JP2011157860A - Mixed combustion system - Google Patents

Mixed combustion system Download PDF

Info

Publication number
JP2011157860A
JP2011157860A JP2010019571A JP2010019571A JP2011157860A JP 2011157860 A JP2011157860 A JP 2011157860A JP 2010019571 A JP2010019571 A JP 2010019571A JP 2010019571 A JP2010019571 A JP 2010019571A JP 2011157860 A JP2011157860 A JP 2011157860A
Authority
JP
Japan
Prior art keywords
gas
fuel gas
flow rate
mixed
calorific value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010019571A
Other languages
Japanese (ja)
Inventor
Nobuhiko Fukaya
信彦 深谷
Teruo Fujii
輝夫 藤井
Takeshi Umehara
猛 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Creative Techno Solution Co Ltd
Original Assignee
Osaka Gas Co Ltd
Creative Techno Solution Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Creative Techno Solution Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010019571A priority Critical patent/JP2011157860A/en
Publication of JP2011157860A publication Critical patent/JP2011157860A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly-reliable mixed combustion system achieving a simplest possible manner and a reduction in installation cost, in such a mixed combustion system that a calorific value of each raw material gas (main fuel gas and sub-fuel gas) is comparatively stabilized and it is preferable that a mixing ratio of the raw material gas in mixed gas introduced to a gas burning facility (a gas engine, a boiler or the like) is previously set. <P>SOLUTION: The gas burning facility is an output variable gas fuel apparatus outputting output according to the calorific value of the mixed gas. The mixed combustion system includes: a main fuel gas supply system introducing the main fuel gas g1 to a mixer 5 with the pressure of the main fuel gas set to set pressure; and a sub-fuel gas supply system provided with a flow rate adjustment means 7 adjusting the flow rate of the sub-fuel gas to a set flow rate and introducing the sub-fuel gas g2 having the adjusted flow rate to the mixer 5. The flow rate of the sub-fuel gas g2 is controlled by the flow rate adjustment means 7 based on the output detected value of the gas burning facility 1, the calorific value of the main fuel gas g1, and the mixing ratio R1 of the predetermined raw material gas to the calorific value of the sub-fuel gas g2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、主燃料ガスと副燃料ガスとを混合器で混合した混合ガスをガス燃焼設備に供給し、当該ガス燃焼設備で混合ガスを燃焼させて働く混焼システムに関する。   The present invention relates to a mixed combustion system that works by supplying a mixed gas obtained by mixing main fuel gas and auxiliary fuel gas in a mixer to a gas combustion facility and burning the mixed gas in the gas combustion facility.

今日、地球に優しい環境設備を実現する等の目的から、所謂、オンサイトで発生するバイオガスを発生熱量が管理された都市ガス等に混合して燃焼させる混焼システムが提案されている。
このような混焼システムでは、バイオガスと都市ガス等との混合ガスが燃料ガスとして使用される。この種の混焼システムの代表例としては、ガスエンジンにより駆動される発電機を備えたガスエンジン発電システム、混合ガスを燃焼して蒸気を発生するボイラシステム等を挙げることができる。このボイラシステムでは、その蒸気発生量を段階的に設定できる構成のものが多い。
Today, for the purpose of realizing environment-friendly environmental facilities, a so-called co-firing system is proposed in which biogas generated on-site is mixed with city gas or the like whose generated heat is controlled and burned.
In such a mixed combustion system, a mixed gas of biogas and city gas is used as a fuel gas. Typical examples of this type of mixed combustion system include a gas engine power generation system including a generator driven by a gas engine, a boiler system that generates steam by burning a mixed gas, and the like. In many boiler systems, the steam generation amount can be set stepwise.

ガスエンジン発電システムの一例が、特許文献1に示されている。
特許文献1に開示のシステムは、副燃料ガスの熱量が変動しても安定してガスエンジンを運転することができる発電システムを提供することを目的としている。この文献に開示の技術では、同明細書に記載されているように、副燃料ガスの熱量が減少し、発電機の発電出力が目標出力よりも低下したときには、ガスエンジンに供給される主燃料ガスと副燃料ガスとの総熱量を確保するように、出力制御コントローラがスロットルバルブの開度を増加させる。これに伴い、吸気マニホールド内に吸入される第2混合気の流量が増加し、吸気マニホールド内の圧力が目標圧力よりも増加する。このとき、吸気マニホールド内の圧力が目標圧力に復帰するように、主燃料制御コントローラが主燃料調整弁の開度を増加させる。これにより、ガスエンジンへの主燃料ガスの供給量が増加することになり、出力制御コントローラがスロットルバルブの開度を復帰させる。こうして、副燃料ガスの熱量の不足分を、主燃料ガスの熱量によって補い、吸気マニホールド内の圧力を目標圧力に復帰させることができる。
An example of a gas engine power generation system is shown in Patent Document 1.
An object of the system disclosed in Patent Document 1 is to provide a power generation system that can stably operate a gas engine even if the amount of heat of the auxiliary fuel gas varies. In the technique disclosed in this document, as described in the specification, when the calorific value of the auxiliary fuel gas decreases and the power generation output of the generator is lower than the target output, the main fuel supplied to the gas engine The output controller increases the opening degree of the throttle valve so as to secure the total heat quantity of the gas and the auxiliary fuel gas. As a result, the flow rate of the second air-fuel mixture sucked into the intake manifold increases, and the pressure in the intake manifold increases above the target pressure. At this time, the main fuel control controller increases the opening of the main fuel adjustment valve so that the pressure in the intake manifold returns to the target pressure. As a result, the amount of main fuel gas supplied to the gas engine increases, and the output controller returns the opening of the throttle valve. Thus, the shortage of the heat amount of the auxiliary fuel gas can be compensated by the heat amount of the main fuel gas, and the pressure in the intake manifold can be returned to the target pressure.

特許文献1に記載の技術においては、主燃料ガスと副燃料ガスとの混合比の変化を考慮することなく、ガスエンジン側で所定の出力を得るために、両燃料ガスの供給流量を調整する。   In the technique described in Patent Document 1, the supply flow rates of both fuel gases are adjusted in order to obtain a predetermined output on the gas engine side without considering the change in the mixing ratio between the main fuel gas and the auxiliary fuel gas. .

特開2009−30492号公報JP 2009-30492 A

しかしながら、主燃料ガスと副燃料ガスとの混合比が一定の混合ガスをガスエンジンに供給し、出力の調整は、その出力に応じたスロットルの開度調整で行う方が好ましい場合もある。この状況は、例えば、ガスエンジンが、発熱量が安定的に管理された主燃料ガスのみで運転されていたシステムで副燃料ガスを消費したいといった場合であり、ガスエンジンに許容される発熱量許容幅が所定の幅に制限される場合である。このような既存設備を使用する場合には、混合比を一定に保ち、混合ガスの発熱量を所定の変動幅内に維持した状態で、ガスエンジン側で発生する出力に応じた総発熱量(燃料ガス流量F×燃料ガスの発熱量Q)の混合ガスをガスエンジンに供給する必要が生じる。   However, in some cases, it is preferable to supply a gas mixture having a constant mixing ratio between the main fuel gas and the sub fuel gas to the gas engine and adjust the output by adjusting the throttle opening according to the output. This situation is, for example, when the gas engine wants to consume the secondary fuel gas in a system that is operated only with the main fuel gas whose heat generation is stably controlled, and the heat generation amount allowed for the gas engine is allowed. This is a case where the width is limited to a predetermined width. When such an existing facility is used, the total heating value according to the output generated on the gas engine side (with the mixing ratio kept constant and the heating value of the mixed gas kept within a predetermined fluctuation range) It is necessary to supply a gas engine with a fuel gas flow rate F × fuel gas calorific value Q).

一方、今日、例えば、食品加工工場(ビール工場等)から発生する食品残渣からバイオガスを製造する製造プロセスが確立されており、このような製造プロセスから製造されるバイオガスの発熱量Qは、その変動が極めて少なく、安定したものとなっている。また、その製造量も年々増加の一途にある。   On the other hand, for example, a production process for producing biogas from food residues generated from a food processing factory (such as a beer factory) has been established today. The calorific value Q of biogas produced from such a production process is: The fluctuation is extremely small and stable. The production volume is also increasing year by year.

そこで、このような副燃料ガスの供給状況を考慮すると、ガスエンジンに供給する混合ガスの圧力を目標圧力に維持し、さらに、この混合ガスにおいて、主燃料ガスと副燃料ガスとの混合比を一定に保つことが好ましいが、このような混焼システムの構成は、本願明細書の図4、図5に示すように、混合器において、その混合ガスの圧力を検出するとともに、その圧力が目標圧力となるように主燃料ガス(図示する例の場合は天然ガス)の供給流量F1を流量調整弁FCV−1で制御するとともに、この供給流量F1に対して、主燃料ガスと副燃料ガスとの混合比として予め設定される所定の供給流量比となるように副燃料ガスの供給流量F2を求め、副燃料ガスを流量調整弁FCV−2で制御する構成となる。   Therefore, in consideration of such a supply situation of the auxiliary fuel gas, the pressure of the mixed gas supplied to the gas engine is maintained at the target pressure, and in this mixed gas, the mixing ratio of the main fuel gas and the auxiliary fuel gas is changed. Although it is preferable to keep it constant, such a mixed combustion system has a configuration in which, as shown in FIGS. 4 and 5 of the present specification, the pressure of the mixed gas is detected in the mixer and the pressure is set to the target pressure. The supply flow rate F1 of the main fuel gas (natural gas in the example shown in the figure) is controlled by the flow rate adjusting valve FCV-1 so that the main fuel gas and the auxiliary fuel gas are The supply flow rate F2 of the auxiliary fuel gas is obtained so as to be a predetermined supply flow rate ratio set in advance as the mixing ratio, and the auxiliary fuel gas is controlled by the flow rate adjustment valve FCV-2.

図4は、ガスエンジン発電システムを対象とする構成例であり、図5は、蒸気発生量を段階的に変更できるボイラシステムの構成例である。   FIG. 4 is a configuration example targeting a gas engine power generation system, and FIG. 5 is a configuration example of a boiler system capable of changing the steam generation amount in stages.

しかしながら、この構成では、流量検出器、流量調整弁及び制御器がそれぞれ一対必要とされるのに加えて、主燃料ガスに対する副燃料ガスの供給流量比から副燃料ガスの供給流量を決定する比率設定器が必要となるため、設備が複雑となるとともに、コスト高となる。   However, in this configuration, a pair of a flow rate detector, a flow rate adjustment valve, and a controller is required, and in addition, a ratio for determining the supply flow rate of the auxiliary fuel gas from the supply flow rate ratio of the auxiliary fuel gas to the main fuel gas. Since a setting device is required, the equipment is complicated and the cost is increased.

本発明の目的は、原料ガス(主燃料ガス及び副燃料ガス)夫々の発熱量が比較的安定しており、ガス燃焼設備(ガスエンジン、ボイラ等)に導入する混合ガスにおける原料ガスの混合比を予め設定することが好ましい混焼システムにおいて、可能な限り簡便で、設備コストが低く、信頼性の高い混焼システムを得ることにある。   The object of the present invention is that the calorific value of each of the raw material gases (main fuel gas and auxiliary fuel gas) is relatively stable, and the mixing ratio of the raw material gases in the mixed gas introduced into the gas combustion facility (gas engine, boiler, etc.) It is desirable to obtain a highly reliable mixed combustion system that is as simple as possible, has low equipment costs, and is highly reliable.

上記の目的を達成するための、主燃料ガスと副燃料ガスとを混合器で混合した混合ガスをガス燃焼設備に供給し、当該ガス燃焼設備で前記混合ガスを燃焼させて働く混焼システムの特徴構成は、
前記ガス燃焼設備が、当該ガス燃焼設備に供給される前記混合ガスの総発熱量に応じた出力を出力する出力可変型ガス燃料機器であり、
前記主燃料ガスの圧力を設定圧力に設定した状態で前記混合器に導く主燃料ガス供給系統と、前記副燃料ガスの流量を設定流量に調整する流量調整手段を備え、前記流量調整手段で調整された流量の前記副燃料ガスを前記混合器に導く副燃料ガス供給系統とを備え、
前記ガス燃焼設備の出力を検知する出力検知手段と、
前記出力検知手段により検知された出力検知値、前記主燃料ガスの発熱量、前記副燃料ガスの発熱量と予め定まる前記主燃料ガスに対する前記副燃料ガスの混合比とに基づいて前記副燃料ガスの供給目標流量を導出するとともに、導出された前記副燃料ガスの供給目標流量を制御目標として、前記流量調整手段を制御する制御手段を備えたことにある。
In order to achieve the above object, the mixed combustion system is characterized in that a mixed gas obtained by mixing a main fuel gas and a sub fuel gas in a mixer is supplied to a gas combustion facility, and the mixed gas is burned in the gas combustion facility. The configuration is
The gas combustion facility is an output variable gas fuel device that outputs an output corresponding to a total calorific value of the mixed gas supplied to the gas combustion facility,
A main fuel gas supply system that leads to the mixer in a state where the pressure of the main fuel gas is set to a set pressure; and a flow rate adjusting unit that adjusts the flow rate of the auxiliary fuel gas to a set flow rate, and is adjusted by the flow rate adjusting unit A secondary fuel gas supply system for guiding the secondary fuel gas at a flow rate to the mixer,
Output detection means for detecting the output of the gas combustion facility;
The auxiliary fuel gas based on the detected output value detected by the output detecting means, the calorific value of the main fuel gas, the calorific value of the sub fuel gas, and a predetermined mixture ratio of the sub fuel gas to the main fuel gas. And a control means for controlling the flow rate adjusting means using the derived supply target flow rate of the auxiliary fuel gas as a control target.

この混焼システムは、基本的に、主燃料ガス、副燃料ガスの発熱量が安定しており、その混合比を予め設定できる所望の混合比で混合して混合ガスを得る設備に採用される。このシステムでは、先ず、出力検知手段によりシステムの出力を検知し、制御手段で、この出力に応じてガス燃焼設備側で要求される総発熱量を介して、副燃料ガスの供給目標流量を導出し、その供給目標流量になるように副燃料ガスの供給流量を制御する。本願発明の場合は、主燃料ガスと副燃料ガスとの混合比を、各制御時点で一定値とするため、主燃料ガスの混合器さらにはガス燃焼設備への供給圧を一定に保つ状態で、副燃料ガスの供給流量の制御のみで、所定の混合比で混合された混合ガスを安定的にガス燃焼設備に供給できる。従って、ガス燃焼設備へ供給される混合ガスの発熱量を、当該ガス機器に許容される許容発熱量変動幅内に容易に抑えながらシステムを運転できる。   This co-firing system is basically employed in equipment that obtains a mixed gas by mixing the main fuel gas and the auxiliary fuel gas with a desired mixing ratio in which the heat generation amount of the main fuel gas and the auxiliary fuel gas is stable and can be set in advance. In this system, first, the output of the system is detected by the output detection means, and the supply target flow rate of the auxiliary fuel gas is derived by the control means through the total calorific value required on the gas combustion facility side according to this output. Then, the supply flow rate of the auxiliary fuel gas is controlled so as to become the supply target flow rate. In the case of the present invention, since the mixing ratio of the main fuel gas and the auxiliary fuel gas is set to a constant value at each control time, the supply pressure to the main fuel gas mixer and further to the gas combustion facility is kept constant. The mixed gas mixed at the predetermined mixing ratio can be stably supplied to the gas combustion facility only by controlling the supply flow rate of the auxiliary fuel gas. Accordingly, the system can be operated while the calorific value of the mixed gas supplied to the gas combustion facility is easily suppressed within the allowable calorific value fluctuation range allowed for the gas equipment.

また、原料ガス(主燃料ガス及び副燃料ガス)夫々の発熱量が比較的安定しており、ガス燃焼設備(ガスエンジン、ボイラ等)に導入する混合ガスにおける原料ガスの混合比を予め設定することが好ましい混焼システムにおいて、可能な限り簡便で、設備コストが低く、信頼性の高い混焼システムを得ることができる。   Moreover, the calorific value of each of the raw material gases (main fuel gas and auxiliary fuel gas) is relatively stable, and the raw material gas mixture ratio in the mixed gas introduced into the gas combustion facility (gas engine, boiler, etc.) is set in advance. In the preferred mixed combustion system, it is possible to obtain a highly reliable mixed combustion system that is as simple as possible, has a low equipment cost, and is highly reliable.

このような混焼システムとして、前記ガス燃焼設備が、前記混合ガスの燃焼により動力を発生するガスエンジンと、前記ガスエンジンにより発生される動力により電力を発生させる発電機とを組み合わせて構成され、前記出力が前記発電機の発電電力量であることが好ましい。   As such a mixed combustion system, the gas combustion facility is configured by combining a gas engine that generates power by combustion of the mixed gas and a generator that generates electric power by power generated by the gas engine, The output is preferably the amount of power generated by the generator.

ガスエンジン発電システムは、オンサイトでの電力供給に対応でき、しかも、本願が対象とするような発熱量が比較的安定した副燃料ガスを得られる環境において、両原料ガスの混合比を守りながら、電力負荷の変動に容易に対応したガスエンジン発電システムを得ることができる。   The gas engine power generation system can support on-site power supply, and while maintaining the mixing ratio of both raw material gases in an environment where a secondary fuel gas with a relatively stable calorific value can be obtained. Thus, it is possible to obtain a gas engine power generation system that can easily cope with fluctuations in electric power load.

さて、このようなガスエンジン発電システムでは、前記発電電力量から求まる総発熱量をP´、前記主燃料ガスの発熱量をQ1、前記副燃料ガスの発熱量をQ2、前記混合比をR1として、前記副燃料ガスの供給目標流量F2oをR1×P´/(Q1+R1×Q2)として求め、混合比を守りながら、出力変動に対応できる。   In such a gas engine power generation system, the total calorific value obtained from the generated electric energy is P ′, the calorific value of the main fuel gas is Q1, the calorific value of the auxiliary fuel gas is Q2, and the mixing ratio is R1. Thus, the supply target flow rate F2o of the auxiliary fuel gas is obtained as R1 × P ′ / (Q1 + R1 × Q2), and it is possible to cope with output fluctuations while keeping the mixing ratio.

一方、前記ガス燃焼設備が、前記出力である前記混合ガスの燃焼ガス量を最小燃焼量から最大燃焼量の範囲で段階的に設定制御して運転されるガス燃焼設備であることも好ましい。
本願にかかる混焼システムでは、ガス燃焼設備に供給される混合ガスの発熱量を混合比との関係で安定的に制御するので、ガス燃焼設備の運転状態において、段階的な出力が要求される機器において、副燃料ガスの供給量を適切量に制御するだけで、負荷に応じた出力を得られる。
On the other hand, it is also preferable that the gas combustion facility is a gas combustion facility which is operated by setting and controlling the combustion gas amount of the mixed gas as the output stepwise in a range from the minimum combustion amount to the maximum combustion amount.
In the mixed combustion system according to the present application, the calorific value of the mixed gas supplied to the gas combustion facility is stably controlled in relation to the mixing ratio, so that equipment that requires stepwise output in the operating state of the gas combustion facility is required. The output corresponding to the load can be obtained simply by controlling the supply amount of the auxiliary fuel gas to an appropriate amount.

このような、ガス燃焼設備に対するシステムでは、前記ガス燃焼設備側で設定制御される総発熱量に対応する混合ガスの燃焼ガス量をF3、前記混合比をR2として、前記副燃料ガスの目標流量F2oをR2×F3/(1+R2)として求め、混合比を守りながら、それぞれの出力(負荷)に対応できる。   In such a system for a gas combustion facility, the target flow rate of the auxiliary fuel gas is defined by setting the combustion gas amount of the mixed gas corresponding to the total calorific value set and controlled on the gas combustion facility side as F3 and the mixing ratio as R2. F2o is obtained as R2 × F3 / (1 + R2), and the output (load) can be dealt with while maintaining the mixing ratio.

これまで説明した混焼システムでは、主燃料ガスガスと副燃料ガスとの混合比を、一定とする場合について説明したが、不測に副燃料ガスの発熱量が変動した場合に、本願に係る混焼システムでは、混合比の変更だけで対応できる。以下この構成に関して説明する。このような発熱量の変動は、混合ガスの発熱量の変動として検出できる。そこで、このような不測の事態にも対応できる混焼システムを構築するには、これまで説明してきた構成に加えて、以下の構成を追加しておけばよい。
前記混合ガスの発熱量を検出する発熱量検出手段を設け、前記発熱量検出手段が検出する前記混合ガスの発熱量が、前記ガス燃焼設備に関して設定される前記混合ガスの発熱量許容変動幅を外れる場合に、前記混合比を可変設定可能に構成されている。
In the mixed combustion system described so far, the case where the mixing ratio of the main fuel gas gas and the auxiliary fuel gas is constant has been described. However, when the calorific value of the auxiliary fuel gas fluctuates unexpectedly, the mixed combustion system according to the present application It can be handled only by changing the mixing ratio. This configuration will be described below. Such a variation in the heat generation amount can be detected as a variation in the heat generation amount of the mixed gas. Therefore, in order to construct a mixed combustion system that can cope with such an unexpected situation, the following configuration may be added in addition to the configuration described so far.
A calorific value detection means for detecting the calorific value of the mixed gas is provided, and the calorific value of the mixed gas detected by the calorific value detection means has an allowable fluctuation range of the calorific value of the mixed gas set for the gas combustion facility. In the case of deviating, the mixing ratio can be variably set.

前記混合ガスの発熱量許容変動幅より低い側に外れる場合に、前記混合比を副燃料ガス低下側に変更し、前記混合ガスの発熱量許容変動幅より高い側に外れる場合に、前記混合比を副燃料ガス上昇側に変更するようにしておくと、副燃料ガスの発熱量が当初予想されている発熱量の変動範囲を超えて変動した場合に、混合比の設定変更で、他のシステム構成を変更することなく、容易に対応できる。   When the mixed gas deviates to a side lower than the allowable fluctuation range of the calorific value of the mixed gas, the mixing ratio is changed to the sub fuel gas lowering side, and when the mixed gas deviates to a side higher than the allowable fluctuation range of the calorific value of the mixed gas, Is changed to the secondary fuel gas rising side, if the calorific value of the secondary fuel gas fluctuates beyond the initially anticipated fluctuation range of the calorific value, the mixing ratio setting can be changed to change the other system. It can be easily handled without changing the configuration.

そして、前記副燃料ガスの流量が前記主燃料ガスの流量より小流量に設定され、前記小流量の燃料ガスが流れる副燃料ガス供給系統に、当該副燃料ガス供給系統を流れる流量を検出する流量検出手段と、前記流量調整手段が設けられる構成を採用すれば、流量検出手段、流量調整手段及びその制御手段を、小流量対応のものとでき、簡易かつ低コストのものを採用できる。   The flow rate of the secondary fuel gas is set to be smaller than the flow rate of the main fuel gas, and the flow rate of detecting the flow rate of the secondary fuel gas supply system is detected in the secondary fuel gas supply system through which the small flow rate of fuel gas flows. If the configuration provided with the detecting means and the flow rate adjusting means is adopted, the flow rate detecting means, the flow rate adjusting means, and the control means thereof can be adapted to a small flow rate, and simple and low cost can be adopted.

本発明に係るガスエンジン発電システムの構成を示す図The figure which shows the structure of the gas engine power generation system which concerns on this invention 本発明に係るガスエンジン発電システムの発電電力量Pとガスエンジンに供給される総発熱量F3×Q3との関係を示す図The figure which shows the relationship between the electric power generation amount P of the gas engine power generation system which concerns on this invention, and the total calorific value F3xQ3 supplied to a gas engine. 本発明に係るボイラシステムの構成を示す図である。It is a figure which shows the structure of the boiler system which concerns on this invention. 主燃料ガスと副燃料ガスとの混合比を維持する運転を可能とするガスエンジン発電システムの構成例を示す図The figure which shows the structural example of the gas engine power generation system which enables the driving | operation which maintains the mixing ratio of main fuel gas and sub fuel gas 主燃料ガスと副燃料ガスとの混合比を維持する運転を可能とするボイラシステムの構成例を示す図The figure which shows the structural example of the boiler system which enables the driving | operation which maintains the mixing ratio of main fuel gas and sub fuel gas

以下、本発明に係る実施形態を図面に基づいて説明する。
本明細書では、本発明をガスエンジン発電システムS1に適用する第1実施形態と、ボイラシステムS2に適用する第2実施形態を説明する。
Embodiments according to the present invention will be described below with reference to the drawings.
In the present specification, a first embodiment in which the present invention is applied to the gas engine power generation system S1 and a second embodiment in which the present invention is applied to the boiler system S2 will be described.

第1実施形態
この実施形態のシステム構成を図1に示した。
図1に示すように、ガスエンジン発電システムS1は、主燃料ガスである天然ガスg1(具体的には都市ガス13A)と、副燃料ガスであるバイオガスg2との混合ガスg3の供給を受けて働くガスエンジン1と、このガスエンジン1で駆動される発電機2とを備えて構成されている。同図に示すように、ガスエンジン1には別途燃焼用酸素含有ガスoが供給されて、当該ガスエンジン1が運転される。さらに、ガスエンジン1はスロットルバルブ1aを備え、発電機2からの出力に従って、出力の増加に伴って開度が高められ、出力の減少に伴って開度が低下される形態で、当該スロットルバルブ1aの開度が調整される。本第1実施形態では、これらガスエンジン1及び発電機2が本願におけるガス燃焼設備を構成する。また、このガスエンジン発電システムS1から得られる発電電力量がガス燃焼設備の出力とされ、この出力を測定することで、システム負荷を検知できる。ここで、発電電力量Pを検出する検出系統が、出力検知手段に相当する。
First Embodiment A system configuration of this embodiment is shown in FIG.
As shown in FIG. 1, the gas engine power generation system S1 is supplied with a mixed gas g3 of a natural gas g1 (specifically, a city gas 13A) as a main fuel gas and a biogas g2 as a sub fuel gas. A gas engine 1 that works and a generator 2 that is driven by the gas engine 1. As shown in the figure, the gas engine 1 is separately supplied with a combustion oxygen-containing gas o, and the gas engine 1 is operated. Further, the gas engine 1 includes a throttle valve 1a, and according to the output from the generator 2, the opening is increased as the output increases, and the opening is decreased as the output decreases. The opening degree of 1a is adjusted. In the first embodiment, the gas engine 1 and the generator 2 constitute a gas combustion facility in the present application. Further, the amount of power generated from the gas engine power generation system S1 is used as an output of the gas combustion facility, and the system load can be detected by measuring this output. Here, the detection system for detecting the generated power amount P corresponds to the output detection means.

図2に、発電電力量Pと、ガスエンジン1に供給されるべき混合ガスg3の総発熱量F3×Q3(供給流量F3:発熱量Q3)との関係を示した。同図からも判明するように、発電電力量Pの増加に伴って混合ガスg3の総発熱量F3×Q3は、線形に増加する。従って、このガスエンジン発電システムS1では、システム負荷である発電出力が確定した場合、系内に投入すべき総発熱量F3×Q3が確定する。   FIG. 2 shows the relationship between the amount of generated power P and the total calorific value F3 × Q3 (supply flow rate F3: calorific value Q3) of the mixed gas g3 to be supplied to the gas engine 1. As can be seen from the figure, the total calorific value F3 × Q3 of the mixed gas g3 increases linearly as the generated power amount P increases. Therefore, in this gas engine power generation system S1, when the power generation output as the system load is determined, the total heat generation amount F3 × Q3 to be input into the system is determined.

次に、混合ガスg3の供給系に関して説明する。
先にも説明したように、本願発明のガスエンジン発電システムS1が使用される現場では、天然ガスg1及びバイオガスg2の発熱量は、夫々、安定した発熱量に管理されている。今、天然ガスg1の供給流量をF1、発熱量をQ1とし、バイオガスg2の供給流量をF2、発熱量をQ2とする。
Next, the supply system of the mixed gas g3 will be described.
As described above, at the site where the gas engine power generation system S1 of the present invention is used, the calorific values of the natural gas g1 and the biogas g2 are each managed to be a stable calorific value. Now, the supply flow rate of the natural gas g1 is F1, the calorific value is Q1, the supply flow rate of the biogas g2 is F2, and the calorific value is Q2.

図1に示すように、主燃料ガスである天然ガスg1は、弁出口側のガス圧を所定の目標圧力とする減圧弁3、開閉弁4を経て混合器5に導入される。
副燃料ガスであるバイオガスg2は、流量検出器6、流量調整弁7及び開閉弁8を経て、混合器5に導入される。流量検出器6、流量調整弁7に対して流量制御器9が設けられており、この流量制御器9は、前記流量検出器6で検出される流量F2が、後述する演算器10により演算される供給目標流量F2oになるように、前記流量調整弁7を制御する。ここで開閉弁4、8は、流路の開閉用に使用される。また流量検出器6は流量検出手段に相当し、流量調整弁7は流量調整手段に相当する。
混合器5に導入された天然ガスg1及びバイオガスg2が、当該混合器5により混合され、混合ガスg3としてガスエンジン1に供給される。
As shown in FIG. 1, the natural gas g1 that is the main fuel gas is introduced into the mixer 5 via the pressure reducing valve 3 and the on-off valve 4 that make the gas pressure on the valve outlet side a predetermined target pressure.
The biogas g2 that is the auxiliary fuel gas is introduced into the mixer 5 via the flow rate detector 6, the flow rate adjustment valve 7, and the on-off valve 8. A flow rate controller 9 is provided for the flow rate detector 6 and the flow rate adjustment valve 7, and the flow rate controller 9 calculates a flow rate F 2 detected by the flow rate detector 6 by a calculator 10 described later. The flow rate adjusting valve 7 is controlled so that the supply target flow rate F2o is reached. Here, the on-off valves 4 and 8 are used for opening and closing the flow path. The flow rate detector 6 corresponds to a flow rate detection unit, and the flow rate adjustment valve 7 corresponds to a flow rate adjustment unit.
The natural gas g1 and the biogas g2 introduced into the mixer 5 are mixed by the mixer 5 and supplied to the gas engine 1 as a mixed gas g3.

ガスエンジン発電システムS1では、バイオガスg2の混合器5への供給形態は、演算器10により演算・設定される供給目標流量F2oを混合器5に供給するように調整される。   In the gas engine power generation system S1, the supply mode of the biogas g2 to the mixer 5 is adjusted so that the supply target flow rate F2o calculated and set by the calculator 10 is supplied to the mixer 5.

演算器10による供給目標流量F2oは、発電機の出力である発電電力量をP、この発電電力量Pから求まる総発熱量をP´、天然ガスg1の発熱量をQ1、バイオガスg2の発熱量をQ2、天然ガスg1とバイオガスg2との供給流量比である混合比をR1として、R1×P´/(Q1+R1×Q2)として演算される。従って、演算器10と流量制御器9が、本願の制御手段を構成する。   The supply target flow rate F2o by the calculator 10 is P for the amount of generated power that is the output of the generator, P ′ for the total calorific value obtained from the generated power amount P, Q1 for the calorific value of the natural gas g1, and the heat for the biogas g2. The amount is calculated as R1 × P ′ / (Q1 + R1 × Q2), where Q2 is the amount, and R1 is the mixing ratio that is the supply flow rate ratio between the natural gas g1 and the biogas g2. Therefore, the computing unit 10 and the flow rate controller 9 constitute the control means of the present application.

このようにバイオガスg2の供給目標流量F2oを演算・設定できる理由は以下の通りである。
先に説明したように、発電機2からの出力である発電電力量Pを計測することで、図2に示す関係からこの発電電力量Pはガスエンジン1で必要とされる総発熱量P´=F3×Q3に変換できる。ガスエンジン発電システムS1に供給される総供給熱量は、図1に示すシステムではF1×Q1+F2×Q2である。即ち、F1×Q1+F2×Q2=F3×Q3が成立する。従って、バイオガスg2の供給目標流量F2oは、以下の式で求まることとなる。
The reason why the target supply flow rate F2o of the biogas g2 can be calculated and set as described above is as follows.
As described above, by measuring the generated power amount P which is the output from the generator 2, this generated power amount P is the total calorific value P 'required by the gas engine 1 from the relationship shown in FIG. = F3 × Q3. In the system shown in FIG. 1, the total amount of heat supplied to the gas engine power generation system S1 is F1 × Q1 + F2 × Q2. That is, F1 × Q1 + F2 × Q2 = F3 × Q3 is established. Therefore, the supply target flow rate F2o of the biogas g2 is obtained by the following equation.

〔数1〕
F2o=(F2/F1)×(F3×Q3)/{Q1+(F2/F1)×Q2}
=R1×(F3×Q3)/(Q1+R1×Q2)
=R1×(P´)/(Q1+R1×Q2)
ここで、P´は、発電電力量Pの線形関数として求まる(F3×Q3)の値を意味する。
[Equation 1]
F2o = (F2 / F1) × (F3 × Q3) / {Q1 + (F2 / F1) × Q2}
= R1 * (F3 * Q3) / (Q1 + R1 * Q2)
= R1 × (P ′) / (Q1 + R1 × Q2)
Here, P ′ means a value of (F3 × Q3) obtained as a linear function of the generated power amount P.

この供給目標流量F2oを、演算器10よりバイオガスg2の流量制御器9に与えることにより、天然ガスg1とバイオガスg2との混合比を所望の値に維持しながら、所望の電力負荷に適切に対応できる。   By supplying this supply target flow rate F2o to the flow rate controller 9 of the biogas g2 from the computing unit 10, the mixing ratio of the natural gas g1 and the biogas g2 is maintained at a desired value, and is appropriate for the desired power load. It can correspond to.

第2実施形態
この実施形態のシステム構成を図3に示した。
図3に示すように、このボイラシステムS2も、主燃料ガスである天然ガスg1(具体的には都市ガス13A)と、副燃料ガスであるバイオガスg2との混合ガスg3の供給を受けて働くボイラ11を備えて構成されている。同図に示すように、ボイラ11には別途燃焼用酸素含有ガスoが供給されて、当該ボイラ11が運転される。
Second Embodiment The system configuration of this embodiment is shown in FIG.
As shown in FIG. 3, this boiler system S2 also receives a supply of a mixed gas g3 of a natural gas g1 (specifically, a city gas 13A) as a main fuel gas and a biogas g2 as a sub fuel gas. A working boiler 11 is provided. As shown in the figure, the boiler 11 is operated by separately supplying a combustion oxygen-containing gas o to the boiler 11.

図3の右上に示すように、ボイラ11にはボイラ制御盤11aが設けられており、ボイラ制御盤11aにおいて使用者は、ボイラ11の出力を3段階に設定できるように構成されている。同図には、「高燃焼」「低燃焼」「待機」として記載しているが、これら「高燃焼」「低燃焼」「待機」がそれぞれ、「必要蒸気量が大きい場合のボイラ出力」「必要蒸気量が小さい場合のボイラ出力」及び「待機状態にある場合のボイラ出力」にそれぞれ対応している。従って、このボイラシステムS2でも、ボイラ制御盤11aにおける運転設定が確定した状態で、混合ガスの発熱量をQ3として、ボイラ11に供給する供給流量をF3、ボイラ11に投入すべき総発熱量F3×Q3が確定できる。本第2実施形態では、ボイラ11が本願におけるガス燃焼設備を構成し、このボイラシステムS2に於けるボイラ制御盤の設定状態で、実質的に蒸気発生量に対応するため、この設定からシステムの出力(システム負荷)を検知できる。ここでは、ボイラ制御盤11aが、ガス燃焼設備の出力を検知する出力検知手段に相当する。 As shown in the upper right of FIG. 3, the boiler 11 is provided with a boiler control panel 11a, and the boiler control panel 11a is configured so that the user can set the output of the boiler 11 in three stages. In the figure, “high combustion”, “low combustion”, and “standby” are described, but these “high combustion”, “low combustion”, and “standby” are respectively “boiler output when the required steam amount is large”, “ It corresponds to “boiler output when the required steam amount is small” and “boiler output when in a standby state”, respectively. Therefore, also in this boiler system S2, in the state where the operation setting in the boiler control panel 11a is confirmed, the heat generation amount of the mixed gas is set to Q3, the supply flow rate supplied to the boiler 11 is F3, and the total heat generation amount F3 to be supplied to the boiler 11 × Q3 can be confirmed. In the second embodiment, the boiler 11 constitutes the gas combustion facility in the present application, and the setting state of the boiler control panel in the boiler system S2 substantially corresponds to the amount of generated steam. Output (system load) can be detected. Here, the boiler control panel 11a is equivalent to the output detection means which detects the output of a gas combustion installation.

次に、混合ガスの供給系統に関して説明する。
この例にあっても、図3に示すように、主燃料ガスが天然ガスg1(具体的には都市ガス13A)であり、副燃料ガスがバイオガスg2である例を示している。先にも説明したように、本願発明のボイラシステムS2が使用される現場では、天然ガスg1及びバイオガスg2の発熱量は、夫々、安定した発熱量に管理されており、天然ガスg1の供給流量をF1、発熱量をQ1とし、バイオガスg2の供給流量をF2、発熱量をQ2とする。
Next, the mixed gas supply system will be described.
Even in this example, as shown in FIG. 3, an example is shown in which the main fuel gas is natural gas g1 (specifically, city gas 13A) and the auxiliary fuel gas is biogas g2. As described above, at the site where the boiler system S2 of the present invention is used, the calorific values of the natural gas g1 and the biogas g2 are respectively controlled to stable calorific values, and the supply of the natural gas g1 The flow rate is F1, the calorific value is Q1, the supply flow rate of biogas g2 is F2, and the calorific value is Q2.

先のガスエンジン発電システムS1の場合と同様に、主燃料ガスである天然ガスg1は、弁出口側のガス圧を所定の目標圧力とする減圧弁3、開閉弁4を経て混合器5に導入される。
副燃料ガスであるバイオガスg2でも、流量検出器6、流量調整弁7及び開閉弁8を経て、流量調整されたバイオガスg2が導かれる混合器5に導入される。
混合器5に導入された天然ガスg1及びバイオガスg2が、当該混合器5により混合され、混合ガスg3としてボイラ11に供給される。
As in the case of the previous gas engine power generation system S1, the natural gas g1, which is the main fuel gas, is introduced into the mixer 5 via the pressure reducing valve 3 and the on-off valve 4 having the gas pressure on the valve outlet side as a predetermined target pressure. Is done.
The biogas g2 that is the auxiliary fuel gas is also introduced into the mixer 5 through which the flow-adjusted biogas g2 is guided through the flow rate detector 6, the flow rate adjustment valve 7, and the on-off valve 8.
The natural gas g1 and the biogas g2 introduced into the mixer 5 are mixed by the mixer 5 and supplied to the boiler 11 as the mixed gas g3.

本願発明のボイラシステムS2では、バイオガスg2の混合器5への供給形態は、演算器10により演算・設定される供給目標流量F2oを混合器5に供給するように調整される。   In the boiler system S2 of the present invention, the supply mode of the biogas g2 to the mixer 5 is adjusted so that the supply target flow rate F2o calculated and set by the calculator 10 is supplied to the mixer 5.

演算器10による供給目標流量F2oは、ボイラ制御盤11aで設定制御される混合ガスg3の供給流量をF3、混合比をR2として、バイオガスg2の目標流量F2oはF2o=R2×F3/(1+R2)として演算される。   The supply target flow rate F2o by the arithmetic unit 10 is F3 and the mixing ratio R2 is the supply flow rate of the mixed gas g3 set and controlled by the boiler control panel 11a, and the target flow rate F2o of the biogas g2 is F2o = R2 × F3 / (1 + R2). ).

このようにバイオガスg2の供給目標流量F2oを演算・設定できる理由は以下の通りである。
先にも説明したように、ボイラ制御盤11aにおける燃焼量を設定することで、ボイラ11で必要とされる総発熱量F3×Q3が確定する。ボイラシステムS2に供給される総供給熱量は、F1×Q1+F2×Q2であり、この総供給熱量は総発熱量F3×Q3となる。即ち、F1×Q1+F2×Q2=F3×Q3が成立する。さらに、F1+F2=F3の関係が成立するとともに、F2=R2×F1とされるため、混合ガスg3の発熱量Q3は以下の式で求まり、混合比R2を一定としたい本発明の場合、混合ガスg3の発熱量Q3は一定となる。
The reason why the target supply flow rate F2o of the biogas g2 can be calculated and set as described above is as follows.
As described above, by setting the combustion amount in the boiler control panel 11a, the total heat generation amount F3 × Q3 required by the boiler 11 is determined. The total supply heat amount supplied to the boiler system S2 is F1 × Q1 + F2 × Q2, and this total supply heat amount is the total heat generation amount F3 × Q3. That is, F1 × Q1 + F2 × Q2 = F3 × Q3 is established. Furthermore, since the relationship of F1 + F2 = F3 is established and F2 = R2 × F1, the calorific value Q3 of the mixed gas g3 is obtained by the following formula, and in the case of the present invention where the mixing ratio R2 is desired to be constant, the mixed gas The calorific value Q3 of g3 is constant.

〔数2〕
Q3=(Q1+R2×Q2)/(1+R2×Q2)
[Equation 2]
Q3 = (Q1 + R2 × Q2) / (1 + R2 × Q2)

一方、ボイラ11の出力は混合ガス流量F3に比例するため、F2o=R2×F3/(1+R2)となるが、この場合、R2を一定とする場合、F2とF3との間で、単純な比例関係が成立する。
そこで、本発明のボイラシステムS2では、上記のボイラ制御盤11aで設定される燃料量(蒸気必要量)に応じて予め求められるバイオガスg2の供給目標流量F2oを演算して、適切に流量を制御できる。
この供給目標流量F2oを、演算器10より流量制御器9に与えることにより、主燃料ガスと副燃料ガスとの混合比を所望の値に維持しながら、蒸気負荷に適切に対応できる。
On the other hand, since the output of the boiler 11 is proportional to the mixed gas flow rate F3, F2o = R2 × F3 / (1 + R2). However, in this case, when R2 is constant, a simple proportionality between F2 and F3. A relationship is established.
Therefore, in the boiler system S2 of the present invention, the supply target flow rate F2o of the biogas g2 obtained in advance according to the fuel amount (necessary steam amount) set in the boiler control panel 11a is calculated, and the flow rate is appropriately set. Can be controlled.
By supplying the supply target flow rate F2o to the flow rate controller 9 from the computing unit 10, it is possible to appropriately cope with the steam load while maintaining the mixing ratio of the main fuel gas and the auxiliary fuel gas at a desired value.

以下、本願に係る混焼システムにおいて、副燃料ガスの発熱量が変化した場合における、混合ガスの発熱量の変動に関して説明する。通常、ガスエンジン或いはボイラでは、ガス燃焼設備に供給されるガス(本願の場合は混合ガス)は、その発熱量の許容変動幅が±5%程度とされる。   Hereinafter, in the mixed combustion system according to the present application, a description will be given of fluctuations in the calorific value of the mixed gas when the calorific value of the auxiliary fuel gas changes. Usually, in a gas engine or boiler, the allowable fluctuation range of the calorific value of the gas supplied to the gas combustion facility (mixed gas in the present application) is about ± 5%.

(1) 前提条件
主燃料ガスである天然ガスの発熱量 :低位発熱量である40.6MJ/m3
副燃料ガスであるバイオガスの発熱量:低位発熱量である27.7MJ/m3
ガス燃焼設備の発熱量許容変動幅 :±5%
混合比 :天然ガス:バイオガス=7:3
(1) Preconditions The calorific value of natural gas, the main fuel gas: 40.6 MJ / m 3, which is the lower calorific value
Calorific value of biogas which is a secondary fuel gas: 27.7 MJ / m 3 which is a lower calorific value
Allowable fluctuation range of calorific value of gas combustion equipment: ± 5%
Mixing ratio: Natural gas: Biogas = 7: 3

(2)バイオガスの発熱量が−10%変化した場合
バイオガスの発熱量が変動する前の混合ガスの発熱量:
27.7×0.3+40.6×0.7=36.73MJ/m3
バイオガスの発熱量が−10%変化した時の混合ガスの発熱量:
27.7×0.9×0.3+40.6×0.7=35.92MJ/m3
となり、混合ガスの発熱量変化率は(35.92−36.73)/36.73×100=−2.2%で、ガス燃焼設備に設定される発熱量の許容変動幅の±5%に収まる。
(2) When the calorific value of the biogas changes by -10% The calorific value of the mixed gas before the calorific value of the biogas fluctuates:
27.7 × 0.3 + 40.6 × 0.7 = 36.73 MJ / m 3
Calorific value of the mixed gas when the calorific value of the biogas changes by -10%:
27.7 × 0.9 × 0.3 + 40.6 × 0.7 = 35.92 MJ / m 3
The rate of change in the calorific value of the mixed gas is (35.92−36.73) /36.73×100=−2.2%, which is ± 5% of the allowable fluctuation range of the calorific value set in the gas combustion facility. Fits in.

(3)バイオガスの発熱量が−30%変化した場合
バイオガスの発熱量が−30%変化した場合の混合ガスの発熱量:
27.7×0.7×0.3+40.6×0.7=34.24MJ/m3
混合ガスの発熱量変化率は(34.24−36.73)/36.73×100=−6.9%で、ガス燃焼設備に設定される発熱量許容変動幅の±5%から外れる。
(3) When the calorific value of the biogas changes by -30% When the calorific value of the biogas changes by -30%, the calorific value of the mixed gas:
27.7 × 0.7 × 0.3 + 40.6 × 0.7 = 34.24 MJ / m 3
The calorific value change rate of the mixed gas is (34.24−36.73) /36.73×100=−6.9%, which is out of ± 5% of the allowable calorific value fluctuation range set in the gas combustion facility.

このような場合は、主燃料ガスと副燃料ガスとの混合比を変更することで、システムで変動を吸収できる。
主燃料ガスと副燃料ガスとの混合比を、7:3から8:2に変更した場合の混合ガスの発熱量の変動は以下のようになる。
27.7×0.7×0.2+40.6×0.8=36.36MJ/m3
結果、混合ガスの発熱量の変化率は、(36.36−36.73)/36.73×100=−1.0%で、ガス燃焼設備の発熱量許容変動幅の±5%に収めることができる。
In such a case, the change can be absorbed by the system by changing the mixing ratio of the main fuel gas and the auxiliary fuel gas.
When the mixing ratio of the main fuel gas and the auxiliary fuel gas is changed from 7: 3 to 8: 2, the variation in the calorific value of the mixed gas is as follows.
27.7 × 0.7 × 0.2 + 40.6 × 0.8 = 36.36 MJ / m 3
As a result, the rate of change in the calorific value of the mixed gas is (36.36−36.73) /36.73×100=−1.0%, which is within ± 5% of the allowable fluctuation range of the calorific value of the gas combustion facility. be able to.

このように、何らかの原因により大幅にバイオガスの発熱量が変動する可能性がある場合は、混合ガスの発熱量を検出する発熱量検出手段を設け、この発熱量検出手段による検出結果に基づいて、混合ガスの発熱量が低下した場合は、主燃料ガスに対する副燃料ガスの量比を低下させる形態で、混合ガスの発熱料が上昇した場合は、主燃料ガスに対する副燃料ガスの量比を増加させる形態で、混合比を変化させればよい。このシステムでは、主燃量ガスの量が副燃量ガスの量より大きく、さらに、主燃料ガスの発熱量が副燃料ガスの発熱量より大きい形態で、このように混合比を変更できる。   In this way, when there is a possibility that the calorific value of the biogas will fluctuate significantly for some reason, a calorific value detection means for detecting the calorific value of the mixed gas is provided, and based on the detection result by the calorific value detection means. When the calorific value of the mixed gas is reduced, the quantity ratio of the auxiliary fuel gas to the main fuel gas is reduced. When the exothermic charge of the mixed gas is increased, the quantity ratio of the auxiliary fuel gas to the main fuel gas is changed. What is necessary is just to change a mixing ratio by the form to increase. In this system, the mixing ratio can be changed in such a manner that the amount of the main fuel gas is larger than the amount of the auxiliary fuel gas and the calorific value of the main fuel gas is larger than the calorific value of the sub fuel gas.

原料ガス(主燃料ガス及び副燃料ガス)夫々の発熱量が比較的安定しており、ガス燃焼設備(ガスエンジン、ボイラ等)に導入する混合ガスにおける原料ガスの混合比を予め設定することが好ましい混焼システムにおいて、可能な限り簡便で、設備コストが低く、信頼性の高い混焼システムを得ることができた。   The calorific value of each raw material gas (main fuel gas and auxiliary fuel gas) is relatively stable, and the mixing ratio of the raw material gas in the mixed gas introduced into the gas combustion facility (gas engine, boiler, etc.) can be set in advance. In the preferred mixed combustion system, a highly reliable mixed combustion system that is as simple as possible, has low equipment costs, and could be obtained.

1 ガスエンジン(ガス燃焼設備)
2 発電機(ガス燃焼設備)
3 均圧弁
5 混合器
6 流量検出器(制御手段)
7 流量調整弁(流量調整手段)
9 流量制御器(制御手段)
10 演算器(制御手段)
11 ボイラ(ガス燃焼設備)
11a ボイラ制御盤
g1 主燃料ガス
g2 副燃料ガス
g3 混合ガス
1 Gas engine (gas combustion equipment)
2 Generator (gas combustion equipment)
3 equalizing valve 5 mixer 6 flow rate detector (control means)
7 Flow control valve (flow control means)
9 Flow controller (control means)
10 arithmetic unit (control means)
11 Boiler (gas combustion equipment)
11a Boiler control panel g1 Main fuel gas g2 Sub fuel gas g3 Mixed gas

Claims (7)

主燃料ガスと副燃料ガスとを混合器で混合した混合ガスをガス燃焼設備に供給し、当該ガス燃焼設備で前記混合ガスを燃焼させて働く混焼システムであって、
前記ガス燃焼設備が、当該ガス燃焼設備に供給される前記混合ガスの総発熱量に応じた出力を出力する出力可変型ガス燃料機器であり、
前記主燃料ガスの圧力を設定圧力に設定した状態で前記混合器に導く主燃料ガス供給系統と、前記副燃料ガスの流量を設定流量に調整する流量調整手段を備え、前記流量調整手段で調整された流量の前記副燃料ガスを前記混合器に導く副燃料ガス供給系統とを備え、
前記ガス燃焼設備の出力を検知する出力検知手段と、
前記出力検知手段により検知された出力検知値、前記主燃料ガスの発熱量、前記副燃料ガスの発熱量と予め定まる前記主燃料ガスに対する前記副燃料ガスの混合比とに基づいて前記副燃料ガスの供給目標流量を導出するとともに、導出された前記副燃料ガスの供給目標流量を制御目標として、前記流量調整手段を制御する制御手段を備えた混焼システム。
A mixed combustion system in which a mixed gas obtained by mixing a main fuel gas and a sub fuel gas in a mixer is supplied to a gas combustion facility, and the mixed gas is burned in the gas combustion facility.
The gas combustion facility is an output variable gas fuel device that outputs an output corresponding to a total calorific value of the mixed gas supplied to the gas combustion facility,
A main fuel gas supply system that leads to the mixer in a state where the pressure of the main fuel gas is set to a set pressure; and a flow rate adjusting unit that adjusts the flow rate of the auxiliary fuel gas to a set flow rate, and is adjusted by the flow rate adjusting unit A secondary fuel gas supply system for guiding the secondary fuel gas at a flow rate to the mixer,
Output detection means for detecting the output of the gas combustion facility;
The auxiliary fuel gas based on the detected output value detected by the output detecting means, the calorific value of the main fuel gas, the calorific value of the sub fuel gas, and a predetermined mixture ratio of the sub fuel gas to the main fuel gas. And a control unit that controls the flow rate adjusting unit using the derived supply target flow rate of the auxiliary fuel gas as a control target.
前記ガス燃焼設備が、前記混合ガスの燃焼により動力を発生するガスエンジンと、前記ガスエンジンにより発生される動力により電力を発生させる発電機とを組み合わせて構成され、前記出力が前記発電機の発電電力量である請求項1記載の混焼システム。   The gas combustion facility is configured by combining a gas engine that generates power by combustion of the mixed gas and a generator that generates electric power by the power generated by the gas engine, and the output is generated by the generator. The co-firing system according to claim 1, which is an amount of electric power. 前記発電電力量から求まる総発熱量をP´、前記主燃料ガスの発熱量をQ1、前記副燃料ガスの発熱量をQ2、前記混合比をR1として、前記副燃料ガスの供給目標流量F2oをR1×P´/(Q1+R1×Q2)として求める請求項2記載の混焼システム。   The total heat generation amount obtained from the generated power amount is P ′, the heat generation amount of the main fuel gas is Q1, the heat generation amount of the sub fuel gas is Q2, and the mixing ratio is R1, and the target supply flow rate F2o of the sub fuel gas is The co-firing system according to claim 2, which is calculated as R1 x P '/ (Q1 + R1 x Q2). 前記ガス燃焼設備が、前記出力である前記混合ガスの燃焼ガス量を最小燃焼量から最大燃焼量の範囲で段階的に設定制御して運転されるガス燃焼設備である請求項1記載の混焼システム。   2. The mixed combustion system according to claim 1, wherein the gas combustion facility is a gas combustion facility that is operated by setting and controlling the combustion gas amount of the mixed gas, which is the output, stepwise in a range from a minimum combustion amount to a maximum combustion amount. . 前記ガス燃焼設備側で設定制御される総発熱量に対応する混合ガスの燃焼ガス量をF3、前記混合比をR2として、前記副燃料ガスの供給目標流量F2oをR2×F3/(1+R2)として求める請求項4記載の混焼システム。   The combustion gas amount of the mixed gas corresponding to the total calorific value set and controlled on the gas combustion facility side is F3, the mixing ratio is R2, and the supply target flow rate F2o of the auxiliary fuel gas is R2 × F3 / (1 + R2). The mixed firing system according to claim 4 to be obtained. 前記混合ガスの発熱量を検出する発熱量検出手段を設け、前記発熱量検出手段が検出する前記混合ガスの発熱量が、前記ガス燃焼設備に関して設定される前記混合ガスの発熱量許容変動幅を外れる場合に、前記混合比を可変設定可能に構成され、
前記混合ガスの発熱量許容変動幅より低い側に外れる場合に、前記混合比を副燃料ガス低下側に変更し、前記混合ガスの発熱量許容変動幅より高い側に外れる場合に、前記混合比を副燃料ガス上昇側に変更する請求項1〜5の何れか一項記載の混焼システム。
A calorific value detection means for detecting the calorific value of the mixed gas is provided, and the calorific value of the mixed gas detected by the calorific value detection means has an allowable fluctuation range of the calorific value of the mixed gas set for the gas combustion facility. When it is off, the mixing ratio can be variably set,
When the mixed gas deviates to a side lower than the allowable fluctuation range of the calorific value of the mixed gas, the mixing ratio is changed to the sub fuel gas lowering side, and when the mixed gas deviates to a side higher than the allowable fluctuation range of the calorific value of the mixed gas, The mixed combustion system according to any one of claims 1 to 5, wherein the gas is changed to a side of increasing the auxiliary fuel gas.
前記副燃料ガスの流量が前記主燃料ガスの流量より小流量に設定され、前記小流量の燃料ガスが流れる副燃料ガス供給系統に、当該副燃料ガス供給系統を流れる流量を検出する流量検出手段と、前記流量調整手段が設けられる請求項1〜6の何れか一項記載の混焼システム。   A flow rate detecting means for detecting the flow rate of the secondary fuel gas supply system in the secondary fuel gas supply system in which the flow rate of the secondary fuel gas is set to be smaller than the flow rate of the main fuel gas, And the mixed-firing system as described in any one of Claims 1-6 in which the said flow volume adjustment means is provided.
JP2010019571A 2010-01-29 2010-01-29 Mixed combustion system Pending JP2011157860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010019571A JP2011157860A (en) 2010-01-29 2010-01-29 Mixed combustion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019571A JP2011157860A (en) 2010-01-29 2010-01-29 Mixed combustion system

Publications (1)

Publication Number Publication Date
JP2011157860A true JP2011157860A (en) 2011-08-18

Family

ID=44590024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019571A Pending JP2011157860A (en) 2010-01-29 2010-01-29 Mixed combustion system

Country Status (1)

Country Link
JP (1) JP2011157860A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106286017A (en) * 2016-09-30 2017-01-04 武汉钢铁股份有限公司 A kind of mixed fuel supply control system
JP7462695B2 (en) 2022-03-30 2024-04-05 東邦瓦斯株式会社 Gas Mixing Device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106286017A (en) * 2016-09-30 2017-01-04 武汉钢铁股份有限公司 A kind of mixed fuel supply control system
JP7462695B2 (en) 2022-03-30 2024-04-05 東邦瓦斯株式会社 Gas Mixing Device

Similar Documents

Publication Publication Date Title
JP2006233796A (en) Lng utilizing power generation plant and its operation method
JP2009162128A (en) Fuel supply device
JP2011099608A (en) Boiler combustion control device
JP2010285564A5 (en)
JP2011157860A (en) Mixed combustion system
KR20190034813A (en) Integrated Coal Gasification Heat Duty Auto Control System
JP2009097764A (en) Gas combustion apparatus
JP4875989B2 (en) Flow control device
JP2003065084A (en) Gas turbine power generating device using biogas as fuel
JP4656029B2 (en) System frequency stabilization apparatus and method
JP2010071220A (en) Gas mixing apparatus used in electric power generation system
JP2008267338A (en) Control method for gas turbine and gas turbine power generation device
JP5231024B2 (en) Fuel supply device
JP4783308B2 (en) Power generation system
JP2012211514A (en) System for supplying mixed fuel
JP5818580B2 (en) Engine system
JP5863342B2 (en) Engine system
JP2015081591A (en) Mixed combustion system and fuel gas mixing unit
JP2011247554A (en) Combustion device
JP5707975B2 (en) Heating furnace operation method
JP6202919B2 (en) Combustion control device
RU2427723C2 (en) Procedure for control of fuel gas supply to burner of gas turbine
JP5655214B2 (en) Air-fuel ratio correction control method and apparatus for premixed gas engine
JP2007205224A (en) Fuel gas pressure control device and fuel gas pressure control method for dual fuel combustion gas turbine
JP2010059900A (en) Gas mixing device used in electric power generation system