JP2011158331A - Identification method of film-like element - Google Patents

Identification method of film-like element Download PDF

Info

Publication number
JP2011158331A
JP2011158331A JP2010019366A JP2010019366A JP2011158331A JP 2011158331 A JP2011158331 A JP 2011158331A JP 2010019366 A JP2010019366 A JP 2010019366A JP 2010019366 A JP2010019366 A JP 2010019366A JP 2011158331 A JP2011158331 A JP 2011158331A
Authority
JP
Japan
Prior art keywords
elements
acceleration voltage
thin film
voltage value
total reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010019366A
Other languages
Japanese (ja)
Other versions
JP5583417B2 (en
Inventor
Kentetsu Kin
賢徹 金
Hiroyuki Takei
弘之 竹井
Kenji Yasuda
賢二 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Tokyo Medical and Dental University NUC
Original Assignee
Kanagawa Academy of Science and Technology
Tokyo Medical and Dental University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology, Tokyo Medical and Dental University NUC filed Critical Kanagawa Academy of Science and Technology
Priority to JP2010019366A priority Critical patent/JP5583417B2/en
Publication of JP2011158331A publication Critical patent/JP2011158331A/en
Application granted granted Critical
Publication of JP5583417B2 publication Critical patent/JP5583417B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an observation method for identifying a fine particle set to which a heterogeneous element has been added using: a method of determining observation conditions of SEM reflection electron measurement capable of giving a maximum luminance contrast and performing measurement with high reproducibility with respect to the kind and thickness of a film-like element; and a method of predicting a combination of element kinds that can be identified by SEM reflection electron measurement. <P>SOLUTION: The invention provides a fine particle label in which different regions of the surface of a carrier are film-coated with three or more kinds of elements. Different regions of the surface of the carrier are film-coated using a combination of three or more kinds of elements such that, when the elements are arranged in ascending or descending order based on the value of total reflectivity coefficient η of each element, a difference between total reflectivity coefficient η of adjacent elements is 0.02 or more. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は薄膜状に構成された金属,半導体などの検査法に関する。   The present invention relates to a method for inspecting a metal, a semiconductor or the like configured in a thin film shape.

個々の細胞の形態的特性や分子発現状態を詳細に調べる方法のひとつとして、電子顕微鏡による観察法が広く利用されている。電子顕微鏡による計測は、主に透過型電子顕微鏡(Transmission Electron Microscope, TEM)計測と走査型電子顕微鏡(Scanning Electron Microscope, SEM)計測に大別される。その内のSEM計測では、電磁コイルで直径数ナノメートルに絞った電子線を試料表面に照射することにより試料表面から発生する2次電子、反射電子、特性X線、カソードルミネッセンス、試料電流、透過電子などを検出器で検出することにより、試料表面の形状情報と元素構成情報を得る。試料表面の形状は主に2次電子を、また表面元素構成情報は反射電子や特性X線を検出することにより調べることができる。   As one of methods for examining in detail the morphological characteristics and molecular expression state of individual cells, an observation method using an electron microscope is widely used. Measurement with an electron microscope is mainly classified into transmission electron microscope (TEM) measurement and scanning electron microscope (SEM) measurement. In the SEM measurement, secondary electrons, reflected electrons, characteristic X-rays, cathodoluminescence, sample current, and transmission generated from the sample surface by irradiating the sample surface with an electron beam with a diameter of several nanometers by an electromagnetic coil. By detecting electrons and the like with a detector, shape information and element configuration information on the sample surface are obtained. The shape of the sample surface can be examined mainly by detecting secondary electrons, and the surface element composition information can be examined by detecting reflected electrons and characteristic X-rays.

元素構成情報を調べる方法のひとつである反射電子計測は、試料表面に電子線を照射した際、一般に原子番号が大きな元素ほど反射される電子の量が多いため画像上で明るく見えることを利用して試料表面の元素分布情報を調べる計測法であり、特性X線計測に比べて空間分解能が高いなどの特長がある。   Backscattered electron measurement, which is one of the methods for examining elemental composition information, uses the fact that when an electron beam is irradiated on the sample surface, elements with a larger atomic number generally reflect more electrons and thus appear brighter on the image. This is a measurement method for examining element distribution information on the sample surface, and has features such as higher spatial resolution than characteristic X-ray measurement.

反射電子計測時に得られる各元素の輝度は、全反射係数ηに依存する。ηは原子番号Zと入射電子線の電子が持つエネルギーE0に依存し、ηとZ、E0の関係に関する理論的、実験的記述は様々であるが、Neubertらにより提唱され広く受け入れられている、E0が5keVから60keVの範囲で実験的に検証され得られた代表的な関係は、下記の式(1)の通りである(Neubert & Rogaschewski(非特許文献1))。

η(Z, E0) = (-272.5 + 168.6Z - 1.925Z2 + 0.008225Z3) × 10-4 [1 + (0.2043 - 0.6543Z-0.3) ln (E0/ 20000)] ・・・・・・・(1)
The luminance of each element obtained at the time of reflected electron measurement depends on the total reflection coefficient η. η depends on the atomic number Z and the energy E 0 of the electron of the incident electron beam, and there are various theoretical and experimental descriptions of the relationship between η, Z, and E 0 , but they have been proposed and widely accepted by Neubert et al. A typical relationship obtained by experimentally verifying E 0 in the range of 5 keV to 60 keV is as shown in the following formula (1) (Neubert & Rogaschewski (Non-patent Document 1)).

η (Z, E 0) = (-272.5 + 168.6Z - 1.925Z 2 + 0.008225Z 3) × 10 -4 [1 + (0.2043 - 0.6543Z -0.3) ln (E 0/20000)] ···· ... (1)

細胞研究におけるSEM計測では、この反射電子計測時の元素輝度コントラストを利用し、金などの重元素で構成された微小な粒子で検出対象の生体分子を標識して、炭素などの有機物軽元素で構成された他の細胞内微小構造体に対して輝度コントラストを付加することにより、検出対象分子の細胞内での空間分布情報を正確に調べることが行われている(Deharven(非特許文献2)、Soligo & Lambertenghi-Deliliers(非特許文献3)、Scalaら(非特許文献4))。   In SEM measurement in cell research, the element brightness contrast at the time of backscattered electron measurement is used, biomolecules to be detected are labeled with fine particles composed of heavy elements such as gold, and organic light elements such as carbon are used. The spatial distribution information in the cell of the detection target molecule is accurately examined by adding a luminance contrast to the other intracellular microstructures configured (Deharven (Non-patent Document 2)). Soligo & Lambertenghi-Deliliers (Non-Patent Document 3), Scala et al. (Non-Patent Document 4)).

本願の発明者らは上記SEMによる生体分子検出法の発展として、細胞内の検出対象分子を標識するための様々な元素で構成された微小体を供給する方法、およびSEM計測により複数元素の微小体で標識された生体分子を同時に識別検出するための検査法原理を提案した。Takei(非特許文献5)では、市販ポリスチレン球などの微小な粒子を基板表面に単層高密度で配置する方法、およびその粒子表面に真空蒸着法を用いて様々な元素を薄膜状に被覆することにより、検出対象分子を標識するための様々な微小体を作製する方法の原理が明記されている。また、Kimら(非特許文献6)では、作製した様々な元素の微粒子をSEM反射電子計測により、粒子の輝度の差として識別する方法の一例が明記されている。   The inventors of the present application have developed a biomolecule detection method by SEM as described above, a method of supplying a microscopic body composed of various elements for labeling a molecule to be detected in a cell, and a microscopic measurement of a plurality of elements by SEM measurement. The principle of the test method for simultaneously identifying and detecting biomolecules labeled with the body was proposed. In Takei (Non-patent Document 5), a method of arranging fine particles such as commercially available polystyrene spheres in a single layer with high density on the surface of the substrate, and coating the surface of the particles with various elements using a vacuum deposition method Thus, the principle of a method for producing various microscopic bodies for labeling a molecule to be detected is specified. In Kim et al. (Non-patent Document 6), an example of a method for identifying the produced fine particles of various elements as a difference in luminance of the particles by SEM reflected electron measurement is specified.

G. Neubert and S. Rogaschewski, Physica Status Solidi A Appl. Res. 59, 35 (1980)G. Neubert and S. Rogaschewski, Physica Status Solidi A Appl. Res. 59, 35 (1980) E. Deharven, Ultrastruct. Pathol. 11, 711 (1987)E. Deharven, Ultrastruct. Pathol. 11, 711 (1987) D. Soligo and G. Lambertenghi-Deliliers, Scanning 9, 95 (1987)D. Soligo and G. Lambertenghi-Deliliers, Scanning 9, 95 (1987) C. Scala, G. Cenacchi, P. Preda, M. Vici, R. P. Apkarian, and G. Pasquinelli, Scanning Microsc. 5, 135 (1991)C. Scala, G. Cenacchi, P. Preda, M. Vici, R. P. Apkarian, and G. Pasquinelli, Scanning Microsc. 5, 135 (1991) H. Takei, J. Vac. Sci. Technol. B 17, 1906 (1999)H. Takei, J. Vac. Sci. Technol. B 17, 1906 (1999) H. Kim, K. Yasuda, and H. Takei, Sens. Actuators B: Chem. 142, 1(2009)H. Kim, K. Yasuda, and H. Takei, Sens. Actuators B: Chem. 142, 1 (2009)

しかしながら、上記文献には作製した様々な金属の微粒子を識別するための最適なSEM計測条件とその条件を導き出すための解析方法、同時に識別可能な元素の種類数とその組み合わせを最適なSEM計測条件から導き出す方法が明記されていない。また、これまでのSEM反射電子計測に関する報告では電子線入射方向に対してミクロン以上の十分な厚みがある試料に対する元素識別法が明記されているが、数ナノメートルからミクロン厚までの薄膜状元素を効率よく、且つ再現性よく識別する方法が明記されていない。   However, in the above document, the optimum SEM measurement conditions for identifying the various fine metal particles produced and the analysis method for deriving the conditions, the number of identifiable elements and their combinations at the same time, the optimum SEM measurement conditions The method of deriving from is not specified. In addition, the previous reports on SEM backscattered electron measurement specify element identification methods for specimens with a sufficient thickness of micron or more in the electron beam incident direction, but thin film elements from several nanometers to microns in thickness. A method for efficiently and reproducibly discriminating is not specified.

したがって、数ナノメートルからミクロン厚までの薄膜状元素で被覆された微小体を、細胞内の生体分子を可視化識別するための標識として利用するためには、利用する薄膜状元素の種類と厚さに対して、輝度コントラストが最大となり且つ再現性よく計測することができるSEM反射電子計測の観測条件を決定する方法および、標識として利用するのに最適な元素種類組み合わせを予測する方法の開示が望まれる。   Therefore, in order to use a microscopic object coated with a thin film element of several nanometers to a thickness of micron as a label for visual identification of a biomolecule in a cell, the type and thickness of the thin film element to be used In contrast, it is desirable to disclose a method for determining observation conditions for SEM backscattered electron measurement that can measure with maximum brightness contrast and good reproducibility, and a method for predicting the optimum combination of element types to be used as a label. It is.

本発明は、上記状況を鑑み、たとえば複数の生体内分子ならびに分子集合体を同時に識別するために用いられることが可能な、それぞれの生体対象に特異的に結合する機能を有する標識微粒子セットを識別するために、各々の標識微粒子表面に一定の厚さで付加された薄膜状元素の種類と厚さに対して、輝度コントラストが最大となり且つ再現性よく計測することができるSEM反射電子計測の観測条件を決定する方法および、標識として利用するのに最適な元素種類組み合わせを予測する方法を用いて、各微粒子を識別する観察方法を提供するものである。   In view of the above situation, the present invention identifies a set of labeled microparticles having a function of specifically binding to each living body object, which can be used to simultaneously identify a plurality of in vivo molecules and molecular assemblies, for example. In order to achieve this, SEM backscattered electron measurement can be measured with maximum brightness contrast and reproducibility with respect to the type and thickness of thin-film elements added to each labeled particle surface with a certain thickness. The present invention provides an observation method for identifying each fine particle by using a method for determining conditions and a method for predicting an optimum combination of element types to be used as a label.

すなわち、本発明は、以下の最適加速電圧決定方法、微粒子標識、および生体分子識別方法を提供する。
(1)走査型電子顕微鏡(SEM)を用いた反射電子計測により異なる元素薄膜で被覆した微粒子を識別する方法に使用されるSEM電子線の最適加速電圧値を決定する方法であって、
(i) 3種類以上の元素が支持体表面の異なる領域に薄膜状に堆積されてなる試料を準備する工程、
(ii) 上記試料の上記元素にSEM電子線を所定の加速電圧値の範囲にわたって照射する工程、
(iii) 各上記加速電圧値における上記試料の反射電子画像を得る工程、
(iv) 上記画像に基づいて、各上記元素について下記式:
[但し、IZは原子番号Zの元素で構成された薄膜領域の反射電子画像の輝度であり、 Imax は観測した元素の反射電子画像の輝度のうち原子番号Zが最も大きい元素で構成された薄膜領域の反射電子画像の輝度であり、Iminは観測した元素の反射電子画像の輝度のうち原子番号Zが最も小さい元素で構成された薄膜領域の反射電子画像の輝度である。]で表される校正輝度I~Z〔但しI~はIの上に~。以下、同様。〕を各上記加速電圧値において算出する工程、
(v) 各上記加速電圧値において各上記元素間のI~Zの比を算出する工程、
(vi) 各上記加速電圧値においてI~Z の比が最小となる元素の組合せを選択する工程、および
(vii) 上記選択した元素の組合せのI~Z の比が上記所定の加速電圧値の範囲内で極大となるときの加速電圧値を上記SEM電子線の最適加速電圧値として選択する工程を含む、方法。
(2)上記試料において、3種類以上の上記元素が、ほぼ等しい厚さで上記支持体表面の異なる領域に薄膜状に堆積されている、上記(1)に記載の方法。
(3)上記厚さが、1〜500nmの範囲内にある、上記(2)に記載の方法。
(4)上記元素が、
(I) 原子番号43番を除く79番までの遷移金属、
(II) 原子番号13,31,32,33,49,50,51,81,82,83番の金属、および
(III) 原子番号14,34,52番の半導体
の中から選択される、上記(1)〜(3)のいずれかに記載の方法。
(5)上記元素が、Au, Ag, Ge, Cu, Fe, Si, Eu, Y, Ti, およびAlの中から選択される、上記(1)〜(4)のいずれかに記載の方法。
(6)上記各加速電圧値において各元素間のI~Z の比を算出する工程(v)において、
下記式:

η(Z, E0) = (-272.5 + 168.6Z - 1.925Z2 + 0.008225Z3) × 10-4 [1 + (0.2043 - 0.6543Z-0.3) ln (E0/ 20000)]

[但し、ηはエネルギーE0 を有する電子線を照射したときの原子番号Zの元素の全反射係数である。]で表される各元素の全反射係数ηの値に基づいて昇順または降順で並べたときに隣接する元素間で全反射係数ηが小さな側の元素のI~Zを分母、全反射係数ηが大きな側の元素のI~Zを分子として上記I~Zの比を算出する、上記(1)〜(5)のいずれかに記載の方法。
(7)各上記元素の全反射係数ηの値に基づいて昇順または降順に並べたときに隣接する元素間での全反射係数ηの差が、0.02以上となるように上記元素を選択する、上記(6)に記載の方法。
(8)上記所定の加速電圧値の範囲が、0.1kV〜30kVの範囲である、上記(1)〜(8)のいずれかに記載の方法。
(9)支持体表面の異なる領域を3種類以上の元素で薄膜状に被覆してなる微粒子標識であって、
下記式:

η(Z, E0) = (-272.5 + 168.6Z - 1.925Z2 + 0.008225Z3) × 10-4 [1 + (0.2043 - 0.6543Z-0.3) ln (E0/ 20000)]

[但し、ηはエネルギーE0 を有する電子線を照射したときの原子番号Zの元素の全反射係数である。]で表される各元素の全反射係数ηの値に基づいて昇順または降順で並べたときに隣接する元素間での全反射係数ηの差が、0.02以上となるような3種類以上の元素の組合せを用いて、上記支持体表面の異なる領域が薄膜状に被覆されている、微粒子標識。
(10)上記支持体の大きさが、1nm〜1mmの範囲内にある、上記(9)に記載の微粒子標識。
(11)上記試料において、上記3種類以上の元素が、ほぼ等しい厚さで上記支持体表面の異なる領域に薄膜状に堆積されている、上記(9)または(10)に記載の微粒子標識。
(12)上記厚さが、1〜500nmの範囲内にある、上記(11)に記載の微粒子標識。
(13)上記元素が、
(I) 原子番号43番を除く79番までの遷移金属、
(II) 原子番号13,31,32,33,49,50,51,81,82,83番の金属、および
(III) 原子番号14,34,52番の半導体
の中から選択される、上記(9)〜(12)のいずれかに記載の微粒子標識。
(14)上記元素が、Au, Ag, Ge, Cu, Fe, Si, Eu, Y, Ti, およびAlの中から選択される、上記(9)〜(13)のいずれかに記載の微粒子標識。
(15)上記支持体が、シリコン、雲母、ポリスチレン、ポリプロピレン、またはガラスなどの素材で構成されている、上記(9)〜(14)のいずれかに記載の微粒子標識。
(16)生体分子と結合することができるプローブ分子を上記微粒子標識の表面に結合させた、上記(9)〜(15)のいずれかに記載の微粒子標識。
(17)上記プローブ分子がチオール基を備えており、上記微粒子標識の表面が金元素で被覆されている、上記(9)〜(16)のいずれかに記載の微粒子標識。
(18)上記(9)〜(17)のいずれかに記載の微粒子標識を結合させて生体分子を標識する工程、
SEM下で、上記標識された生体分子に電子線を照射し、上記微粒子標識からの反射電子線画像を得る工程、
上記反射電子画像の輝度を解析して、上記微粒子標識の種類を識別することによって上記生体分子を識別する工程、
を含む、生体分子識別方法。
That is, the present invention provides the following optimum acceleration voltage determination method, fine particle labeling, and biomolecule identification method.
(1) A method for determining an optimum acceleration voltage value of an SEM electron beam used for a method of identifying fine particles covered with different elemental thin films by reflection electron measurement using a scanning electron microscope (SEM),
(i) preparing a sample in which three or more kinds of elements are deposited in a thin film on different regions of the support surface;
(ii) irradiating the element of the sample with a SEM electron beam over a predetermined acceleration voltage range;
(iii) obtaining a reflected electron image of the sample at each acceleration voltage value;
(iv) Based on the above image, the following formula for each of the above elements:
[Where I Z is the brightness of the reflected electron image of the thin film region composed of the element with atomic number Z, and I max is composed of the element with the largest atomic number Z of the brightness of the reflected electron image of the observed element. The luminance of the reflected electron image of the thin film region, and I min is the luminance of the reflected electron image of the thin film region composed of the element having the smallest atomic number Z among the luminances of the reflected electron images of the observed elements. ] Calibration brightness I ~ Z [where I ~ is above I ~. The same applies hereinafter. ] For each acceleration voltage value,
(v) calculating a ratio of I to Z between each of the elements at each acceleration voltage value,
(vi) selecting a combination of elements that minimizes the ratio of I to Z at each acceleration voltage value, and
(vii) including a step of selecting an acceleration voltage value when the ratio of I to Z of the combination of the selected elements becomes a maximum within the range of the predetermined acceleration voltage value as the optimum acceleration voltage value of the SEM electron beam. ,Method.
(2) The method according to (1) above, wherein in the sample, three or more kinds of the elements are deposited in a thin film in different regions on the surface of the support with substantially the same thickness.
(3) The method according to (2) above, wherein the thickness is in the range of 1 to 500 nm.
(4) The above elements are
(I) Transition metals up to 79 excluding atomic number 43,
(II) metals with atomic numbers 13, 31, 32, 33, 49, 50, 51, 81, 82, 83, and
(III) The method according to any one of (1) to (3) above, which is selected from among semiconductors having atomic numbers 14, 34, and 52.
(5) The method according to any one of (1) to (4), wherein the element is selected from Au, Ag, Ge, Cu, Fe, Si, Eu, Y, Ti, and Al.
(6) In the step (v) of calculating the ratio of I to Z between each element at each acceleration voltage value,
Following formula:

η (Z, E 0) = (-272.5 + 168.6Z - 1.925Z 2 + 0.008225Z 3) × 10 -4 [1 + (0.2043 - 0.6543Z -0.3) ln (E 0/20000)]

[Where η is the total reflection coefficient of the element with atomic number Z when irradiated with an electron beam having energy E 0 . Denominator I ~ Z elements of the total reflection coefficient total reflection coefficient between adjacent elements when arranged in ascending or descending order based on the value of eta eta small side of each element represented by, the total reflection coefficient eta There calculates a ratio of the I ~ Z a I-Z of a large side element as molecules, the method according to any one of the above (1) to (5).
(7) Select the elements so that the difference in total reflection coefficient η between adjacent elements when the elements are arranged in ascending or descending order based on the value of the total reflection coefficient η of each of the elements is 0.02 or more. The method according to (6) above.
(8) The method according to any one of (1) to (8), wherein the range of the predetermined acceleration voltage value is in the range of 0.1 kV to 30 kV.
(9) A fine particle label formed by coating different regions of the support surface with a thin film with three or more elements,
Following formula:

η (Z, E 0) = (-272.5 + 168.6Z - 1.925Z 2 + 0.008225Z 3) × 10 -4 [1 + (0.2043 - 0.6543Z -0.3) ln (E 0/20000)]

[Where η is the total reflection coefficient of the element with atomic number Z when irradiated with an electron beam having energy E 0 . ] Three or more types of elements such that when arranged in ascending or descending order based on the value of the total reflection coefficient η of each element, the difference in total reflection coefficient η between adjacent elements is 0.02 or more The particulate label | marker by which the different area | regions of the said support body surface are coat | covered in thin film form using the combination of these.
(10) The fine particle label according to (9), wherein the size of the support is in the range of 1 nm to 1 mm.
(11) The fine particle label according to (9) or (10), wherein in the sample, the three or more kinds of elements are deposited in a thin film in different regions on the surface of the support with substantially the same thickness.
(12) The fine particle label according to (11), wherein the thickness is in the range of 1 to 500 nm.
(13) The above element is
(I) Transition metals up to 79 excluding atomic number 43,
(II) metals with atomic numbers 13, 31, 32, 33, 49, 50, 51, 81, 82, 83, and
(III) The fine particle label according to any one of (9) to (12), which is selected from the semiconductors having atomic numbers 14, 34, and 52.
(14) The particulate label according to any one of (9) to (13), wherein the element is selected from Au, Ag, Ge, Cu, Fe, Si, Eu, Y, Ti, and Al. .
(15) The fine particle label according to any one of (9) to (14), wherein the support is made of a material such as silicon, mica, polystyrene, polypropylene, or glass.
(16) The fine particle label according to any one of (9) to (15), wherein a probe molecule capable of binding to a biomolecule is bonded to the surface of the fine particle label.
(17) The fine particle label according to any one of (9) to (16), wherein the probe molecule has a thiol group, and a surface of the fine particle label is coated with a gold element.
(18) A step of labeling a biomolecule by binding the fine particle label according to any one of (9) to (17) above,
Irradiating the labeled biomolecule with an electron beam under SEM to obtain a reflected electron beam image from the particulate label;
Analyzing the brightness of the reflected electron image and identifying the biomolecule by identifying the type of particulate label,
A biomolecule identification method comprising:

本発明の一つの典型的な実施形態では、支持体の異なる領域に3種類以上の元素が1〜500nmの範囲で特定の膜厚で薄膜状に堆積した試料に対して、SEM電子線の入射電子を0.1kVから30kVの範囲の電圧で加速して順次照射し、それにより発生した反射電子を検出する。各加速電圧値における試料の反射電子画像を得た後、下記の式(2)により原子番号Zの元素で構成された薄膜試料の校正輝度I~Zを算出する。
式(2)のうち、IZは原子番号Zの元素で構成された薄膜試料の反射電子画像中の輝度、Imaxは観測した中で最もZが大きな元素薄膜の輝度、Iminは観測した中で最もZが小さな元素薄膜の輝度である。観察を行った全ての元素に対して、全ての加速電圧値におけるI~Zを算出した後に、各元素間のI~Zの比を算出する。I~Zの比が最小となる元素組み合わせの比の値が極大となる加速電圧値を、計測した特定の膜厚の試料に対して輝度比が最大となる、即ち最適な加速電圧値と決定する。
In one exemplary embodiment of the present invention, SEM electron beam incidence is performed on a sample in which three or more elements are deposited in a thin film with a specific film thickness in a range of 1 to 500 nm in different regions of a support. Electrons are accelerated at a voltage in the range of 0.1 kV to 30 kV and sequentially irradiated, and the reflected electrons generated thereby are detected. After obtaining a backscattered electron image of the sample at each acceleration voltage value, calibration luminances I to Z of the thin film sample composed of the element of atomic number Z are calculated by the following equation (2).
In formula (2), I Z is the brightness in the backscattered electron image of the thin film sample composed of the element with atomic number Z, I max is the brightness of the element thin film with the largest Z observed, and I min is observed Among them, Z is the brightness of the elemental thin film. After calculating I to Z at all acceleration voltage values for all the observed elements, the ratio of I to Z between each element is calculated. The acceleration voltage value at which the ratio of the element combination that minimizes the ratio of I to Z is maximized is determined to be the optimum acceleration voltage value, that is, the luminance ratio is the maximum for the sample of the specific film thickness measured. To do.

また、標識として用いる元素の組み合わせは、特定の膜厚に対する最適な加速電圧値を用いて全反射係数ηを式(1)を用いて計算し、ηの値の差が0.02以上となる元素を選択する。   In addition, the combination of elements used as a label is calculated by using formula (1) to calculate the total reflection coefficient η using the optimum acceleration voltage value for a specific film thickness, and the element whose η value difference is 0.02 or more is calculated. select.

また、生体分子と結合するプローブ分子を標識微粒子セット表面に修飾するために、たとえば、プローブ分子末端にチオール基を付加し、また、異なる元素が表面に付加された標識微粒子の表面に一様に、金元素などのチオール基とS-Au結合によって直接結合する能力を持つ元素を付加する。   In addition, in order to modify probe molecules that bind to biomolecules on the surface of the labeled fine particle set, for example, a thiol group is added to the end of the probe molecule, and different elements are added to the surface of the labeled fine particles uniformly. Add elements that have the ability to bond directly with thiol groups such as gold elements by S-Au bonds.

本発明によれば、特定膜厚の薄膜状元素に対して、輝度コントラストが最大となるSEM反射電子計測の観測条件の決定方法、および標識として利用するのに最適な元素種類の組み合わせを決定する方法が提供されるため、重元素微小体を標識として利用するSEM計測法において、異なる元素により作製された微小体セットを、同時利用可能な標識セットとして使用することができる。これにより、SEMによる細胞内生体分子計測において、多数の標的分子を異なる元素の微小体セットで一斉に標識することが可能となるため、細胞内生体分子の相互作用や空間共局在研究が飛躍的に発展する。   According to the present invention, for a thin film-like element having a specific thickness, a method for determining observation conditions for SEM backscattered electron measurement that maximizes brightness contrast, and a combination of element types that are optimal for use as labels are determined. Since the method is provided, in the SEM measurement method using a heavy element microparticle as a label, a microbody set made of different elements can be used as a label set that can be used simultaneously. This makes it possible to label a large number of target molecules at once with microelement sets of different elements when measuring intracellular biomolecules using SEM. Develops.

(a)はSi基板上にAu, Ag, Ge, Cu, Feを薄膜状に堆積させた試料の模式図である。(b)はSi基板上にAu, Ag, Ge, Cu, Feを50nm薄膜状に堆積させて入射電子線の加速電圧5kVでSEM反射電子計測を行って得られた画像の例である。(a) is a schematic diagram of a sample in which Au, Ag, Ge, Cu, and Fe are deposited in a thin film on a Si substrate. (b) is an example of an image obtained by depositing Au, Ag, Ge, Cu, Fe on a Si substrate in a 50 nm thin film and performing SEM backscattered electron measurement with an incident electron beam acceleration voltage of 5 kV. (a)はSi基板支持体の上にAu, Ag, Ge, Cu, Feの5種類の元素を20nm堆積した試料に対して、Auの輝度をImax、Si基板の輝度をIminとした上で各元素の校正輝度I~Zと加速電圧値Vの関係を、Vが3kVから30kVの範囲に対して示した例である。グラフ中でAuの輝度はI~Z=100、Si基板の輝度はI~Z=0に相当する。(b)は膜厚を50nmとして(a)と同様の計測を行った例である。In (a), the brightness of Au is I max and the brightness of the Si substrate is I min for a sample in which five elements of Au, Ag, Ge, Cu, and Fe are deposited on a Si substrate support by 20 nm. In the above example, the relationship between the calibration brightness I to Z of each element and the acceleration voltage value V is shown for a range of V from 3 kV to 30 kV. In the graph, the brightness of Au corresponds to I to Z = 100, and the brightness of the Si substrate corresponds to I to Z = 0. (b) is an example in which the same measurement as in (a) was performed with a film thickness of 50 nm. (a)はSi基板支持体の上にAu, Ag, Ge, Cu, Feの5種類の元素を20nm堆積した試料に対する、各元素の校正輝度I~Zの比と加速電圧値Vの関係を、Vが3kVから30kVの範囲に対して示した例である。(b)は膜厚を50nmとして(a)と同様の計測を行った例である。(a) shows the relationship between the ratio of calibration brightness I to Z of each element and the acceleration voltage value V for a sample in which five elements of Au, Ag, Ge, Cu, and Fe are deposited on a Si substrate support by 20 nm. , V is an example shown for a range of 3 kV to 30 kV. (b) is an example in which the same measurement as in (a) was performed with a film thickness of 50 nm.

1.SEMを用いた反射電子計測により異なる元素薄膜で被覆した微粒子を識別する方法に使用されるSEM電子線の最適加速電圧値を決定する方法
本発明は、1つの実施形態において、SEMを用いた反射電子計測により異なる元素薄膜で被覆した微粒子を識別する方法に使用されるSEM電子線の最適加速電圧値を決定する方法を提供する。この方法は、典型的には、以下の工程(i)〜(vii)を包含する。
(i) 3種類以上の元素が支持体表面の異なる領域に薄膜状に堆積されてなる試料を準備する工程、
(ii) 上記試料の上記元素にSEM電子線を所定の加速電圧値の範囲にわたって照射する工程、
(iii) 各上記加速電圧値における上記試料の反射電子画像を得る工程、
(iv) 上記画像に基づいて、各上記元素について下記式:
[但し、IZ は原子番号Zの元素で構成された薄膜領域の反射電子画像の輝度であり、 Imax は観測した元素の反射電子画像の輝度のうち原子番号Zが最も大きい元素で構成された薄膜領域の反射電子画像の輝度であり、Iminは観測した元素の反射電子画像の輝度のうち原子番号Zが最も小さい元素で構成された薄膜領域の反射電子画像の輝度である。]で表される校正輝度I~Z を各上記加速電圧値において算出する工程、
(v) 各上記加速電圧値において各上記元素間のI~Zの比を算出する工程、
(vi) 各上記加速電圧値において各上記I~Zの比が最小となる元素の組合せを選択する工程、および
(vii) 上記選択した元素の組合せのI~Z の比が上記所定の加速電圧値の範囲内で極大となるときの加速電圧値を上記SEM電子線の最適加速電圧値として選択する工程。
1. A method for determining an optimum acceleration voltage value of an SEM electron beam used in a method for identifying fine particles coated with different elemental thin films by backscattered electron measurement using SEM. In one embodiment, the present invention is a reflection using SEM. Provided is a method for determining an optimum acceleration voltage value of an SEM electron beam used in a method for identifying fine particles coated with different elemental thin films by electronic measurement. This method typically includes the following steps (i) to (vii).
(i) preparing a sample in which three or more kinds of elements are deposited in a thin film on different regions of the support surface;
(ii) irradiating the element of the sample with a SEM electron beam over a predetermined acceleration voltage range;
(iii) obtaining a reflected electron image of the sample at each acceleration voltage value;
(iv) Based on the above image, the following formula for each of the above elements:
[Where I Z is the brightness of the reflected electron image of the thin film region composed of the element with atomic number Z, and I max is composed of the element with the largest atomic number Z of the brightness of the reflected electron image of the observed element. The luminance of the reflected electron image of the thin film region, and I min is the luminance of the reflected electron image of the thin film region composed of the element having the smallest atomic number Z among the luminances of the reflected electron images of the observed elements. ] Calculating the calibration luminances I to Z represented by the above acceleration voltage values,
(v) calculating a ratio of I to Z between each of the elements at each acceleration voltage value,
(vi) selecting a combination of elements that minimizes the ratio of each of the above I to Z at each of the acceleration voltage values; and
(vii) a step of selecting an acceleration voltage value when the ratio of I to Z of the selected combination of elements becomes a maximum within the range of the predetermined acceleration voltage value as the optimum acceleration voltage value of the SEM electron beam.

本明細書中、「SEM」は走査型電子顕微鏡(Scanning Electron Microscope)を意味する。本発明のSEMを用いた反射電子計測では、電子ビームを被検対象試料に照射し、試料から放出される反射電子を検出することで試料を観察する。試料から発せられる信号は検出器で検出され、増幅や変調等の信号の処理を経て画像としてディスプレイに表示される。本発明に使用されるSEMの電子ビームの加速電圧は、典型的には、0.1kV〜30kVの範囲であるが、これに限定されない。   In this specification, “SEM” means a scanning electron microscope. In the reflected electron measurement using the SEM of the present invention, the sample is observed by irradiating the sample to be examined with the electron beam and detecting the reflected electrons emitted from the sample. A signal emitted from the sample is detected by a detector, and is displayed on a display as an image through signal processing such as amplification and modulation. The acceleration voltage of the electron beam of the SEM used in the present invention is typically in the range of 0.1 kV to 30 kV, but is not limited thereto.

支持体表面の異なる領域に薄膜状に堆積されている3種類以上の元素の薄膜の厚さは、ほぼ等しい厚さで被覆されていれば、輝度の比較の際に便利である。しかしながら、元素薄膜の厚さの輝度への寄与の程度を校正できる限り、必ずしも等しい厚さで被覆されている必要はない。元素薄膜の厚さは、典型的には、1〜500nmの範囲であるが、この範囲に限定されない。使用される元素は、典型的には、(I) 原子番号43番を除く79番までの遷移金属、(II) 原子番号13,31,32,33,49,50,51,81,82,83番の金属、および(III) 原子番号14,34,52番の半導体の中から任意に選択してよい。例えば、Au, Ag, Ge, Cu, Fe, Si, Eu, Y, Ti, およびAlなどの元素が使用され得る。   If the thicknesses of the thin films of three or more elements deposited in different regions on the surface of the support are coated with substantially the same thickness, it is convenient for comparing the luminance. However, as long as the degree of contribution of the thickness of the element thin film to the luminance can be calibrated, it is not always necessary to coat with the same thickness. The thickness of the elemental thin film is typically in the range of 1 to 500 nm, but is not limited to this range. The elements used are typically (I) transition metals up to 79 excluding atomic number 43, (II) atomic numbers 13, 31, 32, 33, 49, 50, 51, 81, 82, You may choose arbitrarily from the 83rd metal and the semiconductor of (III) atomic number 14,34,52. For example, elements such as Au, Ag, Ge, Cu, Fe, Si, Eu, Y, Ti, and Al can be used.

本発明の方法における上記工程(v)では、典型的には、下記式:

η(Z, E0) = (-272.5 + 168.6Z - 1.925Z2 + 0.008225Z3) × 10-4 [1 + (0.2043 - 0.6543Z-0.3) ln (E0/ 20000)]

[但し、ηはエネルギーE0 を有する電子線を照射したときの原子番号Zの元素の全反射係数である。]で表される各元素の全反射係数ηの値に基づいて昇順または降順で並べたときに隣接する元素間で全反射係数ηが小さな側の元素のI~Zを分母、全反射係数ηが大きな側の元素のI~Zを分子として上記I~Z の比を算出する。ここで、各元素の全反射係数ηの値に基づいて昇順または降順に並べたときに隣接する元素間での全反射係数ηの差が、0.02以上となるように上記元素を選択すると、所与の試料を反射電子信号の輝度比により識別する際に有利である。
In the step (v) in the method of the present invention, typically, the following formula:

η (Z, E 0) = (-272.5 + 168.6Z - 1.925Z 2 + 0.008225Z 3) × 10 -4 [1 + (0.2043 - 0.6543Z -0.3) ln (E 0/20000)]

[Where η is the total reflection coefficient of the element with atomic number Z when irradiated with an electron beam having energy E 0 . Denominator I ~ Z elements of the total reflection coefficient total reflection coefficient between adjacent elements when arranged in ascending or descending order based on the value of eta eta small side of each element represented by, the total reflection coefficient eta There calculates a ratio of the I ~ Z a I ~ Z large side element as molecules. Here, when the above elements are selected so that the difference in total reflection coefficient η between adjacent elements is 0.02 or more when arranged in ascending or descending order based on the value of total reflection coefficient η of each element, This is advantageous in identifying a given sample by the luminance ratio of the reflected electron signal.

2.微粒子標識
本発明のさらなる実施形態では、3種類以上の元素の組合せを用いて支持体表面の異なる領域が薄膜状に被覆されている微粒子標識が提供される。この微粒子標識は、典型的には、下記式:

η(Z, E0) = (-272.5 + 168.6Z - 1.925Z2 + 0.008225Z3) × 10-4 [1 + (0.2043 - 0.6543Z-0.3) ln (E0/ 20000)]

[但し、ηはエネルギーE0 を有する電子線を照射したときの原子番号Zの元素の全反射係数である。]で表される各元素の全反射係数ηの値に基づいて昇順または降順で並べたときに隣接する元素間での全反射係数ηの差が、0.02以上となるような3種類以上の元素の組合せで支持体表面を被覆してなっている。支持体の大きさは、典型的には1nm〜10μmの範囲内にあるが、この範囲に限定されない。支持体は、シリコン、雲母、ポリスチレン、ポリプロピレン、またはガラスなどの素材で構成され得る。
2. Fine particle label In a further embodiment of the present invention, a fine particle label is provided in which different regions of the support surface are coated in a thin film using a combination of three or more elements. This particulate label typically has the following formula:

η (Z, E 0) = (-272.5 + 168.6Z - 1.925Z 2 + 0.008225Z 3) × 10 -4 [1 + (0.2043 - 0.6543Z -0.3) ln (E 0/20000)]

[Where η is the total reflection coefficient of the element with atomic number Z when irradiated with an electron beam having energy E 0 . ] Three or more types of elements such that when arranged in ascending or descending order based on the value of the total reflection coefficient η of each element, the difference in total reflection coefficient η between adjacent elements is 0.02 or more The support surface is coated with a combination of the above. The size of the support is typically in the range of 1 nm to 10 μm, but is not limited to this range. The support may be composed of a material such as silicon, mica, polystyrene, polypropylene, or glass.

支持体表面に被覆される元素薄膜の厚さは、典型的には、1〜500nmの範囲内にある。この元素薄膜の厚さは、使用される異なる元素間で均一であればSEM電子線の反射電子画像の輝度の比較のためには好ましいが、必ずしも均一である必要はない。使用される元素は、上記のEM電子線の最適加速電圧値を決定する方法の場合と同様である。   The thickness of the elemental thin film coated on the support surface is typically in the range of 1 to 500 nm. The thickness of the element thin film is preferable for comparison of the brightness of the reflected electron image of the SEM electron beam as long as it is uniform among the different elements to be used, but is not necessarily uniform. The elements used are the same as in the method for determining the optimum acceleration voltage value of the EM electron beam.

本発明の微粒子標識は、典型的には、生体分子などを標識して検出するために使用され得る。その場合、生体分子と結合することができるプローブ分子を上記微粒子標識の表面に結合させてもよい。プローブ分子はチオール基を備えていてもよく、微粒子標識の表面がそのチオール基と反応性である金元素で被覆されていてもよい。   The particulate label of the present invention can typically be used for labeling and detecting biomolecules and the like. In that case, a probe molecule that can bind to a biomolecule may be bound to the surface of the particulate label. The probe molecule may have a thiol group, and the surface of the fine particle label may be coated with a gold element reactive with the thiol group.

3.生体分子識別方法
本発明は、さらなる実施形態において、上記の微粒子標識を用いた生体分子識別方法を提供する。この方法は、典型的には、上記の微粒子標識を結合させて生体分子を標識する工程、SEM下で、上記標識された生体分子に電子線を照射し、上記微粒子標識からの反射電子線画像を得る工程、上記反射電子画像の輝度を解析して、上記微粒子標識の種類を識別することによって上記生体分子を識別する工程を含む。
3. Biomolecule Identification Method In a further embodiment, the present invention provides a biomolecule identification method using the fine particle label described above. This method typically includes a step of labeling a biomolecule by binding the fine particle label, and irradiating the labeled biomolecule with an electron beam under SEM, and a reflected electron beam image from the fine particle label. And a step of analyzing the brightness of the reflected electron image and identifying the biomolecule by identifying the type of the particulate label.

以下、図面を参照しながら、本発明の実施形態をより具体的に説明するが、これらはあくまで例示に過ぎず、本発明の範囲はこれらの例に限定されない。   Hereinafter, embodiments of the present invention will be described more specifically with reference to the drawings. However, these are merely examples, and the scope of the present invention is not limited to these examples.

図1は本発明において識別を行う、支持体の上に堆積した薄膜状元素試料の模式図とSEM反射電子計測画像の例である。ここでは、Si基板支持体の上にAu, Ag, Ge, Cu, Feの5種類の元素をそれぞれ50nmずつ、異なる領域に堆積させた例を示している。薄膜を堆積させる支持体の種類はシリコンや雲母、ポリスチレン、ポリプロピレンなどの平坦な基板、ポリスチレンやガラス、シリコン製の球状、角柱状、円柱状、円錐状の微小体、および前記微小体を前記基板上に配置したものなどから適切なものを選択すると良い。支持体として利用する微小体の大きさは約1nm〜約1mm、好ましくは、約1nm〜約500μm、より好ましくは、約5nm〜約100μm、最も好ましくは、約5nm〜1μmの範囲であるが、これらの範囲に限定されず、下限は、約1nmから、上限は約1mmまでの任意の範囲で目的に応じて適宜設定可能である。微小体の大きさは走査型電子顕微鏡や透過型電子顕微鏡、あるいは原子間力顕微鏡のようなナノメートルサイズの構造物を観察することが可能な顕微鏡で観察を行うことにより大きさを特定し、観察結果に基づいて目的に適した大きさの微小体を選択するとよい。薄膜の厚さは1〜500nmの範囲から適切な値を選択し、より好ましくは1〜200nmの範囲である。また、元素を薄膜状に堆積させる方法としては、真空蒸着法やスパッタリング法などの一般に広く普及している薄膜構成法の中から適切な方法を選択するとよい。例えば図1では、真空蒸着法を用いて薄膜試料を作製している。   FIG. 1 is a schematic diagram of a thin film element sample deposited on a support and an example of an SEM backscattered electron measurement image for identification in the present invention. Here, an example is shown in which five kinds of elements of Au, Ag, Ge, Cu, and Fe are deposited on different regions by 50 nm each on a Si substrate support. The type of the support on which the thin film is deposited is a flat substrate such as silicon, mica, polystyrene, or polypropylene, polystyrene or glass, silicon spherical, prismatic, cylindrical, or conical minute bodies, and the minute body is the substrate. It is recommended to select an appropriate one from those arranged above. The size of the microparticles used as the support ranges from about 1 nm to about 1 mm, preferably from about 1 nm to about 500 μm, more preferably from about 5 nm to about 100 μm, and most preferably from about 5 nm to 1 μm. Without being limited to these ranges, the lower limit can be appropriately set in accordance with the purpose in an arbitrary range from about 1 nm to an upper limit of about 1 mm. The size of the micro object is specified by performing observation with a microscope capable of observing a nanometer-sized structure such as a scanning electron microscope, a transmission electron microscope, or an atomic force microscope, A micro object having a size suitable for the purpose may be selected based on the observation result. The thickness of the thin film is appropriately selected from the range of 1 to 500 nm, more preferably 1 to 200 nm. In addition, as a method for depositing the element in a thin film, an appropriate method may be selected from generally widely used thin film construction methods such as a vacuum evaporation method and a sputtering method. For example, in FIG. 1, a thin film sample is manufactured using a vacuum deposition method.

本発明において薄膜を形成する元素として利用できる元素の例を列挙すると周期律表において以下のようである。
(1)原子番号43番を除く79番までの遷移金属、
(2)原子番号13,31,32,33,49,50,51,81,82,83番の金属、および
(3)原子番号14,34,52番の半導体
Examples of elements that can be used as elements for forming a thin film in the present invention are listed in the periodic table as follows.
(1) Transition metals up to 79 excluding atomic number 43,
(2) Metals with atomic numbers 13, 31, 32, 33, 49, 50, 51, 81, 82, and 83, and (3) Semiconductors with atomic numbers 14, 34, and 52

前記元素の中から任意の3種類以上の元素を選択して支持体の上に特定の膜厚となるよう薄膜状に堆積させる。   Any three or more kinds of elements are selected from the above elements and deposited on the support in a thin film shape so as to have a specific film thickness.

薄膜状試料の識別に最適なSEM計測条件を決定するために、作製した試料をSEM試料室内にセットする。観察のための電子線加速電圧値を0.1kVから30kVの範囲で、1kV以下の刻み幅で順次照射し、各加速電圧値における反射電子画像を取得する。   In order to determine the optimum SEM measurement conditions for identifying the thin film sample, the prepared sample is set in the SEM sample chamber. Electron beam acceleration voltage values for observation are sequentially irradiated with a step size of 1 kV or less in the range of 0.1 kV to 30 kV, and a reflected electron image at each acceleration voltage value is acquired.

次に、取得したSEM反射電子画像の各元素薄膜領域の輝度値を取得する。輝度値の計測は、アメリカ国立衛生研究所 (NIH) よりインターネット経由で無償配布されているImage J(http://rsbweb.nih.gov/ij/)をはじめとする各種画像解析ソフトウェアを利用するのが便利であり、取得した反射電子画像の全ピクセル輝度を256段階以上の白黒階調として表示した後、その値を取得する。原子番号Zの元素で構成された薄膜領域の各ピクセル白黒階調値の平均値を算出し、それを原子番号Zの元素薄膜の反射電子輝度IZと定義する。また、観測を行った元素のうち最もZが大きな元素の薄膜領域の輝度をImax、最もZが小さな元素の薄膜領域の輝度をIminと定義する。例えば図1の例では、観察した元素の中で最もZが大きいAuの輝度がImax、支持体であるSiの輝度がIminとなる。各元素のIZ、およびImax、Iminを取得した後、前記の式(2)を用いて各元素の校正輝度I~Zを算出する。以上の計算を、取得した全ての加速電圧値における画像中の全ての元素に対して行う。図2は、Si基板支持体の上にAu, Ag, Ge, Cu, Feの5種類の元素を20nm、もしくは50nm堆積した試料に対して、Auの輝度をImax、Si基板の輝度をIminとした上で各元素の校正輝度I~Zと加速電圧値Vの関係を、Vが3kVから30kVの範囲に対して示した例である。グラフ中でAuの輝度はI~Z=100、Si基板の輝度はI~Z=0に相当する。図2中の誤差範囲は同条件で4回計測を行った際の誤差を示しており、式(2)を用いて各元素の校正輝度I~Zを算出した場合、変動係数はVが3kVから30kVの範囲に対して4%以下である。I~ZとVの関係の関係は図2に示すとおり、薄膜の膜厚により異なる挙動を示すため、膜厚毎に逐一計測する必要がある。 Next, the brightness value of each element thin film region of the acquired SEM reflected electron image is acquired. Luminance measurement uses various image analysis software such as Image J (http://rsbweb.nih.gov/ij/) distributed free of charge via the Internet from the National Institutes of Health (NIH). This is convenient, and after displaying the total pixel luminance of the obtained reflected electronic image as a black and white gradation having 256 levels or more, the value is obtained. The average value of the black and white gradation values of each pixel in the thin film region composed of the element having the atomic number Z is calculated, and this is defined as the reflected electron luminance I Z of the atomic thin film having the atomic number Z. Also, the luminance of the thin film region of the element with the largest Z among the elements observed is defined as I max , and the luminance of the thin film region of the element with the smallest Z is defined as I min . For example, in the example of FIG. 1, the luminance of Au having the largest Z among the observed elements is I max , and the luminance of Si as the support is I min . After obtaining I Z , I max , and I min of each element, calibration luminances I to Z of each element are calculated using the above equation (2). The above calculation is performed for all elements in the image at all acquired acceleration voltage values. FIG. 2 shows the brightness of Au as I max and the brightness of the Si substrate as I max for a sample in which five elements of Au, Ag, Ge, Cu, and Fe are deposited on a Si substrate support at 20 nm or 50 nm. In this example, the relationship between the calibration brightness I to Z of each element and the acceleration voltage value V is shown for a range of V from 3 kV to 30 kV. In the graph, the brightness of Au corresponds to I to Z = 100, and the brightness of the Si substrate corresponds to I to Z = 0. The error range in Fig. 2 shows the error when four measurements are performed under the same conditions. When the calibration luminances I to Z of each element are calculated using equation (2), the coefficient of variation is 3kV. To less than 4% for the range of 30 kV. As shown in FIG. 2, the relationship between I to Z and V shows different behavior depending on the film thickness of the thin film, and therefore it is necessary to measure every film thickness.

次に、異なる元素間の校正輝度I~Zの比を計算する。図3は、Si基板支持体の上にAu, Ag, Ge, Cu, Feの5種類の元素を20nm、あるいは50nm堆積した試料に対する、各元素の校正輝度I~Zの比と加速電圧値Vの関係を、Vが3kVから30kVの範囲に対して示した例である。I~Zの比が最小となる元素組み合わせの比の値が極大となる加速電圧値を、計測した特定の膜厚の試料に対して全元素間の輝度比が最大となる、即ち最適な加速電圧値と決定する。 Next, the ratio of calibration luminances I to Z between different elements is calculated. Fig. 3 shows the ratio of calibration brightness I to Z of each element and acceleration voltage value V for a sample in which five elements of Au, Ag, Ge, Cu, and Fe are deposited on a Si substrate support at 20 nm or 50 nm. Is an example in which V is in the range of 3 kV to 30 kV. The acceleration voltage value that maximizes the ratio of the element combination that minimizes the ratio of I to Z is maximized. Determine the voltage value.

例えば図3(b)の例では、各加速電圧値VにおいてI~Zの比が最小となる元素組み合わせは、Vが3kVから9kVの範囲ではGeとCu、9kVから30kVではAgとGeであり、最小のI~Z比の値が極大となる加速電圧値は9kVで、全ての元素間の輝度比が1.3倍以上となる。即ち、Si基板支持体の上にAu, Ag, Ge, Cu, Feの5種類の元素を50nm堆積した試料に対する、識別に最適な加速電圧値は9kVと決定することができる。最適な加速電圧値は薄膜の膜厚によって異なり、例えば10nmの場合は3kV、20nmの場合は4kV、50nmの場合は9kVと決定することができる。 For example, in the example of FIG. 3 (b), the element combination that minimizes the ratio of I to Z at each acceleration voltage value V is Ge and Cu when V is in the range of 3 kV to 9 kV, and Ag and Ge when 9 V to 30 kV. The acceleration voltage value at which the minimum I to Z ratio value is maximized is 9 kV, and the luminance ratio between all elements is 1.3 times or more. In other words, the optimum acceleration voltage value for discrimination can be determined to be 9 kV for a sample in which five kinds of elements of Au, Ag, Ge, Cu, and Fe are deposited on a Si substrate support by 50 nm. The optimum acceleration voltage value varies depending on the thickness of the thin film, and can be determined to be 3 kV for 10 nm, 4 kV for 20 nm, and 9 kV for 50 nm, for example.

図3(b)の例に対して、前記の式(1)を用いて全反射係数ηを計算した場合、9kVの加速電圧で加速した9keVのエネルギーを持つ入射電子に対する各元素のηはAuが0.497、Agが0.433、Geが0.349、Cuが0.329、Feが0.305、Siが0.186となる。即ち、図3(b)の例では、50nmの薄膜試料を9kVの加速電圧値で観察した場合、ηの差が0.02の元素がおよそ1.3倍の輝度比として識別できることを示している。図3に示すとおり元素薄膜の反射電子輝度は膜厚に大きく依存し、例えば真空蒸着法による薄膜の形成では膜厚に10%程度の誤差が生じるため、元素の正確な識別を行うためには各元素薄膜間の輝度比が1.3倍以上となることが望ましい。   In the example of FIG. 3B, when the total reflection coefficient η is calculated using the above equation (1), η of each element with respect to incident electrons having an energy of 9 keV accelerated by an acceleration voltage of 9 kV is Au. Is 0.497, Ag is 0.433, Ge is 0.349, Cu is 0.329, Fe is 0.305, and Si is 0.186. That is, the example of FIG. 3B shows that when a 50 nm thin film sample is observed at an acceleration voltage value of 9 kV, an element having a difference of η of 0.02 can be identified as a luminance ratio of about 1.3 times. As shown in FIG. 3, the reflected electron luminance of the element thin film greatly depends on the film thickness. For example, when forming a thin film by the vacuum evaporation method, an error of about 10% occurs in the film thickness. It is desirable that the luminance ratio between each elemental thin film is 1.3 times or more.

以上のことから、標識として用いる元素の組み合わせを選択する際、各元素を1.3倍以上の輝度比として識別できることを期待するためには、特定の膜厚に対する最適な加速電圧値を用いて全反射係数ηを前記式(1)を用いて計算し、ηの値の差が少なくとも0.02以上となる元素を選択する必要がある。例えば真空蒸着法やスパッタリング法により薄膜を構成する場合、工程の容易さを考慮してAu、Eu、Ag、Y、Ge、Cu、Fe、Si、Ti、Alの10種類を選択する。   From the above, when selecting a combination of elements to be used as labels, in order to expect that each element can be identified as a luminance ratio of 1.3 times or more, total reflection using the optimum acceleration voltage value for a specific film thickness The coefficient η is calculated using the above formula (1), and it is necessary to select an element having a difference in value of η of at least 0.02. For example, when a thin film is formed by a vacuum deposition method or a sputtering method, 10 types of Au, Eu, Ag, Y, Ge, Cu, Fe, Si, Ti, and Al are selected in consideration of ease of process.

本発明は上述のように、3種類以上の異なる元素が薄膜状に堆積した試料に対して、SEM電子線の加速電圧0.1kVから30kVの範囲で反射電子計測を行い式(2)により原子番号Zの元素で構成された薄膜試料の校正輝度I~Zを算出し、元素間のI~Zの比が最小となる元素組み合わせの比の値が極大となる加速電圧値を決定することにより、SEM反射電子計測による薄膜識別に最適な加速電圧値と決定することができる。 As described above, the present invention performs reflected electron measurement in the range of acceleration voltage of SEM electron beam from 0.1 kV to 30 kV on a sample in which three or more kinds of different elements are deposited in a thin film shape. By calculating the calibration brightness I to Z of the thin film sample composed of the element of Z, and determining the acceleration voltage value at which the ratio of the element combination that minimizes the ratio of I to Z between the elements is maximized, It is possible to determine the optimum acceleration voltage value for thin film identification by SEM backscattered electron measurement.

また、式(1)を用いて全反射係数ηを計算し、ηの値の差が0.02以上となる元素を選択することにより、識別に最適な元素の組み合わせを予測することができる。これを利用すれば、異なる元素により構成された微小体セットを用意しSEM反射電子計測により識別することができるため、SEMによる細胞内生体分子計測において、多数の標的分子を異なる元素の微小体セットで一斉に標識することが可能となる。   Further, by calculating the total reflection coefficient η using the formula (1) and selecting an element having a difference in value of η of 0.02 or more, it is possible to predict an optimal combination of elements for identification. If this is used, a set of microscopic bodies composed of different elements can be prepared and identified by SEM backscattered electron measurement. Therefore, in the measurement of intracellular biomolecules by SEM, a set of microscopic bodies of different elements It becomes possible to label all at once.

さらに、生体分子と結合するプローブ分子を標識微粒子セット表面に就職するために、たとえば、プローブ分子末端にチオール基を付加し、また、異なる元素が表面に付加された標識微粒子の表面に一様に、金元素などのチオール基とS-Au結合によって直接結合する能力を持つ元素を付加することもできる。この場合、前記加速電圧強度が十分に大きい場合は、共通に付加された金元素の薄膜の下層にある、異なる元素薄膜を反映した反射電子強度を計測することが出来るため、上記述べたのと同様な手段によって計測をすることができる。   Furthermore, in order to find a probe molecule that binds to a biomolecule on the surface of the labeled fine particle set, for example, a thiol group is added to the end of the probe molecule, and a different element is added to the surface of the labeled fine particle uniformly. It is also possible to add an element capable of directly bonding to a thiol group such as a gold element through an S-Au bond. In this case, when the acceleration voltage intensity is sufficiently large, the reflected electron intensity reflecting the different element thin films under the commonly added gold element thin film can be measured. Measurements can be made by similar means.

本発明は、重元素微小体を標識として利用するSEM計測法において、異なる元素により作製された微小体セットを同時利用可能にする方法、微粒子標識等として有用である。また、本発明は、細胞内生体分子の相互作用や空間共局在研究等におけるツール等として有用である。   INDUSTRIAL APPLICABILITY The present invention is useful as a method for enabling the simultaneous use of a microbody set made of different elements, a microparticle labeling, and the like in an SEM measurement method using a heavy element microbody as a label. The present invention is also useful as a tool or the like in intracellular biomolecule interactions, spatial colocalization studies, and the like.

Claims (18)

走査型電子顕微鏡(SEM)を用いた反射電子計測により異なる元素薄膜で被覆した微粒子を識別する方法に使用されるSEM電子線の最適加速電圧値を決定する方法であって、
(i) 3種類以上の元素が支持体表面の異なる領域に薄膜状に堆積されてなる試料を準備する工程、
(ii) 前記試料の前記元素にSEM電子線を所定の加速電圧値の範囲にわたって照射する工程、
(iii) 各前記加速電圧値における前記試料の反射電子画像を得る工程、
(iv) 前記画像に基づいて、各前記元素について下記式:
[但し、IZ は原子番号Zの元素で構成された薄膜領域の反射電子画像の輝度であり、 Imax は観測した元素の反射電子画像の輝度のうち原子番号Zが最も大きい元素で構成された薄膜領域の反射電子画像の輝度であり、Iminは観測した元素の反射電子画像の輝度のうち原子番号Zが最も小さい元素で構成された薄膜領域の反射電子画像の輝度である。]で表される校正輝度I~Z を各前記加速電圧値において算出する工程、
(v) 各前記加速電圧値において各前記元素間のI~Z の比を算出する工程、
(vi) 各前記加速電圧値においてI~Z の比が最小となる元素の組合せを選択する工程、および
(vii) 前記選択した元素の組合せのI~Z の比が前記所定の加速電圧値の範囲内で極大となるときの加速電圧値を前記SEM電子線の最適加速電圧値として選択する工程を含む、方法。
A method for determining an optimum acceleration voltage value of an SEM electron beam used in a method for identifying fine particles coated with different elemental thin films by backscattered electron measurement using a scanning electron microscope (SEM),
(i) preparing a sample in which three or more kinds of elements are deposited in a thin film on different regions of the support surface;
(ii) irradiating the element of the sample with a SEM electron beam over a predetermined acceleration voltage range;
(iii) obtaining a reflected electron image of the sample at each acceleration voltage value;
(iv) Based on the image, for each of the elements:
[Where I Z is the brightness of the reflected electron image of the thin film region composed of the element with atomic number Z, and I max is composed of the element with the largest atomic number Z of the brightness of the reflected electron image of the observed element. The luminance of the reflected electron image of the thin film region, and I min is the luminance of the reflected electron image of the thin film region composed of the element having the smallest atomic number Z among the luminances of the reflected electron images of the observed elements. ] Calculating the calibration luminances I to Z represented by
(v) calculating a ratio of I to Z between each of the elements at each acceleration voltage value;
(vi) selecting a combination of elements having a minimum ratio of I to Z at each acceleration voltage value; and
(vii) including a step of selecting an acceleration voltage value when the ratio of I to Z of the selected combination of elements becomes a maximum within the range of the predetermined acceleration voltage value as the optimum acceleration voltage value of the SEM electron beam. ,Method.
前記試料において、3種類以上の前記元素が、ほぼ等しい厚さで前記支持体表面の異なる領域に薄膜状に堆積されている、請求項1に記載の方法。   The method according to claim 1, wherein in the sample, three or more kinds of the elements are deposited in a thin film in different regions of the support surface with substantially equal thickness. 前記厚さが、1〜500nmの範囲内にある、請求項2に記載の方法。   The method of claim 2, wherein the thickness is in the range of 1 to 500 nm. 前記元素が、
(I) 原子番号43番を除く79番までの遷移金属、
(II) 原子番号13,31,32,33,49,50,51,81,82,83番の金属、および
(III) 原子番号14,34,52番の半導体
の中から選択される、請求項1〜3のいずれかに記載の方法。
The element is
(I) Transition metals up to 79 excluding atomic number 43,
(II) metals with atomic numbers 13, 31, 32, 33, 49, 50, 51, 81, 82, 83, and
(III) The method according to any one of claims 1 to 3, wherein the semiconductor is selected from among semiconductors having atomic numbers 14, 34 and 52.
前記元素が、Au, Ag, Ge, Cu, Fe, Si, Eu, Y, Ti, およびAlの中から選択される、請求項1〜4のいずれかに記載の方法。   The method according to claim 1, wherein the element is selected from Au, Ag, Ge, Cu, Fe, Si, Eu, Y, Ti, and Al. 前記各加速電圧値において各元素間のI~Z の比を算出する工程(v)において、
下記式:

η(Z, E0) = (-272.5 + 168.6Z - 1.925Z2 + 0.008225Z3) × 10-4 [1 + (0.2043 - 0.6543Z-0.3) ln (E0/ 20000)]

[但し、ηはエネルギーE0 を有する電子線を照射したときの原子番号Zの元素の全反射係数である。]で表される各元素の全反射係数ηの値に基づいて昇順または降順で並べたときに隣接する元素間で全反射係数ηが小さな側の元素のI~Zを分母、全反射係数ηが大きな側の元素のI~Zを分子として前記I~Z の比を算出する、請求項1〜5のいずれかに記載の方法。
In the step (v) of calculating the ratio of I to Z between each element at each acceleration voltage value,
Following formula:

η (Z, E 0) = (-272.5 + 168.6Z - 1.925Z 2 + 0.008225Z 3) × 10 -4 [1 + (0.2043 - 0.6543Z -0.3) ln (E 0/20000)]

[Where η is the total reflection coefficient of the element with atomic number Z when irradiated with an electron beam having energy E 0 . Denominator I ~ Z elements of the total reflection coefficient total reflection coefficient between adjacent elements when arranged in ascending or descending order based on the value of eta eta small side of each element represented by, the total reflection coefficient eta There calculates a ratio of the I ~ Z a I ~ Z large side element as molecules a method according to any of claims 1 to 5.
各前記元素の全反射係数ηの値に基づいて昇順または降順に並べたときに隣接する元素間での全反射係数ηの差が、0.02以上となるように前記元素を選択する、請求項6に記載の方法。   The element is selected so that a difference in total reflection coefficient η between adjacent elements when the elements are arranged in ascending or descending order based on the value of the total reflection coefficient η of each of the elements is 0.02 or more. The method described in 1. 前記所定の加速電圧値の範囲が、0.1kV〜30kVの範囲である、請求項1〜8のいずれかに記載の方法。   The method according to claim 1, wherein the range of the predetermined acceleration voltage value is in a range of 0.1 kV to 30 kV. 支持体表面の異なる領域を3種類以上の元素で薄膜状に被覆してなる微粒子標識であって、
下記式:

η(Z, E0) = (-272.5 + 168.6Z - 1.925Z2 + 0.008225Z3) × 10-4 [1 + (0.2043 - 0.6543Z-0.3) ln (E0/ 20000)]

[但し、ηはエネルギーE0 を有する電子線を照射したときの原子番号Zの元素の全反射係数である。]で表される各元素の全反射係数ηの値に基づいて昇順または降順で並べたときに隣接する元素間での全反射係数ηの差が、0.02以上となるような3種類以上の元素の組合せを用いて、前記支持体表面の異なる領域が薄膜状に被覆されている、微粒子標識。
A fine particle label formed by coating different regions of the support surface with a thin film with three or more elements,
Following formula:

η (Z, E 0) = (-272.5 + 168.6Z - 1.925Z 2 + 0.008225Z 3) × 10 -4 [1 + (0.2043 - 0.6543Z -0.3) ln (E 0/20000)]

[Where η is the total reflection coefficient of the element with atomic number Z when irradiated with an electron beam having energy E 0 . ] Three or more types of elements such that when arranged in ascending or descending order based on the value of the total reflection coefficient η of each element, the difference in total reflection coefficient η between adjacent elements is 0.02 or more The particulate label | marker by which the different area | region of the said support body surface is coat | covered in thin film form using the combination of these.
前記支持体の大きさが、1nm〜1mmの範囲内にある、請求項9に記載の微粒子標識。   The fine particle label according to claim 9, wherein the size of the support is in the range of 1 nm to 1 mm. 前記試料において、前記3種類以上の元素が、ほぼ等しい厚さで前記支持体表面の異なる領域に薄膜状に堆積されている、請求項9または10に記載の微粒子標識。   The fine particle label according to claim 9 or 10, wherein in the sample, the three or more kinds of elements are deposited in a thin film shape in different regions of the support surface with a substantially equal thickness. 前記厚さが、1〜500nmの範囲内にある、請求項11に記載の微粒子標識。   12. The particulate label according to claim 11, wherein the thickness is in the range of 1 to 500 nm. 前記元素が、
(I) 原子番号43番を除く79番までの遷移金属、
(II) 原子番号13,31,32,33,49,50,51,81,82,83番の金属、および
(III) 原子番号14,34,52番の半導体
の中から選択される、請求項9〜12のいずれかに記載の微粒子標識。
The element is
(I) Transition metals up to 79 excluding atomic number 43,
(II) metals with atomic numbers 13, 31, 32, 33, 49, 50, 51, 81, 82, 83, and
(III) The particulate label according to any one of claims 9 to 12, which is selected from semiconductors having atomic numbers 14, 34 and 52.
前記元素が、Au, Ag, Ge, Cu, Fe, Si, Eu, Y, Ti, およびAlの中から選択される、請求項9〜13のいずれかに記載の微粒子標識。   The particulate label according to any one of claims 9 to 13, wherein the element is selected from Au, Ag, Ge, Cu, Fe, Si, Eu, Y, Ti, and Al. 前記支持体が、シリコン、雲母、ポリスチレン、ポリプロピレン、またはガラスなどの素材で構成されている、請求項9〜14のいずれかに記載の微粒子標識。   The fine particle label according to any one of claims 9 to 14, wherein the support is made of a material such as silicon, mica, polystyrene, polypropylene, or glass. 生体分子と結合することができるプローブ分子を前記微粒子標識の表面に結合させた、請求項9〜15のいずれかに記載の微粒子標識。   The microparticle label according to any one of claims 9 to 15, wherein a probe molecule capable of binding to a biomolecule is bound to the surface of the microparticle label. 前記プローブ分子がチオール基を備えており、前記微粒子標識の表面が金元素で被覆されている、請求項9〜16のいずれかに記載の微粒子標識。   The fine particle label according to any one of claims 9 to 16, wherein the probe molecule has a thiol group, and a surface of the fine particle label is coated with a gold element. 請求項9〜17のいずれかに記載の微粒子標識を結合させて生体分子を標識する工程、
SEM下で、前記標識された生体分子に電子線を照射し、前記微粒子標識からの反射電子線画像を得る工程、
前記反射電子画像の輝度を解析して、前記微粒子標識の種類を識別することによって前記生体分子を識別する工程、
を含む、生体分子識別方法。
A step of labeling a biomolecule by binding the fine particle label according to claim 9,
Irradiating the labeled biomolecule with an electron beam under SEM to obtain a reflected electron beam image from the particulate label;
Analyzing the brightness of the reflected electron image and identifying the biomolecule by identifying the type of particulate label;
A biomolecule identification method comprising:
JP2010019366A 2010-01-29 2010-01-29 Method for identifying thin film elements Expired - Fee Related JP5583417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010019366A JP5583417B2 (en) 2010-01-29 2010-01-29 Method for identifying thin film elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019366A JP5583417B2 (en) 2010-01-29 2010-01-29 Method for identifying thin film elements

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014145539A Division JP2014197031A (en) 2014-07-16 2014-07-16 Identification method of film-like chemical element

Publications (2)

Publication Number Publication Date
JP2011158331A true JP2011158331A (en) 2011-08-18
JP5583417B2 JP5583417B2 (en) 2014-09-03

Family

ID=44590406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019366A Expired - Fee Related JP5583417B2 (en) 2010-01-29 2010-01-29 Method for identifying thin film elements

Country Status (1)

Country Link
JP (1) JP5583417B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412047A (en) * 2013-08-20 2013-11-27 陕西师范大学 Method for identifying true and false metal by ultrasonic non-destructive detection method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340131A (en) * 1998-05-29 1999-12-10 Advantest Corp Manufacture of semiconductor integrated circuit
JP2001050919A (en) * 1999-08-05 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Observation method for internal structure
JP2005259396A (en) * 2004-03-10 2005-09-22 Hitachi High-Technologies Corp Defective image collection method and its device
JP2006112792A (en) * 2004-10-12 2006-04-27 Onchip Cellomics Consortium Biological substance assay system and method using scanning electromicroscope
JP2007047060A (en) * 2005-08-11 2007-02-22 Horon:Kk Apparatus and method for inspection
JP2007049002A (en) * 2005-08-11 2007-02-22 Horon:Kk Inspection device and foreign matter inspection method
JP2008216198A (en) * 2007-03-07 2008-09-18 Hitachi High-Technologies Corp Sample observation condition configuration method and apparatus, sample observation method and apparatus
JP2010054336A (en) * 2008-08-28 2010-03-11 Kanagawa Acad Of Sci & Technol Discrimination method of microbody having element thin film existing on surface
JP2010112816A (en) * 2008-11-06 2010-05-20 Toyota Motor Corp Method for analyzing core-shell particle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340131A (en) * 1998-05-29 1999-12-10 Advantest Corp Manufacture of semiconductor integrated circuit
JP2001050919A (en) * 1999-08-05 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Observation method for internal structure
JP2005259396A (en) * 2004-03-10 2005-09-22 Hitachi High-Technologies Corp Defective image collection method and its device
JP2006112792A (en) * 2004-10-12 2006-04-27 Onchip Cellomics Consortium Biological substance assay system and method using scanning electromicroscope
JP2007047060A (en) * 2005-08-11 2007-02-22 Horon:Kk Apparatus and method for inspection
JP2007049002A (en) * 2005-08-11 2007-02-22 Horon:Kk Inspection device and foreign matter inspection method
JP2008216198A (en) * 2007-03-07 2008-09-18 Hitachi High-Technologies Corp Sample observation condition configuration method and apparatus, sample observation method and apparatus
JP2010054336A (en) * 2008-08-28 2010-03-11 Kanagawa Acad Of Sci & Technol Discrimination method of microbody having element thin film existing on surface
JP2010112816A (en) * 2008-11-06 2010-05-20 Toyota Motor Corp Method for analyzing core-shell particle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012064099; 金賢徹,外: '元素組成比を高精度制御したアロイナノ粒子の作製' 応用物理学会学術講演会講演予稿集 , 20070904, P.238 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412047A (en) * 2013-08-20 2013-11-27 陕西师范大学 Method for identifying true and false metal by ultrasonic non-destructive detection method

Also Published As

Publication number Publication date
JP5583417B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
Hodoroaba Energy-dispersive X-ray spectroscopy (EDS)
Hodoroaba et al. Performance of high-resolution SEM/EDX systems equipped with transmission mode (TSEM) for imaging and measurement of size and size distribution of spherical nanoparticles
Linkov et al. Comparative advantages and limitations of the basic metrology methods applied to the characterization of nanomaterials
Roth et al. Self-assembled gradient nanoparticle-polymer multilayers investigated by an advanced characterization method: microbeam grazing incidence x-ray scattering
JP6167182B2 (en) Method and apparatus for measuring thickness of thin film layer using X-ray
Rauscher et al. Identification of nanomaterials through measurements
Wuhrer et al. Low voltage imaging and X-ray microanalysis in the SEM: challenges and opportunities
Scipioni et al. Helium ion microscope
Hodoroaba et al. Characterization of micro-and nanocapsules for self-healing anti-corrosion coatings by high-resolution SEM with coupled transmission mode and EDX
Kim et al. Quantitative backscattered electron imaging of field emission scanning electron microscopy for discrimination of nano-scale elements with nm-order spatial resolution
Baer et al. Use of XPS to quantify thickness of coatings on nanoparticles
Queralt et al. Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: Application to GaN epilayers grown by molecular beam epitaxy
JP5583417B2 (en) Method for identifying thin film elements
CN106483108B (en) Measuring device and measuring method for cell mechanical property
Hardy et al. ‘When is a hotspot a good nanospot’–review of analytical and hotspot-dominated surface enhanced Raman spectroscopy nanoplatforms
JP2014197031A (en) Identification method of film-like chemical element
Schwoeble et al. Application of X-ray photoelectron spectroscopy (XPS) for the surface characterization of Gunshot Residue (GSR)
Baer et al. Challenges in applying surface analysis methods to nanoparticles and nanostructured materials
Kalantar-zadeh et al. Characterization techniques for nanomaterials
Slater et al. X-ray absorption correction for quantitative scanning transmission electron microscopic energy-dispersive X-ray spectroscopy of spherical nanoparticles
JP5391383B2 (en) Discrimination of micro objects with elemental thin films on the surface
Eller et al. Nanoprojectile Secondary Ion Mass Spectrometry for Nanometrology of Nanoparticles and Their Interfaces
JP6358045B2 (en) X-ray analysis method for surface-coated fine particles and X-ray analyzer for surface-coated fine particles
Schwenke et al. Total reflection and grazing emission X-ray fluorescence spectrometry: Assessment of the size of contaminant particles on silicon wafer surfaces
Kaur et al. Growth and characterization of gold nanoislands & quantum dots on marker-based SiO2/Si substrate for SEM resolution intercomparison studies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140716

R150 Certificate of patent or registration of utility model

Ref document number: 5583417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees