JP2011158025A - Solenoid valve - Google Patents

Solenoid valve Download PDF

Info

Publication number
JP2011158025A
JP2011158025A JP2010019908A JP2010019908A JP2011158025A JP 2011158025 A JP2011158025 A JP 2011158025A JP 2010019908 A JP2010019908 A JP 2010019908A JP 2010019908 A JP2010019908 A JP 2010019908A JP 2011158025 A JP2011158025 A JP 2011158025A
Authority
JP
Japan
Prior art keywords
valve body
valve
magnetic
magnetic valve
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010019908A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsumura
和彦 松村
Hiroshi Yamaguchi
博司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Taiheiyo Kogyo KK
Original Assignee
Pacific Industrial Co Ltd
Taiheiyo Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd, Taiheiyo Kogyo KK filed Critical Pacific Industrial Co Ltd
Priority to JP2010019908A priority Critical patent/JP2011158025A/en
Publication of JP2011158025A publication Critical patent/JP2011158025A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solenoid valve which operates, upon the action of magnetic force thereon, so as to narrow a valve hole of an extension magnetic valve element. <P>SOLUTION: The solenoid valve 10 includes: the extension magnetic valve element 30 including the valve hole 30A formed through a viscoelastic body 31 containing a magnetic powder and granular material 32, the valve element being provided in the middle of a flow passage 10A of a valve body 19; and an electromagnet 20 which gives magnetic force to the valve element 30. When the magnetic force acts on the valve element 30, the valve element 30 is pressed onto a barrier wall 18 and deformed to narrow the valve hole 30A. The valve opening of the valve hole 30A is reduced according to increase in DC current, and the valve hole 30A can be perfectly closed. When the magnetic force acting on the valve element 30 is eliminated, the valve element 30 is returned to the original shape, and the valve hole 30A is thus extended to the original size. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁性粉粒体を含有した粘弾性体に弁孔を貫通形成してなる伸縮磁性弁体を流路の途中に備えて、弁孔の弁開度を電磁石の磁力によって変更可能な電磁バルブに関するものである。   The present invention is provided with a telescopic magnetic valve body formed by penetrating a valve hole in a viscoelastic body containing magnetic powder particles in the middle of the flow path, and the valve opening degree of the valve hole can be changed by the magnetic force of the electromagnet. It relates to an electromagnetic valve.

従来のこの種の電磁バルブとして、磁力によって伸縮磁性弁体が弾性変形した場合に弁孔が拡大するように動作するものが知られている(特許文献1参照)。   As a conventional electromagnetic valve of this type, there is known one that operates so that the valve hole expands when the telescopic magnetic valve element is elastically deformed by a magnetic force (see Patent Document 1).

特開2007−287815号公報(段落[0074]、第4図)JP 2007-287815 (paragraph [0074], FIG. 4)

これに対し、上述した従来の電磁バルブとは逆の動作、即ち、磁力によって伸縮磁性弁体が弾性変形した場合に弁孔が絞られるように動作する新規な電磁バルブの開発が望まれていた。   On the other hand, there has been a demand for the development of a new electromagnetic valve that operates in a manner opposite to the above-described conventional electromagnetic valve, that is, operates so that the valve hole is throttled when the telescopic magnetic valve body is elastically deformed by a magnetic force. .

本発明は、上記事情に鑑みてなされたもので、磁力が作用した場合に伸縮磁性弁体の弁孔が絞られるように動作する電磁バルブの提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electromagnetic valve that operates so that the valve hole of the telescopic magnetic valve element is throttled when a magnetic force acts.

上記目的を達成するためになされた請求項1の発明に係る電磁バルブ(10)は、磁性粉粒体(32)を含有した粘弾性体(31)に弁孔(30A)を貫通形成してなる伸縮磁性弁体(30)を、バルブ本体(19)に形成した流路(10A)の途中に設けて、流体が弁孔(30A)を通過して流路(10A)内を流れるように構成し、電磁石(20)の磁力によって伸縮磁性弁体(30)を弾性変形させて弁孔(30A)の弁開度を変更可能とした電磁バルブ(10)において、バルブ本体(19)に、伸縮磁性弁体(30)の一端面に当接した弁体端面当接部(18)と、伸縮磁性弁体(30)の側面に密着して伸縮磁性弁体(30)の側面における流体の通過を防止すると共に伸縮磁性弁体(30)の側方への変形を規制する弁体側面当接部(11)とを形成し、電磁石(20)の磁力によって、伸縮磁性弁体(30)を弁体端面当接部(18)に押し付けて変形させることで弁孔(30A)が絞られるように構成したところに特徴を有する。   The electromagnetic valve (10) according to the invention of claim 1 made to achieve the above object has a valve hole (30A) penetrating through a viscoelastic body (31) containing a magnetic granular material (32). The expansion / contraction magnetic valve body (30) is provided in the middle of the flow path (10A) formed in the valve body (19) so that the fluid passes through the valve hole (30A) and flows in the flow path (10A). In the electromagnetic valve (10) configured to change the valve opening degree of the valve hole (30A) by elastically deforming the telescopic magnetic valve body (30) by the magnetic force of the electromagnet (20), the valve body (19) The valve body end surface abutting portion (18) that abuts one end surface of the telescopic magnetic valve body (30) and the side surface of the telescopic magnetic valve body (30) are in close contact with the fluid on the side surface of the telescopic magnetic valve body (30). Side surface of the valve body that prevents passage and restricts deformation of the telescopic magnetic valve body (30) to the side The contact hole (11) is formed, and the valve hole (30A) is narrowed by pressing the deformable magnetic valve element (30) against the valve element end surface contact part (18) by the magnetic force of the electromagnet (20). It has the characteristic in the place comprised in this way.

請求項2の発明は、請求項1に記載の電磁バルブ(10)において、電磁石(20)に通電する直流電流の大きさを制御して、弁孔(30A)を通過する流体の流量の任意に変更可能としたところに特徴を有する。   According to a second aspect of the present invention, in the electromagnetic valve (10) according to the first aspect, the flow rate of the fluid passing through the valve hole (30A) is controlled by controlling the magnitude of the direct current flowing through the electromagnet (20). It is characterized in that it can be changed.

請求項3の発明は、請求項1又は2に記載の電磁バルブ(10)において、電磁石(20)は、ソレノイド(21)の内側に鉄心(22)を設けてなり、鉄心(22)の軸心に中心孔(22A)を貫通形成し、その中心孔(22A)で流路(10A)の一部を構成すると共に、鉄心(22)の一端面に弁体端面当接部(18)を配置して伸縮磁性弁体(30)の一端面を当接させたところに特徴を有する。   The invention of claim 3 is the electromagnetic valve (10) according to claim 1 or 2, wherein the electromagnet (20) is provided with an iron core (22) inside the solenoid (21), and the shaft of the iron core (22). A central hole (22A) is formed through the core, the central hole (22A) forms part of the flow path (10A), and the valve element end surface abutting portion (18) is formed on one end surface of the iron core (22). It is characterized in that it is disposed and brought into contact with one end face of the telescopic magnetic valve body (30).

請求項4の発明は、請求項3に記載の電磁バルブ(10)において、ソレノイド(21)の内側に磁性体で構成された支持パイプ(11)を配置して、その支持パイプ(11)内の一端から一端寄り位置に亘って伸縮磁性弁体(30)を嵌合すると共に、支持パイプ(11)内の一端寄り位置から他端に亘って鉄心(22)を嵌合し、ソレノイド(21)の外側に嵌合された外筒部(15)と、ソレノイド(21)の両端面に宛がわれた1対の端面プレート部(16,17)とを有したヨーク(12)を設け、一方の端面プレート部(16)が、鉄心(22)のうち伸縮磁性弁体(30)と反対側の端部に接続される一方、支持パイプ(11)のうち伸縮磁性弁体(30)が内側に嵌合された一端部(11B)をソレノイド(21)の一端面から突出させて、その突出部分に他方の端面プレート部(17)が接続されたところに特徴を有する。   According to a fourth aspect of the present invention, in the electromagnetic valve (10) according to the third aspect, a support pipe (11) made of a magnetic material is arranged inside the solenoid (21), and the support pipe (11) A telescopic magnetic valve element (30) is fitted from one end of the support pipe to a position closer to one end, and an iron core (22) is fitted from the position closer to one end to the other end in the support pipe (11), and the solenoid (21 A yoke (12) having an outer tube portion (15) fitted on the outside of the outer surface and a pair of end surface plate portions (16, 17) addressed to both end surfaces of the solenoid (21), One end plate portion (16) is connected to the end of the iron core (22) opposite to the telescopic magnetic valve body (30), while the telescopic magnetic valve body (30) of the support pipe (11) is connected to the end plate portion (16). One end of the solenoid (21) is connected to the inner end (11B). By al protrude, having characterized in that the other end face plate portion (17) is connected to the protruding portion.

[請求項1の発明]
請求項1の発明によれば、磁力が作用していない場合、伸縮磁性弁体(30)は原形を留める。このとき弁孔(30A)の弁開度は全開であり、この弁孔(30A)を通過して流路(10A)内を流体が流れる。一方、伸縮磁性弁体(30)に磁力が作用すると、伸縮磁性弁体(30)が弁体端面当接部流路(18)に押し付けられて変形する。このとき伸縮磁性弁体(30)の側方への変形が弁体側面当接部(11)によって規制されているので、伸縮磁性弁体(30)を構成する粘弾性体(31)が弁孔(30A)の内側に迫り出して弁孔(30A)が絞られる。また、伸縮磁性弁体(30)に作用する磁力が無くなると、伸縮磁性弁体(30)は原形に復帰して弁孔(30A)が元の大きさまで拡大する。
[Invention of Claim 1]
According to the invention of claim 1, when the magnetic force is not acting, the telescopic magnetic valve body (30) retains its original shape. At this time, the valve opening of the valve hole (30A) is fully open, and the fluid flows through the valve hole (30A) through the flow path (10A). On the other hand, when a magnetic force acts on the expansion / contraction magnetic valve element (30), the expansion / contraction magnetic valve element (30) is pressed against the valve element end surface contact portion flow path (18) to be deformed. At this time, since the deformation of the telescopic magnetic valve body (30) to the side is restricted by the valve body side surface contact portion (11), the viscoelastic body (31) constituting the telescopic magnetic valve body (30) is the valve. The valve hole (30A) is squeezed into the hole (30A). When the magnetic force acting on the expansion / contraction magnetic valve element (30) is lost, the expansion / contraction magnetic valve element (30) returns to its original shape and the valve hole (30A) expands to its original size.

[請求項2の発明]
請求項2の発明によれば、電磁石(20)に流す直流電流を制御することで弁孔(30A)の大きさを調節し、流体の流量を任意に変更することが可能になる。
[Invention of claim 2]
According to the second aspect of the present invention, it is possible to adjust the size of the valve hole (30A) by controlling the direct current flowing through the electromagnet (20) and arbitrarily change the flow rate of the fluid.

[請求項3の発明]
請求項3の発明によれば、ソレノイド(21)への通電により、鉄心(22)と同軸上に配置された伸縮磁性弁体(30)が鉄心(22)に引き寄せられ、弁体端面当接部(18)に押し付けられて変形する。ソレノイド(21)の内側に鉄心(22)を設けたので、鉄心(22)を設けない場合に比べてソレノイド(21)の内側における磁束密度が向上する。これにより、伸縮磁性弁体(30)を変形させて弁孔(30A)を絞るために必要な電流を抑えたり、ソレノイド(21)の軽量化を図ることができる。換言すれば、消費電力及びソレノイド(21)の重量を増加させることなく、伸縮磁性弁体(30)に作用する磁力を強化することができる。
[Invention of claim 3]
According to the invention of claim 3, by energizing the solenoid (21), the telescopic magnetic valve body (30) arranged coaxially with the iron core (22) is attracted to the iron core (22), and the valve body end surface abuts. Deformed by being pressed against the part (18). Since the iron core (22) is provided inside the solenoid (21), the magnetic flux density inside the solenoid (21) is improved as compared with the case where the iron core (22) is not provided. Thereby, the electric current required for deform | transforming an expansion-contraction magnetic valve body (30) and restrict | squeezing a valve hole (30A) can be suppressed, or the weight reduction of a solenoid (21) can be achieved. In other words, the magnetic force acting on the telescopic magnetic valve body (30) can be enhanced without increasing the power consumption and the weight of the solenoid (21).

[請求項4の発明]
請求項4の発明によれば、鉄心(22)、支持パイプ(11)、伸縮磁性弁体(30)及びヨーク(12)によってループ状の磁路が構成されるから、ヨーク(12)を備えないものに比べて磁気回路の磁気抵抗が減少する。これにより、伸縮磁性弁体(30)を変形させて弁孔(30A)を絞るために必要な電流を更に抑えたり、ソレノイド(21)の更なる軽量化を図ることができる。
[Invention of claim 4]
According to the invention of claim 4, since the loop-shaped magnetic path is constituted by the iron core (22), the support pipe (11), the telescopic magnetic valve element (30) and the yoke (12), the yoke (12) is provided. The magnetic resistance of the magnetic circuit is reduced compared to the case without it. Thereby, the electric current required for deforming the expansion / contraction magnetic valve body (30) to restrict the valve hole (30A) can be further suppressed, and the weight of the solenoid (21) can be further reduced.

本発明の一実施形態に係る電磁バルブの側断面図1 is a side sectional view of an electromagnetic valve according to an embodiment of the present invention. (A)無通電時における伸縮磁気弁体の側断面図、(B)弁孔が絞られた状態の伸縮磁気弁体の側断面図、(C)弁孔が閉鎖した状態の伸縮磁気弁体の側断面図(A) Side sectional view of the telescopic magnetic valve body when no power is supplied, (B) Side sectional view of the telescopic magnetic valve body with the valve hole being throttled, (C) Telescopic magnetic valve body with the valve hole closed Side sectional view of 変形例に係る電磁バルブの(A)側断面図、(B)ヨーク底面図(A) sectional side view of electromagnetic valve according to modification, (B) bottom view of yoke 変形例に係る電磁バルブの側断面図Side sectional view of electromagnetic valve according to modification 変形例に係る電磁バルブの側断面図Side sectional view of electromagnetic valve according to modification

以下、本発明に係る電磁バルブ10の一実施形態を、図1及び図2に基づいて説明する。図1に示すように、電磁バルブ10は、内部に流路10Aを有したバルブ本体19を備えている。バルブ本体19のうち流路10Aの両端には、流体配管に接続するための接続部19A,19Aを備えている。   Hereinafter, an embodiment of an electromagnetic valve 10 according to the present invention will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the electromagnetic valve 10 includes a valve body 19 having a flow path 10A therein. Connection parts 19A and 19A for connecting to fluid piping are provided at both ends of the flow path 10A in the valve body 19.

バルブ本体19の内部には、支持パイプ11、電磁石20及び伸縮磁性弁体30が収容されている。支持パイプ11は磁性体で構成され、流路10Aと同軸上で延びた円筒形をなしている。   A support pipe 11, an electromagnet 20, and a telescopic magnetic valve body 30 are accommodated inside the valve body 19. The support pipe 11 is made of a magnetic material and has a cylindrical shape extending coaxially with the flow path 10A.

電磁石20は、ソレノイド21の内側に鉄心22を設けてなる。ソレノイド21は、絶縁材料で形成された円筒状のボビン23に絶縁導線を巻回して構成されている。ボビン23は支持パイプ11の外側に嵌合しており、支持パイプ11の上流側端部11Bを除く全体がソレノイド21によって包囲されている。なお、図示しないが、ソレノイド21には可変抵抗器を介して直流電源が接続されている。   The electromagnet 20 is provided with an iron core 22 inside a solenoid 21. The solenoid 21 is configured by winding an insulating wire around a cylindrical bobbin 23 made of an insulating material. The bobbin 23 is fitted to the outside of the support pipe 11, and the whole of the support pipe 11 except for the upstream end portion 11 </ b> B is surrounded by the solenoid 21. Although not shown, a direct current power source is connected to the solenoid 21 via a variable resistor.

鉄心22は、支持パイプ11の内面に密着した状態で嵌合されている。詳細には、鉄心22は、支持パイプ11の下流側端部11Aから上流側端部11B寄り位置まで延びている。鉄心22の軸心には、流路10Aの一部を構成する中心孔22Aが形成されている。中心孔22Aの断面は円形であり、軸方向で内径が一定になっている。なお、鉄心22の材質は、鉄に限定するものではない。   The iron core 22 is fitted in close contact with the inner surface of the support pipe 11. Specifically, the iron core 22 extends from the downstream end 11A of the support pipe 11 to a position closer to the upstream end 11B. A central hole 22A constituting a part of the flow path 10A is formed in the axial center of the iron core 22. The cross section of the center hole 22A is circular, and the inner diameter is constant in the axial direction. The material of the iron core 22 is not limited to iron.

ソレノイド21は筒状のヨーク12によって包囲されている。ヨーク12は、ソレノイド21の外側に嵌合された円筒形の外筒部15と、ソレノイド21の両端面に宛がわれた1対の端面プレート部16,17とから構成されている。1対の端面プレート部16,17は、外筒部15の両端部から径方向内側に向かって張り出している。   The solenoid 21 is surrounded by a cylindrical yoke 12. The yoke 12 includes a cylindrical outer tube portion 15 fitted to the outside of the solenoid 21 and a pair of end surface plate portions 16 and 17 addressed to both end surfaces of the solenoid 21. The pair of end face plate portions 16, 17 protrudes radially inward from both end portions of the outer cylinder portion 15.

下流側の端面プレート部16は、鉄心22のうち伸縮磁性弁体30とは反対側の端部に接続されている。一方、上流側の端面プレート部17は、ソレノイド21から突出した支持パイプ11の上流側端部11Bに接続されている。ここで、ヨーク12のうち、下流側の端面プレート部16は、外筒部15及び鉄心22に一体形成されており、上流側の端面プレート部17は、外筒部15の内側にソレノイド21を嵌合させた後で、外筒部15の端部に溶接されている。   The downstream end face plate portion 16 is connected to the end of the iron core 22 opposite to the telescopic magnetic valve body 30. On the other hand, the upstream end plate portion 17 is connected to the upstream end portion 11 </ b> B of the support pipe 11 protruding from the solenoid 21. Here, in the yoke 12, the downstream end surface plate portion 16 is integrally formed with the outer cylinder portion 15 and the iron core 22, and the upstream end surface plate portion 17 has the solenoid 21 inside the outer cylinder portion 15. After being fitted, it is welded to the end of the outer cylinder part 15.

鉄心22の先端面には隔壁18が当接している。隔壁18は支持パイプ11の内周面から中心に向かって張り出した円板状をなしている。隔壁18は非磁性体(例えば、樹脂)で構成され、支持パイプ11に一体形成又は支持パイプ11とは別部品で構成されている。隔壁18の中心部には、中心孔22Aと略同径の連通孔18Aが貫通形成されている。また、連通孔18Aのうち次述する伸縮磁性弁体30側の開口縁はR面取り形状になっている。なお、隔壁18は、本発明の「弁体端面当接部」に相当する。   A partition wall 18 is in contact with the front end surface of the iron core 22. The partition wall 18 has a disk shape projecting from the inner peripheral surface of the support pipe 11 toward the center. The partition wall 18 is made of a non-magnetic material (for example, resin), and is formed integrally with the support pipe 11 or a separate part from the support pipe 11. A communication hole 18 </ b> A having substantially the same diameter as the center hole 22 </ b> A is formed through the center of the partition wall 18. Moreover, the opening edge by the side of the expansion-and-contraction magnetic valve body 30 mentioned below among 18 A of communication holes is R chamfering shape. The partition wall 18 corresponds to the “valve element end surface contact portion” of the present invention.

支持パイプ11の上流側端部11B側、即ち、隔壁18を挟んで鉄心22とは反対側には円柱状の弁体受容空間が形成され、ここに伸縮磁性弁体30が嵌合されている。伸縮磁性弁体30は、粘弾性体31(例えば、シリコーンゴム又はシリコーンゲル)に磁性粉粒体32(例えば、カルボニル鉄又はフェライト)を均一に分散させかつ固定化したものである。詳細には、液状にした粘弾性体31と磁性粉粒体32とを所定の比率で減圧脱泡しながら均一に撹拌し、その混合物を成形型に充填して加熱硬化させることで製造されたものである。なお、粘弾性体31は、シリコーンゴム又はシリコーンゲルに限定されるものではなく、磁性粉粒体32は、カルボニル鉄又はフェライトに限定されるものではない。   A cylindrical valve body receiving space is formed on the upstream end portion 11B side of the support pipe 11, that is, on the opposite side of the partition wall 18 from the iron core 22, and the telescopic magnetic valve body 30 is fitted therein. . The telescopic magnetic valve body 30 is obtained by uniformly dispersing and fixing a magnetic granular material 32 (for example, carbonyl iron or ferrite) in a viscoelastic body 31 (for example, silicone rubber or silicone gel). Specifically, the liquid viscoelastic body 31 and the magnetic granular material 32 are uniformly stirred while degassing under a predetermined ratio, and the mixture is filled in a mold and heat-cured. Is. The viscoelastic body 31 is not limited to silicone rubber or silicone gel, and the magnetic powder body 32 is not limited to carbonyl iron or ferrite.

伸縮磁性弁体30の原形は、弁体受容空間に対応して円柱構造をなしており、その外周面が支持パイプ11の内周面に密着して伸縮磁性弁体30の側面における流体の通過を防止している。また、伸縮磁性弁体30の軸方向の一端面は隔壁18に密着している。なお、支持パイプ11(詳細には、伸縮磁性弁体30が嵌合した上流側端部11B)は、本発明の「弁体側面当接部」に相当する。   The original shape of the telescopic magnetic valve body 30 has a cylindrical structure corresponding to the valve body receiving space, and its outer peripheral surface is in close contact with the inner peripheral surface of the support pipe 11 so that fluid can pass through the side surface of the telescopic magnetic valve body 30. Is preventing. Further, one end surface in the axial direction of the telescopic magnetic valve body 30 is in close contact with the partition wall 18. The support pipe 11 (specifically, the upstream end portion 11B fitted with the telescopic magnetic valve body 30) corresponds to the “valve body side surface contact portion” of the present invention.

ここで、伸縮磁性弁体30の脱落や位置ずれを防止するために、伸縮磁性弁体30の外周面を接着剤によって支持パイプ11の内周面に固着させてもよいし、伸縮磁性弁体30の端面を接着剤によって隔壁18に固着させてもよい。   Here, in order to prevent the expansion / contraction magnetic valve body 30 from falling off or being displaced, the outer peripheral surface of the expansion / contraction magnetic valve body 30 may be fixed to the inner peripheral surface of the support pipe 11 with an adhesive, or the expansion / contraction magnetic valve body. 30 end faces may be fixed to the partition wall 18 by an adhesive.

伸縮磁性弁体30の軸心には流体が通過可能な弁孔30Aが貫通形成されている。伸縮磁性弁体30が原形のときの弁孔30Aの断面は円形であり、その内径は伸縮磁性弁体30の軸方向で一定でかつ中心孔22A及び連通孔18Aより小径になっている。   A valve hole 30 </ b> A through which fluid can pass is formed through the shaft center of the telescopic magnetic valve body 30. When the telescopic magnetic valve body 30 is the original shape, the cross section of the valve hole 30A is circular, and the inner diameter is constant in the axial direction of the telescopic magnetic valve body 30 and smaller than the center hole 22A and the communication hole 18A.

そして、伸縮磁性弁体30は電磁石20の磁力が作用すると、次述するように弾性変形する。以上が、電磁バルブ10の構成に関する説明である。   The telescopic magnetic valve body 30 is elastically deformed as described below when the magnetic force of the electromagnet 20 acts. The above is the description regarding the configuration of the electromagnetic valve 10.

次に、電磁バルブ10の動作について説明する。ソレノイド21への通電が行われていない場合、伸縮磁性弁体30に磁力が作用しないので、伸縮磁性弁体30は原形を留める。このとき、伸縮磁性弁体30の弁孔30Aは、図2(A)に示すように全開である。   Next, the operation of the electromagnetic valve 10 will be described. When the solenoid 21 is not energized, no magnetic force acts on the expansion / contraction magnetic valve body 30, so the expansion / contraction magnetic valve body 30 retains its original shape. At this time, the valve hole 30A of the telescopic magnetic valve body 30 is fully opened as shown in FIG.

ソレノイド21への通電が行われると、支持パイプ11内を軸方向に貫通した磁束が発生する。このとき、鉄心22、支持パイプ11、伸縮磁性弁体30及びヨーク12がループ状の磁路を構成し、磁束は、鉄心22の軸方向に延びて支持パイプ11内を貫き、伸縮磁性弁体30、支持パイプ11、上流側の端面プレート部17、外筒部15、下流側の端面プレート部16を通って鉄心22に帰還する。   When the solenoid 21 is energized, a magnetic flux penetrating the support pipe 11 in the axial direction is generated. At this time, the iron core 22, the support pipe 11, the telescopic magnetic valve body 30 and the yoke 12 constitute a loop-shaped magnetic path, and the magnetic flux extends in the axial direction of the iron core 22 and penetrates the support pipe 11, and the telescopic magnetic valve body. 30, the support pipe 11, the upstream end plate portion 17, the outer cylinder portion 15, and the downstream end plate portion 16 are returned to the iron core 22.

このとき、伸縮磁性弁体30を鉄心22側に引き寄せる磁力が発生し、伸縮磁性弁体30は隔壁18に押し付けられて弾性変形する。詳細には、伸縮磁性弁体30は、径方向外側への変形が支持パイプ11によって規制されているので、図2(B)に示すように、隔壁18に近づくに従って弁孔30Aの内側に迫り出すように弾性変形して、弁孔30Aの下流端が絞られる。   At this time, a magnetic force that draws the telescopic magnetic valve body 30 toward the iron core 22 is generated, and the telescopic magnetic valve body 30 is pressed against the partition wall 18 and elastically deformed. Specifically, the deformation of the telescopic magnetic valve body 30 toward the outside in the radial direction is restricted by the support pipe 11, so as shown in FIG. 2 (B), it approaches the inside of the valve hole 30 </ b> A as it approaches the partition wall 18. The downstream end of the valve hole 30A is squeezed by being elastically deformed so as to come out.

ここで、連通孔18Aのうち、伸縮磁性弁体30側の開口縁はR面取り形状になっているので、隔壁18に押し付けられた伸縮磁性弁体30に連通孔18Aの開口縁が食い込むことを防止することができ、延いては、伸縮磁性弁体30の傷付きを防止することができる。   Here, since the opening edge of the communication hole 18A on the side of the expansion / contraction magnetic valve body 30 has an R chamfered shape, the opening edge of the communication hole 18A bites into the expansion / contraction magnetic valve body 30 pressed against the partition wall 18. As a result, the expansion / contraction magnetic valve element 30 can be prevented from being damaged.

弁孔30Aの収縮部分(下流端)における内径(以下、「弁開度」という)は、ソレノイド21に流す直流電流の大きさで変更することができる。即ち、直流電流を減少させることで弁孔30Aの弁開度を大きくすることができる一方、直流電流を増加させることで弁孔30Aの弁開度を小さくすることができる。そして、直流電流を所定値以上に大きくすると、図2(C)に示すように、弁孔30Aの下流端が閉鎖される。即ち、伸縮磁性弁体30によって流量を制御すると共に、流体の流れを遮断することができる。ソレノイド21への通電が停止して伸縮磁性弁体30に磁力が作用しなくなると、粘弾性体31の弾発力により伸縮磁性弁体30が原形に復帰し、弁孔30Aが全開状態に戻される(図2(A)参照)。   The inner diameter (hereinafter referred to as “valve opening”) of the contracted portion (downstream end) of the valve hole 30 </ b> A can be changed by the magnitude of the direct current flowing through the solenoid 21. That is, the valve opening degree of the valve hole 30A can be increased by reducing the direct current, while the valve opening degree of the valve hole 30A can be reduced by increasing the direct current. When the direct current is increased to a predetermined value or more, the downstream end of the valve hole 30A is closed as shown in FIG. That is, the flow rate can be controlled by the telescopic magnetic valve body 30, and the flow of fluid can be blocked. When the energization of the solenoid 21 is stopped and the magnetic force does not act on the expansion / contraction magnetic valve body 30, the expansion / contraction magnetic valve body 30 returns to its original shape due to the elastic force of the viscoelastic body 31, and the valve hole 30A returns to the fully opened state. (See FIG. 2A).

このように本実施形態によれば、磁力が作用していない場合、伸縮磁性弁体30は原形を留め、弁孔30Aが全開となる。一方、伸縮磁性弁体30に磁力が作用すると、伸縮磁性弁体30が隔壁18に押し付けられて変形し、弁孔30Aが絞られる。直流電流の増加に伴って弁孔30Aの弁開度は小さくなり、弁孔30Aを完全に閉鎖することもできる。そして、伸縮磁性弁体30に作用する磁力が無くなると、伸縮磁性弁体30は原形に復帰して弁孔30Aが元の大きさまで拡大する。   Thus, according to this embodiment, when the magnetic force is not acting, the expansion-contraction magnetic valve body 30 retains its original shape, and the valve hole 30A is fully opened. On the other hand, when a magnetic force acts on the expansion / contraction magnetic valve body 30, the expansion / contraction magnetic valve body 30 is pressed against the partition wall 18 and deformed, and the valve hole 30A is throttled. As the direct current increases, the valve opening of the valve hole 30A decreases, and the valve hole 30A can be completely closed. And if the magnetic force which acts on the expansion-contraction magnetic valve body 30 is lose | eliminated, the expansion-contraction magnetic valve body 30 will return to an original form, and the valve hole 30A will expand to the original magnitude | size.

また、ソレノイド21に流す直流電流の大きさを制御することで弁孔30Aの弁開度を制御することができ、弁孔30Aを通過する流体の流量及び流体圧を任意に変更することができる。さらに、ソレノイド21の中心に鉄心22が挿入されたので鉄心22を設けない場合に比べて支持パイプ11内における磁束密度が向上する。これにより、伸縮磁性弁体30を変形させて弁孔30Aを絞るために必要な直流電流を抑えたり、ソレノイド21の軽量化を図ることができる。換言すれば、消費電力及びソレノイド21の重量を増加させることなく、伸縮磁性弁体30に作用する磁力を強化することができる。   Further, the valve opening degree of the valve hole 30A can be controlled by controlling the magnitude of the direct current flowing through the solenoid 21, and the flow rate and fluid pressure of the fluid passing through the valve hole 30A can be arbitrarily changed. . Furthermore, since the iron core 22 is inserted in the center of the solenoid 21, the magnetic flux density in the support pipe 11 is improved as compared with the case where the iron core 22 is not provided. Thereby, it is possible to suppress the direct current required to deform the telescopic magnetic valve body 30 and restrict the valve hole 30A, and to reduce the weight of the solenoid 21. In other words, the magnetic force acting on the telescopic magnetic valve body 30 can be enhanced without increasing the power consumption and the weight of the solenoid 21.

なお、ソレノイド21に流す直流電流が抑えられると、ソレノイド21の発熱が軽減され、ソレノイド21に対する強制冷却手段を省くことが可能になる。また、磁力を強化することができれば、より粘弾性の高い(硬い)粘弾性体31を伸縮磁性弁体30に使用することが可能となり、粘弾性体31の選択の自由度が高まる。また、粘弾性の高い粘弾性体31を伸縮磁性弁体30に使用することで耐圧性の向上を図ることができる。   If the direct current flowing through the solenoid 21 is suppressed, the heat generation of the solenoid 21 is reduced, and the forced cooling means for the solenoid 21 can be omitted. Further, if the magnetic force can be strengthened, it becomes possible to use the viscoelastic body 31 with higher (hard) viscoelasticity for the telescopic magnetic valve body 30, and the degree of freedom in selecting the viscoelastic body 31 is increased. In addition, the pressure resistance can be improved by using the viscoelastic body 31 having high viscoelasticity for the telescopic magnetic valve body 30.

さらに、鉄心22、支持パイプ11、ヨーク12及び伸縮磁性弁体30によりループ状の磁路が構成されるから、磁気回路の磁気抵抗を小さくすることができる。これにより、伸縮磁性弁体30を変形させて弁孔30Aを絞るために必要な直流電流を更に抑えたり、ソレノイド21の更なる軽量化を図ることができる。   Further, since the iron core 22, the support pipe 11, the yoke 12, and the telescopic magnetic valve element 30 form a loop-shaped magnetic path, the magnetic resistance of the magnetic circuit can be reduced. Thereby, it is possible to further suppress the direct current required for deforming the expansion / contraction magnetic valve body 30 and restricting the valve hole 30A, or to further reduce the weight of the solenoid 21.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)前記実施形態では、鉄心22が支持パイプ11の内面に密着した状態で嵌合され、鉄心22を貫通した中心孔22A内を流体が通過可能となっていたが、図3(A)に示すように、鉄心22を支持パイプ11内に遊嵌する細軸状にして、支持パイプ11の内周面と鉄心22の外側面との間の隙間を流体が通過するようにすると共に、同図(B)に示すように端面プレート部16に流体が通過可能な流体通過孔13を貫通形成してもよい。   (1) In the above embodiment, the iron core 22 is fitted in close contact with the inner surface of the support pipe 11, and fluid can pass through the center hole 22A penetrating the iron core 22, but FIG. As shown in FIG. 5, the iron core 22 is formed into a thin shaft shape that is loosely fitted into the support pipe 11 so that the fluid passes through the gap between the inner peripheral surface of the support pipe 11 and the outer surface of the iron core 22, As shown in FIG. 5B, a fluid passage hole 13 through which fluid can pass may be formed through the end face plate portion 16.

(2)上記実施形態では、鉄心22の先端と伸縮磁性弁体30との間に、「弁体端面当接部」としての隔壁18を備えていたが、隔壁18を設けずに鉄心22の先端を伸縮磁性弁体30に当接させた構成にしてもよい。この場合、鉄心22の先端が本発明の「弁体端面当接部」に相当する。   (2) In the above embodiment, the partition wall 18 as the “valve element end surface contact portion” is provided between the tip of the core 22 and the telescopic magnetic valve body 30. You may make it the structure which made the front-end | tip contact | abut the expansion-contraction magnetic valve body 30. FIG. In this case, the tip of the iron core 22 corresponds to the “valve element end surface contact portion” of the present invention.

(3)前記実施形態では、伸縮磁性弁体30に突き合わされた鉄心22の先端部がソレノイド21の内側に没入していたが、例えば、図4に示すように、鉄心22の両端部をソレノイド21の両端面から突出させて、そのソレノイド21から突出した一方の端部に伸縮磁性弁体30を重ねて配置してもよい。   (3) In the above embodiment, the tip of the iron core 22 butted against the telescopic magnetic valve body 30 is immersed inside the solenoid 21. For example, as shown in FIG. The telescopic magnetic valve body 30 may be arranged so as to protrude from both end faces of the 21 and overlap one end protruding from the solenoid 21.

(4)図5に示すように、バルブ本体19にL字状に屈曲した流路10Aを形成して、L字における一方の直線部の途中に伸縮磁性弁体30を配設すると共に、隔壁18及び流路10Aの屈曲部を挟んで伸縮磁性弁体30とは反対側に電磁石20を配置し、磁力によって伸縮磁性弁体30を電磁石20側に引き寄せ、隔壁18側に押し付けて変形させることで、弁孔30Aが絞られるようにように構成してもよい。   (4) As shown in FIG. 5, a flow path 10A bent in an L shape is formed in the valve main body 19, and the expansion / contraction magnetic valve element 30 is disposed in the middle of one straight portion of the L shape, and the partition wall The electromagnet 20 is disposed on the opposite side of the expansion and contraction magnetic valve body 30 across the bent portion of the flow path 10A and the expansion and contraction magnetic valve body 30 is attracted to the electromagnet 20 side by a magnetic force and is pressed and deformed against the partition wall 18 side. Thus, the valve hole 30A may be configured to be throttled.

(5)前記実施形態では、鉄心22を備えていたが、鉄心22を備えていなくてもよい。   (5) In the said embodiment, although the iron core 22 was provided, the iron core 22 does not need to be provided.

(6)前記実施形態では、ヨーク12を備えていたがヨーク12を備えていなくてもよい。   (6) Although the yoke 12 is provided in the embodiment, the yoke 12 may not be provided.

(7)前記実施形態では、弁孔30A、連通孔18A、中心孔22Aがそれぞれ1つずつであったが、鉄心22に、その軸方向に沿って延びたに複数の貫通孔を設けると共に、それら各貫通孔に対応させて、弁孔30A及び連通孔18Aをそれぞれ複数ずつ設けてもよい。   (7) In the above embodiment, each of the valve hole 30A, the communication hole 18A, and the center hole 22A is one, but the iron core 22 is provided with a plurality of through holes extending along the axial direction, A plurality of valve holes 30A and a plurality of communication holes 18A may be provided corresponding to each of the through holes.

(8)前記実施形態では、伸縮磁性弁体30が上流側に配置されるように電磁バルブ10を流体配管に接続した場合を例示したが、伸縮磁性弁体30が下流側に配置されるように電磁バルブ10を流体配管に接続してもよい。但し、伸縮磁性弁体30が磁力で引き寄せられる方向と、弁孔30Aに流れ込む流体の流れの方向とが一致するように配置すること、即ち、前記実施形態のように、伸縮磁性弁体30が上流側になるように配置することが好ましい。   (8) In the above embodiment, the case where the electromagnetic valve 10 is connected to the fluid pipe so that the telescopic magnetic valve body 30 is disposed on the upstream side is illustrated, but the telescopic magnetic valve body 30 is disposed on the downstream side. The electromagnetic valve 10 may be connected to the fluid piping. However, it is arranged so that the direction in which the telescopic magnetic valve body 30 is attracted by magnetic force and the direction of the flow of the fluid flowing into the valve hole 30A coincide, that is, as in the above-described embodiment, the telescopic magnetic valve body 30 is It is preferable to arrange so as to be on the upstream side.

(9)上記実施形態では、連通孔18Aのうち伸縮磁性弁体30側の開口縁がR面取り形状になっていたが、テーパー状の面取り形状にしても、伸縮磁性弁体30への開口縁の食い込みを防止することが可能である。   (9) In the above embodiment, the opening edge of the communication hole 18A on the side of the telescopic magnetic valve body 30 has an R chamfered shape, but the opening edge to the telescopic magnetic valve body 30 can also be formed in a tapered chamfered shape. It is possible to prevent biting in.

10 電磁バルブ
10A 流路
11 支持パイプ(弁体側面当接部)
12 ヨーク
15 外筒部
16,17 端面プレート部
18 隔壁(弁体端面当接部)
19 バルブ本体
20 電磁石
21 ソレノイド
22 鉄心
22A 中心孔
30 伸縮磁性弁体
30A 弁孔
31 粘弾性体
32 磁性粉粒体
10 Solenoid valve 10A Flow path 11 Support pipe (valve element side surface contact part)
12 Yoke 15 Outer cylinder part 16, 17 End face plate part 18 Bulkhead (valve element end face contact part)
DESCRIPTION OF SYMBOLS 19 Valve main body 20 Electromagnet 21 Solenoid 22 Iron core 22A Center hole 30 Telescopic magnetic valve body 30A Valve hole 31 Viscoelastic body 32 Magnetic granular material

Claims (4)

磁性粉粒体(32)を含有した粘弾性体(31)に弁孔(30A)を貫通形成してなる伸縮磁性弁体(30)を、バルブ本体(19)に形成した流路(10A)の途中に設けて、流体が前記弁孔(30A)を通過して前記流路(10A)内を流れるように構成し、電磁石(20)の磁力によって前記伸縮磁性弁体(30)を弾性変形させて前記弁孔(30A)の弁開度を変更可能とした電磁バルブ(10)において、
前記バルブ本体(19)に、前記伸縮磁性弁体(30)の一端面に当接した弁体端面当接部(18)と、前記伸縮磁性弁体(30)の側面に密着して前記伸縮磁性弁体(30)の側面における流体の通過を防止すると共に前記伸縮磁性弁体(30)の側方への変形を規制する弁体側面当接部(11)とを形成し、
前記電磁石(20)の磁力によって、前記伸縮磁性弁体(30)を前記弁体端面当接部(18)に押し付けて変形させることで前記弁孔(30A)が絞られるように構成したことを特徴とする電磁バルブ(10)。
A flow path (10A) in which a telescopic magnetic valve body (30) formed by penetrating a valve hole (30A) in a viscoelastic body (31) containing a magnetic granular material (32) is formed in a valve body (19). The fluid is configured so that the fluid passes through the valve hole (30A) and flows in the flow path (10A), and the elastic magnetic valve body (30) is elastically deformed by the magnetic force of the electromagnet (20). In the electromagnetic valve (10) in which the valve opening degree of the valve hole (30A) can be changed,
The valve body (19) is in close contact with the side surface of the expansion / contraction magnetic valve body (30) and the valve body end surface contact portion (18) that is in contact with one end surface of the expansion / contraction magnetic valve body (30). Forming a valve body side surface contact portion (11) that prevents the fluid from passing through the side surface of the magnetic valve body (30) and restricts deformation of the telescopic magnetic valve body (30) to the side;
The valve hole (30A) is configured to be squeezed by pressing the deformable magnetic valve element (30) against the valve element end surface abutting portion (18) by the magnetic force of the electromagnet (20). Characteristic electromagnetic valve (10).
前記電磁石(20)に通電する直流電流の大きさを制御して、前記弁孔(30A)を通過する流体の流量の任意に変更可能としたことを特徴とする請求項1に記載の電磁バルブ(10)。   2. The electromagnetic valve according to claim 1, wherein the flow rate of the fluid passing through the valve hole (30 </ b> A) can be arbitrarily changed by controlling the magnitude of a direct current supplied to the electromagnet (20). (10). 前記電磁石(20)は、ソレノイド(21)の内側に鉄心(22)を設けてなり、
前記鉄心(22)の軸心に中心孔(22A)を貫通形成し、その中心孔(22A)で前記流路(10A)の一部を構成すると共に、前記鉄心(22)の一端面に前記弁体端面当接部(18)を配置して前記伸縮磁性弁体(30)の一端面を当接させたことを特徴とする請求項1又は2に記載の電磁バルブ(10)。
The electromagnet (20) is provided with an iron core (22) inside a solenoid (21),
A central hole (22A) is formed through the axial center of the iron core (22), and the central hole (22A) forms a part of the flow path (10A), and the one end surface of the iron core (22) The electromagnetic valve (10) according to claim 1 or 2, wherein a valve body end surface abutting portion (18) is arranged to abut one end surface of the telescopic magnetic valve body (30).
前記ソレノイド(21)の内側に磁性体で構成された支持パイプ(11)を配置して、その支持パイプ(11)内の一端から一端寄り位置に亘って前記伸縮磁性弁体(30)を嵌合すると共に、前記支持パイプ(11)内の一端寄り位置から他端に亘って前記鉄心(22)を嵌合し、
前記ソレノイド(21)の外側に嵌合された外筒部(15)と、前記ソレノイド(21)の両端面に宛がわれた1対の端面プレート部(16,17)とを有したヨーク(12)を設け、
一方の前記端面プレート部(16)が、前記鉄心(22)のうち前記伸縮磁性弁体(30)と反対側の端部に接続される一方、前記支持パイプ(11)のうち前記伸縮磁性弁体(30)が内側に嵌合された一端部(11B)を前記ソレノイド(21)の一端面から突出させて、その突出部分に他方の前記端面プレート部(17)が接続されたことを特徴とする請求項3に記載の電磁バルブ(10)。
A support pipe (11) made of a magnetic material is disposed inside the solenoid (21), and the telescopic magnetic valve body (30) is fitted from one end to the other end of the support pipe (11). And fitting the iron core (22) from the position closer to one end to the other end in the support pipe (11),
A yoke (15) having an outer tube portion (15) fitted to the outside of the solenoid (21) and a pair of end surface plate portions (16, 17) addressed to both end surfaces of the solenoid (21). 12)
One end face plate portion (16) is connected to an end portion of the iron core (22) opposite to the telescopic magnetic valve body (30), while the telescopic magnetic valve of the support pipe (11). One end (11B) with the body (30) fitted inside is protruded from one end face of the solenoid (21), and the other end face plate (17) is connected to the protruding portion. The electromagnetic valve (10) according to claim 3.
JP2010019908A 2010-02-01 2010-02-01 Solenoid valve Pending JP2011158025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010019908A JP2011158025A (en) 2010-02-01 2010-02-01 Solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019908A JP2011158025A (en) 2010-02-01 2010-02-01 Solenoid valve

Publications (1)

Publication Number Publication Date
JP2011158025A true JP2011158025A (en) 2011-08-18

Family

ID=44590150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019908A Pending JP2011158025A (en) 2010-02-01 2010-02-01 Solenoid valve

Country Status (1)

Country Link
JP (1) JP2011158025A (en)

Similar Documents

Publication Publication Date Title
JP5979790B2 (en) Pilot operated solenoid valve
JP2011171447A (en) Solenoid for solenoid valve
JP2010278403A (en) Linear actuator
KR101900587B1 (en) Solenoid robust against misalignment of pole piece and flux sleeve
JP2012516574A (en) Solenoid device including a segmented armature member for reducing radial force
JP2016149416A (en) Linear solenoid
JP2012530380A (en) Solenoid coil
JP6469325B1 (en) Electromagnetic actuator and hydraulic adjustment mechanism
JP4535870B2 (en) Magnetically actuated motion control device
JP2005207412A (en) Fuel injection valve
US7777603B2 (en) Armature and solenoid assembly
JP2011158025A (en) Solenoid valve
JP2009203991A (en) Solenoid valve
JP6379142B2 (en) Solenoid actuator
JP4080438B2 (en) Giant magnetostriction unit
JP2021068907A (en) System and method for solenoid having permanent magnet
US20190186651A1 (en) Anti-latching and damping shim for an electromagnetic actuator
JP2005317939A (en) Linear solenoid valve
WO2014006675A1 (en) Electromagnetic valve
CN208750114U (en) A kind of electromagnetic assembly and solenoid valve
JP4623983B2 (en) Linear solenoid valve
JP2011185306A (en) Solenoid valve device
US20220262554A1 (en) Multi-Stable Solenoid Having an Intermediate Pole Piece
JP5490843B2 (en) Electropneumatic converter with low hysteresis characteristics
JP2005277306A (en) Linear solenoid valve