseradish peroxidase, chemiluminescent reagent (enhanced chemiluminescene reagents, ECL, PCL) was added. The fluorescence intensity of each set is detected, and the amount of β-actin produced is a protein control.

[逆転写ポリメラーゼ連鎖反応]
Trizol試薬(Invitrogen Life Technologies,Carlsbad,CA,USA)で、抽取細胞の全リボ核酸(total RNA)を抽出し、逆転写ポリメラーゼ連鎖反応でiNOS,COX−2和G3PDHの伝令リボ核酸(mRNA)をcDNAに逆転写し、それから、定量的リアルタイムポリメラーゼ連鎖反応(real time−PCR,Applied Biosystems)で、iNOS、COX−2とG3PDHの生成漁を測定する。
[Reverse transcription polymerase chain reaction]
Extract total ribonucleic acid (total RNA) from extracted cells with Trizol reagent (Invitrogen Life Technologies, Carlsbad, CA, USA), and transfer messenger ribonucleic acid (mRNA) of iNOS, COX-2 sum G3PDH by reverse transcription polymerase chain reaction Reverse transcription into cDNA and then measuring production of iNOS, COX-2 and G3PDH by quantitative real-time polymerase chain reaction (real time-PCR, Applied Biosystems).

該定量的リアルタイムポリメラーゼ連鎖反応は、DNA結合蛍光剤グリーン核酸ゲル染色液(SYBR Green)でPCR産物を検出するが、温度サイクル(thermal cycle)は、95℃で5分間を1サイクルの後、95℃で1分間、55℃で45秒、及び72℃で30秒を40サイクルにするが、プライマー配列は Inos順向き5’−TCC TAC ACC ACA CCA AAC−3’;iNOS逆向き5’−CTC CAA TCT CTG CCT ATC C−3’;COX−2順向き5’−CCT CTG CGA TGC TCT TCC−3’;COX−2逆向き5’−TCA CAC TTA TAC TGG TCA AAT CC−3’;G3PDH順向き5’−TCA ACG GCA CAG TCA AGG−3’;G3PDH逆向き5’−ACT CCA CGA CAT ACT CAG C−3’であり、G3PDHはハウスキーピング遺伝子(housekeeping gene)で、細胞内に安定し大量な遺伝子があり、実験中でiNOSとCOX−2の量を標準化する。 The quantitative real-time polymerase chain reaction detects a PCR product with a DNA-binding fluorescent agent Green Nucleic Acid Gel Stain (SYBR Green), and the temperature cycle is 95 ° C. for 5 minutes after one cycle, and 95 cycles. 1 minute at ° C, 45 seconds at 55 ° C, and 30 seconds at 72 ° C for 40 cycles, but the primer sequence is Inos forward 5'-TCC TAC ACC ACA CCA AAC-3 '; iNOS reverse 5'-CTC CAA TCT CTG CCT ATC C-3 ′; COX-2 forward 5′-CCT CTG CGA TGC TCT TCC-3 ′; COX-2 reverse 5′-TCA CAC TTA TAC TGG TCA AAT CC-3 ′; G3PDH Orientation 5'-TCA ACG GCA CAG TCA AG -3 ′; G3PDH reverse 5′-ACT CCA CGA CAT ACT CAG C-3 ′, G3PDH is a housekeeping gene, and has a stable and large amount of gene in cells. Standardize the amount of COX-2.

本発明のベニクスノキタケ子実体のエタノール抽出物と無水プロピオン酸抽出の製造
まず、ベニクスノキタケの子実体を冷凍乾燥法で乾燥し、それから、42〜45℃下で、冷凍乾燥したベニクスノキタケの子実体580gをエタノール95%で抽出して、本発明のエタノール抽出物(ACE)を得る。この乾燥法は、制限することがなく、所属分野で知られている何れかの乾燥法で行ってもよい。
Production of ethanol extract and propionic anhydride extract of Benix nokitake fruit body according to the present invention First, the fruit body of Benix nokitake fruit body is dried by a freeze-drying method and then freeze-dried at 42-45 ° C. 580 g of fruiting bodies are extracted with 95% ethanol to obtain the ethanol extract (ACE) of the present invention. This drying method is not limited, and any drying method known in the field of affiliation may be used.

それから、該エタノール抽出物を真空(rotary evaporator)で濃縮して、濃縮産物183.9gを得た。得られた濃縮産物を無水プロピオン酸と水で無水プロピオン酸層と水溶性層に分離し(partition)し、該水溶性層は水溶性留分(ACE−water)と表示され、該無水プロピオン酸層はすなわち、本発明の無水プロピオン酸抽出物(ACE−EA)である。 The ethanol extract was then concentrated in a vacuum (rotary evaporator) to give 183.9 g of concentrated product. The obtained concentrated product is separated with propionic anhydride and water into a propionic anhydride layer and a water-soluble layer, and the water-soluble layer is labeled as an aqueous fraction (ACE-water), and the propionic anhydride is obtained. The layer is thus the propionic anhydride extract (ACE-EA) of the present invention.

実施例2のエタノール抽出物(ACE)、無水プロピオン酸抽出物(ACE−EA)と水溶性留分(ACE−water)による一酸化窒素の活性抑制試験: マクロファージ株RAW 267.4
本実施例では、マクロファージ株RAW 267.4により、実施例二で得られたベニクスノキタケの子実体エタノール抽出物(ACE)、無水プロピオン酸抽出物(ACE−EA)と水溶性留分(ACE−water)による一酸化窒素の活性抑制試験を行う。
Inhibition test of nitric oxide activity by ethanol extract (ACE), propionic anhydride extract (ACE-EA) and water-soluble fraction (ACE-water) of Example 2: Macrophage strain RAW 267.4
In this example, macrophage strain RAW 267.4 was used to extract the fruit body ethanol extract (ACE), propionic anhydride extract (ACE-EA) and water-soluble fraction (ACE) obtained in Example 2 -Water)) to inhibit the activity of nitric oxide.

まず、RAW 267.4細胞は、実施例1に述べた細胞培養法で培養したあと、実験組一(エタノール抽出物、ACE)、実験組二(無水プロピオン酸抽出物、ACE−EA)と実験組三(水溶性留分、ACE−water)の三組に分ける。各組の細胞を濃度(1,10,25,50g/ml)により、該エタノール抽出物、該無水プロピオン酸抽出物と該水溶性留分をそれぞれ培養液に入れ、それから、リポ多糖(LPS)を培養液に加えて、RAW 267.4細胞に一酸化窒素の生成を誘導させるが、24時間後、グリース反応法(Griess reaction)で亜硝酸塩の含有量を測定し、一酸化窒素の生成量を間接的に測定するが、その実験設計は次の表1に示す。 First, RAW 267.4 cells were cultured by the cell culture method described in Example 1 and then experimented with Experiment Group 1 (ethanol extract, ACE) and Experiment Group 2 (propionic anhydride extract, ACE-EA). Divide into 3 groups (water-soluble fraction, ACE-water). According to the concentration (1, 10, 25, 50 g / ml) of each set of cells, the ethanol extract, the propionic anhydride extract and the water-soluble fraction are each put into a culture solution, and then lipopolysaccharide (LPS) Is added to the culture medium to induce RAW 267.4 cells to produce nitric oxide. After 24 hours, the nitrite content is measured by the grease reaction method, and the amount of nitric oxide produced Is measured indirectly, and the experimental design is shown in Table 1 below.

“+” は添加あり、“−” は無添加を表す。
図に示すのは、グリース反応法で測定した一酸化窒素の生成量、及び一酸化窒素生成の抑制率の統計結果を表す。図を見て分かるように、実施例2から得たベニクスノキタケエタノール抽出物と無水プロピオン酸抽出物はいずれも、一酸化窒素への活性抑制効果があり、特に濃度50g/mlのときその効果がより顕著になる。
“+” Indicates addition, “−” indicates no addition.
The figure shows the statistical results of the amount of nitric oxide produced and the rate of inhibition of nitric oxide production measured by the grease reaction method. As can be seen from the figure, the Benix nokitake ethanol extract and the propionic anhydride extract obtained from Example 2 both have an activity suppressing effect on nitric oxide, particularly at a concentration of 50 g / ml. Becomes more prominent.

実施例2のエタノール抽出物(ACE)による一酸化窒素の活性抑制試験: マウス生体実験
本実施例はマウス生体で、実施例二で得られたエタノール抽出物(ACE)による一酸化窒素の活性抑制試験を行う。マウスは実施例1に述べた条件下での実験マウスを使用する。
Nitric Oxide Activity Inhibition Test with Ethanol Extract (ACE) of Example 2: Mouse Living Body Experiment This example is a mouse living body, and nitric oxide activity inhibition with the ethanol extract (ACE) obtained in Example 2 Perform the test. As the mouse, an experimental mouse under the conditions described in Example 1 is used.

[実験設計]
まず、六匹のマウスを一組にし、計六組あり、下表2の配置により、リポ多糖(5g/kg)の注射前、各組マウスにそれぞれ腹腔内注射法(intraperitoneal injection)で、濃度の異なった実施例2で得たベニクスノキタケエタノール抽出物(ACE,100,300,500mg/kg)、クルクミン(curcumin)を注射し、または注射しないが、その中、制御組にはジメチルスルホキシド(DMSO)だけを注射し、また、抗炎症薬剤として知られるクルクミン(curcumin)は、本実施例における陽性対照組に使用される。マウスにリポ多糖を注射したあと、更にエーテルで麻酔し、12時間後、断頭法(decapitation)で犠死させた。
[Experimental design]
First, six mice are grouped, and there are six groups in total. According to the arrangement shown in Table 2 below, before injection of lipopolysaccharide (5 g / kg), each group of mice was injected intraperitoneally with an intraperitoneal injection method. Injected or not injected with Benix nokitake ethanol extract (ACE, 100, 300, 500 mg / kg), curcumin obtained in different Example 2 in which dimethyl sulfoxide ( DMSO) alone, and curcumin, known as an anti-inflammatory drug, is used in the positive control set in this example. Mice were injected with lipopolysaccharide and then anesthetized with ether, and after 12 hours, sacrificed by decapitation.

“+” は添加あり、“−” は無添加を表す。
制御組にリポ多糖を投与せず、その代わりにジメチルスルホキシド(DMSO)を投与した。
“+” Indicates addition, “−” indicates no addition.
Lipopolysaccharide was not administered to the control group, but dimethyl sulfoxide (DMSO) was administered instead.

[実験結果]
眼窩採血法または心臓採血法で採血したあと、その血液をエチレンジアミン四酢酸(EDTA)含有の試験管に注ぎ、温度4℃で、500gで10分間の遠心により血清を集め、それから、グリース反応法で血清中の一酸化窒素濃度を測定するが、その結果は次の表3に示す。
[Experimental result]
After blood collection by the orbital blood collection method or the heart blood collection method, the blood is poured into a test tube containing ethylenediaminetetraacetic acid (EDTA), and the serum is collected by centrifugation at 500 g for 10 minutes at a temperature of 4 ° C. Serum nitric oxide concentration was measured, and the results are shown in Table 3 below.

表3の結果により、実施例2のエタノール抽出物は、生体実験にも、一酸化窒素の生成量への抑制は効果が顕著であり、それがクルクミンの效果に類似している。
そして、犠死させた実験マウスの肝臓を摘出し、よく知られている実験方法で全蛋白質を抽出し、蛋白質濃度の定量はBradford法で595nm的吸光度値で測定するが、得られた全蛋白質は、ウェスタンブロット法(Western blot analysis、実施例1におけるウェスタンブロット法の分析説明を参照)の一酸化窒素合成酵素(iNOS)とシクロオキシゲナーゼ2(COX−2)の生成量の測定に用いられる。図2Aと図2Bの表示結果から分かるように、実施例2のエタノール抽出物は、生体実験において、一酸化窒素合成酵素(iNOS)とシクロオキシゲナーゼ2(COX−2)の生成量が顕著に低下したが、実施例2のエタノール抽出物が一酸化窒素の生成を抑制したからだと考えられる。
According to the results in Table 3, the ethanol extract of Example 2 has a remarkable effect in suppressing the amount of nitric oxide produced in biological experiments, which is similar to the effect of curcumin.
Then, the liver of the sacrificed experimental mouse was removed, and the total protein was extracted by a well-known experimental method, and the protein concentration was determined by the Bradford method using a 595 nm absorbance value. Is used to measure the amounts of nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) produced by Western blot analysis (Western blot analysis, see Western blot analysis description in Example 1). As can be seen from the display results of FIG. 2A and FIG. 2B, the ethanol extract of Example 2 significantly reduced the production amounts of nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) in the living body experiment. However, it is considered that the ethanol extract of Example 2 suppressed the production of nitric oxide.

Antrocamphin Aの分離
実施例2で得られた無水プロピオン酸抽出物(ACE−EA)を、クロマトグラフ法(chromatography)で、流動相の濃度勾配で17つの留分に分けるが、該クロマトグラフ法に用いれる固体相はシリコン(60−80mesh)は、流動相為n−へキサン/無水プロピオン酸混合液。該濃度勾配はn−へキサンと無水プロピオン酸の体積百分率が95:5,90:10,85:15,80:20,70:30,60:40,50:50,40:60,0:100という順であるn−へキサン/無水プロピオン酸混合液を流動相として、該クロマトグラフ法で行う。
Separation of Antrocamphin A The propionic anhydride extract (ACE-EA) obtained in Example 2 was separated into 17 fractions by chromatographic method using a fluid phase concentration gradient. The solid phase used is silicon (60-80 mesh) is a fluid phase n-hexane / propionic anhydride mixture. The concentration gradient is such that the volume percentage of n-hexane and propionic anhydride is 95: 5, 90:10, 85:15, 80:20, 70:30, 60:40, 50:50, 40:60, 0: The n-hexane / propionic anhydride mixed solution in the order of 100 is used as the fluid phase by the chromatographic method.

得られた17つの留分について、それぞれRAW267.4細胞(実施例1における細胞培養の内容を参照)で一酸化窒素への活性抑制試験を行う。まず、RAW267.4細胞を17組に分け、該17つの留分(50g/ml)をそれぞれ培養培地に加え、それから、それぞれリポ多糖(LPS,1g/ml)を加えて、一酸化窒素の生成を誘発させるが、24時間後、グリース反応法(Griess reaction)で亜硝酸塩の含有量を測定し、一酸化窒素の生成量を間接的に測定して、一酸化窒素生成の抑制率を計算する。実験結果は図3に示すように、第1,7,10留分はそれぞれ、一酸化窒素生成の抑制率が87%, 48%と64%となる。 About 17 obtained fractions, the activity suppression test to nitric oxide is performed with RAW267.4 cells (see the contents of cell culture in Example 1). First, RAW267.4 cells were divided into 17 groups, and the 17 fractions (50 g / ml) were added to the culture medium, respectively, and then lipopolysaccharide (LPS, 1 g / ml) was added to produce nitric oxide. After 24 hours, the content of nitrite is measured by the grease reaction method and the amount of nitric oxide produced is indirectly measured to calculate the inhibition rate of nitric oxide production. . As shown in FIG. 3, the experimental results show that the first, seventh, and tenth fractions have a suppression rate of generation of nitric oxide of 87%, 48%, and 64%, respectively.

次は、該第1留分を高速液体クロマトグラフィー(HPLC)で更に分離純化し、その構成成分(固体相:シリコン管柱、流動相:体積比85:15のn−へキサン/無水プロピオン酸混合液、流速:3mm/分、UV波長:254nm)を得て、そして、含有量の最も高い成分を分光測定で分析し分子量247.14を得たが、それは分子式C1519と推定。当該成分を更にプロトン核磁気共鳴分光法で解析すると、その分子構造は次のようになり、 Next, the first fraction is further separated and purified by high performance liquid chromatography (HPLC), and its components (solid phase: silicon tube column, fluid phase: volume ratio 85:15 n-hexane / propionic anhydride) Mixture, flow rate: 3 mm / min, UV wavelength: 254 nm) and the highest content component was analyzed spectrophotometrically to give a molecular weight of 247.14, which has the molecular formula C 15 H 19 O 3 and Estimated. When the component is further analyzed by proton nuclear magnetic resonance spectroscopy, its molecular structure is as follows:

当該化合物はAntrocamphin A.であることを明らかにした。 The compound is an antrocampin A.I. It was revealed that.

実施例6:Antrocamphin Aによる炎症誘発性分子生成の活性抑制試験:マクロファージ株RAW 267.4
本実施例では、マクロファージ株RAW 267.4により、実施例5で得られたAntrocamphin Aによる炎症誘発性分子生成の活性抑制試験を行う。
Example 6: Inhibition test of pro-inflammatory molecule production by Antrocamphin A: Macrophage strain RAW 267.4
In this example, a macrophage strain RAW 267.4 is used to conduct an activity suppression test of pro-inflammatory molecule production by Antrocamphin A obtained in Example 5.

一酸化窒素の生成量の実験は、まず、RAW267.4細胞を実施例1に述べた細胞培養法で培養したあと、異なる濃度のantrocamphin A(1, 5,10,20g/ml)またはcurcumin(10g/ml)を加えて1時間放置し、それから、リポ多糖(1g/ml)を加えて24時間放置したあと、グリース反応法(Griess reaction)で亜硝酸塩の含有量を測定し、一酸化窒素の生成量を間接的に測定する。 The experiment on the amount of nitric oxide produced was carried out by first culturing RAW267.4 cells by the cell culture method described in Example 1, followed by different concentrations of antrocamphin A (1, 5, 10, 20 g / ml) or curcumin ( 10 g / ml) and left for 1 hour. After adding lipopolysaccharide (1 g / ml) and left for 24 hours, the content of nitrite is measured by the grease reaction method (nitrogen monoxide), and nitric oxide The production amount of is indirectly measured.

前立腺素E(PGE)の生成量の実験は、まず、RAW267.4細胞を実施例一で述べた細胞培養法で培養したあと、培養液にアスピリン500mを加えて3時間放置して、内生的シクロオキシゲナーゼ1(COX−1)の活性を喪失させる。それから、異なる濃度のantrocamphin A(1,5,10,20g/ml)またはcurcumin(10g/ml)を加えて1時間放置し、更に、リポ多糖(1g/ml)を加えて16時間放置したあと、最後に、酵素免疫吸着分析法(ELISA kit,Cayman Chemicals)で、細胞培養中の上清液から、内生的アラキドン酸(arachidonic acid)から生じられた前立腺素E(PGE)の生成量を測定する。
本実施例で実験した組別は表4に示す。
In the experiment of the amount of prostatic element E 2 (PGE 2 ) produced, first, RAW267.4 cells were cultured by the cell culture method described in Example 1, and then aspirin 500 m was added to the culture solution and left for 3 hours. Endogenous cyclooxygenase 1 (COX-1) activity is lost. Then, add different concentrations of antrocampin A (1, 5, 10, 20 g / ml) or curcumin (10 g / ml) and let stand for 1 hour, then add lipopolysaccharide (1 g / ml) and let stand for 16 hours Finally, in the enzyme immunosorbent assay (ELISA kit, Cayman Chemicals), the production of prostatic element E 2 (PGE 2 ) generated from endogenous arachidonic acid from the supernatant in cell culture Measure the amount.
Table 4 shows the groups tested in this example.

“+” は添加あり、“−” は無添加を表す。
制御組にはリポ多糖を投与せず、その代わりにジメチルスルホキシド(DMSO)を投与した。
“+” Indicates addition, “−” indicates no addition.
Lipopolysaccharide was not administered to the control group, but dimethyl sulfoxide (DMSO) was administered instead.

なお、よく知られているMTT法で、Antrocamphin Aの細胞毒性を測定する。該MTT法は生物学でよく用いられる、細胞生存率またはその増殖を測定する方法であり、その原理として、生きている細胞内のミトコンドリアにある琥珀酸脱水素酵素の働きにより、MTTのtetrazolium代謝が青色の産物に変換されるが、そこへジメチルスルホキシド(DMSO)を加えて、細胞に堆積した青色の代謝物を溶かしたあと、分光器で青色の代謝産物の量を測定して、生きている細胞数が間接的に推定できる。
その実験結果を次の表5にまとめる。
In addition, the cytotoxicity of Antrocamphin A is measured by the well-known MTT method. The MTT method is a method often used in biology to measure cell viability or proliferation thereof. As a principle, MTT metabolites are metabolized by the action of succinate dehydrogenase in mitochondria in living cells. Is converted into a blue product, dimethyl sulfoxide (DMSO) is added to dissolve the blue metabolite deposited on the cells, and then the amount of blue metabolite is measured with a spectroscope. The number of cells can be estimated indirectly.
The experimental results are summarized in Table 5 below.

この結果から分かるように、antrocamphin Aは炎症誘発性分子の生成を低下させられるが、顕著な効果が出る濃度は20g/mlであり、この濃度下で、antrocamphin Aは細胞毒性の発生がないと言える。 As can be seen from this result, antrocampin A can reduce the production of pro-inflammatory molecules, but the concentration at which a significant effect is exerted is 20 g / ml, and under this concentration, antrocamphin A has no occurrence of cytotoxicity. I can say that.

また、各組の細胞から抽出した全リボ核酸(total RNA)と全蛋白質(total protein)を、実施例1に述べた逆転写ポリメラーゼ連鎖反応、及びウェスタンブロット法で、遺伝物質(mRNA)と蛋白質の視点から、一酸化窒素合成酵素(iNOS)とシクロオキシゲナーゼ2(COX−2)の生成量をそれぞれ評価する。 In addition, total ribonucleic acid (total RNA) and total protein extracted from each set of cells were analyzed using the reverse transcription-polymerase chain reaction and Western blot method described in Example 1 to obtain genetic material (mRNA) and protein. From these viewpoints, the amounts of nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) produced are evaluated.

図4Aと図4Bに示すのは、それぞれ一酸化窒素合成酵素(iNOS)とシクロオキシゲナーゼ2(COX−2)の伝令リボ核酸(mRNA)の生成量。 その結果から分かるように、一酸化窒素合成酵素(iNOS)とシクロオキシゲナーゼ2(COX−2)の伝令リボ核酸(mRNA)の生成量及びantrocamphin Aの間は、薬剤用量に関わり、薬剤用量の高いantrocamphin Aは、一酸化窒素合成酵素(iNOS)とシクロオキシゲナーゼ2(COX−2)の伝令リボ核酸(mRNA)の量を有効に低下させることができる。 4A and 4B show the amount of messenger ribonucleic acid (mRNA) produced by nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), respectively. As can be seen from the results, the amount of messenger ribonucleic acid (mRNA) produced by nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) and antrocamfin A are related to the drug dose, and the high dose of antrocamffin A can effectively reduce the amount of messenger ribonucleic acid (mRNA) of nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2).

図5A と図5Bに示すのは、それぞれ一酸化窒素合成酵素(iNOS)とシクロオキシゲナーゼ2(COX−2)の生成量であり、その図を見て分かるように、一酸化窒素合成酵素(iNOS)とシクロオキシゲナーゼ2(COX−2)の生成量とantrocamphin Aの間は、薬剤用量に関わり、薬剤用量の高いantrocamphin Aは、一酸化窒素合成酵素(iNOS)とシクロオキシゲナーゼ2(COX−2)の生成量を有効に低下させられるが、特に濃度20g/mlのときにその効果が顕著に見られる。 5A and 5B show the production amounts of nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), respectively. As can be seen from the figures, nitric oxide synthase (iNOS) And cyclooxygenase 2 (COX-2) production amount and antrocamphin A are related to the drug dose, and high dose of antrocamphin A is the production amount of nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) Can be effectively reduced, but the effect is particularly noticeable at a concentration of 20 g / ml.

その結果数値をまとめると、antrocamphin Aは、遺伝物質の転写または蛋白質の視点から見ても、一酸化窒素合成酵素(iNOS)とシクロオキシゲナーゼ2(COX−2)の生成量を低下させ、更に炎症誘発性分子、例えば一酸化窒素と前立腺素E(PGE)の生成を抑制する効果がある。 The results are summarized as follows. Antrocampin A reduces the production of nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) from the viewpoint of genetic material transcription or protein, and further induces inflammation. It has the effect of suppressing the production of sex molecules such as nitric oxide and prostate element E 2 (PGE 2 ).

Claims (19)

乾燥ベニクスノキタケの子実体が提供され、該乾燥ベニクスノキタケの子実体を一定の温度で、エタノールで抽出するという手順で得られたことを特徴とするベニクスノキタケ子実体の抽出物。 An extract of a fruit body of Benicus mushroom obtained by a procedure of providing a fruiting body of dried Benicum edulis mushroom and extracting the fruiting body of dried Benicococcus communis with ethanol at a constant temperature. 該乾燥の方法は、冷凍乾燥であることを特徴とする請求項1に記載のベニクスノキタケ子実体の抽出物。 2. The extract of Benicus mushroom fruit body according to claim 1, wherein the drying method is freeze-drying. 該温度は、42〜45℃であることを特徴とする請求項1に記載のベニクスノキタケ子実体の抽出物。 The extract of Benicaria mushroom fruit bodies according to claim 1, wherein the temperature is 42 to 45 ° C. 該エタノールは、体積百分率95%のエタノールであることを特徴とする請求項1に記載のベニクスノキタケ子実体の抽出物。 The extract of a fruit body of Benicus mushroom according to claim 1, wherein the ethanol is 95% ethanol by volume. 乾燥ベニクスノキタケの子実体が提供されており、該乾燥ベニクスノキタケの子実体を一定の温度でエタノールを抽出して、エタノール抽出物が得られるが、該エタノール抽出物を濃縮して、濃縮産物が得られ、該濃縮産物を無水プロピオン酸と水でパーティション(partition)するという手順で得られた該無水プロピオン酸の抽出物であることを特徴とするベニクスノキタケ子実体の抽出物。 A fruit body of the dried venomus mushroom is provided, and the fruit body of the dried moss is extracted at a constant temperature to obtain an ethanol extract. The ethanol extract is concentrated and concentrated. An extract of Benicus japonica fruiting body characterized in that it is an extract of the propionic anhydride obtained by a procedure of partitioning the concentrated product with propionic anhydride and water. 該乾燥の方法は冷凍乾燥で行われていることを特徴とする請求項5に記載のベニクスノキタケ子実体の抽出物。 6. The extract of Benicus mushroom fruit body according to claim 5, wherein the drying method is performed by freeze drying. 該濃縮の方法は真空濃縮で行われていることを特徴とする請求項5に記載のベニクスノキタケ子実体の抽出物。 6. The extract of Benicus mushroom fruiting body according to claim 5, wherein the concentration is performed by vacuum concentration. 該温度は、42〜45℃で行われていることを特徴とする請求項5に記載のベニクスノキタケ子実体の抽出物。 The extract of Benicaria mushroom fruiting body according to claim 5, wherein the temperature is 42 to 45 ° C. 該エタノールは、体積百分率95%のエタノールで行われていることを特徴とする請求項5に記載のベニクスノキタケ子実体の抽出物。 6. The extract of Benicaria mushroom fruiting body according to claim 5, wherein the ethanol is ethanol with a volume percentage of 95%. 該無水プロピオン酸は、体積百分率50%の無水プロピオン酸で行われていることを特徴とする請求項5に記載のベニクスノキタケ子実体の抽出物。 6. The extract of Benicus mushroom fruit body according to claim 5, wherein the propionic anhydride is formed with propionic anhydride having a volume percentage of 50%. 炎症誘発性分子の生成を抑制することを特徴とする請求項1〜請求項10の何れかの一つに記載のベニクスノキタケ子実体の抽出物の用途。 The use of the extract of Benicaria mushroom fruiting body according to any one of claims 1 to 10, which suppresses the production of pro-inflammatory molecules. 該抽出物は、一酸化窒素(NO)または前立腺素E(PGE)という炎症誘発性分子を抑制することを特徴とする請求項11に記載のベニクスノキタケ子実体の抽出物の用途。 The extract, the use of extracts of Benikusunokitakeko entity according to claim 11, characterized in that to suppress proinflammatory molecule that nitrogen monoxide (NO) or prostate element E 2 (PGE 2). 該抽出物は、一酸化窒素合成酵素とシクロオキシゲナーゼ2を減少させて、それぞれ該一酸化窒素(NO)と該前立腺素E(PGE)の生成を抑制することを特徴とする請求項12に記載のベニクスノキタケ子実体の抽出物の用途。 13. The extract according to claim 12, wherein nitric oxide synthase and cyclooxygenase 2 are reduced to suppress production of the nitric oxide (NO) and the prostatic element E 2 (PGE 2 ), respectively. Use of the extract of Benicus mushroom fruit body described. 一酸化窒素(NO)の生成を抑制することを特徴とするantrocamphin Aの用途。 Use of antrocamphin A characterized by suppressing the production of nitric oxide (NO). 該antrocamphin Aで、一酸化窒素合成酵素を減少させて、該一酸化窒素(NO)の生成を抑制することを特徴とする請求項14に記載のantrocamphin Aの用途。 The use of antrocamffin A according to claim 14, wherein the antrocampin A suppresses the production of the nitric oxide (NO) by decreasing nitric oxide synthase. 前立腺素E(PGE)の生成を抑制することを特徴とするantrocamphin Aの用途。 Use of antrocamphin A characterized by suppressing the production of prostatic element E 2 (PGE 2 ). 該antrocamphin Aは、シクロオキシゲナーゼ2を減少させて、該前立腺素E(PGE)の生成を抑制することを特徴とする請求項16に記載の用途。 The use according to claim 16, wherein the antrocampin A reduces cyclooxygenase 2 and suppresses the production of the prostatic element E 2 (PGE 2 ). 被験者を請求項17に記載のいずれかの一つの抽出物またはantrocamphin Aと接触させることを含むことを特徴とする炎症誘発性分子生成の抑制方法。 A method for inhibiting the production of pro-inflammatory molecules, comprising contacting a subject with any one of the extracts according to claim 17 or an antrocampin A. 該炎症誘発性分子は、一酸化窒素(NO)または前立腺素E(PGE)であることを特徴とする請求項18に記載の方法。 The inflammation-induced molecule A method according to claim 18, characterized in that the nitrogen monoxide (NO) or prostate element E 2 (PGE 2).
JP2010024980A 2010-02-08 2010-02-08 Extract of antrodia cinnamomea fruit body and usage thereof, usage of antrocamphin a and method of inhibiting formation of inflammation inductible molecule Pending JP2011162462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024980A JP2011162462A (en) 2010-02-08 2010-02-08 Extract of antrodia cinnamomea fruit body and usage thereof, usage of antrocamphin a and method of inhibiting formation of inflammation inductible molecule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024980A JP2011162462A (en) 2010-02-08 2010-02-08 Extract of antrodia cinnamomea fruit body and usage thereof, usage of antrocamphin a and method of inhibiting formation of inflammation inductible molecule

Publications (1)

Publication Number Publication Date
JP2011162462A true JP2011162462A (en) 2011-08-25

Family

ID=44593577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024980A Pending JP2011162462A (en) 2010-02-08 2010-02-08 Extract of antrodia cinnamomea fruit body and usage thereof, usage of antrocamphin a and method of inhibiting formation of inflammation inductible molecule

Country Status (1)

Country Link
JP (1) JP2011162462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119544A (en) * 2011-12-09 2013-06-17 Taiwan Leader Biotech Corp Polyacetylene compound, extract containing the same, and application thereof
US20140328872A1 (en) * 2013-05-02 2014-11-06 Herbio Bio Tech Co., Ltd. Formula of Suppressing Viability of Tumor Cells and a Medication Thereof
JP2018061506A (en) * 2016-10-13 2018-04-19 フォーデイズ株式会社 Food composition
JP2022513042A (en) * 2018-11-14 2022-02-07 永▲騰▼生技有限公司 Production method and pharmaceutical composition of camphor tree extract, camphor tree composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014012454; Chen,Jih-Jung et al: 'Anti-inflammatory Benzenoids from Antrodia camphorata' Journal of Natural Products 70(6), 2007, pp.989-992 *
JPN6014012455; Hsieh,Yu-Hsin et al: 'Antrocamphin A, an Anti-inflammatory Principal from the Fruiting Body of Taiwanofungus camphoratus,' Journal of Agricultural and Food Chemistry 58(5), 20100204, pp.3153-3158 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119544A (en) * 2011-12-09 2013-06-17 Taiwan Leader Biotech Corp Polyacetylene compound, extract containing the same, and application thereof
US20140328872A1 (en) * 2013-05-02 2014-11-06 Herbio Bio Tech Co., Ltd. Formula of Suppressing Viability of Tumor Cells and a Medication Thereof
US9238049B2 (en) * 2013-05-02 2016-01-19 Herbio Bio Tech Co., Ltd. Formula of suppressing viability of tumor cells and a medication thereof
JP2018061506A (en) * 2016-10-13 2018-04-19 フォーデイズ株式会社 Food composition
JP2022513042A (en) * 2018-11-14 2022-02-07 永▲騰▼生技有限公司 Production method and pharmaceutical composition of camphor tree extract, camphor tree composition

Similar Documents

Publication Publication Date Title
Gutiérrez-Cuevas et al. Molecular mechanisms of obesity-linked cardiac dysfunction: an up-date on current knowledge
Bai et al. Anti-diabetic effect of Portulaca oleracea L. Polysaccharideandits mechanism in diabetic rats
Li et al. Anti‐gouty arthritis and antihyperuricemia effects of sunflower (Helianthus annuus) head extract in gouty and hyperuricemia animal models
Hayashi et al. Ellagitannins from Lagerstroemia speciosa as activators of glucose transport in fat cells
Xu et al. Selective elevation of adiponectin production by the natural compounds derived from a medicinal herb alleviates insulin resistance and glucose intolerance in obese mice
Abad et al. Anti-inflammatory activity of four Bolivian Baccharis species (Compositae)
Li et al. Chemical constituents of propolis from Myanmar and their preferential cytotoxicity against a human pancreatic cancer cell line
Fan et al. The anti-inflammatory activities of an extract and compounds isolated from Platycladus orientalis (Linnaeus) Franco in vitro and ex vivo
Jeong et al. Atractylodis rhizoma alba attenuates neuroinflammation in BV2 microglia upon LPS stimulation by inducing HO-1 activity and inhibiting NF-κB and MAPK
Zaitone et al. Protective effect of boswellic acids versus pioglitazone in a rat model of diet-induced non-alcoholic fatty liver disease: influence on insulin resistance and energy expenditure
Park et al. Schisandra chinensis α-iso-cubebenol induces heme oxygenase-1 expression through PI3K/Akt and Nrf2 signaling and has anti-inflammatory activity in Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages
Woranam et al. Anti-inflammatory activity of the dietary supplement Houttuynia cordata fermentation product in RAW264. 7 cells and Wistar rats
Naseri et al. Anti-inflammatory activity of Echium amoenum extract on macrophages mediated by inhibition of inflammatory mediators and cytokines expression
Wagner et al. PPARs and myocardial infarction
Maghsoudi et al. Evaluation of the effect of polyphenol of escin compared with ibuprofen and dexamethasone in synoviocyte model for osteoarthritis: an in vitro study
Yang et al. β-sitosteryl-3-O-β-glucopyranoside isolated from the bark of Sorbus commixta ameliorates pro-inflammatory mediators in RAW 264.7 macrophages
Reshma et al. Pretreatment of Tribulus terrestris L. causes anti-ischemic cardioprotection through MAPK mediated anti-apoptotic pathway in rat
Lee et al. Suppressive effects of coixol, glyceryl trilinoleate and natural products derived from Coix Lachryma-Jobi var. ma-yuen on gene expression, production and secretion of airway MUC5AC mucin
JP2011162462A (en) Extract of antrodia cinnamomea fruit body and usage thereof, usage of antrocamphin a and method of inhibiting formation of inflammation inductible molecule
Kim et al. Dracocephalum moldavica ethanol extract suppresses LPS-induced inflammatory responses through inhibition of the JNK/ERK/NF-κB signaling pathway and IL-6 production in raw 264.7 macrophages and in endotoxic-treated mice
Kim et al. POCU1b, the n-butanol soluble fraction of polygoni cuspidati rhizoma et radix, attenuates obesity, non-alcoholic fatty liver, and insulin resistance Via inhibitions of pancreatic lipase, cAMP-dependent PDE activity, AMPK activation, and SOCS-3 suppression
Li et al. Polyphenols from the peels of Punica granatum L. and their bioactivity of suppressing lipopolysaccharide-stimulated inflammatory cytokines and mediators in RAW 264.7 cells via activating p38 MAPK and NF-κB signaling pathways
Danielewski et al. Cornelian cherry (Cornus mas L.) iridoid and anthocyanin-rich extract reduces various oxidation, inflammation, and adhesion markers in a cholesterol-rich diet rabbit model
Tao et al. Anti-inflammatory effects of ethanol extract from Kummerowia striata (Thunb.) Schindl on LPS-stimulated RAW 264.7 cell
Adeyi et al. The anti-inflammatory effect of ferulic acid is via the modulation of NFκB-TNF-α-IL-6 and STAT1-PIAS1 signaling pathways in 2-methoxyethanol-induced testicular inflammation in rats

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140624

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140630

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140718

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140807

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140820

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150120