JP2011159930A - Electronic device and method of manufacturing the same - Google Patents

Electronic device and method of manufacturing the same Download PDF

Info

Publication number
JP2011159930A
JP2011159930A JP2010022734A JP2010022734A JP2011159930A JP 2011159930 A JP2011159930 A JP 2011159930A JP 2010022734 A JP2010022734 A JP 2010022734A JP 2010022734 A JP2010022734 A JP 2010022734A JP 2011159930 A JP2011159930 A JP 2011159930A
Authority
JP
Japan
Prior art keywords
heat
electronic components
heat sink
conductive bumps
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010022734A
Other languages
Japanese (ja)
Other versions
JP5544906B2 (en
Inventor
Nozomi Nishimura
望 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010022734A priority Critical patent/JP5544906B2/en
Publication of JP2011159930A publication Critical patent/JP2011159930A/en
Application granted granted Critical
Publication of JP5544906B2 publication Critical patent/JP5544906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat dissipation structure of an electronic device with a heat sink for dissipating heat, which is generated from a plurality of electronic components mounted on a printed circuit board and having respectively different heights, by small heat resistance. <P>SOLUTION: Heat conductive bumps 11 whose height is higher than the height differences of respective electronic components 14a, 14b, 14c are arranged in a compressed state between the printed circuit board 12 on which the plurality of electronic components 14a, 14b, 14c having respectively different mounting heights are mounted and the heat sink 20 to achieve thermal coupling between the plurality of electronic components 14a, 14b, 14c and the heat sink 20. Thereby, even when the mounting heights of the electronic components 14a, 14b, 14c mounted on the printed circuit board 12 are respectively different, one heat sink 20 can be collectively stuck to the plurality of electronic components 14a, 14b, 14c. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数の電子部品がプリント基板上に実装された電子装置の放熱構造と、その製造方法に関するものである。   The present invention relates to a heat dissipation structure for an electronic device in which a plurality of electronic components are mounted on a printed circuit board, and a method for manufacturing the same.

複数の電子部品が実装されたプリント基板をモールド樹脂により封止したモジュール構造の電子装置は、プリント基板に実装された電子部品のそれぞれが発熱源となる。そのため、発熱部がプリント基板の広い範囲に渡って散在していることになる。   In an electronic device having a module structure in which a printed circuit board on which a plurality of electronic components are mounted is sealed with a mold resin, each of the electronic components mounted on the printed circuit board serves as a heat source. For this reason, the heat generating portions are scattered over a wide range of the printed circuit board.

しかし、一般にプリント基板に実装された電子部品の高さは一様ではない。また、電子部品の上面が平坦でない素子も存在する。そのため、複数の電子部品の上面にそれぞれ放熱シートを敷いて放熱体を密着させるという、複雑な組み立て工程が必要となっていた。   However, generally the height of the electronic component mounted on the printed circuit board is not uniform. There is also an element in which the upper surface of the electronic component is not flat. Therefore, the complicated assembly process of laying a heat dissipation sheet on each of the upper surfaces of a plurality of electronic components and closely adhering the heatsink is required.

このような複雑な組み立て工程を簡略化するために、実装高さが異なる複数の電子部品の上面に高さの違いを吸収する部材を配し、一枚の放熱板で放熱を行うことができるようにした発明が複数提案されている。   In order to simplify such a complicated assembly process, it is possible to dissipate heat with a single heat sink by arranging a member that absorbs the difference in height on the upper surface of a plurality of electronic components having different mounting heights. A plurality of such inventions have been proposed.

特許文献1には、図9に示すように、プリント基板912上に高さが異なる複数の電子部品914a、914bを搭載し、その電子部品914a、914bの上面に金属材からなる中間曲板911を配し、その中間曲板911を介して放熱板920を載置し、電子部品914a、914b及び中間曲板911の周囲にモールド樹脂916を充填してパッケージを形成した半導体装置910が提案されている。   In Patent Document 1, as shown in FIG. 9, a plurality of electronic components 914a and 914b having different heights are mounted on a printed circuit board 912, and an intermediate curved plate 911 made of a metal material on the upper surface of the electronic components 914a and 914b. A semiconductor device 910 is proposed in which a heat sink 920 is placed through the intermediate curved plate 911, and a package is formed by filling a mold resin 916 around the electronic components 914a and 914b and the intermediate curved plate 911. ing.

この中間曲板911は、実装高さがそれぞれ異なっている電子部品914a、914bの上面から放熱板920の下面までの距離の違いを調節するために、折り曲げ自在な曲面で形成されている。更に、電子部品914a、914bが発する熱を少ない熱抵抗で放熱板920まで伝達させるために、電子部品914a、914bと放熱板920とを多点接触させる凹凸部918が上下の表面に設けられている。   The intermediate curved plate 911 is formed with a foldable curved surface in order to adjust the difference in distance from the upper surface of the electronic components 914a and 914b having different mounting heights to the lower surface of the heat dissipation plate 920. Furthermore, in order to transmit the heat generated by the electronic components 914a and 914b to the heat radiating plate 920 with a small thermal resistance, concave and convex portions 918 for bringing the electronic components 914a and 914b and the heat radiating plate 920 into contact at multiple points are provided on the upper and lower surfaces. Yes.

特許文献1に記載されている半導体装置910によれば、複数の電子部品914a、914bと放熱板920との間に、凹凸部918を形成すると共に、良導性金属からなる中間曲板911を介在させることにより、高さの異なる複数の電子部品914a、914bの高低差を吸収することができるとしている。そして、複数の電子部品914a、914bからの放熱を損なうことなく、しかも均一に放熱板920へ熱を伝えることができるとしている。   According to the semiconductor device 910 described in Patent Document 1, an uneven portion 918 is formed between the plurality of electronic components 914a and 914b and the heat sink 920, and an intermediate curved plate 911 made of a highly conductive metal is provided. By interposing, the height difference between the plurality of electronic components 914a and 914b having different heights can be absorbed. In addition, heat can be uniformly transmitted to the heat dissipation plate 920 without impairing heat dissipation from the plurality of electronic components 914a and 914b.

また、特許文献2には、図10に示すように、高さが低い電子部品934aの上面に厚い樹脂部931aを形成し、高さが高い電子部品934bの上面に薄い樹脂部931bを形成して双方の高さを揃えてからプリント基板932上に搭載して、その後、一枚の放熱板940を設置する工程を有する半導体モジュール930の製造方法が提案されている。   In Patent Document 2, as shown in FIG. 10, a thick resin portion 931a is formed on the upper surface of the electronic component 934a having a low height, and a thin resin portion 931b is formed on the upper surface of the electronic component 934b having a high height. Then, a method for manufacturing a semiconductor module 930 has been proposed, which includes a step of mounting both the heights on the printed circuit board 932 and then installing a single heat sink 940.

特許文献2に記載されている半導体モジュール930の製造方法を用いることによって、互いに厚さが異なる複数の電子部品934a、934bを搭載した半導体モジュール930の製造プロセスを簡略化することができるとしている。   By using the manufacturing method of the semiconductor module 930 described in Patent Document 2, it is possible to simplify the manufacturing process of the semiconductor module 930 on which a plurality of electronic components 934a and 934b having different thicknesses are mounted.

また、特許文献3には、図11に示すように、プリント基板952と、プリント基板952上に実装された高さの異なる複数の電子部品954a、954b、954cと、その電子部品954a、954b、954cの上面に加重を加えて圧接した一枚の流動性を有する放熱シート951と、その放熱シート951の上面に放熱板960とを備えた半導体の冷却構造体950が提案されている。   Further, in Patent Document 3, as shown in FIG. 11, a printed circuit board 952, a plurality of electronic components 954a, 954b, and 954c having different heights mounted on the printed circuit board 952, and the electronic components 954a, 954b, There has been proposed a semiconductor cooling structure 950 including a single heat-dissipating sheet 951 having a fluidity in pressure contact with the upper surface of 954c and a heat-dissipating plate 960 on the upper surface of the heat-dissipating sheet 951.

特許文献3に記載されている半導体の冷却構造体950における放熱シート951は、上下両面表層部がゴム状に硬化した薄膜補強層で構成されており、内層が未加硫のコンパウンド層で構成されている。放熱シート951を高さの異なる複数の電子部品954a、954b、954cの上部に載置し、その放熱シート951の上面に放熱板960を載置した状態で、放熱板960の上方から圧力を加えて圧接すると、放熱シート951の内層が流動変形する。すると、放熱シート951の一部が電子部品954a、954b、954cの外側へとはみ出すので、電子部品954a、954b、954c同士の高低差を吸収して、それぞれ高さの異なる電子部品954a、954b、954cと放熱板960とを熱結合することができるとしている。   The heat-dissipating sheet 951 in the semiconductor cooling structure 950 described in Patent Document 3 is composed of a thin-film reinforcing layer whose upper and lower surface layers are cured in a rubber shape, and the inner layer is composed of an unvulcanized compound layer. ing. A heat radiating sheet 951 is placed on top of a plurality of electronic components 954a, 954b, and 954c having different heights, and pressure is applied from above the heat radiating plate 960 with the heat radiating plate 960 placed on the upper surface of the heat radiating sheet 951. The inner layer of the heat dissipation sheet 951 is fluidly deformed. Then, a part of the heat dissipation sheet 951 protrudes to the outside of the electronic components 954a, 954b, 954c, so that the electronic components 954a, 954b, 954b, 954c and the heat sink 960 can be thermally coupled.

特開2004−172489号公報JP 2004-172489 A 特開2005−251784号公報JP 2005-251784 A 特開2002−261206号公報JP 2002-261206 A

特許文献1に記載されている半導体装置910では、電子部品914a、914bから放熱板920までの熱が伝わる経路は、波形に配された中間曲板911の内部である。波形に配された薄肉の中間曲板911を用いて熱を伝達させると、熱は電子部品914a、914bの上面から斜め上方に向かうので、熱の伝達経路が長くなる。これにより電子部品914a、914bから放熱板920までの熱抵抗が大きくなってしまい、放熱の効果が低下するという問題を生ずる。   In the semiconductor device 910 described in Patent Document 1, the path through which heat is transmitted from the electronic components 914a and 914b to the heat sink 920 is inside the intermediate curved plate 911 arranged in a waveform. When heat is transmitted using the thin intermediate curved plate 911 arranged in a corrugated shape, the heat is directed obliquely upward from the upper surfaces of the electronic components 914a and 914b, and thus the heat transmission path becomes long. As a result, the thermal resistance from the electronic components 914a and 914b to the heat radiating plate 920 is increased, resulting in a problem that the effect of heat dissipation is reduced.

また、電子部品914a、914bから放熱板920までの熱抵抗を少なくしようとすると、中間曲板911の厚さを増す必要がある。しかし、中間期板911の厚さを増すと、断面二次モーメントは厚さの3乗に比例して増加することより、中間曲板911の曲げ剛性が増加してしまう。すると、中間期板911を変形させるために放熱板920を圧接する際に大きな押圧力を加えなければならない。また、強い押圧力を加えることにより、放熱板920が変形してしまう可能性がある。   Further, in order to reduce the thermal resistance from the electronic components 914a and 914b to the heat sink 920, it is necessary to increase the thickness of the intermediate curved plate 911. However, when the thickness of the intermediate plate 911 is increased, the sectional moment of inertia increases in proportion to the cube of the thickness, so that the bending rigidity of the intermediate curved plate 911 increases. Then, in order to deform the intermediate plate 911, a large pressing force must be applied when the heat sink 920 is pressed. Further, the heat radiation plate 920 may be deformed by applying a strong pressing force.

また、特許文献2に記載されている半導体モジュール930の製造方法では、それぞれ高さが異なる電子部品934a、934bを実装する前の単体の状態において、電子部品934a、934bの上面に異なる厚さの樹脂部931a、931bを形成して、それぞれの電子部品934a、934bの高さを揃えるという複雑な工程が必要となる。特に、電子部品の数量が多いと、高さを揃える工程が一層複雑なものとなってしまう。   Further, in the method for manufacturing the semiconductor module 930 described in Patent Document 2, the thicknesses of the electronic components 934a and 934b having different thicknesses in a single state before the electronic components 934a and 934b having different heights are mounted. A complicated process of forming the resin portions 931a and 931b and aligning the heights of the respective electronic components 934a and 934b is required. In particular, when the number of electronic components is large, the process of aligning the height becomes more complicated.

更に、実装前の段階で電子部品934a、934bの高さを揃えたとしても、プリント基板932に電子部品934a、934bを実装した後では、端子間の結合状態に応じて高さにばらつきを生ずる可能性がある。また、全ての電子部品934a、934bの上面が、必ずしもプリント基板932に対して完全に平行に取り付くという保証も無い。更に、電子部品934a、934bから放熱板940に熱を伝達する樹脂部931a、931bは、樹脂の物性上熱伝導率が低いため、熱抵抗が大きくなるという問題がある。   Furthermore, even if the heights of the electronic components 934a and 934b are made uniform at the stage before mounting, after the electronic components 934a and 934b are mounted on the printed circuit board 932, the height varies depending on the coupling state between the terminals. there is a possibility. Further, there is no guarantee that the upper surfaces of all the electronic components 934a and 934b are attached to the printed circuit board 932 completely in parallel. Furthermore, the resin portions 931a and 931b that transmit heat from the electronic components 934a and 934b to the heat sink 940 have a problem that the thermal resistance is increased because the thermal conductivity is low due to the physical properties of the resin.

また、特許文献3に記載されている半導体の冷却構造体950を用いて、電子部品954a、954b、954c同士の高低差を吸収するためには、厚さが厚い放熱シート951を大きく変形させる必要がある。そのためには、熱伝導シート951を強い力で押圧しなくてはならない。強い押圧力を加えると、放熱板960が変形してしまう可能性がある。   In addition, in order to absorb the height difference between the electronic components 954a, 954b, and 954c using the semiconductor cooling structure 950 described in Patent Document 3, it is necessary to greatly deform the heat dissipation sheet 951 having a large thickness. There is. For this purpose, the heat conductive sheet 951 must be pressed with a strong force. When a strong pressing force is applied, the heat sink 960 may be deformed.

また、特許文献3に記載されている半導体の冷却構造体950では、電子部品954a、954b、954cにおける上面の全面に渡って熱伝導シート951を接着している。この場合には、電子部品954a、954b、954cの上面と放熱板960とがモールド樹脂により直接接着されていないことになる。すると、変形容易な熱伝導シート951の影響により、電子部品954a、954b、954cの上部において放熱板960が盛り上がる方向に変形してしまう可能性もある。   In the semiconductor cooling structure 950 described in Patent Document 3, the heat conductive sheet 951 is bonded over the entire upper surface of the electronic components 954a, 954b, and 954c. In this case, the upper surfaces of the electronic components 954a, 954b, and 954c and the heat radiating plate 960 are not directly bonded by the mold resin. Then, due to the influence of the easily deformable heat conductive sheet 951, there is a possibility that the heat radiating plate 960 is deformed in the upward direction above the electronic components 954a, 954b, 954c.

また、放熱板960の全面に渡って熱伝導シート951を接着すると、放熱板960とプリント基板952との間に注入したモールド樹脂と、放熱板960との接着面積が小さくなってしまい、使用中に放熱板960が剥がれてしまう可能性がある。   Further, if the heat conductive sheet 951 is bonded over the entire surface of the heat sink 960, the bonding area between the mold resin injected between the heat sink 960 and the printed board 952 and the heat sink 960 becomes small, and is in use. There is a possibility that the heat sink 960 may be peeled off.

本発明は、上記の事情に鑑みてなされたものであり、その目的は、プリント基板上に実装した高さの異なる複数の電子部品に対して、少ない熱抵抗で放熱板を取り付けてなる電子装置、及びその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electronic device in which a heat radiating plate is attached with a small thermal resistance to a plurality of electronic components having different heights mounted on a printed circuit board. And a method of manufacturing the same.

上記課題を解決するための本発明に係る電子装置は、実装高さが異なる複数の電子部品が実装されたプリント基板と、前記電子部品から発生した熱を外界に放熱する放熱板と、前記プリント基板と放熱板との間に充填したモールド樹脂とを備え、前記放熱板と前記複数の電子部品との間には、前記複数の電子部品の実装高さの高低差よりも高さが高い熱伝導性バンプが圧縮した状態で配列され、当該熱伝導性バンプが前記複数の電子部品と前記放熱板とを熱結合していることを特徴とする。   In order to solve the above problems, an electronic device according to the present invention includes a printed circuit board on which a plurality of electronic components having different mounting heights are mounted, a heat radiating plate that radiates heat generated from the electronic components to the outside, and the print A mold resin filled between the substrate and the heat sink, and the heat between the heat sink and the plurality of electronic components is higher than the height difference in mounting height of the plurality of electronic components. The conductive bumps are arranged in a compressed state, and the thermal conductive bumps thermally couple the plurality of electronic components and the heat sink.

本発明に係る電子装置において、前記熱伝導性バンプが円錐形状又は角錐形状である。   In the electronic device according to the present invention, the thermally conductive bump has a conical shape or a pyramid shape.

本発明に係る電子構造において、前記熱伝導性バンプが熱伝導性のフィラーとバインダー樹脂とを含む。   In the electronic structure according to the present invention, the thermally conductive bump includes a thermally conductive filler and a binder resin.

本発明に係る電子装置において、前記フィラーがCu、Ag、Au、Pd、Ni、及びカーボンの群から選ばれる1又は2以上の物質を含有する。   In the electronic device according to the present invention, the filler contains one or more substances selected from the group consisting of Cu, Ag, Au, Pd, Ni, and carbon.

本発明に係る電子装置において、前記バインダー樹脂のガラス転移点が前記モールド樹脂の硬化温度より低い。   In the electronic device according to the present invention, the glass transition point of the binder resin is lower than the curing temperature of the mold resin.

本発明に係る電子装置において、前記バインダー樹脂がエポキシ樹脂である。   In the electronic device according to the present invention, the binder resin is an epoxy resin.

上記課題を解決するための本発明に係る電子装置の製造方法は、放熱板の片面に複数の熱伝導性バンプを立設する工程と、プリント基板上に実装された複数の電子部品の上面に前記熱伝導性バンプを圧接して、前記電子部品と前記放熱板との間で前記熱伝導性バンプを圧縮させる工程と、前記放熱板と前記プリント基板との間にモールド樹脂を注入し、当該モールド樹脂を硬化させる工程と、を含むことを特徴とする。   In order to solve the above problems, an electronic device manufacturing method according to the present invention includes a step of standing a plurality of thermally conductive bumps on one side of a heat sink, and a top surface of a plurality of electronic components mounted on a printed circuit board. The step of compressing the thermally conductive bump between the electronic component and the heat sink by pressing the heat conductive bump, and injecting mold resin between the heat sink and the printed board, And a step of curing the mold resin.

本発明に係る電子装置によれば、実装高さが異なる複数の電子部品と放熱板との間に、熱伝導性バンプを圧縮した状態で配列しているので、プリント基板上に実装高さが異なる電子部品が複数実装されている場合であっても、一つの放熱板を一括して接着することが可能となる。また、モールド樹脂よりも熱抵抗が少ない熱伝導性バンプを用いることによって、稼働時における電子部品の温度を低下させることができ、電子部品の安定作動と、長寿命化を図ることができる。   According to the electronic device of the present invention, since the heat conductive bumps are arranged in a compressed state between the plurality of electronic components having different mounting heights and the heat sink, the mounting height is on the printed circuit board. Even when a plurality of different electronic components are mounted, it is possible to bond a single heat sink together. In addition, by using thermally conductive bumps that have a lower thermal resistance than that of the mold resin, the temperature of the electronic component during operation can be lowered, and the electronic component can be stably operated and have a longer life.

本発明に係る電子装置の製造方法によれば、放熱板を備えた電子装置を製造する際に、放熱板に複数の熱伝導性バンプを立設し、プリント基板上に実装された複数の電子部品の上面に熱伝導性バンプを圧接して、電子部品と放熱板との間で熱伝導性バンプを圧縮し、その後放熱板とプリント基板の間にモールド樹脂を注入して硬化させることによって、少ない製造工程で実装高さが異なる複数の電子部品と放熱板とを熱結合することができる。   According to the method for manufacturing an electronic device according to the present invention, when an electronic device having a heat sink is manufactured, a plurality of heat conductive bumps are erected on the heat sink and a plurality of electrons mounted on a printed circuit board are mounted. By pressing the heat conductive bumps onto the upper surface of the component, compressing the heat conductive bumps between the electronic component and the heat sink, and then injecting and curing a mold resin between the heat sink and the printed board, A plurality of electronic components having different mounting heights and heat sinks can be thermally coupled with a small number of manufacturing processes.

本発明に係る電子装置の正面断面図である。It is front sectional drawing of the electronic device which concerns on this invention. 放熱板の下面に均一に熱伝導性バンプを配列した放熱板の下面図である。It is a bottom view of the heat sink which arranged the heat conductive bump uniformly on the lower surface of a heat sink. 電子部品の配置と大きさとに応じて、熱伝導性バンプを配列した放熱板の下面図である。It is a bottom view of the heat sink which arranged the heat conductive bump according to arrangement and size of an electronic component. 高さが均一な熱伝導性バンプを放熱板に配列した放熱板の正面図である。It is a front view of the heat sink which arranged the heat conductive bump with uniform height in the heat sink. 電子部品の高さに応じて異なる高さの熱伝導性バンプを配列した放熱板の正面図である。It is a front view of the heat sink which arranged the heat conductive bump of different height according to the height of electronic parts. 電子部品が実装されたプリント基板の上方に放熱板を準備した状態を示す正面図である。It is a front view which shows the state which prepared the heat sink above the printed circuit board with which the electronic component was mounted. 電子部品の上面に熱伝導性バンプを圧接した状態を示す正面図である。It is a front view which shows the state which heat-contacted the bump on the upper surface of the electronic component. プリント基板と放熱板との間にモールド樹脂を注入した状態を示す電子装置の正面図である。It is a front view of the electronic device which shows the state which inject | poured mold resin between the printed circuit board and the heat sink. 従来の中間曲板を用いた半導体装置の放熱構造を示す断面図である。It is sectional drawing which shows the thermal radiation structure of the semiconductor device using the conventional intermediate | middle curved plate. 電子部品毎に樹脂部を形成して高さを揃えてから放熱板を設置する、従来の半導体モジュールの構造を示す断面図である。It is sectional drawing which shows the structure of the conventional semiconductor module which installs a heat sink, after forming the resin part for every electronic component and aligning height. 従来の流動性を有する放熱シートを用いた半導体の冷却構造体の構造を示す断面図である。It is sectional drawing which shows the structure of the cooling structure of the semiconductor using the heat dissipation sheet | seat which has the conventional fluidity | liquidity.

本発明に係る電子装置及びその製造方法について、図面を参照しつつ詳しく説明する。なお、本発明は下記の実施形態に限定されるものではない。   An electronic device and a manufacturing method thereof according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment.

[電子装置]
本発明に係る電子装置10は、図1に示すように、実装高さが異なる複数の電子部品14a、14b、14cが実装されたプリント基板12と、電子部品14a、14b、14cから発生した熱を外界に放熱する放熱板20と、プリント基板12と放熱板20との間に充填したモールド樹脂16とを備えている。そして、放熱板20と複数の電子部品14a、14b、14cとの間には、その複数の電子部品の実装高さの高低差よりも高さが高い熱伝導性バンプ11が圧縮した状態で配列されている。その熱伝導性バンプ11は、複数の電子部品14a、14b、14cと、放熱板2とを熱結合している。
[Electronic device]
As shown in FIG. 1, the electronic device 10 according to the present invention includes a printed circuit board 12 on which a plurality of electronic components 14a, 14b, and 14c having different mounting heights are mounted, and heat generated from the electronic components 14a, 14b, and 14c. And a mold resin 16 filled between the printed board 12 and the heat radiating plate 20. And between the heat sink 20 and several electronic components 14a, 14b, 14c, it arranges in the state in which the heat conductive bump 11 whose height is higher than the height difference of the mounting height of the several electronic components is compressed. Has been. The thermal conductive bump 11 thermally couples the plurality of electronic components 14 a, 14 b, 14 c and the heat sink 2.

電子部品14a、14b、14cは特に限定されず、プリント基板12に搭載される半導体装置等の発熱部品を適用できる。また、そうした電子部品が搭載されるプリント基板12も特に限定されず、各種の形態のプリント基板を適用できる。プリント基板12には、複数の電子部品14a、14b、14cが搭載されるが、その数は特に限定されず、例えば2以上であれば本発明の効果を奏することができる。   The electronic components 14a, 14b, and 14c are not particularly limited, and heat generating components such as a semiconductor device mounted on the printed circuit board 12 can be applied. Also, the printed circuit board 12 on which such electronic components are mounted is not particularly limited, and various forms of printed circuit boards can be applied. A plurality of electronic components 14a, 14b, and 14c are mounted on the printed circuit board 12, but the number is not particularly limited. For example, the number of the electronic components 14a, 14b, and 14c can be as long as two or more.

放熱板としては、例えば厚0.1〜2mm程度の、Al及び/又はCuの熱伝導性物質を含む熱電導性の板材を挙げることができる。なお、熱は、放熱板20から外界、すなわち図1の上方に放熱することになる。放熱板20の上面は図1に示すように平坦であってもよいし、放熱効率を上げるための凹凸形状(図示しない)が設けられていてもよいし、その上に放熱フィン(図示しない)が設けられていてもよい。   Examples of the heat sink include a thermoconductive plate material having a thickness of about 0.1 to 2 mm and containing a heat conductive material of Al and / or Cu. The heat is radiated from the heat radiating plate 20 to the outside, that is, upward in FIG. The upper surface of the heat radiating plate 20 may be flat as shown in FIG. 1, or may have a concave / convex shape (not shown) for increasing the heat radiating efficiency, and a heat radiating fin (not shown) thereon. May be provided.

複数の電子部品14,14b,14cと放熱板20との間には、熱伝導性バンプ11が圧縮した状態で配列され、両者間を熱結合している。   Between the plurality of electronic components 14, 14 b, 14 c and the heat sink 20, the thermally conductive bumps 11 are arranged in a compressed state, and the two are thermally coupled.

熱伝導性バンプ11は、放熱板20の下面に等間隔で多数配置してある。熱伝導性バンプ11の形状は、放熱板20に底面を取着した円錐形状又は角錐形状であることが望ましい。熱伝導性バンプ11の形状を円錐形状又は角錐形状とすることによって、熱伝導性バンプ11を所定量圧縮する際の押圧力を低減することができ、変形を容易なものとすることができる。   A large number of thermally conductive bumps 11 are arranged on the lower surface of the heat sink 20 at equal intervals. The shape of the heat conductive bump 11 is preferably a conical shape or a pyramid shape in which the bottom surface is attached to the heat sink 20. By making the shape of the heat conductive bump 11 conical or pyramidal, the pressing force when compressing the heat conductive bump 11 by a predetermined amount can be reduced, and deformation can be facilitated.

各熱伝導性バンプ11の取付ピッチについて、図2を用いて説明する。また、熱伝導性バンプ11の他の配置例について、図3を用いて説明する。図2は、放熱板20の下面に、均一に円錐形状の熱伝導性バンプ11を配列した実施形態を示す図であり、放熱板20の下面図である。図3は、放熱板20の下部に配置する電子部品14a、14b、14cの配置と大きさとに応じて、円錐形状の熱伝導性バンプ11を配列した実施形態を示す図であり、放熱板20の下面図である。   The mounting pitch of each heat conductive bump 11 will be described with reference to FIG. Another arrangement example of the heat conductive bump 11 will be described with reference to FIG. FIG. 2 is a view illustrating an embodiment in which the conical heat conductive bumps 11 are uniformly arranged on the lower surface of the heat radiating plate 20, and is a bottom view of the heat radiating plate 20. FIG. 3 is a view showing an embodiment in which conical heat conductive bumps 11 are arranged in accordance with the arrangement and size of the electronic components 14 a, 14 b, 14 c arranged below the heat radiating plate 20. FIG.

熱伝導性バンプ11の取付ピッチは、図2に示すように、円錐形状からなる熱伝導性バンプ11を用いた場合には、その底面の直径(以下、バンプ径Dbと呼ぶ。)との兼ね合いで決定することができる。例えば、バンプ径Dbと取付ピッチPdとの関係は、1Db≦Pd≦2Db、の範囲に設定することが好ましく、特に、Pd=1.5Db、とすることが好ましい。バンプ径の絶対値は特に限定されないが、例えば0.2〜1mmの範囲のものを好ましく用いることができる。例えばバンプ径Dbが0.4mmのものを用いた場合には、熱伝導性バンプ11の取付ピッチPdをバンプ径の1.5倍の0.6mmとすることが望ましい。   As shown in FIG. 2, the mounting pitch of the heat conductive bumps 11 is balanced with the diameter of the bottom surface (hereinafter referred to as the bump diameter Db) when the heat conductive bumps 11 having a conical shape are used. Can be determined. For example, the relationship between the bump diameter Db and the mounting pitch Pd is preferably set in a range of 1Db ≦ Pd ≦ 2Db, and particularly preferably Pd = 1.5 Db. Although the absolute value of a bump diameter is not specifically limited, For example, the thing of the range of 0.2-1 mm can be used preferably. For example, when a bump having a bump diameter Db of 0.4 mm is used, it is desirable that the mounting pitch Pd of the thermally conductive bumps 11 is 0.6 mm, which is 1.5 times the bump diameter.

なお、角錐形状からなる熱伝導性バンプ11を用いた場合にも円錐形状のものと同様であることが好ましい。角錐形状からなる熱伝導性バンプ11においては、上記したバンプ径Dbを、多角形の頂角に内接する円の直径として上記関係を適用することができる。角錐形状としては、三角錐、四角錐、五角錐、六角錐等を挙げることができる。   In addition, when the heat conductive bump 11 having a pyramid shape is used, it is preferable that the heat conductivity bump 11 has the same shape as the cone shape. In the heat conductive bump 11 having a pyramid shape, the above relationship can be applied by using the bump diameter Db as the diameter of a circle inscribed in the apex angle of the polygon. Examples of the pyramid shape include a triangular pyramid, a quadrangular pyramid, a pentagonal pyramid, and a hexagonal pyramid.

図2及び図4に示すように、熱伝導性バンプ11を放熱板20の下面に等間隔で配列することによって、多様な電子部品14a、14b、14cの配置に対応することができる。これにより、放熱板20の汎用性を高めることができる。   As shown in FIGS. 2 and 4, by arranging the heat conductive bumps 11 on the lower surface of the heat sink 20 at equal intervals, it is possible to deal with various arrangements of electronic components 14a, 14b, and 14c. Thereby, the versatility of the heat sink 20 can be improved.

図3及び図5に示すように、放熱が必要な電子部品14a、14b、14cの大きさと配置とに応じて、電子部品14a、14b、14cの実装箇所に対応する位置にのみ、熱伝導性バンプ11を配列することもできる。   As shown in FIG. 3 and FIG. 5, the thermal conductivity only at positions corresponding to the mounting locations of the electronic components 14 a, 14 b, 14 c, depending on the size and arrangement of the electronic components 14 a, 14 b, 14 c that require heat dissipation. The bumps 11 can also be arranged.

次に、図4及び図5を用いて、熱伝導性バンプの高さについて説明する。図4は、高さが均一な熱伝導性バンプ11を放熱板20の表面に配列した実施形態を説明する正面図である。図5は、電子部品14a、14b、14cの高さに応じて異なる高さの熱伝導性バンプ11a、11b、11cをそれぞれ放熱板20の表面に配列した実施形態を説明する正面図である。なお、図4及び図5においては、図1に示した表記とは上下を逆に記載してある。図1に示した表記においては、図4及び図5に示すU方向が上方(放熱方向)となり、D方向が下方(電子部品14a、14b、14cが存在する方向。)となる。   Next, the height of the heat conductive bump will be described with reference to FIGS. 4 and 5. FIG. 4 is a front view for explaining an embodiment in which thermally conductive bumps 11 having a uniform height are arranged on the surface of the heat sink 20. FIG. 5 is a front view illustrating an embodiment in which heat conductive bumps 11a, 11b, and 11c having different heights are arranged on the surface of the heat radiating plate 20 in accordance with the heights of the electronic components 14a, 14b, and 14c. In FIGS. 4 and 5, the notation shown in FIG. 1 is shown upside down. In the notation shown in FIG. 1, the U direction shown in FIGS. 4 and 5 is the upper direction (heat dissipation direction), and the D direction is the lower direction (the direction in which the electronic components 14 a, 14 b, and 14 c exist).

図4に示すように、同じ高さの熱伝導性バンプ11を放熱板20の表面に配列した場合、多様な電子部品14a、14b、14cの配置に対応することができる。これにより、放熱板20の汎用性を高めることができる。   As shown in FIG. 4, when the thermally conductive bumps 11 having the same height are arranged on the surface of the heat sink 20, it is possible to deal with various arrangements of the electronic components 14a, 14b, and 14c. Thereby, the versatility of the heat sink 20 can be improved.

このとき、熱伝導性バンプ11、11a、11b、11cの高さは、プリント基板12上に実装された電子部品14a、14b、14cの実装高さの高低差に応じて決定することが好ましい。熱伝導性バンプの高さと電子部品の実装高さの高低差との関係は、[熱伝導性バンプの高さ]/[電子部品の実装高さの高低差]=1.5以上4.0以下とすることができ、2.0以上3.0以下とすることが好ましい。こうした関係となる熱伝導性バンプを用い、電子部品と放熱板との間を圧縮し、圧縮後のバンプの高さを、当初のバンプの高さの30%〜70%の高さとすることが好ましい。   At this time, it is preferable that the heights of the heat conductive bumps 11, 11 a, 11 b, and 11 c are determined according to the height difference between the mounting heights of the electronic components 14 a, 14 b, and 14 c mounted on the printed circuit board 12. The relationship between the height of the heat conductive bump and the height difference of the mounting height of the electronic component is [the height of the heat conductive bump] / [the height difference of the mounting height of the electronic component] = 1.5 or more and 4.0. Or less, and preferably 2.0 or more and 3.0 or less. Using heat conductive bumps that have such a relationship, the space between the electronic component and the heat sink is compressed, and the bump height after compression is 30% to 70% of the original bump height. preferable.

一例として、例えば、電子部品14a、14b、14c同士の高低差が0.2mmである場合には、高さが0.5mmの熱伝導性バンプ11を用いることが好ましい。そして、圧縮後のバンプ高さが、0.15〜0.35mmの範囲となるように、放熱板20を電子部品14a、14b、14cに圧接する。   As an example, for example, when the height difference between the electronic components 14a, 14b, and 14c is 0.2 mm, it is preferable to use the thermally conductive bump 11 having a height of 0.5 mm. And the heat sink 20 is press-contacted to the electronic components 14a, 14b, and 14c so that the bump height after compression may be in the range of 0.15 to 0.35 mm.

また、図5に示すように、電子部品14a、14b、14cの高さに応じて、異なる高さの熱伝導性バンプ11a、11b、11cを放熱板10の表面に配列する場合には、実装高さが低い電子部品14aの実装箇所に対応する位置に高さが高い熱伝導性バンプ11aを配列し、実装高さが中位の電子部品14bの実装箇所に対応する位置に中位の高さの熱伝導性バンプ11bを配列し、実装高さが高い電子部品14cの実装箇所に対応する位置に高さが低い熱伝導性バンプ11cを配列するように構成することが好ましい。   Further, as shown in FIG. 5, when the heat conductive bumps 11a, 11b, and 11c having different heights are arranged on the surface of the heat radiating plate 10 according to the heights of the electronic components 14a, 14b, and 14c, the mounting is performed. The heat conductive bumps 11a having a high height are arranged at positions corresponding to the mounting positions of the electronic components 14a having a low height, and the medium height is set at a position corresponding to the mounting positions of the electronic components 14b having a medium mounting height. It is preferable that the thermal conductive bumps 11b are arranged in such a manner that the low thermal conductive bumps 11c are arranged at positions corresponding to the mounting positions of the electronic component 14c having a high mounting height.

このように、放熱が必要な電子部品14a、14b、14cの高さに応じて、異なる高さの熱伝導性バンプ11a、11b、11cを配列することによって、電子部品14a、14b、14cと熱伝導性バンプ11a、11b、11cとの接触面積を均一又は略均一に揃えることができる。しかも、組み立て工程において放熱板20を圧接する際の力の加わり方を揃えることができ、放熱板20の変形を抑制することができる。   In this way, by arranging the heat conductive bumps 11a, 11b, and 11c having different heights according to the heights of the electronic components 14a, 14b, and 14c that require heat dissipation, the electronic components 14a, 14b, and 14c are heated. The contact area with the conductive bumps 11a, 11b, and 11c can be made uniform or substantially uniform. In addition, it is possible to make the same way of applying force when the heat sink 20 is pressed in the assembly process, and to suppress the deformation of the heat sink 20.

図5に示すように、電子部品14a、14b、14cの実装高さに応じて異なる高さの熱伝導性バンプ11を用いる場合にも、図4を用いて説明した場合のように、熱伝導性バンプの高さと電子部品の実装高さとのそれぞれの高低差に応じて、[各熱伝導性バンプの高さ]/[各電子部品の実装高さの高低差]=1.5以上4.0以下、好ましくは2.0以上3.0以下となるように構成することが好ましい。そして、こうした関係となるような熱伝導性バンプを実装高さの異なる電子部品に対して用い、電子部品と放熱板との間を圧縮し、圧縮後のバンプの高さを、当初のバンプの高さの30%〜70%の高さとすることが好ましい。したがって、電子部品14a、14b、14cの実装高さに応じて異なる高さの熱伝導性バンプ11を用いる場合には、その実装高さに応じて、大きさの異なる熱伝導性バンプを、バンプ径Dbと取付ピッチPdとの関係が1Db≦Pd≦2Dbの範囲で用いる。   As shown in FIG. 5, even when the thermally conductive bumps 11 having different heights are used depending on the mounting height of the electronic components 14a, 14b, and 14c, the heat conduction is the same as in the case described with reference to FIG. Depending on the height difference between the height of the conductive bump and the mounting height of the electronic component, [the height of each thermal conductive bump] / [the height difference of the mounting height of each electronic component] = 1.5 or more It is preferable to configure so that it is 0 or less, preferably 2.0 or more and 3.0 or less. Then, heat conductive bumps that have such a relationship are used for electronic components with different mounting heights, the space between the electronic components and the heat sink is compressed, and the height of the bumps after compression is adjusted to the original bump height. The height is preferably 30% to 70% of the height. Therefore, when using the thermally conductive bumps 11 having different heights according to the mounting heights of the electronic components 14a, 14b, and 14c, the thermally conductive bumps having different sizes are used as the bumps according to the mounted heights. The relationship between the diameter Db and the mounting pitch Pd is used in the range of 1Db ≦ Pd ≦ 2Db.

次に、熱伝導性バンプ11、11a、11b、11cの組成例について説明する。熱伝導性バンプ11、11a、11b、11cの材料として、バインダー樹脂中に熱伝導性のフィラーを含有する熱伝導性ペーストを硬化させたものを用いることが好ましい。   Next, composition examples of the heat conductive bumps 11, 11a, 11b, and 11c will be described. As a material for the heat conductive bumps 11, 11a, 11b, and 11c, it is preferable to use a material obtained by curing a heat conductive paste containing a heat conductive filler in a binder resin.

フィラーの材料として、Cu、Ag、Au、Pd(パラジウム)、Ni及びカーボンの群から選択される1又は2以上の物質を好ましく挙げることができる。これらの物質からなるフィラーは、高い熱伝導性物質であり、熱伝導性を向上させることができるので、電子部品と放熱板との間の熱抵抗を減少させることができる。なお、これらの物質の選択又は配合は、電子部品の発熱量を加味し、必要とする熱伝導性に応じて選択する。なお、フィラーの粒径については特に限定されず、仕様に応じて各種のものを選択できるが、一例としては、例えば、1〜10μm程度のものを用いることができる。   Preferred examples of the filler material include one or more substances selected from the group consisting of Cu, Ag, Au, Pd (palladium), Ni, and carbon. Fillers made of these materials are highly heat conductive materials and can improve the heat conductivity, so that the thermal resistance between the electronic component and the heat sink can be reduced. The selection or blending of these substances is selected in accordance with the required thermal conductivity, taking into account the calorific value of the electronic component. In addition, it does not specifically limit about the particle size of a filler, Although various things can be selected according to a specification, As an example, a thing about 1-10 micrometers can be used, for example.

バインダー樹脂としては、バインダー樹脂のガラス転移点が、モールド樹脂16の硬化温度より低い物性を有する材料、又は金型の温度より低い物性を有する材料を用いることが望ましい。ここで、「低い」とは、モールド樹脂16の硬化温度又は金型温度よりも20℃以上低い場合を意味する。   As the binder resin, it is desirable to use a material having a glass transition point lower than the curing temperature of the mold resin 16 or a material having a physical property lower than the mold temperature. Here, “low” means that the temperature is lower by 20 ° C. or more than the curing temperature or mold temperature of the mold resin 16.

熱伝導性バンプ11のバインダー樹脂として、ガラス転移点がモールド樹脂16の硬化温度より低いものを用いることによって、プリント基板12と放熱板20との間に充填したモールド樹脂16を熱硬化させる際に、熱伝導性バンプ11がガラス転移することになる。すると、熱伝導性バンプ11の弾性率が低下して柔らかくなるので、弱い押圧力で熱伝導性バンプ11を容易に変形させることができる。このとき、熱伝導性バンプ11の反発力は弱くなっているので、熱伝導性バンプ11を圧縮する際に生ずる放熱板20の変形も少なくなる。したがって、熱伝導性バンプ11の圧縮量を比較的大きく設定した場合であっても、放熱板20の厚さを抑えて、電子装置10の薄型化を図ることが可能となる。   When the resin resin having a glass transition point lower than the curing temperature of the mold resin 16 is used as the binder resin of the heat conductive bump 11, the mold resin 16 filled between the printed board 12 and the heat sink 20 is thermally cured. As a result, the heat conductive bump 11 undergoes glass transition. Then, since the elasticity modulus of the heat conductive bump 11 falls and it becomes soft, the heat conductive bump 11 can be easily deformed with a weak pressing force. At this time, since the repulsive force of the heat conductive bump 11 is weak, the deformation of the heat sink 20 that occurs when the heat conductive bump 11 is compressed is also reduced. Therefore, even when the compression amount of the heat conductive bump 11 is set to be relatively large, the thickness of the heat radiating plate 20 can be suppressed and the electronic device 10 can be thinned.

バインダー樹脂の種類は特に限定されない。一例として、例えばエポキシ樹脂等を挙げることができる。バインダー樹脂としてエポキシ樹脂を用いることによって、低い温度でバインダー樹脂をガラス転移させることができる。   The kind of binder resin is not specifically limited. As an example, an epoxy resin etc. can be mentioned, for example. By using an epoxy resin as the binder resin, the binder resin can be subjected to glass transition at a low temperature.

一例として、フィラーの材料としてAgを用いた場合、熱伝導性バンプ11の熱伝導率は、約27W/mkとなる。一般的なモールド樹脂16の熱伝導率は0.4〜4W/mk程度であるので、熱伝導性に優れた上記フィラーを混入することによって、電子部品14a、14b、14cから放熱板20までの熱抵抗を減少させることができる。したがって、熱伝導性バンプ11を介して電子部品14a、14b、14cから放熱板20に熱を伝達させることにより、稼働時における電子部品14a、14b、14cの温度を低下させることができ、安定作動及び長寿命化を図ることができる。   As an example, when Ag is used as the filler material, the thermal conductivity of the thermal conductive bump 11 is about 27 W / mk. Since the heat conductivity of the general mold resin 16 is about 0.4 to 4 W / mk, mixing the filler having excellent heat conductivity from the electronic components 14 a, 14 b, 14 c to the heat sink 20. Thermal resistance can be reduced. Therefore, by transferring heat from the electronic components 14a, 14b, 14c to the heat sink 20 via the thermal conductive bumps 11, the temperature of the electronic components 14a, 14b, 14c during operation can be lowered, and stable operation is achieved. In addition, the life can be extended.

本発明では、熱伝導性バンプ11を、熱伝導性のフィラーとバインダー樹脂とを含む構成としたので、熱伝導性と弾力性に優れた物性を得ることができる。   In the present invention, since the thermally conductive bump 11 is configured to include a thermally conductive filler and a binder resin, physical properties excellent in thermal conductivity and elasticity can be obtained.

モールド樹脂16は、熱伝導性バンプ11で圧接されたプリント基板12と放熱板20との間に充填されている。モールド樹脂16としては、例えば、エポキシ樹脂等の熱硬化性樹脂を好ましく挙げることができる。このモールド樹脂16は、その硬化温度が、バインダー樹脂のガラス転移点よりも高いものが選択される。   The mold resin 16 is filled between the printed board 12 and the heat radiating plate 20 that are press-contacted by the heat conductive bumps 11. As the mold resin 16, for example, a thermosetting resin such as an epoxy resin can be preferably cited. The mold resin 16 is selected such that its curing temperature is higher than the glass transition point of the binder resin.

以上、本発明に係る電子装置10によれば、実装高さが異なる複数の電子部品14a、14b、14cと放熱板20との間に、熱伝導性バンプ11を圧縮した状態で配列しているので、プリント基板12上に実装高さが異なる電子部品14a、14b、14cが複数実装されている場合であっても、一つの放熱板20を一括して接着することが可能となる。また、モールド樹脂16よりも熱抵抗が少ない熱伝導性バンプ11を用いることによって、稼働時における電子部品14a、14b、14cの温度を低下させることができ、電子部品14a、14b、14cの安定作動と、長寿命化を図ることができる。   As described above, according to the electronic device 10 according to the present invention, the thermally conductive bumps 11 are arranged in a compressed state between the plurality of electronic components 14a, 14b, 14c having different mounting heights and the heat sink 20. Therefore, even if a plurality of electronic components 14a, 14b, and 14c having different mounting heights are mounted on the printed circuit board 12, one heat sink 20 can be bonded together. In addition, by using the thermally conductive bumps 11 that have a lower thermal resistance than the mold resin 16, the temperature of the electronic components 14a, 14b, and 14c during operation can be reduced, and the stable operation of the electronic components 14a, 14b, and 14c can be achieved. And a long life can be achieved.

本発明の電子装置10によれば、モールド樹脂16の全面を用いて放熱板20を接着することができるため、個別の部品に対して放熱板を接着する構造に比べて放熱効率が高く、製造も容易となる。また、放熱板20が電子部品14a、14b、14cを保護するため、落下等の衝撃や外部からの変形応力に対する信頼性が良好となる。   According to the electronic device 10 of the present invention, since the heat sink 20 can be bonded using the entire surface of the mold resin 16, the heat dissipation efficiency is higher than the structure in which the heat sink is bonded to individual components, and the manufacturing is performed. Will also be easier. Moreover, since the heat sink 20 protects the electronic components 14a, 14b, and 14c, the reliability with respect to impact such as dropping and external deformation stress is improved.

[電子装置の製造方法]
本発明に係る電子装置10の製造方法は、放熱板20の片面に複数の熱伝導性バンプ11を立設する工程と、プリント基板12上に実装された複数の電子部品14a、14b、14cの上面に熱伝導性バンプ11を圧接して、電子部品14a、14b、14cと放熱板20との間で熱伝導性バンプ11を圧縮させる工程と、放熱板20とプリント基板12との間にモールド樹脂16を注入し、そのモールド樹脂16を硬化させる工程と、を含む。
[Method for Manufacturing Electronic Device]
The manufacturing method of the electronic device 10 according to the present invention includes a step of standing a plurality of thermally conductive bumps 11 on one side of the heat sink 20 and a plurality of electronic components 14a, 14b, 14c mounted on the printed circuit board 12. A process of compressing the heat conductive bumps 11 between the electronic components 14 a, 14 b, 14 c and the heat sink 20 by pressing the heat conductive bumps 11 on the upper surface, and a mold between the heat sink 20 and the printed circuit board 12. Injecting the resin 16 and curing the mold resin 16.

最初に、熱伝導性バンプ11、11a、11b、11cを放熱板20の表面に配列する方法について説明する。   First, a method of arranging the heat conductive bumps 11, 11a, 11b, and 11c on the surface of the heat sink 20 will be described.

先ず、バインダー樹脂中に熱伝導性フィラーを含有させた熱伝導ペーストを準備する。その熱伝導ペーストを、印刷工法又はディスペンス工法により放熱板20上に供給してバンプ状に立設させ、配列する。その後、その熱伝導ペーストを熱硬化させることで、放熱板20上に熱伝導性バンプ11、11a、11b、11cを形成することができる。なお、この方法では、通常、円錐形状の熱伝導性バンプ11を容易に形成できる。   First, a heat conductive paste containing a heat conductive filler in a binder resin is prepared. The heat conductive paste is supplied onto the heat sink 20 by a printing method or a dispensing method, and is erected in a bump shape and arranged. Thereafter, the heat conductive bumps 11, 11 a, 11 b, and 11 c can be formed on the heat sink 20 by thermosetting the heat conductive paste. In this method, the conical heat conductive bump 11 can be easily formed.

電子部品14a、14b、14cの実装高さに応じて熱伝導性バンプ11a、11b、11cの高さを調節する場合(図5参照)には、ディスペンス工法を用いるとい。熱伝導性ペーストの塗布量を調整することによって、所望の高さを容易に得ることができる。   When adjusting the height of the heat conductive bumps 11a, 11b, 11c according to the mounting height of the electronic components 14a, 14b, 14c (see FIG. 5), it is said that the dispensing method is used. A desired height can be easily obtained by adjusting the coating amount of the heat conductive paste.

熱伝導ペーストの硬化温度は、バインダー樹脂の種類に依存する。例えば、熱伝導ペーストのバインダー樹脂としてエポキシ樹脂を使用した場合には、150℃以上の温度で硬化可能である。   The curing temperature of the heat conductive paste depends on the type of binder resin. For example, when an epoxy resin is used as the binder resin of the heat conductive paste, it can be cured at a temperature of 150 ° C. or higher.

次に、電子部品14a、14b、14cが実装されたプリント基板12に、熱伝導性バンプ11を下面に配列した放熱板20を圧接して接着する。この工程を、図6〜図8を用いて説明する。なお、図6〜図8においては、高さが均一な熱伝導性バンプ11を下面に配列した放熱板20(図4参照)を圧接する工程について説明するが、異なる高さの熱伝導性バンプ11a、11b、11cをそれぞれ配列した放熱板20(図5参照)を圧接する工程も同様であるので、その説明は省略する。   Next, the heat sink 20 having the heat conductive bumps 11 arranged on the lower surface is pressed and bonded to the printed circuit board 12 on which the electronic components 14a, 14b, and 14c are mounted. This process will be described with reference to FIGS. 6 to 8, a process of pressing the heat radiating plate 20 (see FIG. 4) in which the thermally conductive bumps 11 having a uniform height are arranged on the lower surface will be described. However, the thermally conductive bumps having different heights are described. Since the process of press-contacting the heat sink 20 (see FIG. 5) in which 11a, 11b, and 11c are respectively arranged is the same, the description thereof is omitted.

図6は、実装高さが均一でない複数の電子部品14a、14b、14cを実装したプリント基板12の上方に、熱伝導性バンプ11を下面に配列した放熱板20を準備した状態を示す正面図である。図7は、電子部品14a、14b、14cの上面に熱伝導性バンプ11を圧接した状態を示す正面図である。図8は、プリント基板12と放熱板20との間にモールド樹脂16を注入して硬化させた状態を示す電子装置10の正面図である。   FIG. 6 is a front view showing a state in which a heat radiating plate 20 in which the heat conductive bumps 11 are arranged on the lower surface is prepared above the printed circuit board 12 on which a plurality of electronic components 14a, 14b, and 14c having non-uniform mounting heights are mounted. It is. FIG. 7 is a front view showing a state in which the heat conductive bumps 11 are pressed against the upper surfaces of the electronic components 14a, 14b, and 14c. FIG. 8 is a front view of the electronic device 10 showing a state in which the mold resin 16 is injected and cured between the printed board 12 and the heat sink 20.

先ず、図6に示すように、複数の電子部品14a、14b、14cが実装されたプリント基板12を、トランスファー成形機の金型の下側に設置する。次に、熱伝導性バンプ11を下面に配列した放熱板20を、金型の上側に設置する。このとき金型は、モールド樹脂16の硬化温度にまで加熱されている。更に、この金型の温度は、熱伝導性バンプ11におけるバインダー樹脂のガラス転移点よりも高い温度とする。   First, as shown in FIG. 6, a printed circuit board 12 on which a plurality of electronic components 14a, 14b, and 14c are mounted is placed on the lower side of a mold of a transfer molding machine. Next, the heat radiating plate 20 in which the heat conductive bumps 11 are arranged on the lower surface is installed on the upper side of the mold. At this time, the mold is heated to the curing temperature of the mold resin 16. Furthermore, the temperature of this mold is set to a temperature higher than the glass transition point of the binder resin in the thermally conductive bump 11.

次に、図6に示した状態から金型を閉めることにより、電子部品14a、14b、14cが実装されたプリント基板12と放熱板20とを圧接する。すると、図7に示すように、放熱板20の下面に配列した熱伝導性バンプ11が、電子部品14a、14b、14cの上面に押し付けられて圧縮されて、変形する。このとき、熱伝導性バンプ11は金型の温度にまで加熱されているので、熱伝導性バンプ11の弾性率は低下して柔らかくなっている。そのため、弱い押圧力でも熱伝導性バンプ11を容易に変形させることができる。   Next, by closing the mold from the state shown in FIG. 6, the printed circuit board 12 on which the electronic components 14 a, 14 b, and 14 c are mounted and the heat radiating plate 20 are pressed against each other. Then, as shown in FIG. 7, the heat conductive bumps 11 arranged on the lower surface of the heat radiating plate 20 are pressed against the upper surfaces of the electronic components 14a, 14b, and 14c, and are deformed. At this time, since the heat conductive bump 11 is heated to the temperature of the mold, the elastic modulus of the heat conductive bump 11 is lowered and softened. Therefore, the heat conductive bump 11 can be easily deformed even with a weak pressing force.

次に、図8に示すように、プリント基板12と放熱板20との間にモールド樹脂16を注入し、モールド樹脂16を硬化させる。すると、図1に示した電子装置10が完成する。プリント基板12と放熱板20との間に注入するモールド樹脂16の材料として、硬化温度が180℃のエポキシ樹脂を用いることができる。なお、熱伝導性バンプ11のバインダー樹脂として使用しているエポキシ樹脂のガラス転移点は、130℃前後のものを用いると良い。   Next, as shown in FIG. 8, the mold resin 16 is injected between the printed board 12 and the heat sink 20, and the mold resin 16 is cured. Then, the electronic device 10 shown in FIG. 1 is completed. An epoxy resin having a curing temperature of 180 ° C. can be used as a material of the mold resin 16 to be injected between the printed board 12 and the heat sink 20. The glass transition point of the epoxy resin used as the binder resin for the heat conductive bump 11 is preferably about 130 ° C.

以上、本発明に係る電子装置10の製造方法によれば、放熱板20を備えた電子装置10を製造する際に、放熱板20に複数の熱伝導性バンプ11を立設し、プリント基板12上に実装された複数の電子部品14a、14b、14cの上面に熱伝導性バンプ11を圧接して、電子部品14a、14b、14cと放熱板20との間で熱伝導性バンプ11を圧縮し、その後放熱板20とプリント基板12の間にモールド樹脂16を注入して硬化させることによって、少ない製造工程で実装高さが異なる複数の電子部品14a、14b、14cと放熱板20とを熱結合することができる。   As described above, according to the method for manufacturing the electronic device 10 according to the present invention, when the electronic device 10 including the heat sink 20 is manufactured, the plurality of thermally conductive bumps 11 are erected on the heat sink 20, and the printed circuit board 12. The thermally conductive bumps 11 are pressed against the upper surfaces of the plurality of electronic components 14a, 14b, and 14c mounted thereon, and the thermally conductive bumps 11 are compressed between the electronic components 14a, 14b, and 14c and the heat radiating plate 20. Then, by injecting the mold resin 16 between the heat sink 20 and the printed circuit board 12 and curing it, the plurality of electronic components 14a, 14b, 14c having different mounting heights and the heat sink 20 are thermally coupled by a small manufacturing process. can do.

本発明に係る電子装置及びその製造方法は、上記実施形態に限定されることなく、本発明の範囲内において且つ本発明の技術的思想に基づいて、上記実施形態に対し種々の変形、変更及び改良を含むことができる。また、本発明に係る電子装置は、それぞれの開示要素の多様な組み合わせや置換、又は選択が可能である。   The electronic device and the manufacturing method thereof according to the present invention are not limited to the above-described embodiment, and various modifications, changes, and modifications are made to the above-described embodiment within the scope of the present invention and based on the technical idea of the present invention. Improvements can be included. Further, the electronic device according to the present invention can be variously combined, replaced, or selected with each disclosed element.

10 電子装置
11、11a、11b、11c 熱伝導性バンプ
12、912、932、952 プリント基板
14a、14b、14c、914a、914b、934a、934b、954a、954b、954c 電子部品
16、916 モールド樹脂
20、920、940、960 放熱板
910 半導体装置
911 中間曲板
918 凹凸部
930 半導体モジュール
931a、931b 樹脂部
950 冷却構造体
951 放熱シート
10 Electronic device 11, 11a, 11b, 11c Thermal conductive bump 12, 912, 932, 952 Printed circuit board 14a, 14b, 14c, 914a, 914b, 934a, 934b, 954a, 954b, 954c Electronic component 16, 916 Mold resin 20 , 920, 940, 960 Heat radiation plate 910 Semiconductor device 911 Intermediate curved plate 918 Concavity and convexity 930 Semiconductor module 931a, 931b Resin portion 950 Cooling structure 951 Heat radiation sheet

Claims (7)

実装高さが異なる複数の電子部品が実装されたプリント基板と、前記電子部品から発生した熱を外界に放熱する放熱板と、前記プリント基板と放熱板との間に充填したモールド樹脂とを備え、
前記放熱板と前記複数の電子部品との間には、前記複数の電子部品の実装高さの高低差よりも高さが高い熱伝導性バンプが圧縮した状態で配列され、当該熱伝導性バンプが前記複数の電子部品と前記放熱板とを熱結合していることを特徴とする電子装置。
A printed circuit board on which a plurality of electronic components having different mounting heights are mounted, a heat radiating plate that radiates heat generated from the electronic components to the outside, and a mold resin that is filled between the printed circuit board and the heat radiating plate. ,
Between the heat radiating plate and the plurality of electronic components, heat conductive bumps having a height higher than a height difference in mounting height of the plurality of electronic components are arranged in a compressed state, and the heat conductive bumps The electronic device is characterized in that the plurality of electronic components and the heat sink are thermally coupled.
前記熱伝導性バンプが円錐形状又は角錐形状である、請求項1に記載の電子装置。   The electronic device according to claim 1, wherein the thermally conductive bump has a conical shape or a pyramid shape. 前記熱伝導性バンプが熱伝導性のフィラーとバインダー樹脂とを含む、請求項1又は2に記載の電子装置。   The electronic device according to claim 1, wherein the thermally conductive bump includes a thermally conductive filler and a binder resin. 前記フィラーがCu、Ag、Au、Pd、Ni及びカーボンの群から選ばれる1又は2以上の物質を含有する、請求項3に記載の電子装置。   The electronic device according to claim 3, wherein the filler contains one or more substances selected from the group consisting of Cu, Ag, Au, Pd, Ni, and carbon. 前記バインダー樹脂のガラス転移点が前記モールド樹脂の硬化温度より低い、請求項3に記載の電子装置。   The electronic device according to claim 3, wherein a glass transition point of the binder resin is lower than a curing temperature of the mold resin. 前記バインダー樹脂がエポキシ樹脂である、請求項3に記載の電子装置。   The electronic device according to claim 3, wherein the binder resin is an epoxy resin. 放熱板の片面に複数の熱伝導性バンプを立設する工程と、
プリント基板上に実装された複数の電子部品の上面に前記熱伝導性バンプを圧接して、前記電子部品と前記放熱板との間で前記熱伝導性バンプを圧縮させる工程と、
前記放熱板と前記プリント基板との間にモールド樹脂を注入し、当該モールド樹脂を硬化させる工程と、を含むことを特徴とする電子装置の製造方法。
A step of standing a plurality of thermally conductive bumps on one side of the heat sink;
Pressing the thermally conductive bumps onto the top surfaces of a plurality of electronic components mounted on a printed circuit board, and compressing the thermally conductive bumps between the electronic components and the heat sink;
And a step of injecting a mold resin between the heat radiating plate and the printed board and curing the mold resin.
JP2010022734A 2010-02-04 2010-02-04 Electronic device and manufacturing method thereof Expired - Fee Related JP5544906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010022734A JP5544906B2 (en) 2010-02-04 2010-02-04 Electronic device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010022734A JP5544906B2 (en) 2010-02-04 2010-02-04 Electronic device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011159930A true JP2011159930A (en) 2011-08-18
JP5544906B2 JP5544906B2 (en) 2014-07-09

Family

ID=44591606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022734A Expired - Fee Related JP5544906B2 (en) 2010-02-04 2010-02-04 Electronic device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5544906B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142053A (en) * 2014-01-29 2015-08-03 住友電気工業株式会社 Method of manufacturing electronic part
CN109935557A (en) * 2017-12-19 2019-06-25 凤凰先驱股份有限公司 Electronic packing piece and its preparation method
US11419215B2 (en) 2018-07-20 2022-08-16 Murata Manufacturing Co., Ltd. Module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476245B (en) 2017-03-31 2023-08-01 株式会社村田制作所 Module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510096A (en) * 1994-11-18 1998-09-29 テセラ,インコーポレイテッド Flexible thermal connector, method of making and using the same, and assembly thereof
JP2002261206A (en) * 2001-03-05 2002-09-13 Fuji Kobunshi Kogyo Kk Cooling structure for semiconductor
JP2004055670A (en) * 2002-07-17 2004-02-19 Matsushita Electric Ind Co Ltd Circuit structure
JP2004172489A (en) * 2002-11-21 2004-06-17 Nec Semiconductors Kyushu Ltd Semiconductor device and its manufacturing method
JP2004186294A (en) * 2002-12-02 2004-07-02 Denso Corp Electronic apparatus
JP2005251784A (en) * 2004-03-01 2005-09-15 Renesas Technology Corp Semiconductor module and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510096A (en) * 1994-11-18 1998-09-29 テセラ,インコーポレイテッド Flexible thermal connector, method of making and using the same, and assembly thereof
JP2002261206A (en) * 2001-03-05 2002-09-13 Fuji Kobunshi Kogyo Kk Cooling structure for semiconductor
JP2004055670A (en) * 2002-07-17 2004-02-19 Matsushita Electric Ind Co Ltd Circuit structure
JP2004172489A (en) * 2002-11-21 2004-06-17 Nec Semiconductors Kyushu Ltd Semiconductor device and its manufacturing method
JP2004186294A (en) * 2002-12-02 2004-07-02 Denso Corp Electronic apparatus
JP2005251784A (en) * 2004-03-01 2005-09-15 Renesas Technology Corp Semiconductor module and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142053A (en) * 2014-01-29 2015-08-03 住友電気工業株式会社 Method of manufacturing electronic part
CN109935557A (en) * 2017-12-19 2019-06-25 凤凰先驱股份有限公司 Electronic packing piece and its preparation method
CN109935557B (en) * 2017-12-19 2023-05-30 恒劲科技股份有限公司 Electronic package and method for manufacturing the same
US11419215B2 (en) 2018-07-20 2022-08-16 Murata Manufacturing Co., Ltd. Module
US11716813B2 (en) 2018-07-20 2023-08-01 Murata Manufacturing Co., Ltd. Module

Also Published As

Publication number Publication date
JP5544906B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
US7843058B2 (en) Flip chip packages with spacers separating heat sinks and substrates
US8053284B2 (en) Method and package for circuit chip packaging
US8247900B2 (en) Flip chip package having enhanced thermal and mechanical performance
US8502400B2 (en) Methods and apparatuses to stiffen integrated circuit package
TWI529878B (en) Hybrid thermal interface material for ic packages with integrated heat spreader
TWI306296B (en) Semiconductor device with a heat sink and method for fabricating the same
CN104779217B (en) semiconductor device package with warpage control structure
US7135769B2 (en) Semiconductor packages and methods of manufacturing thereof
US7906857B1 (en) Molded integrated circuit package and method of forming a molded integrated circuit package
TWI242862B (en) Semiconductor package with heat sink
US20070096272A1 (en) Light emitting diode package
TWI338938B (en) Heat-dissipating type semiconductor package
US20060249852A1 (en) Flip-chip semiconductor device
JP7235752B2 (en) semiconductor equipment
US6936501B1 (en) Semiconductor component and method of manufacture
US9887144B2 (en) Ring structure for chip packaging
JP2011082345A (en) Semiconductor device
JP5544906B2 (en) Electronic device and manufacturing method thereof
JP5673423B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR101590453B1 (en) Semiconductor chip die structure for improving warpage and method thereof
JP2010199494A (en) Semiconductor device and manufacturing method of the same
JP2001352021A (en) Semiconductor package, mounting structure and manufacturing method therefor
US20090004317A1 (en) High thermal conductivity molding compound for flip-chip packages
TWI536515B (en) Semiconductor package device with a heat dissipation structure and the packaging method thereof
KR20110128408A (en) Semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5544906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees