JP2011158756A - Developer carrier and developing device - Google Patents

Developer carrier and developing device Download PDF

Info

Publication number
JP2011158756A
JP2011158756A JP2010021106A JP2010021106A JP2011158756A JP 2011158756 A JP2011158756 A JP 2011158756A JP 2010021106 A JP2010021106 A JP 2010021106A JP 2010021106 A JP2010021106 A JP 2010021106A JP 2011158756 A JP2011158756 A JP 2011158756A
Authority
JP
Japan
Prior art keywords
developer
particles
toner
resin
developer carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010021106A
Other languages
Japanese (ja)
Inventor
Kazuhito Wakabayashi
和仁 若林
Masayoshi Shimamura
正良 嶋村
Yasuhisa Akashi
恭尚 明石
Satoshi Otake
智 大竹
Takuma Matsuda
拓真 松田
Minoru Ito
稔 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010021106A priority Critical patent/JP2011158756A/en
Publication of JP2011158756A publication Critical patent/JP2011158756A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a developer carrier configured such that recesses are uniformly formed on the surface of a developer carrier at a low cost, toner held on the surface of the developer carrier is uniformly charged, and stable image quality is obtained even in a large number of copies over a long period of time, and to provide a developing device using the developer carrier. <P>SOLUTION: The developer carrier has a resin layer on the surface of its substrate, the resin layer containing at least binding resin, conductive particles, and bowl-shaped resin particles. The resin layer contains the bowl-shaped resin particles at a ratio of ≥3 pts.mass and ≤40 pts.mass to 100 pts.mass of the binding resin. Recesses are formed on the surface of the resin layer by the shapes of the openings of the bowl-shaped resin particles. In addition, at least the binding resin and the conductive particles are present on the surface of the recesses. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、現像剤担持体および現像装置に関する。   The present invention relates to a developer carrying member and a developing device.

特許文献1には基体の表面が樹脂層で被覆されており、かつ、該樹脂層の表面に半球状の凹面が設けられている現像剤担持体が開示されている。そして、このような現像剤担持体によれば、表面形状の経時的な変化が小さいため、樹脂層の性能が変化しにくく、高品質な画像を長期にわたって得ることができる旨が記載されている。   Patent Document 1 discloses a developer carrying member in which the surface of a base is covered with a resin layer, and a hemispherical concave surface is provided on the surface of the resin layer. And according to such a developer carrier, it is described that the performance of the resin layer hardly changes and a high-quality image can be obtained over a long period of time because the change in the surface shape with time is small. .

特開平8−305156号公報JP-A-8-305156

本発明者らは上記特許文献1の現像剤担持体について検討し、以下の課題を見出した。すなわち、特許文献1に係る現像剤担持体は、球状粒子を分散させた樹脂被覆層を基体上に形成した後、該樹脂被覆層中の球状粒子を研磨又は溶解により取り除いて製造されている。しかしながら、このような方法で形成された樹脂被覆層の表面形状は、特許文献1の図4に示されるように凹面の縁部分に凸部が形成される。このような凸部は長期の使用によって削られ、現像剤担持体の表面形状を変化させ、ひいては現像剤担持体の帯電性能を変化させてしまうことがあった。
そこで本発明の目的は、長期の使用によっても表面形状がより変化しにくく、その結果として、現像剤への帯電性能が長期に亘って安定している現像剤担持体の提供にある。また、本発明の目的は、安定した現像性能を有する現像装置の提供にある。
The present inventors have studied the developer carrier of Patent Document 1 and have found the following problems. That is, the developer carrier according to Patent Document 1 is manufactured by forming a resin coating layer in which spherical particles are dispersed on a substrate, and then removing the spherical particles in the resin coating layer by polishing or dissolution. However, as for the surface shape of the resin coating layer formed by such a method, a convex part is formed at the edge of the concave surface as shown in FIG. Such protrusions may be scraped by long-term use, changing the surface shape of the developer carrier, and thus changing the charging performance of the developer carrier.
Accordingly, an object of the present invention is to provide a developer carrier in which the surface shape is less likely to change even after long-term use, and as a result, the charging performance to the developer is stable over a long period of time. Another object of the present invention is to provide a developing device having stable developing performance.

本発明に係る現像剤担持体は、基体表面に少なくとも結着樹脂、導電性粒子及びボウル形状の樹脂粒子を含有する樹脂層を有し、該樹脂層は該ボウル形状の樹脂粒子を含有し、該ボウル形状の樹脂粒子の開口部が有する形状によって該樹脂層表面に凹部が形成され、かつ該凹部の表面には該結着樹脂と該導電性粒子が少なくとも存在することを特徴とする。   The developer carrier according to the present invention has a resin layer containing at least a binder resin, conductive particles, and bowl-shaped resin particles on the surface of the substrate, and the resin layer contains the bowl-shaped resin particles, A concave portion is formed on the surface of the resin layer due to the shape of the opening of the bowl-shaped resin particles, and at least the binder resin and the conductive particles are present on the surface of the concave portion.

本発明によれば、長期に亘って、トナーを安定的に帯電させられ、高品位な電子写真画像の形成に資する現像剤担持体及び現像装置を得ることができる。   According to the present invention, it is possible to obtain a developer carrying member and a developing device that can stably charge a toner for a long period of time and contribute to the formation of a high-quality electrophotographic image.

本発明に係る現像剤担持体の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a developer carrier according to the present invention. ボウル形状の樹脂粒子の説明図である。It is explanatory drawing of a bowl-shaped resin particle. 磁性一成分現像剤を用いる現像装置の例を示す断面図である。It is sectional drawing which shows the example of the image development apparatus using a magnetic one component developer. 二成分現像剤を使用する現像装置の例を示す図である。It is a figure which shows the example of the image development apparatus which uses a two-component developing agent. スリーブゴーストの評価方法の説明図である。It is explanatory drawing of the evaluation method of a sleeve ghost. 現像剤担持体の製造に用いるブラスト装置の説明図である。It is explanatory drawing of the blasting apparatus used for manufacture of a developer carrier.

好ましい実施の形態を挙げて本発明について詳述する。図1は本発明に係る現像剤担持体の表面近傍の拡大断面図である。現像剤担持体は、基体6とその周面を被覆している樹脂層7とを有している。樹脂層7は結着樹脂15と結着樹脂15に分散された導電性粒子14とボウル形状の樹脂粒子16とを含有している。ここで、ボウル形状の樹脂粒子とは図2に示したように内部にボイドを有する中空粒子の一部を平面で裁断することによって得られるような、開口を有することで当該ボイドが外部と連通してなる形状を有する樹脂粒子である。詳細な構造については後述する。樹脂層7中において、このようなボウル形状の樹脂粒子はその開口が現像剤担持体の周面に向いて存在し、かつ、その表面が導電性粒子が分散させられた結着樹脂により被覆されている。その結果、樹脂層7の表面にはボウル形状の樹脂粒子16の開口部が有する形状に由来する凹部17が形成されている。   The present invention will be described in detail by giving preferred embodiments. FIG. 1 is an enlarged cross-sectional view of the vicinity of the surface of the developer carrying member according to the present invention. The developer carrier has a base 6 and a resin layer 7 covering the peripheral surface thereof. The resin layer 7 contains a binder resin 15, conductive particles 14 dispersed in the binder resin 15, and bowl-shaped resin particles 16. Here, the bowl-shaped resin particles are communicated with the outside by having an opening which is obtained by cutting a part of hollow particles having a void inside as shown in FIG. It is the resin particle which has the shape formed. The detailed structure will be described later. In the resin layer 7, such bowl-shaped resin particles have their openings facing the peripheral surface of the developer carrier, and the surface thereof is covered with a binder resin in which conductive particles are dispersed. ing. As a result, a concave portion 17 derived from the shape of the opening of the bowl-shaped resin particles 16 is formed on the surface of the resin layer 7.

<基体>
基体6は円筒状部材、円柱状部材ベルト状部材の如き部材からなる。基体6としてはアルミニウム、ステンレス鋼、真鍮の如きの非磁性の金属又は合金を円筒状あるいは円柱状に成型し、研磨、研削等を施したものが好適に用いられる。また、感光ドラムに直接接触させる現像方法に用いる現像剤担持体とする場合には基体6には金属製の芯金の周面にウレタン、EPDM、シリコーンゴム等のゴム層を設けた円筒部材も用い得る。
<Substrate>
The base 6 is made of a member such as a cylindrical member, a columnar member, or a belt member. As the substrate 6, a non-magnetic metal or alloy such as aluminum, stainless steel, or brass, which is molded into a cylindrical shape or a columnar shape, polished, ground, or the like is preferably used. Further, in the case of a developer carrying member used in a developing method in direct contact with the photosensitive drum, a cylindrical member in which the base 6 is provided with a rubber layer of urethane, EPDM, silicone rubber or the like on the peripheral surface of a metal cored bar is also provided. Can be used.

<樹脂層>
樹脂層7には、その表面側に開口が向くようにボウル形状の樹脂粒子16が分散させられ、かつ、該ボウル形状の樹脂粒子16は、その内面に沿って導電性粒子14を含む結着樹脂により被覆されている。そのため、樹脂層7の表面にはボウル形状の樹脂粒子の開口が有する形状による凹部17が形成されており、凹部17の表面には結着樹脂15と導電性粒子14とが存在している。本発明者らは樹脂層中に分散含有させる樹脂粒子の形状を検討したところ、ボウル形状の樹脂粒子を含有させて樹脂層を形成すると、現像剤担持体の樹脂層中でボウル型の開口部が樹脂層表面に向いて、ボウル形状の樹脂粒子の開口部内面の形状を反映して樹脂層表面に容易に均一な凹部を形成することを見出した。また、さらにこの凹部の表面には、凹部が形成されていない樹脂層表面部分と同様の樹脂層が存在することを見出した。また、樹脂層表面をより均一な凹部を有する形状とするために、分級などによって開口部の平均径を揃えたボウル形状の樹脂粒子を導電性の樹脂層に含有させてもよい。これにより現像剤担持体の表面粗さのばらつきがさらに抑えられ、安定した画質を得ることができる。
<Resin layer>
In the resin layer 7, bowl-shaped resin particles 16 are dispersed so that the opening is directed to the surface side thereof, and the bowl-shaped resin particles 16 are bound to include conductive particles 14 along the inner surface thereof. It is covered with resin. Therefore, a concave portion 17 having a shape having an opening of bowl-shaped resin particles is formed on the surface of the resin layer 7, and the binder resin 15 and the conductive particles 14 exist on the surface of the concave portion 17. The present inventors have studied the shape of the resin particles dispersed and contained in the resin layer. When the resin layer is formed by containing bowl-shaped resin particles, a bowl-shaped opening is formed in the resin layer of the developer carrier. Was found to easily form a uniform recess on the surface of the resin layer reflecting the shape of the inner surface of the opening of the bowl-shaped resin particles. Furthermore, it has been found that a resin layer similar to the resin layer surface portion where no recess is formed is present on the surface of the recess. Further, in order to make the surface of the resin layer into a shape having a more uniform recess, bowl-shaped resin particles in which the average diameters of the openings are made uniform by classification or the like may be included in the conductive resin layer. As a result, the variation in the surface roughness of the developer carrier is further suppressed, and a stable image quality can be obtained.

ボウル形状の樹脂粒子16は樹脂層を構成する結着樹脂100質量部に対して3質量部以上40質量部以下の割合で含有していることが好ましい。現像剤を均一且つ安定して摩擦帯電させて搬送するための表面粗さを達成するための凹部を樹脂層7の表面により確実、かつ均一に形成することができるからである。   The bowl-shaped resin particles 16 are preferably contained in a proportion of 3 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the binder resin constituting the resin layer. This is because the concave portion for achieving the surface roughness for transporting the developer uniformly and stably by triboelectric charging can be reliably and uniformly formed on the surface of the resin layer 7.

<ボウル形状の樹脂粒子>
ボウル形状の樹脂粒子16は、開口部の平均径と該開口部からの平均最大深さの比、つまり、開口部の平均径/平均最大深さが1.0以上2.0以下であり、一次平均粒径は5.0μm以上20.0μm以下であり、開口部周囲の外径と内径の差が0.50μm以上2.0μm以下であることが好ましい。ここで一次平均粒径とはボウル形状の樹脂粒子の開口部の平均径である。開口部の平均径と平均最大深さの比が1.0以上とすることで、開口部の平均径が平均最大深さよりも大きくなるため、開口部が表面に向き易くなる。それと共に凹部で搬送されるトナーがボウル形状の粒子の底面に接触し、トナー搬送性が十分となる。また、開口部の平均径と平均最大深さの比が2.0以下であると、相対的に浅い凹部が形成されにくいため、十分な表面粗さを得ることができ、十分なトナー搬送性を確保できる。
また、一次平均粒径が5.0μm以上とすることで、凹部表面に凹部が埋没するまで樹脂層が入り込みにくくなり、表面への凹部の形成が妨げられにくい。また、一次平均粒径を20.0μm以下とすることで、ボウル形状の樹脂粒子の開口部が現像剤担持体の表面側に向き易くなり、均一な凹部形成が容易となる。さらに、開口部周囲の縁の外径と内径の差が0.50μm以上、2.0μm以下であるとボウル形状の樹脂粒子の耐久性が低下しにくく、樹脂層を形成する際のボウル形状の樹脂粒子の破損による樹脂層表面に均一に凹部を形成し易くなる。
<Bowl-shaped resin particles>
The bowl-shaped resin particles 16 have a ratio between the average diameter of the opening and the average maximum depth from the opening, that is, the average diameter / average maximum depth of the opening is 1.0 or more and 2.0 or less. Is 5.0 μm or more and 20.0 μm or less, and the difference between the outer diameter and the inner diameter around the opening is preferably 0.50 μm or more and 2.0 μm or less. Here, the primary average particle diameter is the average diameter of the openings of the bowl-shaped resin particles. By setting the ratio of the average diameter of the openings to the average maximum depth to be 1.0 or more, the average diameter of the openings becomes larger than the average maximum depth, so that the openings are easily directed to the surface. At the same time, the toner transported in the concave portion comes into contact with the bottom surface of the bowl-shaped particles, and the toner transportability is sufficient. In addition, when the ratio of the average diameter of the openings to the average maximum depth is 2.0 or less, it is difficult to form a relatively shallow concave portion, so that sufficient surface roughness can be obtained and sufficient toner transportability is ensured. it can.
In addition, when the primary average particle size is 5.0 μm or more, the resin layer is difficult to enter until the concave portion is buried in the concave surface, and formation of the concave portion on the surface is not hindered. Further, by setting the primary average particle size to 20.0 μm or less, the opening of the bowl-shaped resin particles can be easily directed to the surface side of the developer carrying member, and uniform concave portions can be easily formed. Further, when the difference between the outer diameter and inner diameter of the edge around the opening is 0.50 μm or more and 2.0 μm or less, the durability of the bowl-shaped resin particles is unlikely to decrease, and the bowl-shaped resin particles when forming the resin layer It becomes easy to form a recess uniformly on the surface of the resin layer due to the damage of the resin.

本発明においては上記のようなボウル形状の樹脂粒子を使用することで、現像剤担持体の表面を以下のような形状とすることが好ましい。すなわち、現像剤担持体の樹脂層表面に形成される凹部の開口部の総面積は樹脂層の表面の面積の20%以上70%以下であることが好ましい。面積比率をこの範囲とすることで、凹部が適度に形成されるため現像剤の搬送性が十分となる。また、表面粗さが大きくなり過ぎないため、トナーの摩擦帯電が不均一化しにくい。面積比率の調整は、ボウル形状の樹脂粒子14の含有量を増減させることで可能である。また本発明に係る現像剤担持体は、ボウル形状の樹脂粒子の壁の内側が、導電性粒子14が分散された結着樹脂15によって被覆され、ライニングされることになる。このように形成される凹部の開口部の平均径は3.0μm以上19μm以下、該凹部の開口部からの平均最大深さは1.5μm以上19.5μm以下の表面形状が好ましい。このような数値範囲とすることで、トナー粒径に対し凹部が小さ過ぎたり、大き過ぎたりしないために、トナーの搬送性が良好となり、画像不良を引き起こしにくくなる。また、開口部からの最大深さも上記の数値範囲内とすることでトナーが確実に搬送され、画像不良を引き起こしにくい。
このようなボウル(お椀)形状の樹脂粒子自体は、特開平10−218950号公報に「お椀型重合体粒子」として記載されているように公知のものである。また、松本油脂製薬株式会社から「マツモトマイクロスフィア−M-310」(商品名)、及び「マツモトマイクロスフィアーM-311」(商品名)として市販されている。
In the present invention, it is preferable that the surface of the developer carrying member is shaped as follows by using the bowl-shaped resin particles as described above. That is, the total area of the openings of the recesses formed on the surface of the resin layer of the developer carrier is preferably 20% to 70% of the surface area of the resin layer. By setting the area ratio within this range, the concave portions are appropriately formed, so that the developer transportability is sufficient. Further, since the surface roughness does not become excessively large, the frictional charge of the toner is difficult to be non-uniform. The area ratio can be adjusted by increasing or decreasing the content of the bowl-shaped resin particles 14. Further, in the developer carrying member according to the present invention, the inside of the wall of the bowl-shaped resin particles is coated with the binder resin 15 in which the conductive particles 14 are dispersed and is lined. The average diameter of the openings of the recesses formed in this way is preferably 3.0 μm or more and 19 μm or less, and the average maximum depth from the openings of the recesses is preferably 1.5 μm or more and 19.5 μm or less. By setting the numerical value in such a range, the concave portion is not too small or too large with respect to the toner particle diameter, so that the toner transportability is improved and image defects are hardly caused. Further, by setting the maximum depth from the opening within the above numerical range, the toner is reliably conveyed and hardly causes image defects.
Such bowl-shaped resin particles themselves are known as described in Japanese Patent Application Laid-Open No. 10-218950 as “Bowl-shaped polymer particles”. Also, commercially available from Matsumoto Yushi Seiyaku Co., Ltd. as “Matsumoto Microsphere-M-310” (trade name) and “Matsumoto Microsphere M-311” (trade name).

<結着樹脂>
結着樹脂15としては公知の樹脂が使用可能である。具体例としてはフェノール樹脂、エポキシ樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリオレフィン系樹脂、シリコーン系樹脂、フッ素樹脂、スチレン樹脂、ビニル樹脂、セルロース樹脂、メラミン樹脂、尿素樹脂、ポリウレタン樹脂、ポリイミド樹脂及びアクリル樹脂等が挙げられる。これらの樹脂は、有機溶剤に対して比較的溶解性が高く、導電性粒子、ボウル形状の樹脂粒子の分散性に優れており、薄層化も容易である。また、これらの樹脂は基体との密着性や耐摩耗性にも優れており、特に現像剤(トナー)が負帯電性の場合、現像剤(トナー)に対して適度な帯電を付与できる。
<Binder resin>
A known resin can be used as the binder resin 15. Specific examples include phenolic resin, epoxy resin, polyamide resin, polyester resin, polycarbonate resin, polyolefin resin, silicone resin, fluorine resin, styrene resin, vinyl resin, cellulose resin, melamine resin, urea resin, polyurethane resin, polyimide resin. And acrylic resin. These resins are relatively highly soluble in organic solvents, have excellent dispersibility of conductive particles and bowl-shaped resin particles, and can be easily thinned. In addition, these resins are excellent in adhesion to the substrate and wear resistance, and in particular, when the developer (toner) is negatively charged, an appropriate charge can be imparted to the developer (toner).

本発明において、上記した材料によって現像剤担持体表面に形成される樹脂層は、現像剤のチャージアップに伴って生じる現像剤担持体の表面から現像剤への帯電付与不良を防ぐためには、導電性であることが望ましい。現像剤への帯電性能を十分なものとするために、樹脂層の体積抵抗値としては10Ω・cm以下、特には10Ω・cm以下10−2Ω・cm以上が好ましい。 In the present invention, the resin layer formed on the surface of the developer carrier by the above-described material is a conductive layer in order to prevent poor charge application from the surface of the developer carrier to the developer caused by developer charge-up. Is desirable. In order to make the charging performance to the developer sufficient, the volume resistance value of the resin layer is preferably 10 4 Ω · cm or less, more preferably 10 3 Ω · cm or less and 10 −2 Ω · cm or more.

樹脂層7は体積抵抗値を調整するために導電性粒子を含有している。導電性粒子14の具体例を以下に挙げる。金属(アルミニウム、銅、ニッケル、銀等)、金属酸化物(酸化アンチモン、酸化インジウム、酸化スズ)及び炭素物(カーボンファイバー、カーボンブラック、グラファイト等)の粉体。中でもカーボンブラック、特に導電性のアモルファスカーボンは電気伝導性が高く、高分子量材料に充填して導電性を付与し、その添加量を制御するだけで、ある程度任意の導電度を得ることができるため好適に用い得る。導電性粒子の添加量は上述したような体積抵抗を得るために結着樹脂100質量部に対して8〜100質量部の範囲とすることが好ましい。   The resin layer 7 contains conductive particles in order to adjust the volume resistance value. Specific examples of the conductive particles 14 are given below. Powders of metals (aluminum, copper, nickel, silver, etc.), metal oxides (antimony oxide, indium oxide, tin oxide) and carbon materials (carbon fiber, carbon black, graphite, etc.). Among them, carbon black, particularly conductive amorphous carbon, has high electrical conductivity, and can be given a certain degree of conductivity by simply filling high molecular weight material to impart conductivity and controlling the amount added. It can be suitably used. The amount of conductive particles added is preferably in the range of 8 to 100 parts by mass with respect to 100 parts by mass of the binder resin in order to obtain the volume resistance as described above.

また、導電性粒子は、樹脂層中での一次平均粒径が15nm以上100nm以下であることが好ましい。一次平均粒径が15nm以上100nm以下であると導電性粒子が樹脂層中で均一に分散されやすく、均一な導電性が得られると共に樹脂層の表面の均一な凹部形状が形成されやすくなる。   The conductive particles preferably have a primary average particle size in the resin layer of 15 nm or more and 100 nm or less. When the primary average particle diameter is 15 nm or more and 100 nm or less, the conductive particles are easily dispersed uniformly in the resin layer, so that uniform conductivity is obtained and a uniform concave shape on the surface of the resin layer is easily formed.

また、樹脂層には、ボウル形状の樹脂粒子と併用して固体潤滑剤を添加することにより、表面潤滑性が増し、樹脂層の耐久性が向上するので好ましい。このような固体潤滑剤として、例えば、結晶性グラファイト、二硫化モリブデン、窒化ホウ素、雲母、フッ化グラファイト、銀−セレン化ニオブ、塩化カルシウム−グラファイト、滑石及びステアリン酸亜鉛の如き脂肪酸金属塩からなる物質が挙げられる。中でも結晶性グラファイトは、導電性樹脂層の導電性を損なわない上に表面潤滑性が増し、樹脂層の耐久性が向上するので好ましい。この固体潤滑剤の体積平均粒径としては0.2μm〜5.0μm、特には0.5μm〜3.0μmが好ましい。また、固体潤滑剤をボウル形状の樹脂粒子と併用する場合、固体潤滑剤は該樹脂粒子よりも体積平均粒径が小さいことが好ましい。   In addition, it is preferable to add a solid lubricant to the resin layer in combination with bowl-shaped resin particles because the surface lubricity is increased and the durability of the resin layer is improved. Examples of such a solid lubricant include crystalline graphite, molybdenum disulfide, boron nitride, mica, graphite fluoride, silver-niobium selenide, calcium chloride-graphite, talc, and fatty acid metal salts such as zinc stearate. Substances. Among these, crystalline graphite is preferable because it does not impair the conductivity of the conductive resin layer, increases surface lubricity, and improves the durability of the resin layer. The volume average particle size of the solid lubricant is preferably 0.2 μm to 5.0 μm, particularly preferably 0.5 μm to 3.0 μm. Moreover, when using a solid lubricant together with a bowl-shaped resin particle, it is preferable that a solid lubricant has a volume average particle diameter smaller than this resin particle.

本発明においては、現像剤担持体の帯電性を調整するために、樹脂層中に導電性粒子、ボウル形状の樹脂粒子と共に荷電制御剤を含有させてもよい。ここで使用できる荷電制御剤として、例えば、ニグロシン及び脂肪酸金属塩による変性物;トリブチルベンジルアンモニウム−1−ヒドロキシ−4−ナフトスルホン酸塩、テトラブチルアンモニウムテトラフルオロボレートの如き四級アンモニウム塩;及びこれらの類似体であるホスホニウム塩の如きオニウム塩及びこれらのレーキ顔料(レーキ化剤としては、燐タングステン酸、燐モリブデン酸、燐タングステンモリブデン酸、タンニン酸、ラウリン酸、没食子酸、フェリシアン化物、フェロシアン化物);高級脂肪酸の金属塩;ブチルスズオキサイド、ジオクチルスズオキサイド、ジシクロヘキシルスズオキサイドの如きジオルガノスズオキサイド;ジブチルスズボレート、ジオクチルスズボレート、ジシクロヘキシルスズボレートの如きジオルガノスズボレート類;グアニジン類;イミダゾール化合物が挙げられる。これらの荷電制御剤の中でも、特に球形化度の高い負帯電性トナーを用いる場合は、荷電制御剤として鉄粉に対して正帯電性である第4級アンモニウム塩化合物を樹脂層中に含有させることが、トナーへの帯電付与性を向上させる点で好ましい。このとき、前記樹脂層は、樹脂構造中にアミノ基、=NH基、又はNH−結合の少なくともいずれかを有することがさらに好ましい。現像剤担持体上に上記の第4級アンモニウム塩化合物と特定の結着樹脂を組み合わせた樹脂層を設けることで、球形化度の高い負帯電性トナーの過剰帯電を防ぐことが可能となり、負帯電性トナーを適正に摩擦帯電することができる。これにより、現像剤担持体上でのトナーのチャージアップを防ぎ、樹脂層表面にトナー融着が発生しにくく、トナーの高い帯電安定性を保持でき、その結果、環境安定性及び長期安定性を有する高精細画像を提供することが可能となる。本発明において好適に使用される、上記した機能を有する第4級アンモニウム塩化合物としては、鉄粉に対して正帯電性を有するものであればいずれのものでもよく、例えば、下記一般式(1)で表される化合物が挙げられる。

Figure 2011158756
式中、R1〜R4は、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、アルアルキル基を表し、X-は酸の陰イオンを表す。一般式(1)においてX-で表されている酸の陰イオンとしては、有機硫酸イオン、有機スルホン酸イオン、有機リン酸イオン、モリブデン酸イオン、タングステン酸イオン、モリブデン原子或いはタングステン原子を含むヘテロポリ酸イオン等が好ましい。 In the present invention, in order to adjust the chargeability of the developer carrying member, a charge control agent may be contained in the resin layer together with the conductive particles and the bowl-shaped resin particles. Examples of charge control agents that can be used here include modified products of nigrosine and fatty acid metal salts; quaternary ammonium salts such as tributylbenzylammonium-1-hydroxy-4-naphthosulfonate and tetrabutylammonium tetrafluoroborate; Onium salts such as phosphonium salts and their lake pigments (the rake agents include phosphotungstic acid, phosphomolybdic acid, phosphotungsten molybdic acid, tannic acid, lauric acid, gallic acid, ferricyanide, ferricyanide, Russian compounds); metal salts of higher fatty acids; diorganotin oxides such as butyltin oxide, dioctyltin oxide, dicyclohexyltin oxide; dibutyltinborate, dioctyltinborate, dicyclohexyltinborate Organo tin borate compounds; guanidine; imidazole compounds. Among these charge control agents, when using a negatively chargeable toner having a high degree of spheroidization, a quaternary ammonium salt compound that is positively charged with respect to iron powder is included in the resin layer as the charge control agent. Is preferable in terms of improving the charge imparting property to the toner. At this time, it is more preferable that the resin layer has at least one of an amino group, ═NH group, and NH— bond in the resin structure. By providing a resin layer in which the above quaternary ammonium salt compound and a specific binder resin are combined on the developer carrier, it becomes possible to prevent excessive charging of the negatively charged toner having a high degree of spheroidization. The chargeable toner can be appropriately frictionally charged. This prevents toner charge-up on the developer carrier, prevents toner fusion on the resin layer surface, and maintains high toner charging stability. As a result, environmental stability and long-term stability are improved. It becomes possible to provide the high-definition image which has. As the quaternary ammonium salt compound having the above-mentioned function suitably used in the present invention, any quaternary ammonium salt compound having a positive chargeability with respect to iron powder may be used. For example, the following general formula (1 ).
Figure 2011158756
In the formula, R 1 to R 4 each independently represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or an aralkyl group, and X − represents an anion of an acid. Examples of the anion of the acid represented by X- in the general formula (1) include organic sulfate ion, organic sulfonate ion, organic phosphate ion, molybdate ion, tungstate ion, molybdenum atom or tungsten atom. Acid ions and the like are preferable.

現像剤担持体の樹脂層の表面粗さは、日本工業規格(JIS)B0601-2001に係る算術平均粗さ(Ra)で0.40μm以上2.50μm以下、の範囲が好ましい。これにより、現像剤が十分に搬送され、現像剤不足による画像濃度の低下や、過剰な帯電による飛び散りやブロッチなどの発生を抑制できる。また、トナーの摩擦帯電が均一化し、スジむらや、反転カブリ、帯電不足による画像濃度薄などの発生を抑制できる。同様に樹脂層の膜厚に関しても、現像方式によって好適な膜厚は異なるものの、一般的には5.0μm以上50.0μm以下の範囲にあることが好ましい。   The surface roughness of the resin layer of the developer carrying member is preferably in the range of 0.40 μm to 2.50 μm in terms of arithmetic average roughness (Ra) according to Japanese Industrial Standard (JIS) B0601-2001. As a result, the developer is sufficiently transported, and it is possible to suppress the occurrence of image density reduction due to insufficient developer, scattering and blotch due to excessive charging. Further, the frictional charging of the toner is made uniform, and the occurrence of streaks, reversal fog, and low image density due to insufficient charging can be suppressed. Similarly, the film thickness of the resin layer is preferably in the range of 5.0 μm or more and 50.0 μm or less, although the preferred film thickness varies depending on the development method.

本発明に係る樹脂層7は、結着樹脂15、導電性粒子14、ボウル形状の樹脂粒子16等を溶剤中に分散混合して塗料化し基体6上に塗工することで得られる。塗工方法としては、ディッピング法、スプレー法、ロールコート法等の公知の方法が適用できるが、ボウル形状の樹脂粒子に由来する凹部を表面に均一に形成するためにはスプレー法が特に好ましい。スプレー法によって形成される液滴には液滴自身の表面積を小さくしようとする表面張力(球形を維持する力)が働く。この表面張力によって液滴表面に存在するボウル形状の樹脂粒子は凸部が液滴表面から突出する状態よりも凹部内部に他の塗料成分を含みながら凹部を表面に向けた状態が球形に近くなり、より安定な状態となる。このような状態の液滴が基体に塗工されると樹脂層の表面に存在するボウル形状の樹脂粒子は凹部を樹脂層の表面に向いた状態で存在することになり、凹部を均一に形成することができる。   The resin layer 7 according to the present invention is obtained by dispersing and mixing the binder resin 15, the conductive particles 14, the bowl-shaped resin particles 16, and the like in a solvent to form a paint and coating it on the substrate 6. As a coating method, known methods such as a dipping method, a spray method, and a roll coating method can be applied, but the spray method is particularly preferable in order to uniformly form concave portions derived from bowl-shaped resin particles on the surface. The droplet formed by the spray method is subjected to surface tension (force for maintaining a spherical shape) to reduce the surface area of the droplet itself. Due to this surface tension, the bowl-shaped resin particles present on the surface of the droplets are more spherical than the state in which the convexes protrude from the surface of the droplets, while the concave portions contain other paint components inside the concave portions. , Become more stable. When droplets in such a state are applied to the substrate, the bowl-shaped resin particles present on the surface of the resin layer will exist with the recesses facing the surface of the resin layer, and the recesses will be formed uniformly. can do.

<現像装置>
図5は本発明の現像剤担持体を備えた現像装置の断面図である。静電潜像を担持するための静電潜像担持体(感光ドラム)1は矢印B方向に回転されている。感光ドラム1に対峙した現像剤担持体8は、金属製円筒管(基体)6とその表面に形成される樹脂層7から構成されている。ホッパー3中には、磁性一成分トナー4を攪拌する攪拌翼10が設けられている。ホッパー3から現像剤担持体8に供給された磁性一成分トナー4は、現像剤担持体8上に担持されており、現像剤担持体8が矢印A方向に回転することによって、現像剤担持体8と感光ドラム1とが対峙した現像領域Dへと搬送される。現像剤担持体8内には、磁性一成分トナー4を現像剤担持体8上に磁気的に引き付け、保持するための磁石5が配置されている。磁性一成分トナー4は、現像剤担持体8、現像剤層厚規制部材(弾性ブレード)11及び撹拌翼10との摩擦によって摩擦帯電し、感光ドラム1上の静電潜像を現像可能になる。この現像装置では、現像剤層を介して現像剤層圧規制部材11を現像剤担持体8に圧接させている。これにより現像剤担持体上に磁性一成分現像剤の薄層が形成される。
<Developing device>
FIG. 5 is a cross-sectional view of a developing device provided with the developer carrying member of the present invention. An electrostatic latent image carrier (photosensitive drum) 1 for carrying an electrostatic latent image is rotated in the direction of arrow B. A developer carrier 8 facing the photosensitive drum 1 is composed of a metal cylindrical tube (base) 6 and a resin layer 7 formed on the surface thereof. In the hopper 3, a stirring blade 10 for stirring the magnetic one-component toner 4 is provided. The magnetic one-component toner 4 supplied from the hopper 3 to the developer carrier 8 is carried on the developer carrier 8, and the developer carrier 8 rotates in the direction of arrow A as the developer carrier 8 rotates. 8 and the photosensitive drum 1 are conveyed to the developing area D facing each other. In the developer carrier 8, a magnet 5 for magnetically attracting and holding the magnetic one-component toner 4 on the developer carrier 8 is disposed. The magnetic one-component toner 4 is frictionally charged by friction with the developer carrier 8, the developer layer thickness regulating member (elastic blade) 11 and the stirring blade 10, and can develop the electrostatic latent image on the photosensitive drum 1. . In this developing device, the developer layer pressure regulating member 11 is brought into pressure contact with the developer carrier 8 through the developer layer. As a result, a thin layer of magnetic one-component developer is formed on the developer carrier.

現像剤担持体8上に、現像剤層厚規制部材11によって形成される磁性一成分トナー4の薄層は、現像領域Dにおける現像剤担持体8と感光ドラム1との間の最小間隙よりも更に薄いものであることが好ましい。すなわち、このようなトナー薄層により静電潜像を現像するいわゆる、非接触型現像装置に特に有効である。上記現像剤担持体8には、これに担持された磁性一成分トナー4を飛翔させるために、電源9により現像バイアス電圧が印加されている。この現像バイアス電圧として直流電圧を使用するときは、静電潜像の画像部(トナーが付着して可視化される領域)の電位と、背景部の電位との間の値の電圧を現像剤担持体8に印加することが好ましい。一方、現像画像の濃度を高めるために、或いは階調性を向上させるために、現像剤担持体8に交番バイアス電圧を印加して、現像部に向きが交互に反転する振動電界を形成してもよい。この場合には、上記した画像部の電位と背景部の電位の間の値を有する直流電圧成分が重畳された交番バイアス電圧を、現像剤担持体8に印加する。また、高電位部と低電位部とを有する静電潜像の高電位部にトナーを付着させて可視化する、いわゆる、正規現像においては、静電潜像の極性と逆極性に帯電するトナーを使用し、一方、静電潜像の低電位部にトナーを付着させて可視化する、いわゆる、反転現像においては、静電潜像の極性と同極性に帯電するトナーを使用する。なお、高電位、低電位というのは、絶対値による表現である。いずれにしても、磁性一成分トナー4は、現像剤担持体8との摩擦によって静電潜像を現像するための極性に帯電される。感光ドラム1上に形成されたトナー像は、感光ドラムの回転により転写部(不図示)に移動し、そこで感光ドラム1の回転と同期して供給される転写材(不図示)上に静電的に転写される。トナー像が転写された転写材は更に定着部にて定着されて画像が形成される。現像剤担持体8上への磁性一成分トナー4の層厚をコントロールするのは、現像剤層厚規制部材11である必要はなく、図3(a)に示すように磁性ブレード2を用いても良い。   The thin layer of the magnetic one-component toner 4 formed on the developer carrier 8 by the developer layer thickness regulating member 11 is smaller than the minimum gap between the developer carrier 8 and the photosensitive drum 1 in the development region D. Further, it is preferably thin. That is, it is particularly effective for a so-called non-contact type developing apparatus that develops an electrostatic latent image with such a toner thin layer. A developing bias voltage is applied to the developer carrier 8 by a power source 9 in order to cause the magnetic one-component toner 4 carried on the developer carrier 8 to fly. When a DC voltage is used as the developing bias voltage, a voltage having a value between the potential of the image portion of the electrostatic latent image (the region visualized by toner adhesion) and the potential of the background portion is carried by the developer. Application to the body 8 is preferred. On the other hand, in order to increase the density of the developed image or to improve the gradation, an alternating bias voltage is applied to the developer carrier 8 to form an oscillating electric field whose direction is alternately reversed in the developing portion. Also good. In this case, an alternating bias voltage on which a DC voltage component having a value between the above-described image portion potential and background portion potential is superimposed is applied to the developer carrier 8. In the so-called regular development, in which toner is attached to a high potential portion of an electrostatic latent image having a high potential portion and a low potential portion for visualization, toner charged to a polarity opposite to that of the electrostatic latent image is applied. On the other hand, in so-called reversal development, in which toner is attached to a low potential portion of an electrostatic latent image for visualization, toner charged with the same polarity as that of the electrostatic latent image is used. Note that high potential and low potential are expressions based on absolute values. In any case, the magnetic one-component toner 4 is charged to a polarity for developing the electrostatic latent image by friction with the developer carrier 8. The toner image formed on the photosensitive drum 1 moves to a transfer portion (not shown) by the rotation of the photosensitive drum, and electrostatically is transferred onto a transfer material (not shown) supplied in synchronization with the rotation of the photosensitive drum 1 there. Is transcribed. The transfer material onto which the toner image has been transferred is further fixed by a fixing unit to form an image. It is not necessary for the developer layer thickness regulating member 11 to control the layer thickness of the magnetic one-component toner 4 on the developer carrier 8, but using a magnetic blade 2 as shown in FIG. Also good.

現像剤4が非磁性一成分トナーであるときは図4に示す通り、現像剤担持体8の基体6は円柱状でもよい。なお、現像剤担持体8には、該現像剤担持体8に新たな非磁性一成分トナーを供給すると共に現像に使用されずにホッパー3に戻ってくる非磁性一成分トナーを掻き落とす弾性ローラー13が当接している。この弾性ローラー13は、現像剤担持体8、現像剤層厚規制部材11と共に、非磁性一成分トナー4を摩擦帯電させる働きもしている。   When the developer 4 is a non-magnetic one-component toner, the base 6 of the developer carrier 8 may be cylindrical as shown in FIG. The developer carrier 8 is supplied with a new non-magnetic one-component toner to the developer carrier 8 and an elastic roller that scrapes off the non-magnetic one-component toner that returns to the hopper 3 without being used for development. 13 is in contact. The elastic roller 13 has a function of frictionally charging the non-magnetic one-component toner 4 together with the developer carrier 8 and the developer layer thickness regulating member 11.

現像剤担持体8上に担持された非磁性一成分トナーは弾性ブレード11により層厚(担持量)が規制されると共に感光ドラム1に形成されている静電潜像の現像に必要な帯電量になり、更に、現像剤担持体8の回転により感光ドラム1と対峙した現像領域Dに送られる。 現像領域Dで現像剤担持体8上から非磁性一成分トナーは静電的に静電潜像に飛翔或いは接触移行して、静電潜像を現像する。なお、この現像に際し、非磁性一成分トナーの静電潜像への移行を効率よくするために、感光ドラム1と現像剤担持体8との間に静電圧を電源9より負荷する。この際に、現像トナー像のコントラストを上げるために上記で記載したような交番電圧を印加することもできる。現像剤担持体8は更に回転して、現像に使用されなった非磁性一成分トナーを担持したままホッパー3に戻り、そこで現像剤担持体8の表面から非磁性一成分トナーが弾性ローラー13にて掻き取られ、また、弾性ローラー13により新たに非磁性一成分トナーが現像担持体8に担持される。一方、感光ドラム1上に形成されたトナー像は、感光ドラム1の回転に伴い、転写領域へ移動し、そこで同期して供給されてきた転写部材へ静電的に移される。トナー像が移された転写部材は定着領域へ運ばれ、そこでトナー像は転写部材上に固定化される。   The non-magnetic one-component toner carried on the developer carrying member 8 is regulated in layer thickness (carrying amount) by the elastic blade 11 and charged to develop the electrostatic latent image formed on the photosensitive drum 1 Further, the toner is sent to the developing area D facing the photosensitive drum 1 by the rotation of the developer carrier 8. In the development area D, the non-magnetic one-component toner electrostatically flies or contacts the electrostatic latent image from the developer carrying member 8 to develop the electrostatic latent image. During this development, a static voltage is applied from the power source 9 between the photosensitive drum 1 and the developer carrier 8 in order to efficiently transfer the nonmagnetic one-component toner to the electrostatic latent image. At this time, an alternating voltage as described above can be applied in order to increase the contrast of the developed toner image. The developer carrier 8 further rotates and returns to the hopper 3 while carrying the non-magnetic one-component toner that has not been used for development, where the non-magnetic one-component toner is transferred from the surface of the developer carrier 8 to the elastic roller 13. The non-magnetic one-component toner is newly carried on the developing carrier 8 by the elastic roller 13. On the other hand, the toner image formed on the photosensitive drum 1 moves to the transfer region as the photosensitive drum 1 rotates, and is electrostatically transferred to the transfer member supplied in synchronization therewith. The transfer member to which the toner image has been transferred is carried to a fixing region where the toner image is fixed on the transfer member.

<現像剤規制部材>
現像剤規制部材としては、現像剤担持体との当接部に十点平均粗さ(Rzjis)が2.0μm以上15.0μm以下かつ凹凸平均間隔(RSm)が0.030mm以上0.170mm以下の粗面を有する弾性ブレードを用いることが好ましい。これにより、現像剤担持体表面のトナー融着及びトナー劣化をより効果的に抑制できる。かかる現像剤層厚規制部材は、現像剤担持体からその上に担持された現像剤の余剰分を除去して現像容器に戻すと共に現像剤を帯電できるものであればよい。例えば、現像剤層厚規制部材の具体例としては、弾性材料からなり、現像容器内で現像剤担持体に当接して設けられたタイプのものがある。このタイプの現像剤層厚規制部材の材質としてはゴム弾性を有するものが好適である。現像剤層厚規制部材の表面にポリアミド樹脂などの樹脂層を設けてもよい。また、金属弾性を有する弾性板も好例である。弾性ブレードの粗面化表面は、物理的方法及び/又は化学的方法により形成することができる。
<Developer regulating member>
As a developer regulating member, a rough surface having a ten-point average roughness (Rzjis) of 2.0 μm or more and 15.0 μm or less and an unevenness average interval (RSm) of 0.030 mm or more and 0.170 mm or less at a contact portion with the developer carrying member. It is preferable to use an elastic blade having the same. Thereby, toner fusion and toner deterioration on the surface of the developer carrying member can be more effectively suppressed. Such a developer layer thickness regulating member may be any member that can remove the excess of the developer carried thereon from the developer carrying member, return it to the developing container, and charge the developer. For example, as a specific example of the developer layer thickness regulating member, there is a type that is made of an elastic material and is provided in contact with a developer carrier within a developer container. As a material for this type of developer layer thickness regulating member, a material having rubber elasticity is suitable. A resin layer such as a polyamide resin may be provided on the surface of the developer layer thickness regulating member. An elastic plate having metal elasticity is also a good example. The roughened surface of the elastic blade can be formed by physical methods and / or chemical methods.

また、本発明に係る現像剤担持体はトナーとキャリアを含む二成分系現像剤を用いる現像に使用することもできる。本発明の現像剤担持体が組み込まれる二成分現像装置について図4を用いて説明する。図4において、現像容器225の現像室245内に、矢印a方向に回転される静電潜像保持体224に対向して現像剤担持体としての非磁性現像スリーブ(現像剤担持体)221が備えられている。現像剤担持体221内に、磁界発生手段としての磁性ローラー222が不動に配置されており、磁性ローラー222は、略頂部の位置から矢印bの回転方向に順にS1、N1、S2、N2、N3に着磁されている。現像室245内には、トナー240と磁性キャリア243とを混合した二成分現像剤241が収容されている。この現像剤241は、現像室245の一端で上端開放の隔壁248の図示しない一方の開口を通って現像容器225の攪拌室242内に送られる。そのとき、トナー室247から攪拌室242内に供給されたトナー240が補給され、攪拌室242内の第1現像剤攪拌・搬送手段250によって混合されながら、攪拌室242の他端に搬送される。攪拌室242の他端に搬送された現像剤241は、隔壁248の図示しない他方の開口を通って現像室245内に戻される。そこで、現像室245内の第2現像剤攪拌・搬送手段251と、現像室245内上部で搬送手段251による搬送方向と逆方向に現像剤を搬送する第3現像剤攪拌・搬送手段252により、攪拌・搬送されながら現像剤担持体221に搬送される。現像剤担持体221に供給された現像剤241は、上記の磁石ローラー222の磁力の作用により磁気的に拘束され、現像剤担持体221に担持され、現像剤担持体221の略頂部上に設けた現像剤規制部材ブレード223によって現像スリーブ221上で現像剤241の薄層に形成されながら、現像剤担持体221の矢印B方向への回転に伴い潜像保持体224と対向した現像部Cへと搬送される。そこで、潜像保持体224上の静電潜像の現像に供される。現像において消費されなかった残余の現像剤241は、現像剤担持体221の回転により現像容器225内に回収される。現像容器225内では同極のN2、N3間での反発磁界により現像剤担持体221上に磁気的に拘束されている、現像において消費されなかった残余の現像剤241を剥ぎ取るようになっている。上記の磁極N2により現像剤241が磁力線に沿って穂立ちしたときのトナー飛散を防止するために、現像容器225の下部には弾性シール部材231がその一端を現像剤241に接触するようにして固定、設置されている。図3(a)〜(c)は本発明の現像剤担持体が使用可能な現像装置を模式的に例示したものであり、前記した層厚規制部材以外にも、現像容器の形状、攪拌翼の有無、磁極の配置、補給容器の有無等に様々な形態がある。   The developer carrying member according to the present invention can also be used for development using a two-component developer containing toner and carrier. A two-component developing apparatus in which the developer carrying member of the present invention is incorporated will be described with reference to FIG. In FIG. 4, a non-magnetic developing sleeve (developer carrying member) 221 as a developer carrying member is opposed to the electrostatic latent image holding member 224 rotated in the direction of arrow a in the developing chamber 245 of the developing container 225. Is provided. In the developer carrier 221, a magnetic roller 222 as a magnetic field generating means is fixedly arranged, and the magnetic roller 222 is sequentially S1, N1, S2, N2, N3 from the substantially top position in the rotation direction of the arrow b. Is magnetized. In the developing chamber 245, a two-component developer 241 in which the toner 240 and the magnetic carrier 243 are mixed is accommodated. The developer 241 is sent into the stirring chamber 242 of the developing container 225 through one opening (not shown) of the partition wall 248 open at the upper end at one end of the developing chamber 245. At that time, the toner 240 supplied from the toner chamber 247 into the stirring chamber 242 is replenished and conveyed to the other end of the stirring chamber 242 while being mixed by the first developer stirring / conveying means 250 in the stirring chamber 242. . The developer 241 conveyed to the other end of the stirring chamber 242 is returned to the developing chamber 245 through the other opening (not shown) of the partition wall 248. Therefore, the second developer agitating / conveying means 251 in the developing chamber 245 and the third developer agitating / conveying means 252 that conveys the developer in the direction opposite to the conveying direction by the conveying means 251 in the upper part of the developing chamber 245, It is conveyed to the developer carrying member 221 while being stirred and conveyed. The developer 241 supplied to the developer carrier 221 is magnetically constrained by the magnetic force of the magnet roller 222 described above, and is carried on the developer carrier 221, provided on a substantially top portion of the developer carrier 221. The developer regulating member blade 223 forms a thin layer of the developer 241 on the developing sleeve 221, while the developer carrying member 221 rotates in the direction of arrow B to the developing portion C facing the latent image holding member 224. It is conveyed. Therefore, the electrostatic latent image on the latent image holding member 224 is used for development. The remaining developer 241 that has not been consumed in the development is collected in the developer container 225 by the rotation of the developer carrier 221. In the developer container 225, the remaining developer 241 that is magnetically constrained on the developer carrier 221 by the repulsive magnetic field between N2 and N3 of the same polarity and that has not been consumed in development is stripped off. Yes. In order to prevent toner scattering when the developer 241 rises along the lines of magnetic force due to the magnetic pole N2, the elastic seal member 231 is arranged so that one end thereof is in contact with the developer 241 at the bottom of the developer container 225. Fixed and installed. 3A to 3C schematically illustrate a developing device in which the developer carrier of the present invention can be used. In addition to the layer thickness regulating member described above, the shape of the developing container, the stirring blade There are various forms such as presence / absence of magnetic poles, arrangement of magnetic poles, presence / absence of supply containers, and the like.

<現像剤>
本発明に係る現像剤(トナー)は、結着樹脂に着色剤、荷電制御剤、離型剤、無機微粒子等を配合したもので、タイプとして、磁性材料を必須成分とする磁性一成分現像剤と磁性材料を含まない非磁性一成分現像剤がある。タイプは現像装置に適応して適宜選択される。また、本発明で使用する現像剤(トナー)は、いずれのタイプであっても、重量平均粒径(D4)が4μm以上11μm以下の範囲にあることが好ましい。このような現像剤(トナー)を使用すれば、好適な帯電量が得られ、良好な画質及び画像濃度を達成することができる。結着樹脂としては、一般に公知の樹脂が使用可能であり、例えばビニル系樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、フェノール樹脂が挙げられるが、この中でもビニル系樹脂、ポリエステル樹脂が好ましい。現像剤(トナー)には帯電特性を向上させる目的で、荷電制御剤をトナー粒子に包含させる(内添)、又はトナー粒子と混合(外添)して用いることができる。これは、荷電制御剤によって、現像システムに応じた最適の荷電量コントロールが可能となるためである。 正の荷電制御剤としてはニグロシン、トリアミノトリフェニルメタン系染料及び脂肪酸金属塩による変性物等が挙げられる。負の荷電制御剤としてはアセチルアセトン金属錯体、モノアゾ金属錯体、ナフトエ酸あるいはサリチル酸系の金属錯体又は塩が挙げられる。
<Developer>
The developer (toner) according to the present invention is obtained by blending a binder resin with a colorant, a charge control agent, a release agent, inorganic fine particles and the like, and as a type, a magnetic one-component developer having a magnetic material as an essential component. And non-magnetic one-component developer containing no magnetic material. The type is appropriately selected according to the developing device. In addition, the developer (toner) used in the present invention is preferably in the range of 4 μm or more and 11 μm or less in weight average particle diameter (D4) regardless of the type. If such a developer (toner) is used, a suitable charge amount can be obtained, and good image quality and image density can be achieved. As the binder resin, generally known resins can be used, and examples thereof include vinyl resins, polyester resins, polyurethane resins, epoxy resins, and phenol resins, among which vinyl resins and polyester resins are preferable. The developer (toner) can be used by incorporating a charge control agent into the toner particles (internal addition) or mixing with the toner particles (external addition) for the purpose of improving charging characteristics. This is because the charge control agent enables optimal charge amount control according to the development system. Examples of positive charge control agents include nigrosine, triaminotriphenylmethane-based dyes and modified products of fatty acid metal salts. Examples of the negative charge control agent include acetylacetone metal complexes, monoazo metal complexes, naphthoic acid or salicylic acid-based metal complexes or salts.

現像剤が磁性現像剤である場合には、磁性材料として酸化鉄系金属酸化物、磁性金属、磁性金属とAl、Co、Cu等との合金を配合する。これら磁性材料に着色剤としての役目をさせることもできる。 現像剤に配合する着色剤としては公知の顔料や染料を使用することができる。現像剤には離型剤を配合することが好ましい。離型剤としては、脂肪族炭化水素系ワックスや脂肪酸エステルを主成分とするワックス類を好適に用い得る。更に、現像剤には環境安定性、帯電安定性、現像性、流動性、保存性向上及びクリーニング性向上のために無機微粉体を外添し、現像剤表面近傍に存在させることが好ましい。当該無機微粉体の例としてはシリカ、酸化チタン、アルミナが挙げられ、中でもシリカ微粉体が好ましい。更にまた、上記無機微粉体以外の外添剤として、ポリフッ化ビニリデン等の滑剤や酸化セリウム等の研磨剤を添加してもよい。現像剤(トナー)を製造するには、まず、結着樹脂、着色剤としての顔料又は染料、離型剤、必要に応じて磁性材料や荷電制御剤、その他の添加剤を混合機により充分に混合する。次いで、得られた混合物を熱混練機を用いて溶融して樹脂類を互いに相溶せしめ、離型剤、顔料、染料、磁性体を分散又は溶解せしめる。この溶融物を、冷却固化した後、粉砕及び分級を行ってトナー粒子を得る。さらに、必要に応じて所望の添加剤を加えて、混合機により混合して現像剤(トナー)とすることもできる。このような現像剤は、種々の方法で、球形化処理、表面平滑化処理を施して用いると、転写性が良好となり好ましい。そのような方法としては、攪拌羽根又はブレードなど、及びライナー又はケーシングなどを有する装置で、例えば、現像剤をブレードとライナーの間の微小間隙を通過させる際に、機械的な力により表面を平滑化したり現像剤を球形化したりする方法、温水中にトナー粒子を懸濁させ球形化する方法、熱気流中にトナーを曝し、球形化する方法がある。また、球状の現像剤を直接作る方法としては、水中に現像剤結着樹脂となる単量体を主成分とする混合物を懸濁させ、重合してトナー粒子とする方法がある。一般には、重合性単量体、着色剤、重合開始剤、さらに必要に応じて架橋剤、磁性材料、荷電制御剤、離形剤、その他の添加剤を均一に溶解又は分散せしめて単量体組成物とする。その後、この単量体組成物を分散安定剤含有の連続層、例えば水相中に適当な攪拌機を用いて適度な粒滴に分散し、さらに重合反応を行わせ、所望の粒子径を有する現像剤を得る。   When the developer is a magnetic developer, an iron oxide metal oxide, magnetic metal, or an alloy of magnetic metal with Al, Co, Cu, or the like is blended as the magnetic material. These magnetic materials can also serve as a colorant. Known colorants and dyes can be used as the colorant to be blended in the developer. It is preferable to add a release agent to the developer. As the mold release agent, aliphatic hydrocarbon waxes and waxes mainly composed of fatty acid esters can be suitably used. Further, it is preferable that an inorganic fine powder is externally added to the developer in order to improve environmental stability, charging stability, developability, fluidity, storage stability and cleaning properties, and the developer is present in the vicinity of the developer surface. Examples of the inorganic fine powder include silica, titanium oxide, and alumina, and silica fine powder is particularly preferable. Furthermore, a lubricant such as polyvinylidene fluoride or an abrasive such as cerium oxide may be added as an external additive other than the inorganic fine powder. In order to produce a developer (toner), first, a binder resin, a pigment or dye as a colorant, a release agent, and if necessary, a magnetic material, a charge control agent, and other additives are sufficiently mixed with a mixer. Mix. Next, the obtained mixture is melted using a thermal kneader to make the resins compatible with each other, and the release agent, pigment, dye, and magnetic substance are dispersed or dissolved. The melt is cooled and solidified, and then pulverized and classified to obtain toner particles. Furthermore, a desired additive may be added as necessary and mixed with a mixer to obtain a developer (toner). When such a developer is used after being subjected to a spheroidizing treatment or a surface smoothing treatment by various methods, it is preferable because transferability is good. As such a method, an apparatus having a stirring blade or a blade, and a liner or a casing, for example, smoothes the surface by a mechanical force when the developer passes through a minute gap between the blade and the liner. There are a method in which the toner particles are spheroidized and the developer is spheroidized, a method in which toner particles are suspended in warm water to spheroidize, and a method in which toner is exposed to a hot air stream to spheroidize. In addition, as a method for directly producing a spherical developer, there is a method in which a mixture containing a monomer as a developer binder resin as a main component is suspended in water and polymerized to form toner particles. Generally, the monomer is prepared by uniformly dissolving or dispersing a polymerizable monomer, a colorant, a polymerization initiator, and, if necessary, a crosslinking agent, a magnetic material, a charge control agent, a release agent, and other additives. It is set as a composition. Thereafter, this monomer composition is dispersed in appropriate layers in a continuous layer containing a dispersion stabilizer, such as an aqueous phase, using an appropriate stirrer, and further subjected to a polymerization reaction to develop a developer having a desired particle size. Get the agent.

二成分現像剤である場合、キャリアは個数平均粒径(Dv)が15.0μm以上70.0μm以下、特には20.0μm以上50.0μm以下であることが好ましい。Dvをこの範囲内にsることにより、磁性キャリアの形状を略球形且つ均一な大きさに制御する事ができるため、良好な帯電性能を維持できる。キャリアは、真比重が3.0 g/cm3以上5.0g/cm3以下、特には3.2 g/cm3以上4.0g/cm3以下である。真比重がこの範囲にあると、キャリアとトナーとの撹拌混合においてトナーへの負荷が少ない。そのためキャリアへのトナースペントが抑制され、キャリアからのトナーの分離れを長期間良好に維持することができる。また感光ドラムへのキャリア付着が抑制されるため好ましい。キャリア、磁性キャリアは、少なくともその表面に樹脂成分を有するものが好ましく用いられる。このような磁性キャリアとしては、鉄、銅、ニッケル、コバルトの如き磁性金属、マグネタイト、フェライトの如き磁性酸化物の芯材及びその上に形成された樹脂層からなる磁性キャリア、又は上述したような磁性微粒子を樹脂中に分散した磁性微粒子分散型キャリアが使用可能である。 In the case of a two-component developer, the carrier preferably has a number average particle diameter (Dv) of 15.0 μm to 70.0 μm, particularly 20.0 μm to 50.0 μm. By setting Dv within this range, the shape of the magnetic carrier can be controlled to be substantially spherical and uniform, so that good charging performance can be maintained. The carrier has a true specific gravity of 3.0 g / cm 3 or more and 5.0 g / cm 3 or less, particularly 3.2 g / cm 3 or more and 4.0 g / cm 3 or less. When the true specific gravity is within this range, the load on the toner is small in the stirring and mixing of the carrier and the toner. Therefore, toner spent on the carrier is suppressed, and separation of the toner from the carrier can be maintained well for a long time. Further, it is preferable because carrier adhesion to the photosensitive drum is suppressed. As the carrier and the magnetic carrier, those having a resin component on at least the surface thereof are preferably used. Examples of such a magnetic carrier include a magnetic metal such as iron, copper, nickel and cobalt, a core material of a magnetic oxide such as magnetite and ferrite, and a resin layer formed thereon, or as described above. A magnetic fine particle dispersed carrier in which magnetic fine particles are dispersed in a resin can be used.

以下に本発明に関わる物性の測定方法について述べる。 The physical property measurement method according to the present invention will be described below.

(1)ボウル形状の樹脂粒子の平均径;
超深度形状測定顕微鏡(株式会社KEYENCE製、VK-8510;製品名)を用いて2000倍の倍率で観察し粒径の確認を行った。このうち開口部が上を向いた粒子について開口部分の長径と短径を測り、長径と短径の和を2で割った値を粒径とした。異なる100個の粒子について求めた粒径の平均値を開口部の平均径(図2のA)とした。さらに三次元化処理を行い、開口部からの最大深さ(図2のB)を測定した。全サンプルの50%値をもって該当の大きさとした。外径と内径の差の測定については、一つの粒子につき、3ヶ所をランダムに選び、その部分の外径と内径の差(図2のC)を測り、平均した値をその粒子の外径と内径の差とした。
(1) Average diameter of bowl-shaped resin particles;
Using an ultra-deep shape measuring microscope (manufactured by KEYENCE, VK-8510; product name), the particle size was confirmed by observation at a magnification of 2000 times. Among these, for the particles with the opening facing upward, the major axis and minor axis of the opening were measured, and the value obtained by dividing the sum of the major axis and the minor axis by 2 was taken as the particle size. The average value of the particle diameters obtained for 100 different particles was defined as the average diameter of the openings (A in FIG. 2). Three-dimensional processing was performed, and the maximum depth from the opening (B in Fig. 2) was measured. The corresponding size was determined by 50% of all samples. For the measurement of the difference between the outer diameter and the inner diameter, randomly select three locations for each particle, measure the difference between the outer diameter and the inner diameter of that part (C in Fig. 2), and average the value for the outer diameter of the particle. And the inner diameter difference.

(2)現像剤担持体の表面形状の評価;
超深度形状測定顕微鏡(株式会社KEYENCE製、VK-8510;製品名)を用いて2000倍の倍率で観察し、現像剤担持体表面の画像を得る。画像中で確認される1つの凹部の開口部の長径と短径を測り、長径と短径の和を2で割って平均値を算出する。この平均値を開口部の直径としこの値を用いて凹部の開口部の面積を算出する。すべての凹部について同様の測定および計算を行い、現像剤担持体表面の、凹部の開口部の直径および面積比率を決定する。また、得られた観察データについて三次元化処理を行い、凹部の開口部からの最大深さを測定する。画像中すべての凹部について同様の測定を行い、その平均値を開口部からの平均最大深さとする。一つの現像剤担持体に対して軸方向2ヶ所、周方向3ヶ所の計6ヶ所について面積比率、開口部の直径、開口部からの最大深さを算出し、その平均値をもってそれぞれ面積比率、開口部の平均径、開口部からの平均最大深さとした。
(2) Evaluation of surface shape of developer carrier;
Using an ultradeep shape measuring microscope (manufactured by KEYENCE, VK-8510; product name), the image is observed at a magnification of 2000 to obtain an image of the surface of the developer carrying member. The major axis and minor axis of the opening of one concave portion confirmed in the image are measured, and the average value is calculated by dividing the sum of the major axis and minor axis by two. Using this average value as the diameter of the opening, the area of the opening of the recess is calculated using this value. The same measurement and calculation are performed for all the concave portions, and the diameter and area ratio of the concave opening on the surface of the developer carrying member are determined. Further, the obtained observation data is subjected to a three-dimensional process, and the maximum depth from the opening of the recess is measured. The same measurement is performed for all the recesses in the image, and the average value is defined as the average maximum depth from the opening. Calculate the area ratio, the diameter of the opening, and the maximum depth from the opening at a total of 6 locations in the axial direction and 3 in the circumferential direction for one developer carrier, and the average value of each area ratio, The average diameter of the opening and the average maximum depth from the opening were used.

以下に三次元化処理の方法を説明する。ボウル形状の樹脂粒子の開口部からの最大深さ、現像剤担持体表面の凹部の形状の測定はともに超深度形状測定顕微鏡VK-8510(株式会社KEYENCE製;製品名)を用いていった。本装置は、光源から出たレーザーを対象物に当て、対象物から反射したレーザーを共焦点位置にある受光素子での反射受光量が最大となる対物レンズ位置情報により対象物の形状を測定するものである。測定条件は以下のように設定した。
対物レンズ倍率:100倍
光学ズーム倍率:1倍
デジタルズーム倍率:1倍
RUN MODE:カラー超深度
高さ方向のレンズ移動ピッチ:0.1μm
レーザーゲイン:716
レーザーオフセット:-335
シャッタ(カメラ設定):215
The three-dimensional processing method will be described below. An ultra-deep shape measuring microscope VK-8510 (manufactured by KEYENCE; product name) was used to measure the maximum depth of the bowl-shaped resin particles from the opening and the shape of the recesses on the surface of the developer carrier. This device applies the laser emitted from the light source to the object, and measures the shape of the object based on objective lens position information that maximizes the amount of reflected light received by the light receiving element at the confocal position. Is. The measurement conditions were set as follows.
Objective lens magnification: 100x Optical zoom magnification: 1x Digital zoom magnification: 1x
RUN MODE: Color super depth Height lens movement pitch: 0.1μm
Laser gain: 716
Laser offset: -335
Shutter (camera setting): 215

測定結果を、画像解析ソフト「VK-H1W(Version1.07))(商品名、キーエンス社製)によって解析した。まず、測定結果の全体的な傾きを補正するために傾き補正処理を施した。処理は高さデータのみを行い、補正方法は面補正の自動モードで行った。次に、測定によるノイズ成分を除去する為にフィルタ処理による平滑化を行った。処理条件を以下に示す。
処理対象:高さデータ、
処理サイズ:3×3の領域で平滑化処理、
実行回数:1回、
ファイルタイプ:単純平均。
The measurement results were analyzed using image analysis software “VK-H1W (Version 1.07)” (trade name, manufactured by Keyence Corporation) First, tilt correction processing was performed to correct the overall tilt of the measurement results. The processing was performed only for height data, the correction method was in the automatic mode of surface correction, and then smoothing was performed by filter processing to remove the noise component due to the measurement.
Process target: height data,
Processing size: 3 × 3 area smoothing processing,
Number of executions: Once,
File type: Simple average.

次に、測定で得られた高さデータをCSVテキストデータに変換した後、各々の凹部内の樹脂層表面からの高さを、凹部の開口部からの最大深さとした。   Next, after converting the height data obtained by the measurement into CSV text data, the height from the surface of the resin layer in each recess was set to the maximum depth from the opening of the recess.

(3)現像剤層厚規制部材の十点平均粗さ(Rzjis)と凹凸平均間隔(RSm);
現像剤担持体を装置に組み込む前(新品)に現像剤層厚規制部材の十点平均粗さ(Rzjis)と凹凸平均間隔(RSm)を、JIS B0601-2001に従い、株式会社小坂研究所製の表面粗さ測定器「サーフコーダSE-3500」(製品名)にて、粗面化処理された部分を軸方向5ヶ所について測定し、その平均値を十点平均粗さ(Rzjis)と凹凸平均間隔(RSm)とした。なお、カットオフ0.8mm、測定距離8.0mおよび送り速度0.5mm/secとした。
(3) Ten-point average roughness (Rzjis) and average roughness (RSm) of the developer layer thickness regulating member;
Before incorporating the developer carrier into the device (new), the ten-point average roughness (Rzjis) and unevenness average spacing (RSm) of the developer layer thickness regulating member are manufactured by Kosaka Laboratory, Inc. according to JIS B0601-2001. The surface roughness measuring instrument “Surf Corder SE-3500” (product name) is used to measure the surface of the roughened surface at five locations in the axial direction, and the average values are calculated as 10-point average roughness (Rzjis) and unevenness average. The interval (RSm) was used. The cut-off was 0.8 mm, the measurement distance was 8.0 m, and the feed rate was 0.5 mm / sec.

(4)現像剤担持体の表面粗さ(Ra);
現像剤担持体を装置に組み込む前(新品)および耐久評価後に現像剤担持体の表面粗さ(算術平均粗さ)Raを、JIS B0601-2001に従い、株式会社小坂研究所製の表面粗さ測定器「サーフコーダSE-3500」(製品名)にて、軸方向3ヶ所の各ヶ所について周方向3ヶ所の計9ヶ所について測定し、その平均値を表面粗さRaとした。なお、カットオフ0.8mm、測定距離8.0mおよび送り速度0.5mm/secとした。なお、耐久評価後の現像剤担持体は、現像装置から取り外した後、表面にエアーブローを施し、表面に付着していた現像剤を完全に除去してから測定を行った。
(4) Surface roughness (Ra) of developer carrier;
Measure the surface roughness (arithmetic mean roughness) Ra of the developer carrier before incorporating the developer carrier into the device (new) and after durability evaluation according to JIS B0601-2001 by Kosaka Laboratory. The surface roughness Ra was measured with the instrument “Surf Corder SE-3500” (product name) at a total of 9 locations in the circumferential direction for each of the 3 locations in the axial direction. The cut-off was 0.8 mm, the measurement distance was 8.0 m, and the feed rate was 0.5 mm / sec. The developer carrier after the durability evaluation was removed from the developing device, and then air blow was applied to the surface, and the developer adhered to the surface was completely removed, and the measurement was performed.

(5)トナーの粒径測定;
測定装置として、コールターカウンターTA−II型、コールターマルチサイザーII又はコールターマルチサイザーIII(いずれも製品名、ベックマン・コールター社製)を用いた。また、電解液として、塩化ナトリウム(試薬1級)を溶かして調製した約1質量%NaCl水溶液又はISOTON-II(製品名、ベックマン・コールター社製)を使用した。電解液100ml以上150ml以下中に、分散剤として、界面活性剤(アルキルベンゼンスルホン酸塩液)0.1ml以上5ml以下を加え、次いで、試料を2mg以上20mg以下加えた。これに、超音波分散器で約1分間以上3分間以下分散処理を行い、被験試料を調製した。上記測定装置の30μmアパーチャーを用い、上記被験試料中の球状粒子又はトナー粒子の体積、個数を測定した。この測定結果から体積分布と個数分布とを算出し、体積分布から求めた重量基準の重量平均粒径(D4)及び個数分布から求めた個数基準の長さ平均粒径(D1)(共に各チャンネルの中央値をチャンネル毎の代表値とする)を求めた。
(5) Toner particle size measurement;
A Coulter Counter TA-II type, Coulter Multisizer II or Coulter Multisizer III (both product names, manufactured by Beckman Coulter, Inc.) were used as measuring devices. Moreover, about 1 mass% NaCl aqueous solution or ISOTON-II (product name, the Beckman Coulter company make) prepared by melt | dissolving sodium chloride (reagent grade 1) was used as electrolyte solution. In 100 to 150 ml of the electrolytic solution, 0.1 ml to 5 ml of a surfactant (alkylbenzene sulfonate solution) was added as a dispersant, and then 2 mg to 20 mg of the sample was added. This was subjected to a dispersion treatment for about 1 minute to 3 minutes with an ultrasonic disperser to prepare a test sample. Using the 30 μm aperture of the measuring device, the volume and number of spherical particles or toner particles in the test sample were measured. The volume distribution and number distribution are calculated from the measurement results, and the weight-based weight average particle diameter (D4) obtained from the volume distribution and the number-based length average particle diameter (D1) obtained from the number distribution (both for each channel). The median value of the channel is the representative value for each channel).

(6)磁性キャリアの体積平均粒径(Dv)の測定;
磁性キャリア粒子の粒径は、レーザー回折式粒度分布測定器の如き、粒子群の光強度分布パターンを検出する方式を用いた粒度分布測定器を用い、乾式で測定する。サブミクロンから数100ミクロンの範囲を測定できる装置であればいずれも使用可能であり、例えばSALD−3100(島津製作所製;製品名)等を用いて測定して体積平均粒径(Dv)を算出する。
(6) Measurement of the volume average particle size (Dv) of the magnetic carrier;
The particle size of the magnetic carrier particles is measured by a dry method using a particle size distribution measuring device using a method for detecting a light intensity distribution pattern of a particle group such as a laser diffraction particle size distribution measuring device. Any device that can measure the range from submicron to several hundred microns can be used. For example, SALD-3100 (manufactured by Shimadzu Corporation; product name) is used to calculate the volume average particle size (Dv). To do.

(7)磁性キャリアの平均円形度C及び標準偏差σの測定;
キャリアの平均円形度Cは、マルチイメージアナライザー(ベックマン・コールター社製)を用いて個数分布基準の平均円形度Cを算出することによって求める。測定においては、電解液として1%NaCl水溶液とグリセリンの50体積%:50体積%の混合溶液を用いる。電解液の調製には、1級塩化ナトリウムを用いて調製された電解液や、ISOTON−II(商品名、コールターサイエンティフィックジャパン社製)が使用できる。電解水溶液約30ml中に分散剤として、界面活性剤(好ましくはアルキルベンゼンスルホン酸塩)を0.1乃至1.0mlを加え、さらに測定試料を2乃至20mg加える。試料を懸濁した電解液を超音波分散器で約1分間分散処理し、該測定装置において200μmアパーチャー、20倍レンズを用いて測定し、得られた測定値から円相当径及び円形度Cを算出する。測定に際しての条件は以下の通りである。
測定フレーム内平均輝度:220〜230
測定フレーム設定:300
SH(スレシュホールド):50
2値化レベル:180
(7) Measurement of average circularity C and standard deviation σ of magnetic carrier;
The average circularity C of the carrier is obtained by calculating the average circularity C based on the number distribution using a multi-image analyzer (manufactured by Beckman Coulter). In the measurement, a 50% by volume: 50% by volume mixed solution of a 1% NaCl aqueous solution and glycerin is used as an electrolytic solution. For the preparation of the electrolytic solution, an electrolytic solution prepared using primary sodium chloride or ISOTON-II (trade name, manufactured by Coulter Scientific Japan) can be used. As a dispersant, 0.1 to 1.0 ml of a surfactant (preferably alkylbenzene sulfonate) is added to about 30 ml of an electrolytic aqueous solution, and 2 to 20 mg of a measurement sample is further added. Disperse the electrolyte in which the sample is suspended with an ultrasonic disperser for about 1 minute, and measure with the measuring device using a 200 μm aperture and a 20 × lens. From the measured values, the equivalent circle diameter and the circularity C are calculated. calculate. The conditions for the measurement are as follows.
Average luminance within measurement frame: 220 to 230
Measurement frame setting: 300
SH (threshold): 50
Binarization level: 180

測定の概略は以下のとおりである。ガラス測定容器に電解液を入れ、その中に測定試料を濃度が5乃至10%になるように入れ、最大撹拌スピードで撹拌する。サンプルの吸引圧を10kPaにする。キャリアは比重が大きく沈降しやすいので測定時間を15乃至30分になるようにする。また、5乃至10分ごとに測定を中断して、サンプル液の補充及び電解溶液−グリセリン混合溶液の補充を行う。補充後に測定を再開する。測定個数は2000個とする。測定終了後、本体ソフトにより、粒子画像画面でピンぼけ画像、凝集粒子(複数同時測定)などの除去を行う。本装置の測定原理は、コールターマルチサイザーIIにおける粒子がアパーチャーを通過する際に生じる電流パルスをトリガーにしてストロボを点火し、CCDでその投影像を記録し、画像解析処理を行うものであり、得られるグラフ上でのプロットと粒子画像写真が1:1に対応しているので、上述の通り、ピンぼけあるいは凝集粒子などの除去が可能となる。
キャリアの円形度、円相当径は、下記式(1)及び(2)で算出される。
円形度=(4×Area)/(MaxLength2×π) ・・・式(1)
円相当径=2×(Area/π)1/2 ・・・式(2)
ここで、「Area」は二値化されたキャリア粒子像の投影面積であり、「MaxLength」は該キャリア粒子投影像の最大径である。円相当径は、「Area」を真円の面積としたときの真円の直径で表される。円相当径は、4乃至100μmを256分割され、個数分布基準で対数表示して用いる。本体ソフトで求められる平均円形度C及び標準偏差σから(平均円形度C-2σ)を計算し、グラフ上から(平均円形度C-2σ)以下の粒子の個数を求め、全体の粒子個数で除して存在率を求める。これら一連の測定・計算は、マルチイメージアナライザー付属のソフトによって行なわれる。
The outline of the measurement is as follows. Put the electrolyte in a glass measuring container, put the measurement sample in it to a concentration of 5 to 10%, and stir at the maximum stirring speed. Set the sample suction pressure to 10 kPa. Since the carrier has a large specific gravity and tends to settle, the measurement time should be 15 to 30 minutes. In addition, the measurement is interrupted every 5 to 10 minutes to replenish the sample solution and the electrolytic solution-glycerin mixed solution. Resume measurement after refilling. The number of measurements shall be 2000. After the measurement is finished, the main body software removes a defocused image, aggregated particles (multiple simultaneous measurements), etc. on the particle image screen. The measurement principle of this device is to ignite a strobe with a current pulse generated when particles in Coulter Multisizer II pass through the aperture as a trigger, record the projected image with a CCD, and perform image analysis processing. Since the plot on the obtained graph and the particle image photograph correspond to 1: 1, it is possible to remove defocused or aggregated particles as described above.
The circularity and equivalent circle diameter of the carrier are calculated by the following formulas (1) and (2).
Circularity = (4 × Area) / (MaxLength 2 × π) (1)
Equivalent circle diameter = 2 × (Area / π) 1/2 ... Formula (2)
Here, “Area” is the projected area of the binarized carrier particle image, and “MaxLength” is the maximum diameter of the projected carrier particle image. The equivalent circle diameter is represented by the diameter of a perfect circle when “Area” is the area of the perfect circle. The equivalent circle diameter is 4 to 100 μm divided into 256, and is used logarithmically based on the number distribution standard. Calculate (average circularity C-2σ) from the average circularity C and standard deviation σ obtained by the main software, find the number of particles below (average circularity C-2σ) on the graph, Divide to find the presence rate. These series of measurements and calculations are performed by the software attached to the multi-image analyzer.

(8)樹脂層の体積抵抗;
試料として、厚さ100μmのPETシート上に7μm以上20μm以下の厚さの樹脂層を形成したものを用いた。測定装置として、抵抗率計ロレスタAP、又はハイレスタIP(ともに製品名、三菱油化株式会社(現 三菱化学株式会社)製)にて4端子プローブを用いて体積抵抗値を測定した。また、体積抵抗の測定は、測定環境を20℃以上25℃以下、50%RH以上60%RH以下として行った。
(8) Volume resistance of the resin layer;
As a sample, a PET sheet having a thickness of 7 μm or more and 20 μm or less formed on a 100 μm thick PET sheet was used. The volume resistance value was measured using a 4-terminal probe with a resistivity meter Loresta AP or Hiresta IP (both product names, manufactured by Mitsubishi Yuka Co., Ltd. (currently Mitsubishi Chemical Corporation)) as a measuring device. The volume resistance was measured under the measurement environment of 20 ° C. to 25 ° C. and 50% RH to 60% RH.

(9)1μm以下の導電性粒子の一次平均粒径の測定;
走査電子顕微鏡(株式会社日立ハイテクノロージーズ製;製品名)を用いて、導電性粒子を撮影倍率6万倍又は30万倍で撮影し、得られた写真上で一次粒子の長軸と短軸を測り、平均した値をその粒子の粒径とする。これを、100サンプルについて測定し、50%値をもって一次粒子径とした。なお、粒子を所定の倍率で撮影するのが難しい場合は低倍率で撮影した後に所定倍率となるように写真を拡大プリントした。
(9) Measurement of primary average particle diameter of conductive particles of 1 μm or less;
Using a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation; product name), conductive particles were photographed at a photographing magnification of 60,000 or 300,000 times. The axis is measured and the average value is taken as the particle size of the particle. This was measured for 100 samples, and the 50% value was taken as the primary particle size. When it was difficult to photograph the particles at a predetermined magnification, the photograph was enlarged and printed so that the predetermined magnification was obtained after photographing at a low magnification.

(10)1μmを超える導電性粒子の一次平均粒径の測定;
ベックマン・コールター株式会社製の「レーザー回折散乱法粒度分布測定装置LS−230型」(製品名)を用いて測定した。すなわち、IPA50mlに、測定試料1mg〜25mgを加え、超音波分散機で1分間〜3分間分散処理して、試料液を得た。一方、少量モジュールを用い、測定溶媒をイソプロピルアルコール(IPA)とし、まず、IPAにて装置の測定系内を約5分間洗浄した後バックグラウンドファンクションを実行した。その後、測定系内に試料液を徐々に加えて装置の画面上のPIDS(Polarization Intensity Differential Scattering)信号が45%〜55%になるように測定系内の試料濃度を調整してから測定を行なった。測定結果から作成された体積分布から体積平均粒径を求め、一次平均粒径とした。
(10) Measurement of primary average particle diameter of conductive particles exceeding 1 μm;
Measurement was performed using “Laser Diffraction Scattering Particle Size Analyzer LS-230 Model” (product name) manufactured by Beckman Coulter Inc. That is, 1 to 25 mg of a measurement sample was added to 50 ml of IPA, and dispersion treatment was performed for 1 to 3 minutes with an ultrasonic disperser to obtain a sample solution. On the other hand, using a small amount of module, the measurement solvent was isopropyl alcohol (IPA). First, the measurement system of the apparatus was washed with IPA for about 5 minutes, and then the background function was executed. After that, gradually add the sample solution into the measurement system and adjust the sample concentration in the measurement system so that the PIDS (Polarization Intensity Differential Scattering) signal on the screen of the device is 45% to 55%. It was. The volume average particle diameter was determined from the volume distribution created from the measurement results, and was used as the primary average particle diameter.

(11)トナー粒子の平均円形度;
シスメックス社製フロー式粒子像分析装置FPIA-2100(製品名)を用いて23℃/60%RHの環境下で測定を行った。円相当径が0.60μm以上400μm以下の範囲内のトナー粒子について、投影像の面積及び周囲長を測定し、そこで測定されたトナー粒子の投影像の面積から、円相当径を求めた。また、円相当径が0.60μm以上400μm以下の範囲内のトナー粒子について円形度を下式により求めた。更に円相当径3μm以上400μm以下のトナー粒子について、円形度の総和及び全粒子数を求めた。得られた円形度の総和を全粒子数で除した値を平均円形度と定義した。
円形度a=L0/L
(式中、L0はトナー粒子の投影像の面積と同じ面積を持つ円の周囲長を示し、Lは512×512の画像処理解像度(0.3μm×0.3μmの画素)で画像処理した時のトナー粒子の投影像周囲長を示す。)
(11) Average circularity of toner particles;
Measurement was performed in an environment of 23 ° C./60% RH using a flow type particle image analyzer FPIA-2100 (product name) manufactured by Sysmex Corporation. For toner particles having an equivalent circle diameter in the range of 0.60 μm or more and 400 μm or less, the area of the projected image and the perimeter were measured, and the equivalent circle diameter was determined from the area of the projected image of the toner particles measured there. The circularity of toner particles having an equivalent circle diameter in the range of 0.60 μm or more and 400 μm or less was determined by the following equation. Further, for toner particles having an equivalent circle diameter of 3 μm or more and 400 μm or less, the total circularity and the total number of particles were determined. The value obtained by dividing the total sum of the obtained circularity by the total number of particles was defined as the average circularity.
Circularity a = L 0 / L
(In the formula, L 0 represents the perimeter of a circle having the same area as that of the projected image of the toner particles, and L represents the image processing resolution when the image processing resolution is 512 × 512 (0.3 μm × 0.3 μm pixel). Indicates the perimeter of the projected image of toner particles.)

円形度はトナー粒子の凹凸度合いの指標であり、トナー粒子が完全な球形の場合1.00を示し、表面形状が複雑になるほど円形度は小さな値となる。具体的な測定方法としては、予め不純物を除去した水200ml以上300ml以下中に分散剤として、アルキルベンゼンスルホン酸塩を0.1ml以上0.5ml以下加え、更に測定試料を0.1g以上0.5g以下加える。試料を分散した懸濁液を超音波発信機で2分間分散し、トナー粒子濃度が0.2万個/μl以上1.0万個/μl以下の被験試料液を調製し、これを用いてトナー粒子の円形度分布を測定する。超音波発信器としては、以下の装置を使用し、以下の分散条件を用いる。装置:UH-150(製品名、株式会社エス・エム・テー製)、OUTPUT レベル:5、コンスタントモード。   The circularity is an index of the degree of unevenness of the toner particles, and indicates 1.00 when the toner particles are completely spherical. The more complicated the surface shape, the smaller the circularity. As a specific measurement method, 0.1 to 0.5 ml of alkylbenzene sulfonate is added as a dispersant in 200 to 300 ml of water from which impurities have been removed in advance, and 0.1 to 0.5 g of a measurement sample is further added. The suspension in which the sample is dispersed is dispersed with an ultrasonic transmitter for 2 minutes to prepare a test sample solution having a toner particle concentration of 20,000 / μl or more and 10,000,000 / μl or less. Measure the degree distribution. As an ultrasonic transmitter, the following apparatus is used and the following dispersion conditions are used. Equipment: UH-150 (product name, manufactured by SMT Co., Ltd.), OUTPUT level: 5, constant mode.

円形度の測定の概略は以下のとおりである。
被験試料液に、フラットで扁平なフローセル(厚み約200μm)の流路(流れ方向に沿って拡がっている)を通過させる。フローセルの厚みに対して交差して通過する光路を形成するように、ストロボとCCDカメラがフローセルに対して相互に反対側に装着されている。被験試料液が流れている間に、ストロボ光がフローセルを流れている粒子の画像を得るために1/30秒間隔で照射され、それぞれの粒子はフローセルに平行な一定範囲を有する二次元の投影像として撮影される。各粒子の投影像の面積から、同一の面積を有する円の直径を円相当径として算出する。また、円相当径0.60μm以上400μm以下である各粒子の投影像の面積及び投影像の周囲長から上記の円形度算出式を用いて各粒子の円相当径を求める。さらに、得られた結果に基づき円相当径3μm以上400μm以下のトナー粒子における平均円形度(平均円形度と表すことがある)を算出する。
The outline of measurement of circularity is as follows.
The test sample solution is passed through a flat and flat flow cell (thickness: about 200 μm) flow path (expanded along the flow direction). A strobe and a CCD camera are mounted on opposite sides of the flow cell so as to form an optical path that passes across the thickness of the flow cell. While the test sample liquid is flowing, strobe light is irradiated at 1/30 second intervals to obtain an image of the particles flowing through the flow cell, and each particle is a two-dimensional projection having a certain range parallel to the flow cell. Taken as an image. From the area of the projected image of each particle, the diameter of a circle having the same area is calculated as the equivalent circle diameter. Further, the equivalent circle diameter of each particle is determined from the area of the projected image of each particle having a circle equivalent diameter of 0.60 μm or more and 400 μm or less and the perimeter of the projected image using the above circularity calculation formula. Further, based on the obtained result, an average circularity (may be referred to as an average circularity) of toner particles having an equivalent circle diameter of 3 μm or more and 400 μm or less is calculated.

以下に、実施例をもって本発明をさらに詳しく説明するが、本発明は何らこれらに限定されるものではない。なお、以下の配合における部、%は特に断らない限り、それぞれ質量部、質量%である。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, unless otherwise indicated, the part and% in the following mixing | blending are a mass part and the mass%, respectively.

本発明で用いるボウル形状の樹脂粒子は「マツモトマイクロスフェアーM-310」および「マツモトマイクロスフェアーM-311」(何れも商品名、松本油脂製薬株式会社製)である。この粒子を分級することによって表1に示すようなボウル形状の樹脂粒子(B−1〜B−10)を得た。   The bowl-shaped resin particles used in the present invention are “Matsumoto Microsphere M-310” and “Matsumoto Microsphere M-311” (both trade names, Matsumoto Yushi Seiyaku Co., Ltd.). By classifying these particles, bowl-shaped resin particles (B-1 to B-10) as shown in Table 1 were obtained.

Figure 2011158756
Figure 2011158756

<導電性粒子C−1〜C−6>
本発明で用いる導電性粒子C-1からC-5までは市販製品である。C-6については以下のように調製した。コールタールピッチから溶剤分別によりβ-レジンを抽出した。このβ-レジンに水素添加、重質化処理を行った後、トルエンにより溶剤可溶分を除去してメソフェーズピッチ粉末を得た。これを微粉砕し、空気中で約300℃で酸化処理し、更に、窒素雰囲気下で2800℃で処理し、その後に分級して体積平均粒径2100nmm、黒鉛化度p(002)が0.39である黒鉛化粒子C−6を得た。C−1〜6の導電性粒子の粒径を表2に示す。
<Conductive particles C-1 to C-6>
The conductive particles C-1 to C-5 used in the present invention are commercially available products. C-6 was prepared as follows. Β-resin was extracted from coal tar pitch by solvent fractionation. This β-resin was subjected to hydrogenation and heavy treatment, and then the solvent-soluble component was removed with toluene to obtain mesophase pitch powder. This was finely pulverized, oxidized in air at about 300 ° C., further treated at 2800 ° C. in a nitrogen atmosphere, and then classified to give a volume average particle size of 2100 nm and a graphitization degree p (002) of 0.00. No. 39, graphitized particles C-6 were obtained. Table 2 shows the particle diameters of the C-1 to 6 conductive particles.

Figure 2011158756
Figure 2011158756

<トナーZ−1の調製>
<<結着樹脂Aの調製>>
下記原料を、下記mol比で5リットル4つ口フラスコに入れ、還流冷却器、水分離装置、Nガス導入管、温度計及び撹拌装置を取り付け、更にフラスコ内にNガスを導入しつつ180℃で縮重合反応させた。反応終了後、濾過、水洗、脱水及び乾燥して結着樹脂Aを得た。
・プロピレンオキサイド付加ビスフェノールA 66mol比
・エチレンオキサイド付加ビスフェノールA 35mol比
・テレフタル酸 30mol比
・トリメリット酸 30mol比
・アジピン酸 38mol比
<Preparation of Toner Z-1>
<< Preparation of Binder Resin A >>
The following raw materials are put in a 5-liter four-necked flask at the following molar ratio, a reflux condenser, a water separator, an N 2 gas introduction pipe, a thermometer and a stirring device are attached, and further, N 2 gas is introduced into the flask. The polycondensation reaction was performed at 180 ° C. After completion of the reaction, the resin was filtered, washed with water, dehydrated and dried to obtain a binder resin A.
・ Propylene oxide addition bisphenol A 66mol ratio ・ Ethylene oxide addition bisphenol A 35mol ratio ・ Terephthalic acid 30mol ratio ・ Trimellitic acid 30mol ratio ・ Adipic acid 38mol ratio

次に下記の混合物をヘンシェルミキサーで前混合し、次いで115℃に加熱した2軸エクストルーダーで溶融混練した後冷却し固化した。
・結着樹脂A 100部
・磁性体(平均粒径:0.25μm) 95部
・モノアゾ鉄錯体「T−77」(商品名、保土谷化学工業株式会社製) 2.5部
・ポリプロピレン(融点:145℃) 3.0部
この固化した混練物をハンマーミルで粗粉砕してトナー粗粉砕物を得た。これを機械式粉砕機(商品名:ターボミル;ターボ工業株式会社製)を用いて微粉砕した。得られた微粉砕物を多分割分級装置(商品名:エルボジェット分級機;日鉄鉱業株式会社製)を用いて微粉及び粗粉を同時に分級除去して原料トナーを得た。得られた原料トナー粒子のコールターカウンター法で測定される重量平均粒径(D4)は6.4μm、平均円形度は0.957であった。この原料トナー粒子100部をヘキサメチルジシラザン処理し、ジメチルシリコーンオイル処理を行った疎水性シリカ微粉体1.2部とヘンシェルミキサーで混合して負帯電性トナーZ−1を得た。
Next, the following mixture was premixed with a Henschel mixer, then melt-kneaded with a biaxial extruder heated to 115 ° C., and then cooled and solidified.
Binder resin A 100 parts Magnetic material (average particle size: 0.25 μm) 95 parts Monoazo iron complex “T-77” (trade name, manufactured by Hodogaya Chemical Co., Ltd.) 2.5 parts Polypropylene (melting point: 145 ° C. ) 3.0 parts This solidified kneaded product was coarsely pulverized with a hammer mill to obtain a coarsely pulverized toner. This was finely pulverized using a mechanical pulverizer (trade name: Turbo Mill; manufactured by Turbo Industry Co., Ltd.). The finely pulverized product obtained was classified and removed at the same time using a multi-division classifier (trade name: Elbow Jet Classifier; manufactured by Nittetsu Mining Co., Ltd.) to obtain a raw material toner. The obtained raw material toner particles had a weight average particle diameter (D4) measured by Coulter counter method of 6.4 μm and an average circularity of 0.957. 100 parts of the raw material toner particles were treated with hexamethyldisilazane and mixed with 1.2 parts of hydrophobic silica fine powder treated with dimethyl silicone oil with a Henschel mixer to obtain negatively charged toner Z-1.

<トナーZ−2の調製>
<<結着樹脂Bの調製>>
下記混合物を還流(温度:146℃乃至156℃)しているクメン200部中に4時間かけて滴下し、クメン還流下で溶液重合を完了させ、減圧下で200℃まで昇温させながらクメンを除去して、スチレン−アクリル共重合体を得た。
・スチレン 69部
・ブチルアクリレート 15部
・モノブチルマレート 7部
・ジ−tert−ブチルパーオキサイド 0.5部
<Preparation of Toner Z-2>
<< Preparation of Binder Resin B >>
The following mixture is added dropwise to 200 parts of cumene refluxing (temperature: 146 ° C. to 156 ° C.) over 4 hours to complete solution polymerization under reflux of cumene, and the cumene is heated to 200 ° C. under reduced pressure. Removal of styrene-acrylic copolymer was obtained.
・ Styrene 69 parts ・ Butyl acrylate 15 parts ・ Monobutyl malate 7 parts ・ Di-tert-butyl peroxide 0.5 part

得られたスチレン−アクリル共重合体の30部を下記の混合物中に溶解した。
・スチレン 50部
・ブチルアクリレート 20部
・モノブチルマレート 2部
・ジビニルベンゼン 0.4部
・ベンゾイルパーオキサイド 0.8部
・tert−ブチルパーオキシ−2−エチルヘキサノエート 0.6部
30 parts of the obtained styrene-acrylic copolymer was dissolved in the following mixture.
・ Styrene 50 parts ・ Butyl acrylate 20 parts ・ Monobutyl malate 2 parts ・ Divinylbenzene 0.4 parts ・ Benzoyl peroxide 0.8 parts ・ Tert-butylperoxy-2-ethylhexanoate 0.6 parts

得られた混合溶液に、ポリビニルアルコール部分ケン化物0.15部を溶解した水170部を加えて撹拌し、懸濁分散液とした。さらに、水100部を加え、内部の雰囲気を窒素で置換した反応器に入れ、80℃で8時間重合した。重合終了後、濾別、水洗、脱水乾燥して結着樹脂Bを得た。結着樹脂BのTgは61.7℃、重量平均分子量は13000であった。   To the obtained mixed solution, 170 parts of water in which 0.15 part of polyvinyl alcohol partially saponified product was dissolved was added and stirred to obtain a suspension dispersion. Further, 100 parts of water was added, and the inside atmosphere was placed in a reactor substituted with nitrogen, and polymerization was carried out at 80 ° C. for 8 hours. After completion of the polymerization, the resin B was separated by filtration, washed with water, dehydrated and dried to obtain a binder resin B. Binder resin B had a Tg of 61.7 ° C. and a weight average molecular weight of 13,000.

次に下記の混合物をヘンシェルミキサーで前混合し、次いで115℃に加熱した2軸エクストルーダーで溶融混練した後、冷却し固化した。
・結着樹脂B 100部
・磁性体(平均粒径:0.22μm) 95部
・モノアゾ鉄錯体「T-77」(製品名) 1.5部
・パラフィン(融点:76℃) 5部
固化した混練物をトナーZ−1と同様の方法により処理して原料トナーを得た。この原料トナーのコールターカウンター法で測定される重量平均粒径(D4)は6.6μm、平均円形度0.942であった。このトナー粒子100質量部をヘキサメチルジシラザン処理したものと、ジメチルシリコーンオイル処理を行った疎水性シリカ微粉体1.2質量部とをヘンシェルミキサーで混合して負帯電性トナーZ−2を得た。
Next, the following mixture was premixed with a Henschel mixer, then melt-kneaded with a biaxial extruder heated to 115 ° C., and then cooled and solidified.
・ Binding resin B 100 parts ・ Magnetic material (average particle size: 0.22 μm) 95 parts ・ Monoazo iron complex “T-77” (product name) 1.5 parts ・ Paraffin (melting point: 76 ° C.) 5 parts Solidified kneaded product A raw material toner was obtained by the same treatment as in the toner Z-1. The weight average particle diameter (D4) measured by the Coulter Counter method of this raw material toner was 6.6 μm, and the average circularity was 0.942. A negatively charged toner Z-2 is obtained by mixing 100 parts by mass of the toner particles with hexamethyldisilazane and 1.2 parts by mass of hydrophobic silica fine powder treated with dimethylsilicone oil using a Henschel mixer. It was.

<トナーZ−3の調整>
<トナーZ-3用重合法トナー母体粒子の製造>
60℃に加温したイオン交換水900部に、リン酸三カルシウム3部を添加し、TK式ホモミキサー(特殊機化工業株式会社製)で、10000rpmにて撹拌し、水系媒体を調製した。一方、下記原料をホモジナイザー(日本精機株式会社製)に投入し、60℃に加温した後、TK式ホモミキサーで、8000rpmにて攪拌して分散した後、重合開始剤2,2’−アゾビス(2,4―ジメチルバレロニトリル)5部を溶解し、重合性単量体組成物を調製した。
・スチレン 135部
・n−ブチルアクリレート 55部
・C.I.ピグメントブルー15:3 17部
・サリチル酸アルミニウム化合物 3部
・ポリエステル樹脂 15部
・ステアリン酸ステアリルワックス(DSCのメインピーク60℃) 40部
・ジビニルベンゼン 0.5部
注)サリチル酸アルミニウム化合物は、オリエント化学株式会社製の「ボントロンE−88」(製品名)である。また、ポリエステル樹脂は、プロピレンオキサイド変性ビスフェノールAとイソフタル酸との重縮合物で、Tg=65℃、Mw=10000、Mn=6000である。
<Adjustment of Toner Z-3>
<Production of Polymerized Toner Base Particles for Toner Z-3>
To 900 parts of ion-exchanged water heated to 60 ° C., 3 parts of tricalcium phosphate was added and stirred at 10000 rpm with a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) to prepare an aqueous medium. On the other hand, the following raw materials were put into a homogenizer (manufactured by Nippon Seiki Co., Ltd.), heated to 60 ° C., dispersed by stirring at 8000 rpm with a TK homomixer, and then a polymerization initiator 2,2′-azobis. 5 parts of (2,4-dimethylvaleronitrile) was dissolved to prepare a polymerizable monomer composition.
Styrene 135 parts N-butyl acrylate 55 parts C.I. I. Pigment Blue 15: 3 17 parts Aluminum salicylate compound 3 parts Polyester resin 15 parts Stearate stearate wax (DSC main peak 60 ° C) 40 parts Divinylbenzene 0.5 parts Note) Aluminum salicylate compound is manufactured by Orient Chemical Co., Ltd. "Bontron E-88" (product name). The polyester resin is a polycondensate of propylene oxide-modified bisphenol A and isophthalic acid, Tg = 65 ° C., Mw = 10000, Mn = 6000.

前記水系媒体中に上記重合性単量体組成物を投入し、60℃、窒素雰囲気下において、TK式ホモミキサーを用いて8000rpmで攪拌し、造粒した。その後、プロペラ式攪拌装置を備えた反応容器に移して攪拌しつつ、2時間かけて70℃に昇温し、さらに4時間後、昇温速度40℃/Hrで80℃まで昇温し、80℃で5時間反応を行い、重合体粒子を製造した。重合反応終了後、前記重合体粒子を含むスラリーを冷却し、スラリーの10倍の水量で洗浄し、ろ過、乾燥の後、分級によって粒子径を調整してシアントナーの母体粒子(重量平均粒径6.1μm、平均円形度0.969)を得た。   The polymerizable monomer composition was put into the aqueous medium, and granulated by stirring at 8000 rpm using a TK homomixer at 60 ° C. in a nitrogen atmosphere. Thereafter, the mixture was transferred to a reaction vessel equipped with a propeller type stirring device and stirred, and the temperature was raised to 70 ° C. over 2 hours. After another 4 hours, the temperature was raised to 80 ° C. at a heating rate of 40 ° C./Hr. The reaction was carried out at 5 ° C. for 5 hours to produce polymer particles. After the completion of the polymerization reaction, the slurry containing the polymer particles is cooled, washed with 10 times the amount of water as the slurry, filtered and dried, and the particle size is adjusted by classification to obtain cyan toner base particles (weight average particle size) 6.1 μm and an average circularity of 0.969) were obtained.

このトナー母体粒子100部に対し、ヘキサメチレンジシラザンで表面処理された疎水性シリカ微粉体1.0部(平均一次粒径7nm)、ルチル型酸化チタン微粉体0.15部(一次平均粒径45nm)及びルチル型酸化チタン微粉体0.5部(平均一次粒径200nm)をヘンシェルミキサーで5分間乾式混合して、平均円形度0.969の非磁性一成分現像剤としてのトナーZ-3を得た。   To 100 parts of the toner base particles, 1.0 part of hydrophobic silica fine powder surface treated with hexamethylene disilazane (average primary particle diameter 7 nm), 0.15 part of rutile titanium oxide fine powder (primary average particle diameter 45 nm) and rutile Type titanium oxide fine powder 0.5 part (average primary particle size 200 nm) was dry mixed with a Henschel mixer for 5 minutes to obtain toner Z-3 as a non-magnetic one-component developer having an average circularity of 0.969.

<トナーZ−4の調整>
<<結着樹脂Cの調製>>
ビニル系共重合体の材料としてのスチレン10部、2−エチルヘキシルアクリレートを5部、フマル酸を2部及びα−メチルスチレンの2量体を5部並びにジクミルパーオキサイドを5部滴下ロートに入れた。またポリエステルユニットの材料として下記材料をガラス製4リットルの四つ口フラスコに入れた。
ポリオキシプロピレン(2,2)−2,2−ビス(4−ヒドロキシフェニル)プロパン 27部
ポリオキシエチレン(2,2)−2,2−ビス(4−ヒドロキシフェニル)プロパン 13部
テレフタル酸 10部
無水トリメリット酸 5部
フマル酸 24部
2−エチルヘキサン酸錫 0.4部
温度計、撹拌棒、コンデンサー及び窒素導入管をこの四つ口フラスコに取り付け、この四つ口フラスコをマントルヒーター内に設置した。次に四つ口フラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、125℃の温度で攪拌しつつ、先の滴下ロートより、ビニル系共重合体の単量体及び重合開始剤を約5.5時間かけて滴下した。次いで200℃に昇温を行い、約5時間反応せしめて、重量平均分子量79000、数平均分子量4000の結着樹脂Cを得た。
<Adjustment of Toner Z-4>
<< Preparation of Binder Resin C >>
10 parts of styrene as a vinyl copolymer material, 5 parts of 2-ethylhexyl acrylate, 2 parts of fumaric acid, 5 parts of a dimer of α-methylstyrene, and 5 parts of dicumyl peroxide are placed in a dropping funnel. It was. Moreover, the following material was put into the glass 4 liter four neck flask as a material of the polyester unit.
Polyoxypropylene (2,2) -2,2-bis (4-hydroxyphenyl) propane 27 parts Polyoxyethylene (2,2) -2,2-bis (4-hydroxyphenyl) propane 13 parts Terephthalic acid 10 parts Trimellitic anhydride 5 parts Fumaric acid 24 parts 2-Ethylhexanoic acid 0.4 part A thermometer, stir bar, condenser and nitrogen inlet tube were attached to this four-necked flask, and this four-necked flask was placed in a mantle heater. installed. Next, after the inside of the four-necked flask was replaced with nitrogen gas, the temperature was gradually increased while stirring, and while stirring at a temperature of 125 ° C., the monomer and the polymerization of the vinyl copolymer from the previous dropping funnel The initiator was added dropwise over about 5.5 hours. Next, the temperature was raised to 200 ° C. and reacted for about 5 hours to obtain a binder resin C having a weight average molecular weight of 79000 and a number average molecular weight of 4000.

次いで、下記の材料をヘンシェルミキサーで混合した後、温度130℃に設定した二軸混練機「PCM-30型」(製品名、池貝鉄工株式会社製)にて混練した。
結着樹脂C 100部
精製ノルマルパラフィン(DSCによる最大吸熱ピーク温度=80℃、重量平均分子量800) 5部
3,5−ジ−t−ブチルサリチル酸アルミニウム化合物 0.5部
C.I.ピグメントブルー15:3 5部
得られた混練物を冷却して固化し、ハンマー ミルにて1mm以下に粗粉砕した。得られたトナー粗砕物を高圧気体を用いた衝突式気流粉砕機を用いて微粉砕した。得られたトナー微粉物をコアンダ効果を利用した多分割分級機により分級し、重量平均粒径7.2μm、平均円形度0.930のシアン粒子を得た。更にこのシアン粒子をハイブリタイザー(株式会社奈良機械製作所製)により、回転数6800rpm、処理時間3分、処理回数2回で表面改質し、重量平均粒径6.0μm、平均円形度0.944のシアントナーZ−4を得た。
Next, the following materials were mixed with a Henschel mixer, and then kneaded with a twin-screw kneader “PCM-30 type” (product name, manufactured by Ikekai Tekko Co., Ltd.) set at a temperature of 130 ° C.
Binder resin C 100 parts Purified normal paraffin (Maximum endothermic peak temperature by DSC = 80 ° C., weight average molecular weight 800) 5 parts
0.5 parts of 3,5-di-t-butylsalicylic acid aluminum compound
C. I. Pigment Blue 15: 3 5 parts The obtained kneaded product was cooled and solidified, and coarsely pulverized to 1 mm or less with a hammer mill. The obtained coarsely pulverized toner was finely pulverized using a collision-type airflow pulverizer using high-pressure gas. The obtained toner fine powder was classified by a multi-division classifier using the Coanda effect to obtain cyan particles having a weight average particle diameter of 7.2 μm and an average circularity of 0.930. Further, this cyan particle was surface-modified with a hybridizer (manufactured by Nara Machinery Co., Ltd.) at a rotation speed of 6800 rpm, a processing time of 3 minutes, and a processing frequency of 2 times, and a cyan toner having a weight average particle diameter of 6.0 μm and an average circularity of 0.944. Z-4 was obtained.

<磁性キャリアY−1の調製>
<<キャリアコアの製造>>
個数平均粒径250nm、比抵抗5.1×105Ω・cmのマグネタイト粉、個数平均粒径260nm、比抵抗4.9×107Ω・cmのヘマタイト粉にそれぞれ4.0質量%のシラン系カップリング剤(3−(2−アミノエチルアミノプロピル)トリメトキシシラン)を加え、容器内で110℃で高速混合撹拌して表面処理した。
フェノール 10質量部
ホルムアルデヒド溶液(ホルムアルデヒド37質量%水溶液) 6質量部
上記処理したマグネタイト1 76質量部
上記処理したヘマタイト1 8質量部
<Preparation of magnetic carrier Y-1>
<< Manufacture of carrier core >>
A silane coupling agent of 4.0% by mass for magnetite powder with a number average particle size of 250 nm and specific resistance of 5.1 × 10 5 Ω · cm, hematite powder with a number average particle size of 260 nm and specific resistance of 4.9 × 10 7 Ω · cm (3 -(2-Aminoethylaminopropyl) trimethoxysilane) was added, and surface treatment was performed by mixing and stirring at 110 ° C. in a container at high speed.
Phenol 10 parts by weight Formaldehyde solution (formaldehyde 37% by weight aqueous solution) 6 parts by weight Treated magnetite 1 76 parts by weight Treated hematite 1 8 parts by weight

上記材料をフラスコに入れ40℃で良く混合して反応媒体を得た。このときの反応媒体中の溶存酸素量は7.3g/m3であった。次いでこの反応媒体中に1.5×10-2m3/hの流量で20分間窒素ガスを導入し、内部の雰囲気を窒素で置換した。また、このときの反応媒体中の溶存酸素量は1.0g/m3であった。次に28質量%アンモニア水5質量部と水10質量部を加え、その後は窒素導入量を0.3×10-2m3/hに抑え、室温から平均昇温速度3.0℃/分で85℃まで加熱し、この温度で撹拌しながら3時間重合反応させて硬化させた。このときの撹拌翼周速は1.8m/secとした。その後、30℃まで冷却し、水を添加して上澄み液を除去し、沈殿物を水洗した後、風乾した。次いで、これを減圧下(5hPa以下)、60℃の温度で乾燥して、磁性体が分散された状態の球状の磁性キャリアコア1を得た。上記で得られたキャリアコア1の表面に、せん断応力を連続して印加しながら、下記式で表されるγ-アミノプロピルトリメトキシシランの3質量%メタノール溶液を塗布し、メタノールを揮発させた。

Figure 2011158756
キャリアコア1の表面はキャリアコアに対して0.12質量%のγ-アミノプロピルトリメトキシシランで処理され、下記の基が存在していることが確認できた。
Figure 2011158756
The above materials were placed in a flask and mixed well at 40 ° C. to obtain a reaction medium. The amount of dissolved oxygen in the reaction medium at this time was 7.3 g / m 3 . Next, nitrogen gas was introduced into the reaction medium at a flow rate of 1.5 × 10 −2 m 3 / h for 20 minutes, and the internal atmosphere was replaced with nitrogen. At this time, the amount of dissolved oxygen in the reaction medium was 1.0 g / m 3 . Next, 5 parts by weight of 28% ammonia water and 10 parts by weight of water were added. After that, the amount of nitrogen introduced was suppressed to 0.3 × 10 -2 m 3 / h, and the room temperature increased from room temperature to 85 ° C at an average rate of 3.0 ° C / min. The mixture was heated and allowed to cure by stirring at this temperature for 3 hours. The stirring blade peripheral speed at this time was 1.8 m / sec. Thereafter, the mixture was cooled to 30 ° C., water was added to remove the supernatant, and the precipitate was washed with water and then air-dried. Subsequently, this was dried under reduced pressure (5 hPa or less) at a temperature of 60 ° C. to obtain a spherical magnetic carrier core 1 in which a magnetic material was dispersed. While continuously applying a shear stress to the surface of the carrier core 1 obtained above, a 3% by mass methanol solution of γ-aminopropyltrimethoxysilane represented by the following formula was applied to volatilize the methanol. .
Figure 2011158756
The surface of the carrier core 1 was treated with 0.12% by mass of γ-aminopropyltrimethoxysilane with respect to the carrier core, and it was confirmed that the following groups were present.
Figure 2011158756

上記のシランカップリング剤で処理されたキャリアコア1を50℃で攪拌しながら、該キャリアコアに、シリコーン樹脂固形分が20%になるようにトルエンで希釈したシリコーン樹脂SE2410(東レダウコーニング(株)製)を減圧下で添加して、キャリアコアに対して1.0質量%の樹脂コート(コート1と称する)を施与した。以後、窒素ガスの雰囲気下で2時間攪拌してトルエンを揮発させた後、窒素雰囲気下で140℃で2時間加熱処理を行って凝集塊をほぐした後、目開き76μmの篩で粗粒を除去して、体積平均粒径34.09μm、平均円形度Cが0.923、標準偏差σが0.028、(平均円形度C-2σ)が0.867以下の粒子存在率が2.9個数%の磁性キャリアY-1を得た。尚、得られた磁性キャリアは殆どが球形または楕円形を呈しており、不定形の粒子はごくわずかであった。   While stirring the carrier core 1 treated with the above silane coupling agent at 50 ° C., silicone resin SE2410 (Toray Dow Corning Co., Ltd.) diluted with toluene so that the silicone resin solid content is 20% is stirred in the carrier core. )) Was added under reduced pressure, and a 1.0 mass% resin coat (referred to as coat 1) was applied to the carrier core. Thereafter, the mixture was stirred for 2 hours in a nitrogen gas atmosphere to volatilize toluene, and then heat treated at 140 ° C. for 2 hours in a nitrogen atmosphere to loosen the agglomerates, and then coarse particles were sieved with a sieve having an opening of 76 μm. The magnetic carrier Y-1 having a volume average particle diameter of 34.09 μm, an average circularity C of 0.923, a standard deviation σ of 0.028, and an average circularity C-2σ of 0.867 or less and a particle abundance ratio of 2.9% by number is obtained. Obtained. Most of the obtained magnetic carriers were spherical or elliptical, and there were very few amorphous particles.

<実施例1>
メタノール40%含有のレゾール型フェノール樹脂溶液J-325(大日本インキ化学工業株式会社製;製品名)167部(固形分100部)に、導電性粒子C-1を65部、メタノールを70部加え、横型サンドミル(直径1mmのガラスビーズをメディア粒子として使用)で2時間分散した。得られた分散液302部に、ボウル形状の樹脂粒子 B-1を20部、メタノール30部を加え、縦型サンドミル(直径1mmのガラスビーズをメディア粒子として使用)で30分間分散し、篩を用いてガラスビーズを分離した。得られた分散液に、固形分濃度が34%になる様にメタノールを添加して塗工液を得た。
外径14mm、肉厚2mm、表面のRaが 0.3μmのアルミニウム製の円筒管の上端及び下端をマスキングした。この円筒管を、軸が鉛直方向に沿うように保持し、回転させつつ、上記塗工液をスプレーガンを一定速度で下降させながら塗布し、次いで、熱風乾燥炉中150℃で30分間加熱して樹脂層を形成し、現像剤担持体S-1を得た。現像剤担持体S-1にマグネットローラを装着し、両端にフランジを取り付けて、これをHewlett-Packard社製Laser Jet 4300(製品名)のトナーカートリッジに現像剤担持体として装着し、現像装置として用いた。この現像装置の概略は図5に示すとおりである。この現像装置を搭載したLaser Jet 4300においてトナーZ-2を使用して、2万枚の耐久テストを1枚/7秒の間欠モードで行った。このトナーカートリッジに装着されている現像剤層厚規制部材を取り外し、新たに粗面化表面を有する弾性ブレードを取り付けた。初期評価は10枚目の時に耐久テストを中断して、そして耐久評価は耐久テスト終了後に行った。得られた現像剤担持体から約5mm×5mm四方の切片を切り出す。この切片の樹脂層表面の凹部を走査電子顕微鏡(株式会社日立ハイテクノロージーズ製)を用いて撮影した。6万倍の倍率で撮影し、凹部の表面の樹脂層中に導電性粒子が存在していることを確認した。画像評価は、常温常湿環境(23℃、50%RH;N/N)、低温低湿環境(15℃、10%RH;L/L)および高温高湿環境(32℃、85%RH;H/H)において実施した。
<Example 1>
Resol type phenolic resin solution J-325 containing 40% methanol (Dainippon Ink & Chemicals, Inc .; product name) 167 parts (100 parts solids), 65 parts of conductive particles C-1 and 70 parts of methanol In addition, it was dispersed for 2 hours in a horizontal sand mill (using glass beads with a diameter of 1 mm as media particles). Add 302 parts of bowl-shaped resin particles B-1 and 30 parts of methanol to 302 parts of the resulting dispersion, and disperse for 30 minutes in a vertical sand mill (using 1 mm diameter glass beads as media particles). Used to separate the glass beads. Methanol was added to the obtained dispersion so that the solid concentration was 34% to obtain a coating solution.
The upper and lower ends of an aluminum cylindrical tube having an outer diameter of 14 mm, a wall thickness of 2 mm, and a surface Ra of 0.3 μm were masked. While holding and rotating the cylindrical tube along the vertical direction, the coating liquid was applied while lowering the spray gun at a constant speed, and then heated at 150 ° C. for 30 minutes in a hot air drying furnace. Thus, a resin layer was formed to obtain developer carrier S-1. Attach a magnet roller to developer carrier S-1, attach flanges to both ends, and attach it as a developer carrier to a toner cartridge of Laser Jet 4300 (product name) manufactured by Hewlett-Packard. Using. The outline of this developing apparatus is as shown in FIG. A Laser Jet 4300 equipped with this developing device was subjected to a durability test of 20,000 sheets in an intermittent mode of 1 sheet / 7 seconds using toner Z-2. The developer layer thickness regulating member attached to the toner cartridge was removed, and a new elastic blade having a roughened surface was attached. In the initial evaluation, the durability test was interrupted at the 10th sheet, and the durability evaluation was performed after the end of the durability test. A section of about 5 mm × 5 mm square is cut out from the obtained developer carrying member. The concave part of the resin layer surface of this section was photographed using a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation). Images were taken at a magnification of 60,000 times, and it was confirmed that conductive particles were present in the resin layer on the surface of the recess. Image evaluation was conducted at normal temperature and humidity (23 ° C, 50% RH; N / N), low temperature and low humidity (15 ° C, 10% RH; L / L), and high temperature and high humidity (32 ° C, 85% RH; H / H).

評価項目と測定方法およびその評価基準は以下の通りである。   Evaluation items, measurement methods and evaluation criteria are as follows.

(ア)画像濃度;
画像比率5.5%であるテストチャートに含まれるベタ黒の円画像の反射濃度を、反射濃度計(商品名:RD918、マクベス社製)により10ヶ所で測定し、測定値の平均値をとって画像濃度とした。
(A) Image density;
The reflection density of a solid black circle image included in a test chart with an image ratio of 5.5% is measured at 10 locations using a reflection densitometer (trade name: RD918, manufactured by Macbeth), and the average value of the measured values is taken. Concentration.

(イ)カブリ;
画像におけるベタ白部の反射率および未使用の転写紙の反射率を反射率計TC-6DS(東京電色株式会社製)でランダムに10ヶ所で測定し、(ベタ白部の反射率の最悪値−未使用転写紙の反射率の平均値)の値を求め、これをカブリ濃度とする。この値から下記基準にて評価した。
A:1.0%以下(目視ではカブリは認められない)。
B:1.0%超2.0%以下(注視しなければカブリは認められない)。
C:2.0%超3.0%以下(カブリはあるものの実用上問題ないレベル)。
D:3.0%超(カブリが目立つ)。
(I) fog;
The reflectance of the solid white area in the image and the reflectance of the unused transfer paper were measured at 10 random locations with a reflectometer TC-6DS (manufactured by Tokyo Denshoku Co., Ltd.). Value—average reflectance of unused transfer paper), and this is defined as the fog density. Based on this value, the following criteria were evaluated.
A: 1.0% or less (fogging is not visually recognized).
B: More than 1.0% and 2.0% or less (fogging is not allowed unless attention is paid).
C: More than 2.0% and 3.0% or less (although fog is present, there is no practical problem).
D: Over 3.0% (fogging is noticeable).

(ウ)スリーブゴースト;
初期(20枚目)と耐久評価終了時に、先端から4.5cmの幅で交互に存在するベタ白部51とベタ黒部52と、それに隣接するハーフトーン部53とからなる、図5に示すようなA4標準チャートを印刷した。得られたハーフトーン画像上に現れた濃淡差を目視で観察し、下記の基準にて評価した。
A:濃淡差が全く見られない。
B:軽微な濃淡差が見られる。
C:濃淡差がやや見られるが実用可能なレベル。
D:目立つ濃淡差が4.5cm以内
E:目立つ濃淡差が4.5cm超
(C) Sleeve ghost;
As shown in FIG. 5, it consists of a solid white portion 51 and a solid black portion 52, which are alternately present at a width of 4.5 cm from the tip, and a halftone portion 53 adjacent to the initial (20th sheet) and at the end of the durability evaluation. A4 standard chart was printed. The difference in density appearing on the obtained halftone image was visually observed and evaluated according to the following criteria.
A: No difference in shading is observed.
B: A slight shading difference is observed.
C: Practical level with slight difference in shading.
D: Conspicuous shade difference is within 4.5cm E: Conspicuous shade difference is over 4.5cm

(エ)現像剤担持体表面の算術平均粗さ(Ra);
前記(4)に記載の方法にて初期及び耐久後の現像剤担持体のRaを測定した。
(D) Arithmetic mean roughness (Ra) of the developer carrier surface;
Ra of the developer carrier after the initial stage and durability was measured by the method described in (4) above.

(5)樹脂被覆層の耐汚染性;
耐久評価後の現像剤担持体の表面を超深度形状測定顕微鏡(株式会社キーエンス製; 製品名:VK-8510)を用いて200倍で観察し、トナー汚染の程度を下記の基準にて評価した。
A:軽微な汚染しか観察されない。
B:やや汚染が観察される。
C:部分的に汚染が観察される。
D:著しい汚染が観察される。
(5) Resistant resistance of the resin coating layer;
The surface of the developer carrier after the durability evaluation was observed at 200 times using an ultra-deep shape measuring microscope (manufactured by Keyence Corporation; product name: VK-8510), and the degree of toner contamination was evaluated according to the following criteria. .
A: Only minor contamination is observed.
B: Some contamination is observed.
C: Contamination is partially observed.
D: Significant contamination is observed.

現像剤担持体S-1の構成と現像剤担持体表面の凹部形状を表3、4に示す。また、各環境下における上記各評価の結果を表5、6、7に示す。   Tables 3 and 4 show the configuration of developer carrier S-1 and the shape of the recesses on the surface of developer carrier. Tables 5, 6 and 7 show the results of the above evaluations under each environment.

<実施例2〜3及び比較例1〜2>
実施例1において、ボウル形状の樹脂粒子B−1の添加量を下記表3に示したように変えた以外は実施例1と同様にして現像剤担持体を作製し、評価した。
<Examples 2-3 and Comparative Examples 1-2>
A developer carrier was prepared and evaluated in the same manner as in Example 1 except that the addition amount of the bowl-shaped resin particles B-1 was changed as shown in Table 3 below.

<比較例3>
メタノール40%含有のレゾール型フェノール樹脂溶液J-325(大日本インキ化学工業株式会社製;製品名)167部(固形分100部)に、導電性粒子C-1を65部にメタノール100部を加え、これを横型サンドミル(直径1mmのガラスビーズをメディア粒子として使用)で2時間分散した後、固形分濃度が34%になる様にメタノールを添加して塗工液を得た。
<Comparative Example 3>
Resol type phenol resin solution J-325 containing 40% methanol (Dainippon Ink Chemical Co., Ltd .; product name) 167 parts (100 parts solids), conductive particles C-1 65 parts methanol 100 parts In addition, this was dispersed for 2 hours in a horizontal sand mill (using glass beads having a diameter of 1 mm as media particles), and then methanol was added so that the solid concentration was 34% to obtain a coating solution.

外径14mm、肉厚2mm、表面のRaが 0.3μmのアルミニウム製の円筒管を図6に示すサンドブラスト装置に取り付け、砥粒106として#100の球状ガラスビーズを用いてブラスト処理を行った。ブラスト処理装置として「ニューマ・ブラスタ」(商品名、不二製作所製)を用い、エアーの圧力を2kg/cm2で行った。処理時間は40秒とし、円筒管の回転数を60rpmとした。処理後の円筒管表面の算術平均粗さ(Ra)は1.00であった。ブラスト処理した円筒管の上下端部をマスキングし、更に軸が鉛直方向に沿うように保持した。この円筒管を回転させつつ、上記塗工液を、スプレーガンを一定速度で下降させながら塗布し、続いて熱風乾燥炉中150℃で30分間加熱して樹脂層を形成した。こうして現像剤担持体S-18を作製した。 An aluminum cylindrical tube having an outer diameter of 14 mm, a wall thickness of 2 mm, and a surface Ra of 0.3 μm was attached to the sand blasting apparatus shown in FIG. 6, and blasting was performed using # 100 spherical glass beads as the abrasive grains 106. “Pneumatic blaster” (trade name, manufactured by Fuji Seisakusho) was used as a blasting apparatus, and the air pressure was 2 kg / cm 2 . The treatment time was 40 seconds and the rotational speed of the cylindrical tube was 60 rpm. The arithmetic mean roughness (Ra) of the cylindrical tube surface after the treatment was 1.00. The upper and lower end portions of the blasted cylindrical tube were masked, and the shaft was held so that the axis was along the vertical direction. The coating liquid was applied while rotating the cylindrical tube while lowering the spray gun at a constant speed, and then heated at 150 ° C. for 30 minutes in a hot air drying furnace to form a resin layer. Thus, developer carrier S-18 was produced.

<比較例4>
比較例3の塗工液を用いた以外は実施例1と同様にして現像剤担持体S-19を作製し、評価した。
<Comparative example 4>
A developer carrier S-19 was produced and evaluated in the same manner as in Example 1 except that the coating liquid of Comparative Example 3 was used.

<比較例5>
ボウル形状の樹脂粒子B-1を球状樹脂粒子「オプトビーズ6500M」(商品名、日産化学工業社製)20部にした他は実施例1と同様にして現像剤担持体S-20を作製し、評価した。
<Comparative Example 5>
A developer carrier S-20 was prepared in the same manner as in Example 1 except that 20 parts of the spherical resin particles “Opto Beads 6500M” (trade name, manufactured by Nissan Chemical Industries, Ltd.) were used as the bowl-shaped resin particles B-1. ,evaluated.

<実施例4〜12>
実施例1におけるボウル形状の樹脂粒子B−1を下記表3に示すように変えた以外は実施例1と同様にして各々の現像剤担持体を作成し、評価した。
<Examples 4 to 12>
Each developer carrier was prepared and evaluated in the same manner as in Example 1 except that the bowl-shaped resin particles B-1 in Example 1 were changed as shown in Table 3 below.

<実施例13〜15>
実施例1における導電性粒子C−1を下記表3に示すように変えた以外は実施例1と同様にして各々の現像剤担持体を作成し、評価した。
導電性粒子C-4を用いた他は実施例2と同様にして、塗工液の分散を行ったが、粘度が高く、作製した現像剤担持体は表面にシワができたため、評価は行わなかった。この現像剤担持体の分散平均粒径は11μmであった。
得られた各現像剤担持体(S−1〜S―15)から約5mm×5mm四方の切片を切り出した。この切片の樹脂層表面の凹部を走査電子顕微鏡(株式会社日立ハイテクノロージーズ製;製品名)を用いて撮影した。6万倍の倍率で撮影し、全ての現像剤担持体について、凹部の表面の樹脂層中に導電性粒子が存在していることを確認した。実施例1〜15の現像剤担持体の構成と現像剤担持体表面の凹部形状を表3〜4に示す。また評価結果を表5〜7に示す。
<Examples 13 to 15>
Each developer carrier was prepared and evaluated in the same manner as in Example 1 except that the conductive particles C-1 in Example 1 were changed as shown in Table 3 below.
The coating liquid was dispersed in the same manner as in Example 2 except that the conductive particles C-4 were used, but the viscosity was high and the produced developer carrier was wrinkled on the surface. There wasn't. The developer carrier had a dispersion average particle size of 11 μm.
A section of about 5 mm × 5 mm square was cut out from each developer carrier (S-1 to S-15) obtained. The concave portion of the surface of the resin layer of this section was photographed using a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation; product name). Images were taken at a magnification of 60,000 times, and it was confirmed that conductive particles were present in the resin layer on the surface of the recesses for all developer carriers. Tables 3 to 4 show the configurations of the developer carriers of Examples 1 to 15 and the shape of the recesses on the surface of the developer carriers. The evaluation results are shown in Tables 5-7.

<実施例16〜19>
実施例1における弾性ブレードを表面粗さ(Rzjis)及びRsmを表3に示した値を有する弾性ブレードに変えた以外は実施例1と同様にして現像剤担持体を作製、評価した。
<Examples 16 to 19>
A developer carrier was prepared and evaluated in the same manner as in Example 1 except that the elastic blade in Example 1 was replaced with an elastic blade having the surface roughness (Rzjis) and Rsm having the values shown in Table 3.

Figure 2011158756
Figure 2011158756

Figure 2011158756
Figure 2011158756

表4記載の表面粗さ(Ra)はN/N環境下で評価を行ったときに用いた現像剤担持体についての値である。   The surface roughness (Ra) described in Table 4 is a value for the developer carrier used when the evaluation was performed in an N / N environment.

Figure 2011158756
Figure 2011158756

Figure 2011158756
Figure 2011158756

Figure 2011158756
Figure 2011158756

<実施例20>
メタノール40%含有のレゾール型フェノール樹脂溶液J-325(大日本インキ化学工業株式会社製;製品名)167部(固形分として100部)に、導電性粒子C-1を65部、下記式(A)で表される荷電制御剤を10部、メタノールを70部加え、横型サンドミル(直径1mmのガラスビーズをメディア粒子として使用)で2時間分散した。得られた分散液312部に、ボウル形状の樹脂粒子 B-2を25部、メタノール30部を加え、これを縦型サンドミル(直径1mmのガラスビーズをメディア粒子として使用)で30分間分散し、篩を用いてガラスビーズを分離した後、固形分濃度が34%になる様にメタノールを添加して塗工液を得た。

Figure 2011158756
この塗工液を、外径16mm、肉厚2mm、表面のRaが0.3μmのアルミニウム製円筒管に実施例1と同様にして塗布、硬化させて樹脂層を形成し、現像剤担持体S-21を作製した。この現像剤担持体S-21を、市販のレーザービームプリンタ「レーザーショットLBP5000」(キヤノン株式会社製;製品名)のシアン用カートリッジの現像装置に組み込んだ。この現像装置の概略は図4に示すとおりである。また、当該カートリッジにトナーとしてトナーZ-3を充填した。当該シアン用カートリッジを前記レーザービームプリンタに装填し、1枚/10秒の間欠モードで3000枚の耐久テストを行った。初期評価は10枚目の時に耐久テストを中断して、そして耐久評価は耐久テスト終了後に、実施例1と同様に行った。現像剤担持体S-21の構成と現像剤担持体表面の凹部形状を表8、9に、評価結果を表10に示す。 <Example 20>
Resol type phenolic resin solution J-325 containing 40% methanol (Dainippon Ink Chemical Co., Ltd .; product name) 167 parts (100 parts as solid content), 65 parts of conductive particles C-1, 10 parts of the charge control agent represented by A) and 70 parts of methanol were added and dispersed in a horizontal sand mill (using glass beads with a diameter of 1 mm as media particles) for 2 hours. To 312 parts of the resulting dispersion, 25 parts of bowl-shaped resin particles B-2 and 30 parts of methanol were added, and this was dispersed for 30 minutes with a vertical sand mill (using glass beads with a diameter of 1 mm as media particles). After separating the glass beads using a sieve, methanol was added so that the solid concentration was 34% to obtain a coating solution.
Figure 2011158756
This coating solution was applied and cured in the same manner as in Example 1 on an aluminum cylindrical tube having an outer diameter of 16 mm, a wall thickness of 2 mm, and a surface Ra of 0.3 μm to form a resin layer. 21 was produced. This developer carrier S-21 was incorporated into a developing device for a cyan cartridge of a commercially available laser beam printer “Laser Shot LBP5000” (manufactured by Canon Inc .; product name). The outline of this developing apparatus is as shown in FIG. The cartridge was filled with toner Z-3 as toner. The cyan cartridge was loaded into the laser beam printer, and a durability test of 3000 sheets was performed in an intermittent mode of 1 sheet / 10 seconds. In the initial evaluation, the durability test was interrupted at the 10th sheet, and the durability evaluation was performed in the same manner as in Example 1 after the end of the durability test. Tables 8 and 9 show the configuration of the developer carrier S-21 and the shape of the recesses on the surface of the developer carrier, and Table 10 shows the evaluation results.

<実施例21〜22>
実施例20におけるボウル形状の樹脂粒子B−2の添加量を表8に示したように変えた以外は実施例20と同様にして現像剤担持体を作製し、実施例1と同様に評価した。また、各現像剤担持体(S−21〜S−23)から約5mm×5mm四方の切片を切り出した。この切片の樹脂層表面の凹部を走査電子顕微鏡(株式会社日立ハイテクノロージーズ製)を用いて撮影した。6万倍の倍率で撮影し、全ての現像剤担持体について、凹部の表面の樹脂層中に導電性粒子が存在していることを確認した。
<Examples 21 to 22>
A developer carrier was prepared in the same manner as in Example 20 except that the addition amount of the bowl-shaped resin particles B-2 in Example 20 was changed as shown in Table 8, and evaluated in the same manner as in Example 1. . Further, a section of about 5 mm × 5 mm square was cut out from each developer carrier (S-21 to S-23). The concave part of the resin layer surface of this section was photographed using a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation). Images were taken at a magnification of 60,000 times, and it was confirmed that conductive particles were present in the resin layer on the surface of the recesses for all developer carriers.

<比較例6>
実施例20においてボウル形状の樹脂粒子B−2を球状樹脂粒子(商品名:オプトビーズ6500M、日産化学工業社製)に変え、添加量を30部に変えた。それ以外は実施例20と同様にして現像剤担持体を作製し、実施例1と同様に評価した。実施例20〜22、比較例6の現像剤担持体の凹部形状の詳細を表8〜9、評価結果を表10に示す。
<Comparative Example 6>
In Example 20, the bowl-shaped resin particles B-2 were changed to spherical resin particles (trade name: Optobead 6500M, manufactured by Nissan Chemical Industries, Ltd.), and the addition amount was changed to 30 parts. Otherwise, a developer carrier was prepared in the same manner as in Example 20, and evaluated in the same manner as in Example 1. Tables 8 to 9 show the details of the recessed portions of the developer carrying members of Examples 20 to 22 and Comparative Example 6, and Table 10 shows the evaluation results.

Figure 2011158756
Figure 2011158756

Figure 2011158756
Figure 2011158756

Figure 2011158756
Figure 2011158756

<実施例23>
メタノール40%含有のレゾール型フェノール樹脂溶液J-325(大日本インキ化学工業株式会社製;製品名)167部(固形分として100部)に、導電性粒子C-1を65部、式(A)で表される第4級アンモニウム塩化合物を10部、メタノールを70部加え、横型サンドミル(直径1mmのガラスビーズをメディア粒子として使用)で2時間分散した。得られた分散液312部に、ボウル形状の樹脂粒子B-2を30部、にメタノール30部を加え、これを縦型サンドミル(直径1mmのガラスビーズをメディア粒子として使用)で30分間分散し、篩を用いてガラスビーズを分離した。その後、固形分濃度が34%になる様にメタノールを添加して、塗工液を得た。
<Example 23>
Resol type phenolic resin solution J-325 containing 40% methanol (Dainippon Ink Chemical Co., Ltd .; product name) 167 parts (100 parts as solid content), 65 parts of conductive particles C-1 10 parts and 70 parts of methanol were added and dispersed for 2 hours in a horizontal sand mill (using glass beads with a diameter of 1 mm as media particles). To 312 parts of the resulting dispersion, 30 parts of bowl-shaped resin particles B-2 and 30 parts of methanol are added, and this is dispersed with a vertical sand mill (using glass beads with a diameter of 1 mm as media particles) for 30 minutes. The glass beads were separated using a sieve. Thereafter, methanol was added so that the solid content concentration was 34% to obtain a coating solution.

この塗工液を、外径24.5mm、肉厚2mm、表面のRaが0.2μmのアルミニウム製円筒管に実施例1と同様にして塗布、硬化させて表面層を形成し、現像剤担持体S-25を作製した。   This coating solution is applied and cured in the same manner as in Example 1 to an aluminum cylindrical tube having an outer diameter of 24.5 mm, a wall thickness of 2 mm, and a surface Ra of 0.2 μm to form a surface layer. -25 was produced.

現像剤担持体S-25にマグネットローラを挿入し、両端にフランジを取り付けて、これを静電潜像担持体がアモルファスシリコンドラム感光体であるデジタル複写機iR6570(キヤノン株式会社製;製品名)の現像装置に組み込んだ。この現像装置の概略は図3(a)に示すとおりである。磁気的拘束力を強めるため、マグネットローラは該現像器に用いられているマグネットローラに比べて磁力を全て1割増加させた全極磁力アップマグネットロールとした。さらに、トナーコート形成手段(磁気ブレード)を強磁性体の鉄で形成したものを先端が、マグネットの磁極と対向するように配設した。なお、このトナーコート形成手段はトナー収容部に支持される部分の厚みが1.8mmに、また、現像剤担持体に対向する部分の先端の厚みが0.6mmになるように傾斜がつけられている。トナーZ-1を使用し連続モードで100万枚耐久テストを行った。初期評価は10枚目の時に耐久テストを中断して、そして耐久評価は耐久テスト終了後に、実施例1と同様に行った。現像剤担持体S-25の構成と現像剤担持体表面の凹部形状を表11、12に、評価結果を表13に示す。   A digital roller iR6570 (manufactured by Canon Inc .; product name) in which a magnetic roller is inserted into the developer carrier S-25 and flanges are attached to both ends, and the electrostatic latent image carrier is an amorphous silicon drum photoreceptor. It was incorporated in the developing device. The outline of this developing apparatus is as shown in FIG. In order to strengthen the magnetic binding force, the magnet roller was an all-pole magnetic up magnet roll in which the magnetic force was all increased by 10% compared to the magnet roller used in the developing device. Further, the toner coat forming means (magnetic blade) formed of ferromagnetic iron was disposed so that the tip thereof was opposed to the magnetic pole of the magnet. The toner coat forming means is inclined so that the thickness of the portion supported by the toner container is 1.8 mm and the thickness of the tip of the portion facing the developer carrier is 0.6 mm. Yes. A durability test of 1 million sheets was performed in continuous mode using toner Z-1. In the initial evaluation, the durability test was interrupted at the 10th sheet, and the durability evaluation was performed in the same manner as in Example 1 after the end of the durability test. Tables 11 and 12 show the configuration of developer carrier S-25 and the shape of the recesses on the surface of the developer carrier, and Table 13 shows the evaluation results.

<実施例24〜25>
実施例23におけるボウル形状の樹脂粒子B−2の量を表11に示したように変えた以外は実施例23と同様にして現像剤担持体作製し、実施例1と同様に評価した。得られた各現像剤担持体から約5mm×5mm四方の切片を切り出した。この切片の樹脂層表面の凹部を走査電子顕微鏡(株式会社日立ハイテクノロージーズ製;製品名)を用いて撮影した。6万倍の倍率で撮影し、全ての現像剤担持体について、凹部の表面の樹脂層中に導電性粒子が存在していることを確認した。
<Examples 24 to 25>
A developer carrier was prepared in the same manner as in Example 23 except that the amount of the bowl-shaped resin particles B-2 in Example 23 was changed as shown in Table 11, and evaluated in the same manner as in Example 1. A section of about 5 mm × 5 mm square was cut out from each developer carrier thus obtained. The concave portion of the surface of the resin layer of this section was photographed using a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation; product name). Images were taken at a magnification of 60,000 times, and it was confirmed that conductive particles were present in the resin layer on the surface of the recesses for all developer carriers.

<比較例7>
実施例23におけるボウル形状の樹脂粒子B−2を比較例6で用いた球状樹脂粒子に変え、添加量を30部に変えた。それ以外は実施例23と同様にして現像剤担持体を作製し、実施例1と同様に評価した。実施例23〜25及び比較例7の現像剤担持体の凹部形状の詳細を表11〜12、評価結果を表13に示す。
<Comparative Example 7>
The bowl-shaped resin particles B-2 in Example 23 were changed to the spherical resin particles used in Comparative Example 6, and the addition amount was changed to 30 parts. Otherwise, a developer carrier was prepared in the same manner as in Example 23 and evaluated in the same manner as in Example 1. Tables 11 to 12 show the details of the recess shapes of the developer carriers of Examples 23 to 25 and Comparative Example 7, and Table 13 shows the evaluation results.

Figure 2011158756
Figure 2011158756

Figure 2011158756
Figure 2011158756

Figure 2011158756
Figure 2011158756

<実施例26>
メタノール40%含有のレゾール型フェノール樹脂溶液(商品名:J−325;大日本インキ化学工業株式会社製)167部(固形分として100部)に、導電性粒子カーボンブラックC−1を24部および黒鉛化粒子C−6を6部、メタノールを70部加え、横型サンドミル(直径1mmのガラスビーズをメディア粒子として使用)で2時間分散した。得られた分散液267部に、ボウル形状の樹脂粒子 B-3を30部、メタノール30部を加え、これを縦型サンドミル(直径1mmのガラスビーズをメディア粒子として使用)で30分間分散し、篩を用いてガラスビーズを分離した。その後、固形分濃度が34%になる様にメタノールを添加して塗工液を得た。この塗工液を外径16mm、肉厚2mm、表面のRaが2.0μmのアルミニウム製の円筒管に実施例1と同様にして塗布、硬化させて表面層を形成し、現像剤担持体S-29を作製した。現像剤担持体S-29にマグネットローラを組み付け、複写機「iRC3200N」(キヤノン株式会社製;製品名)の現像装置に組み込んだ。この現像装置の概略は図4に示す通りである。この現像装置を搭載した複写機「iRC3200N」において、トナーZ-4、キャリアY-1を使用して、3万枚の耐久テストを1枚/10秒の間欠モードで行った。初期評価は10枚目の時に耐久テストを中断して、そして耐久評価は耐久テスト終了後に、実施例1と同様に行った。現像剤担持体S-29の構成と現像剤担持体の凹部形状を表14、15に、評価結果を表16に示す。
<Example 26>
Resol type phenolic resin solution containing 40% methanol (trade name: J-325; manufactured by Dainippon Ink & Chemicals, Inc.) 167 parts (100 parts as solid content), 24 parts of conductive particle carbon black C-1 and 6 parts of graphitized particles C-6 and 70 parts of methanol were added, and dispersed for 2 hours in a horizontal sand mill (using glass beads having a diameter of 1 mm as media particles). To 267 parts of the obtained dispersion, 30 parts of bowl-shaped resin particles B-3 and 30 parts of methanol are added, and this is dispersed for 30 minutes with a vertical sand mill (using glass beads with a diameter of 1 mm as media particles). The glass beads were separated using a sieve. Thereafter, methanol was added so that the solid content concentration was 34% to obtain a coating solution. This coating solution was applied and cured in the same manner as in Example 1 on an aluminum cylindrical tube having an outer diameter of 16 mm, a wall thickness of 2 mm, and a surface Ra of 2.0 μm to form a surface layer. 29 was produced. A magnet roller was assembled to developer carrier S-29 and incorporated in the developing device of a copying machine “iRC3200N” (manufactured by Canon Inc .; product name). The outline of this developing device is as shown in FIG. In the copying machine “iRC3200N” equipped with this developing device, a durability test of 30,000 sheets was performed in an intermittent mode of 1 sheet / 10 seconds using toner Z-4 and carrier Y-1. In the initial evaluation, the durability test was interrupted at the 10th sheet, and the durability evaluation was performed in the same manner as in Example 1 after the end of the durability test. Tables 14 and 15 show the configuration of the developer carrier S-29 and the shape of the recesses of the developer carrier, and Table 16 shows the evaluation results.

<実施例27〜28>
実施例26におけるボウル形状の樹脂粒子B−3の添加量を表14に示したように変えた以外は実施例26と同様にして現像剤担持体を作製し、実施例1と同様に評価した。得られた各現像剤担持体から約5mm×5mm四方の切片を切り出し、この切片の樹脂層表面の凹部を走査電子顕微鏡(株式会社日立ハイテクノロージーズ製)を用いて撮影した。6万倍の倍率で撮影し、全ての現像剤担持体について、凹部の表面の樹脂層中に導電性粒子が存在していることを確認した。
<Examples 27 to 28>
A developer carrier was prepared in the same manner as in Example 26 except that the addition amount of the bowl-shaped resin particles B-3 in Example 26 was changed as shown in Table 14, and evaluated in the same manner as in Example 1. . A section of about 5 mm × 5 mm square was cut out from each developer carrier thus obtained, and the concave portion of the resin layer surface of the section was photographed using a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation). Images were taken at a magnification of 60,000 times, and it was confirmed that conductive particles were present in the resin layer on the surface of the recesses for all developer carriers.

<比較例8>
実施例26におけるボウル形状の樹脂粒子B−3を比較例6に用いた球状樹脂粒子に変えた以外は実施例26と同様にして現像剤担持体を作製し、実施例1と同様に評価した。実施例26〜28及び比較例8の現像剤担持体の表面形状の詳細を表14〜15、評価結果を表16に示す。
<Comparative Example 8>
A developer carrier was prepared in the same manner as in Example 26 except that the bowl-shaped resin particles B-3 in Example 26 were replaced with the spherical resin particles used in Comparative Example 6, and evaluated in the same manner as in Example 1. . Details of the surface shapes of the developer carrying members of Examples 26 to 28 and Comparative Example 8 are shown in Tables 14 to 15, and the evaluation results are shown in Table 16.

Figure 2011158756
Figure 2011158756

Figure 2011158756
Figure 2011158756

Figure 2011158756
Figure 2011158756

5 多極性磁石 (マグネットローラ)
6 基体 (金属製円筒管)
7 導電性樹脂層
8 現像剤担持体 (現像剤担持体)
14 導電性粒子
15 結着樹脂
16 ボウル形状樹脂粒子
5 Multipolar magnet (Magnet roller)
6 Base (Metal cylindrical tube)
7 Conductive resin layer 8 Developer carrier (Developer carrier)
14 conductive particles 15 binder resin 16 bowl-shaped resin particles

Claims (2)

基体表面に少なくとも結着樹脂、導電性粒子及びボウル形状の樹脂粒子を含有する樹脂層を有し、該樹脂層は該ボウル形状の樹脂粒子を含有し、該ボウル形状の樹脂粒子の開口部が有する形状によって該樹脂層表面に凹部が形成され、かつ該凹部の表面には該結着樹脂と該導電性粒子が少なくとも存在することを特徴とする現像剤担持体。   The substrate surface has a resin layer containing at least a binder resin, conductive particles, and bowl-shaped resin particles, the resin layer contains the bowl-shaped resin particles, and the openings of the bowl-shaped resin particles are A developer-carrying member, wherein a recess is formed on the surface of the resin layer depending on the shape of the developer, and at least the binder resin and the conductive particles are present on the surface of the recess. 現像剤と、該現像剤を収容する現像容器、該現像容器に収容されている現像剤を担持し現像領域に搬送する現像剤担持体、該現像剤担持体に当接して設けられ該現像剤担持体上の現像剤の層厚を規制する現像剤層厚規制部材を有し、該現像剤担持体が請求項1に記載の現像剤担持体であることを特徴とする現像装置。   A developer, a developer container that contains the developer, a developer carrier that carries the developer contained in the developer container and transports the developer to the development region, and the developer provided in contact with the developer carrier A developing device comprising a developer layer thickness regulating member for regulating a layer thickness of a developer on the carrier, wherein the developer carrier is the developer carrier according to claim 1.
JP2010021106A 2010-02-02 2010-02-02 Developer carrier and developing device Withdrawn JP2011158756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021106A JP2011158756A (en) 2010-02-02 2010-02-02 Developer carrier and developing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021106A JP2011158756A (en) 2010-02-02 2010-02-02 Developer carrier and developing device

Publications (1)

Publication Number Publication Date
JP2011158756A true JP2011158756A (en) 2011-08-18

Family

ID=44590734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021106A Withdrawn JP2011158756A (en) 2010-02-02 2010-02-02 Developer carrier and developing device

Country Status (1)

Country Link
JP (1) JP2011158756A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108308A1 (en) * 2012-01-18 2013-07-25 キヤノン株式会社 Electrophotography roller and method for producing same
JP2014137510A (en) * 2013-01-17 2014-07-28 Ricoh Co Ltd Developing roller, image forming apparatus, image forming method, and process cartridge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108308A1 (en) * 2012-01-18 2013-07-25 キヤノン株式会社 Electrophotography roller and method for producing same
JP2013167866A (en) * 2012-01-18 2013-08-29 Canon Inc Electrophotographic roller and manufacturing method of the same
US8781369B2 (en) 2012-01-18 2014-07-15 Canon Kabushiki Kaisha Charging roller and process for its production
CN104067179A (en) * 2012-01-18 2014-09-24 佳能株式会社 Electrophotography roller and method for producing same
CN104067179B (en) * 2012-01-18 2016-05-18 佳能株式会社 Electrophotography roller and production method thereof
JP2014137510A (en) * 2013-01-17 2014-07-28 Ricoh Co Ltd Developing roller, image forming apparatus, image forming method, and process cartridge

Similar Documents

Publication Publication Date Title
JP5247616B2 (en) Developer carrying member, method for producing the same, developing device, and developing method
KR101225905B1 (en) Developer carrier and developing apparatus
JP5094595B2 (en) Developer carrier and developing device
JP5995660B2 (en) Developer carrying member, method for producing the same, and developing device
JP2007279588A (en) Developer for replenishment and image forming method
JP2005202131A (en) Electrostatic charge image developing toner, image forming method and image forming apparatus
JP2005338810A (en) Developing method and developing device using the same
JP2009300792A (en) Carrier, two-component developer containing the same, and developing device and image forming apparatus using two-component developer
JP5346897B2 (en) Developer set
JP4856980B2 (en) Toner and image forming method
JP2007057743A (en) Carrier for electrostatic latent image development, developer for electrostatic latent image development and developing device
JP2011158756A (en) Developer carrier and developing device
JP5159252B2 (en) Toner and image forming method
JP5171064B2 (en) Developer carrying member, method for producing the same, and developing device having the developer carrying member
JP2007147734A (en) Developing method and developer carrier
JP2004126224A (en) Developer for replenishment and image forming apparatus
JP2002091090A (en) Resin coated carrier, two-component developer and method for forming image
JP4250486B2 (en) Development method
JP4035279B2 (en) Developing method, developing device, and image forming apparatus
JP2003295524A (en) Developer for replenishment
JP2005181776A (en) Nonmagnetic single-component developing method
JP5116558B2 (en) Developer carrying member, method for producing the same, and developing device
JP6176216B2 (en) Toner set, developer set, toner cartridge set, process cartridge set, image forming apparatus, and image forming method
JP2010271521A (en) Carrier for electrostatic latent image development, two-component developer, and image forming method
JP2008304787A (en) Developer carrier and developing device

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120727

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120730

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120731

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120831

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402