JP2011157408A - Reciprocating compressor and refrigerator using the same - Google Patents

Reciprocating compressor and refrigerator using the same Download PDF

Info

Publication number
JP2011157408A
JP2011157408A JP2010017514A JP2010017514A JP2011157408A JP 2011157408 A JP2011157408 A JP 2011157408A JP 2010017514 A JP2010017514 A JP 2010017514A JP 2010017514 A JP2010017514 A JP 2010017514A JP 2011157408 A JP2011157408 A JP 2011157408A
Authority
JP
Japan
Prior art keywords
oil
refrigerator
polyol ester
refrigerating machine
reciprocating compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010017514A
Other languages
Japanese (ja)
Other versions
JP5667362B2 (en
JP2011157408A5 (en
Inventor
Akira Ota
亮 太田
Norimi Sugano
典伺 菅野
Kuninari Araki
邦成 荒木
Takehiro Akisawa
健裕 秋澤
Hiroyoshi Suzuki
啓愛 鈴木
Shinichi Sato
真一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010017514A priority Critical patent/JP5667362B2/en
Priority to PCT/JP2011/051257 priority patent/WO2011093249A1/en
Priority to KR1020127015967A priority patent/KR101396306B1/en
Priority to CN201180006955.2A priority patent/CN102712872B/en
Publication of JP2011157408A publication Critical patent/JP2011157408A/en
Publication of JP2011157408A5 publication Critical patent/JP2011157408A5/ja
Application granted granted Critical
Publication of JP5667362B2 publication Critical patent/JP5667362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/042Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising compounds containing carbon and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/34Esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • C10M2207/2815Esters of (cyclo)aliphatic monocarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/103Containing Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/42Phosphor free or low phosphor content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve abrasion resistance of a reciprocating compressor using isobutane as a coolant, and to achieve high efficiency of a refrigerator using the reciprocating compressor. <P>SOLUTION: A refrigerator oil comprises a primary refrigerator oil containing a monoester oil or a polyol ester oil and an additional polyol ester oil added to the primary refrigerator oil. The refrigerator oil is sealed in the reciprocating compressor which uses isobutane as a coolant. The amount of the additional polyol ester oil composition is 1-30 wt%. Preferably, dynamic viscosity of the refrigerator oil at 40°C is 10 mm<SP>2</SP>/s or less, while dynamic viscosity of the additional polyol ester oil at 40°C is 130 mm<SP>2</SP>/s or greater. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、レシプロ式圧縮機及びこれを用いた冷蔵庫に関する。   The present invention relates to a reciprocating compressor and a refrigerator using the same.

冷凍空調機器分野における地球環境対策としては、オゾン層破壊物質として冷媒や断熱材に用いられていたCFC(Chlorofluorocarbons)やHCFC(Hydrochlorofluorocarbons)の代替、並びに、地球温暖化対策としての高効率化や冷媒に用いられているHFC(Hydrofluorocarbons)の代替が挙げられ、これらが積極的に進められてきた。   Global environmental measures in the field of refrigerating and air-conditioning equipment include substitution of CFC (Chlorofluorocarbons) and HCFC (Hydrochlorofluorocarbons), which have been used as refrigerants and heat insulating materials as ozone depleting substances, as well as higher efficiency and refrigerants as a countermeasure against global warming Substitutes for HFC (Hydrofluorocarbons) used in Japan, and these have been actively promoted.

オゾン層破壊物質であるCFCやHCFCの代替としては、オゾン層を破壊しないこと、毒性や燃焼性が低いこと、効率を確保できることを主眼として冷媒や断熱材の選定、並びに機器開発が進められた。その結果、冷蔵庫の断熱材においては、CFC11、HCFC141b、シクロペンタンの順に発泡剤を代替していき、現在は、真空断熱材との併用に移行している。   As alternatives to CFCs and HCFCs, which are ozone-depleting substances, the selection of refrigerants and heat insulating materials and equipment development were promoted with the main objective of not destroying the ozone layer, low toxicity and low flammability, and ensuring efficiency. . As a result, in the heat insulating material of the refrigerator, the foaming agent is replaced in the order of CFC11, HCFC141b, and cyclopentane, and now it is shifted to the combined use with the vacuum heat insulating material.

冷媒としては、冷蔵庫やカーエアコンにおいてCFC12C、HFC134a(GWP(Global Warming Potential)=1430)の順に代替し、ルームエアコンやパッケージエアコンにおいてHCFC22、R410A(GWP=2088)の順に代替した。   As the refrigerant, CFC12C and HFC134a (GWP (Global Warming Potential) = 1430) were substituted in the order of refrigerators and car air conditioners, and HCFC22 and R410A (GWP = 2088) were substituted in the order of room air conditioners and packaged air conditioners.

しかし、1997年に京都で開催された気候変動枠組条約第3回締約国会議(COP3)で、HFC排出量が温室効果ガスとしてCO換算されて規制対象となったため、HFCの削減が進められることとなった。 However, at the Conference of the Parties to the 3rd Framework Convention on Climate Change, which was held in Kyoto in 1997 (COP3), for HFC emissions has become subject to regulation are terms of CO 2 as a greenhouse gas, reduction of HFC is advanced It became a thing.

そこで、家庭用冷蔵庫においては、冷媒封入量が少なく、可燃性冷媒も製造上使用可能と判断され、HFC134aを可燃性のR600a(イソブタン:GWP=3)へと代替した。さらに、世論の高まりにより、現在は、カーエアコン用のHFC134aやルームエアコン並びにパッケージエアコン用のR410Aにも目が向けられている。また、業務用冷蔵庫においては、R600aの封入量が多く、可燃性の危惧から、現在でもHFC134aが使用されている。   In view of this, in the refrigerator for home use, it was judged that the amount of refrigerant enclosed was small and a flammable refrigerant could be used for manufacturing, and HFC134a was replaced with flammable R600a (isobutane: GWP = 3). Furthermore, due to the growing public opinion, attention is now focused on the HFC134a for car air conditioners, the room air conditioner and the R410A for packaged air conditioners. Moreover, in commercial refrigerators, the amount of R600a enclosed is large, and HFC134a is still used because of the fear of flammability.

一方、冷凍機油は、密閉型電動圧縮機に使用され、その摺動部の潤滑、密封、冷却等の役割を果たすものである。   On the other hand, refrigeration oil is used in a hermetic electric compressor and plays a role of lubrication, sealing, cooling and the like of a sliding portion thereof.

冷蔵庫においては、年間電気消費量の低減のため、圧縮機の性能向上が必須である。そのため、圧縮機の機械損失を低減することを目的として冷凍機油の低粘度化が検討されている。   In the refrigerator, it is essential to improve the performance of the compressor in order to reduce the annual electricity consumption. Therefore, a reduction in the viscosity of the refrigerating machine oil has been studied for the purpose of reducing the mechanical loss of the compressor.

しかし、冷凍機油の低粘度化により摺動部における油膜が薄くなることから、冷媒漏れ損失が増加してしまう問題がある。   However, since the oil film in the sliding portion becomes thin due to the low viscosity of the refrigerating machine oil, there is a problem that the refrigerant leakage loss increases.

特許文献1及び特許文献2には、異なる油粘度を混合する冷凍機油を用いた冷凍空調機器が開示されている。   Patent Document 1 and Patent Document 2 disclose refrigeration air-conditioning equipment using refrigeration oil that mixes different oil viscosities.

特開昭58−93796号公報JP 58-93796 A 特表2009−540170号公報Special table 2009-540170 gazette

本発明の目的は、冷媒としてイソブタンを用いるレシプロ式圧縮機の耐摩耗性を向上するとともに、このレシプロ式圧縮機を用いた冷蔵庫の高効率化を実現することにある。   An object of the present invention is to improve the wear resistance of a reciprocating compressor that uses isobutane as a refrigerant and to realize high efficiency of a refrigerator using the reciprocating compressor.

本発明のレシプロ式圧縮機は、冷媒としてイソブタンを用い、モノエステル油又はポリオールエステル油を含む冷凍機油主剤と、これに添加する添加ポリオールエステル油とを含む冷凍機油を封入したレシプロ式圧縮機であって、前記添加ポリオールエステル油の組成が1〜30重量%であることを特徴とする。   The reciprocating compressor according to the present invention is a reciprocating compressor that uses isobutane as a refrigerant and encloses a refrigerating machine oil containing a monoester oil or polyol ester oil and an added polyol ester oil added thereto. The composition of the added polyol ester oil is 1 to 30% by weight.

本発明によれば、冷凍機油の低粘度化が可能となり、有害なリン系極圧剤を用いずに圧縮機の性能向上と耐摩耗性とを両立した圧縮機を得ることができる。   According to the present invention, it is possible to reduce the viscosity of refrigerating machine oil, and it is possible to obtain a compressor that achieves both improvement in compressor performance and wear resistance without using harmful phosphorus-based extreme pressure agents.

また、本発明によれば、冷凍機油の低粘度化が可能となり、環境に有害なリン系極圧剤を用いずに冷蔵庫の性能向上と長期信頼性とを両立できる環境に配慮した冷蔵庫を得ることができる。   In addition, according to the present invention, it is possible to reduce the viscosity of refrigerating machine oil, and obtain an environment-friendly refrigerator that can achieve both improvement in refrigerator performance and long-term reliability without using an environmentally harmful phosphorus-based extreme pressure agent. be able to.

実施例の冷蔵庫を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the refrigerator of an Example. 冷蔵庫の冷凍サイクルを示す概略図である。It is the schematic which shows the refrigerating cycle of a refrigerator. 実施例の冷蔵庫用のレシプロ式密閉型圧縮機を示す断面図である。It is sectional drawing which shows the reciprocating type hermetic compressor for refrigerators of an Example.

以下、本発明の一実施形態に係るレシプロ式圧縮機及びこれを用いた冷蔵庫について説明する。   Hereinafter, a reciprocating compressor according to an embodiment of the present invention and a refrigerator using the same will be described.

前記レシプロ式圧縮機は、冷媒としてイソブタン(R600a)を用い、下記化学式(1)で表されるモノエステル油(式中、Rは炭素数5〜9のアルキル基を表し、Rは炭素数8〜10のアルキル基を表す。)、下記化学式(2)で表されるポリオールエステル油(式中、Rは炭素数5〜9のアルキル基を表す。)及び下記化学式(3)で表されるポリオールエステル油(式中、Rは炭素数5〜9のアルキル基を表す。)からなる群から選択される少なくとも一種類の基油を含む冷凍機油主剤と、下記化学式(4)で表される添加ポリオールエステル油(式中、Rは炭素数7〜9のアルキル基を表す。)とを含む冷凍機油を封入したものである。そして、添加ポリオールエステル油の組成は、1〜30重量%である。 The reciprocating compressor uses isobutane (R600a) as a refrigerant, a monoester oil represented by the following chemical formula (1) (wherein R 1 represents an alkyl group having 5 to 9 carbon atoms, and R 2 represents carbon. Represents an alkyl group having 8 to 10 carbon atoms), a polyol ester oil represented by the following chemical formula (2) (wherein R 3 represents an alkyl group having 5 to 9 carbon atoms) and the following chemical formula (3). A refrigerating machine main agent containing at least one kind of base oil selected from the group consisting of polyol ester oils represented by the formula (wherein R 3 represents an alkyl group having 5 to 9 carbon atoms), and the following chemical formula (4) A refrigerating machine oil containing an added polyol ester oil represented by the formula (wherein R 4 represents an alkyl group having 7 to 9 carbon atoms). The composition of the added polyol ester oil is 1 to 30% by weight.

Figure 2011157408
Figure 2011157408

Figure 2011157408
Figure 2011157408

Figure 2011157408
Figure 2011157408

Figure 2011157408
前記レシプロ式圧縮機においては、冷凍機油主剤の40℃における動粘度が10mm/s以下であり、添加ポリオールエステル油の40℃における動粘度が130mm/s以上であることが望ましい。
Figure 2011157408
In the reciprocating compressor, it is desirable that the kinematic viscosity at 40 ° C. of the refrigerating machine main oil is 10 mm 2 / s or less, and the kinematic viscosity at 40 ° C. of the added polyol ester oil is 130 mm 2 / s or more.

前記レシプロ式圧縮機は、鉄系材料で形成された摺動部を含み、摺動部における接触面圧が10MPa以上である。   The reciprocating compressor includes a sliding portion formed of an iron-based material, and a contact surface pressure at the sliding portion is 10 MPa or more.

前記レシプロ式圧縮機において、添加ポリオールエステル油は、鉄系材料に対する吸着能力が冷凍機油主剤より1.6倍以上高い。さらに、添加ポリオールエステル油の鉄系材料に対する吸着能力は、2倍以上が望ましく、4倍以上が更に望ましい。   In the reciprocating compressor, the added polyol ester oil has an adsorption capacity for iron-based materials of 1.6 times or more higher than that of the refrigerating machine oil main agent. Furthermore, the adsorption capacity of the added polyol ester oil to the iron-based material is preferably 2 times or more, and more preferably 4 times or more.

前記冷蔵庫は、前記レシプロ式圧縮機を用いるものである。   The refrigerator uses the reciprocating compressor.

以下、実施例を用いて詳細に説明する。   Hereinafter, it demonstrates in detail using an Example.

実施例は、イソブタンを用いた圧縮機及びこれを用いた冷蔵庫について開示するものである。   The examples disclose a compressor using isobutane and a refrigerator using the compressor.

実施例の冷媒は、イソブタンであり、冷凍機油は、鉄系材料に吸着能力が低い基油(吸着しにくい基油)と鉄系材料に吸着能力が高い基油(吸着しやすい基油)とを含む。   The refrigerant of the example is isobutane, and the refrigerating machine oil includes a base oil that has a low adsorption capacity for iron-based materials (a base oil that is difficult to adsorb) and a base oil that has a high adsorption capacity for iron-based materials (a base oil that easily absorbs). including.

吸着能力が低い基油としては、分子構造中にエステル基を有する化合物であり、モノエステル油及びポリオールエステル油が挙げられる。   The base oil having a low adsorption capacity is a compound having an ester group in the molecular structure, and examples thereof include monoester oil and polyol ester oil.

モノエステル油は、一価のアルコールと一価の脂肪酸との縮合反応により得られる。   Monoester oil is obtained by a condensation reaction of a monohydric alcohol and a monohydric fatty acid.

一価のアルコールとしては、n−ヘプタノール、n−オクタノール、n−ノナノール、n−デカノール、n−ウンデカノール、イソヘプタノール、イソオクタノール、イソノナノール、イソデカノール、イソウンデカノール、2−エチルヘキサノール、1−メチルヘプタノール、3、5、5−トリメチルヘキサノール、2、6−ジメチル−4−ヘプタノール等があり、これらを単独又は2種類以上を混合して用いる。   Examples of monohydric alcohols include n-heptanol, n-octanol, n-nonanol, n-decanol, n-undecanol, isoheptanol, isooctanol, isononanol, isodecanol, isoundecanol, 2-ethylhexanol, 1-ethyl hexanol, Examples include methylheptanol, 3,5,5-trimethylhexanol, 2,6-dimethyl-4-heptanol, and these are used alone or in combination of two or more.

一価の脂肪酸としては、n−ペンタン酸、n−ヘキサン酸、n−ヘプタン酸、n−オクタン酸、2−メチルブタン酸、2−メチルペンタン酸、2−メチルヘキサン酸、2−エチルヘキサン酸、イソオクタン酸、3、5、5−トリメチルヘキサン酸等があり、これらを単独又は2種類以上を混合して用いる。   Monovalent fatty acids include n-pentanoic acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, 2-methylbutanoic acid, 2-methylpentanoic acid, 2-methylhexanoic acid, 2-ethylhexanoic acid, There are isooctanoic acid, 3,5,5-trimethylhexanoic acid and the like, which are used alone or in combination of two or more.

ポリオールエステル油は、多価アルコールと一価の脂肪酸との縮合反応により得られる。   The polyol ester oil is obtained by a condensation reaction between a polyhydric alcohol and a monovalent fatty acid.

ポリオールエステル油としては、熱安定性に優れるヒンダードタイプが好ましく、多価アルコールとして好ましいものは、例えば、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等である。   As the polyol ester oil, a hindered type having excellent thermal stability is preferable, and as the polyhydric alcohol, neopentyl glycol, trimethylolpropane, pentaerythritol and the like are preferable.

一価の脂肪酸としては、n−ペンタン酸、n−ヘキサン酸、n−ヘプタン酸、n−オクタン酸、2−メチルブタン酸、2−メチルペンタン酸、2−メチルヘキサン酸、2−エチルヘキサン酸、イソオクタン酸、3、5、5−トリメチルヘキサン酸等があり、これらを単独又は2種類以上を混合して用いる。   Monovalent fatty acids include n-pentanoic acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, 2-methylbutanoic acid, 2-methylpentanoic acid, 2-methylhexanoic acid, 2-ethylhexanoic acid, There are isooctanoic acid, 3,5,5-trimethylhexanoic acid and the like, which are used alone or in combination of two or more.

鉄系材料に吸着能力が高い基油としては、分子構造中にエステル基を多く含むポリオールエステル油であり、ヘキサン二酸(アジピン酸)等のジカルボン酸を用いた二価脂肪酸コンプレックスエステル油が好ましく、多価アルコールと一価の脂肪酸とから合成されるヒンダードタイプが更に好ましい。   The base oil having a high adsorption capacity for the iron-based material is a polyol ester oil containing a large amount of ester groups in the molecular structure, and a divalent fatty acid complex ester oil using a dicarboxylic acid such as hexanedioic acid (adipic acid) is preferable. A hindered type synthesized from a polyhydric alcohol and a monovalent fatty acid is more preferable.

多価アルコールの例としては、ジペンタエリスリトールがある。   An example of a polyhydric alcohol is dipentaerythritol.

一価の脂肪酸としては、n−ペンタン酸、n−ヘキサン酸、n−ヘプタン酸、n−オクタン酸、2−メチルブタン酸、2−メチルペンタン酸、2−メチルヘキサン酸、2−エチルヘキサン酸、イソオクタン酸、3、5、5−トリメチルヘキサン酸等があり、これらを単独又は2種類以上を混合して用いる。   Monovalent fatty acids include n-pentanoic acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, 2-methylbutanoic acid, 2-methylpentanoic acid, 2-methylhexanoic acid, 2-ethylhexanoic acid, There are isooctanoic acid, 3,5,5-trimethylhexanoic acid and the like, which are used alone or in combination of two or more.

実施例の冷蔵庫に用いる冷凍機油の粘度グレードは、圧縮機の種類により異なるが、レシプロ式圧縮機では、40℃における粘度が2.5〜15mm/sの範囲が好ましい。 Although the viscosity grade of the refrigerating machine oil used for the refrigerator of an Example changes with kinds of compressor, in the reciprocating compressor, the range whose viscosity in 40 degreeC is 2.5-15 mm < 2 > / s is preferable.

本発明においては、上記の冷凍機油に潤滑性向上剤、酸化防止剤、酸捕捉剤、消泡剤、金属不活性剤等を添加してもよい。特に、モノエステル油、ポリオールエステル油は、水分共存下で加水分解に起因する劣化が生じるため、酸化防止剤及び酸捕捉剤の配合は必須である。   In the present invention, a lubricity improver, an antioxidant, an acid scavenger, an antifoaming agent, a metal deactivator and the like may be added to the above refrigerating machine oil. In particular, monoester oils and polyol ester oils are deteriorated due to hydrolysis in the presence of moisture, so that an antioxidant and an acid scavenger are indispensable.

酸化防止剤としては、フェノール系であるDBPC(2、6−ジ−t−ブチル−p−クレゾール)が好ましい。   As the antioxidant, DBPC (2,6-di-t-butyl-p-cresol) which is a phenol type is preferable.

酸捕捉剤としては、一般に、エポキシ環を有する化合物として脂肪族のエポキシ化合物が使用される。また、カルボジイミド系化合物は、脂肪酸との反応性が極めて高く、脂肪酸から解離した水素イオンを捕捉することからポリオールエステル油の加水分解反応が抑制される効果が非常に高い。カルボジイミド系化合物としては、ビス(2、6−イソプロピルフェニル)カルボジイミドが挙げられる。酸捕捉剤の配合量は、冷凍機油に対して0.05〜1.0重量%とすることが好ましい。   As the acid scavenger, an aliphatic epoxy compound is generally used as a compound having an epoxy ring. In addition, the carbodiimide-based compound has extremely high reactivity with fatty acids, and captures hydrogen ions dissociated from fatty acids, so that the effect of suppressing the hydrolysis reaction of polyol ester oil is very high. Examples of the carbodiimide compound include bis (2,6-isopropylphenyl) carbodiimide. The compounding amount of the acid scavenger is preferably 0.05 to 1.0% by weight with respect to the refrigerating machine oil.

(冷凍機油成分)
レシプロ式冷媒圧縮機の高効率化には、粘性抵抗を低減する冷凍機油の低粘度化が有効である。しかし、油の低粘度化を行うと、圧縮機摺動部における油膜強度が低下してしまうため、摩耗が進行してしまう。このため、冷凍機油成分の摺動部に対する吸着性が重要なパラメータとなる。
(Refrigerating machine oil component)
In order to increase the efficiency of the reciprocating refrigerant compressor, it is effective to reduce the viscosity of the refrigerating machine oil that reduces the viscous resistance. However, when the viscosity of the oil is reduced, the oil film strength at the compressor sliding portion is lowered, and thus wear proceeds. For this reason, the adsorptivity with respect to the sliding part of a refrigerator oil component becomes an important parameter.

摺動部のほとんどは鉄系材料で形成されており、その表面には酸化鉄が形成されている。   Most of the sliding parts are made of an iron-based material, and iron oxide is formed on the surface thereof.

本明細書における冷凍機油の鉄系材料への吸着能力は、実質的に冷凍機油の酸化鉄への吸着能力と考える。   The adsorption capacity of the refrigerating machine oil to the iron-based material in this specification is considered to be substantially the adsorption capacity of the refrigerating machine oil to the iron oxide.

この考え方に基づいて、本実施例においては、平均粒径1μmのFe(四三酸化鉄)の粉末(比表面積1.57m/g)を用いて冷凍機油の吸着能力の評価を行った。 Based on this concept, in this example, the adsorption capacity of refrigerating machine oil was evaluated using powder (specific surface area 1.57 m 2 / g) of Fe 3 O 4 (iron trioxide) having an average particle diameter of 1 μm. went.

溶媒に希釈した冷凍機油成分の吸着前後の濃度を核磁気共鳴分析(NMR)により定量し、酸化鉄粉に吸着した量を算出した。溶媒にはヘキサンを用い、各冷凍機油成分が0.3mol−ppmとなるように調整した。20mlスクリュー管に酸化鉄粉を3g採取後、冷凍機油成分の溶液を10g入れ、超音波洗浄器において30分間分散させて48時間放置後の上澄み液の1H−NMR分析を行った。   The concentration of the refrigerating machine oil component diluted in the solvent before and after adsorption was quantified by nuclear magnetic resonance analysis (NMR), and the amount adsorbed on the iron oxide powder was calculated. Hexane was used as the solvent, and each refrigerating machine oil component was adjusted to 0.3 mol-ppm. After 3 g of iron oxide powder was collected in a 20 ml screw tube, 10 g of a solution of a refrigerator oil component was added, dispersed in an ultrasonic cleaner for 30 minutes, and allowed to stand for 48 hours for 1H-NMR analysis of the supernatant.

ここで、mol−ppmは、モル基準のppm(parts per million)である。すなわち、溶液(溶媒及び溶質の混合物)のモル数を分母とし、溶質のモル数を分子として算出した百万分率である。   Here, mol-ppm is ppm (parts per million) on a molar basis. In other words, it is a percentage calculated using the number of moles of the solution (mixture of solvent and solute) as the denominator and the number of moles of the solute as the numerator.

冷凍機油成分として用いた基油を下記に示す。ここで、40℃粘度は、40℃における粘度である。   The base oil used as the refrigerator oil component is shown below. Here, the 40 ° C. viscosity is a viscosity at 40 ° C.

(A)モノエステル油(オクタノールと2−エチルヘキサン酸との縮合物):40℃粘度2.8mm/s
(B)モノエステル油(2−エチルヘキサノールと2−エチルヘキサン酸との縮合物):40℃粘度2.7mm/s
(C)ヒンダードタイプポリオールエステル油(POE)(ネオペンチルグリコール系の2−エチルヘキサン酸エステル油):40℃粘度7.5mm/s
(D)ヒンダードタイプポリオールエステル油(POE)(ネオペンチルグリコール系の3、5、5−トリメチルヘキサン酸エステル油):40℃粘度13.1mm/s
(E)ヒンダードタイプポリオールエステル油(POE)(ペンタエリスリトール系の3、5、5−トリメチルヘキサン酸エステル油):40℃粘度44.8mm/s
(F)ヒンダードタイプポリオールエステル油(POE)(ジペンタエリスリトール系の2−エチルヘキサン酸エステル油):40℃粘度150mm/s
(G)ヒンダードタイプポリオールエステル油(POE)(ジペンタエリスリトール系の3、5、5−トリメチルヘキサン酸エステル油):40℃粘度417mm/s
(H)ヒンダードタイプポリオールエステル油(POE)(ジペンタエリスリトール系の分岐鎖混合脂肪酸エステル油):40℃粘度217mm/s
(I)ポリビニルエーテル油(PVE):40℃粘度65mm/s
(J)ポリアルキレングリコール油(PAG)(ポリプロピレングリコールジメチルエーテル):40℃粘度22.36mm/s
(K)ナフテン系鉱油:40℃粘度4.85mm/s
(L)ポリαオレフィン油:40℃粘度30.3mm/s
(M)ソフト型アルキルベンゼン油:40℃粘度4.24mm/s
(N)パラフィン系鉱油:40℃粘度:7.8mm/s
(O)ナフテン系鉱油:40℃粘度145mm/s
酸化鉄粉に対する化合物の吸着量を測定した結果を表1に示す。
(A) Monoester oil (condensate of octanol and 2-ethylhexanoic acid): 40 ° C. viscosity 2.8 mm 2 / s
(B) Monoester oil (condensate of 2-ethylhexanol and 2-ethylhexanoic acid): 40 ° C. viscosity 2.7 mm 2 / s
(C) Hindered type polyol ester oil (POE) (neopentyl glycol-based 2-ethylhexanoic acid ester oil): 40 ° C., viscosity 7.5 mm 2 / s
(D) Hindered type polyol ester oil (POE) (neopentyl glycol-based 3,5,5-trimethylhexanoic ester oil): 40 ° C. viscosity 13.1 mm 2 / s
(E) Hindered type polyol ester oil (POE) (pentaerythritol-based 3,5,5-trimethylhexanoic acid ester oil): 40 ° C. viscosity 44.8 mm 2 / s
(F) Hindered type polyol ester oil (POE) (dipentaerythritol-based 2-ethylhexanoic acid ester oil): 40 ° C. viscosity 150 mm 2 / s
(G) Hindered type polyol ester oil (POE) (dipentaerythritol-based 3,5,5-trimethylhexanoic acid ester oil): 40 ° C. viscosity 417 mm 2 / s
(H) Hindered type polyol ester oil (POE) (dipentaerythritol-based branched chain fatty acid ester oil): 40 ° C. viscosity 217 mm 2 / s
(I) Polyvinyl ether oil (PVE): 40 ° C. viscosity 65 mm 2 / s
(J) Polyalkylene glycol oil (PAG) (polypropylene glycol dimethyl ether): 40 ° C. viscosity 22.36 mm 2 / s
(K) Naphthenic mineral oil: 40 ° C. viscosity 4.85 mm 2 / s
(L) Poly α-olefin oil: 40 ° C. viscosity 30.3 mm 2 / s
(M) Soft alkylbenzene oil: 40 ° C. viscosity 4.24 mm 2 / s
(N) Paraffinic mineral oil: 40 ° C. viscosity: 7.8 mm 2 / s
(O) Naphthenic mineral oil: 40 ° C. viscosity 145 mm 2 / s
Table 1 shows the results of measuring the amount of the compound adsorbed on the iron oxide powder.

Figure 2011157408
各化合物により酸化鉄粉に対する吸着量(吸着能力)が異なっており、有極性化合物の方が鉄系材料に吸着し易いことがわかる。
Figure 2011157408
The adsorption amount (adsorption ability) with respect to the iron oxide powder differs depending on each compound, and it is understood that the polar compound is more easily adsorbed to the iron-based material.

有極性化合物においても、分子構造中にエステル基が多く存在する化合物(F)、(G)及び(H)が特に吸着量が多いことがわかる。すなわち、(F)、(G)及び(H)は、鉄系材料(酸化鉄)に対する吸着能力が他の冷凍機油成分(A)〜(E)及び(I)〜(O)に比べて1.6倍以上高いことがわかる。   It can be seen that even in polar compounds, the compounds (F), (G) and (H) having a large number of ester groups in the molecular structure have a particularly large amount of adsorption. That is, (F), (G), and (H) have an adsorption capacity for iron-based materials (iron oxide) of 1 compared to other refrigeration oil components (A) to (E) and (I) to (O). It can be seen that it is 6 times higher.

このことから、基油6〜8(冷凍機油成分(F)、(G)及び(H))は、圧縮機摺動部において油膜を形成しやすいことが考えられる。   From this, it is considered that the base oils 6 to 8 (refrigerating machine oil components (F), (G) and (H)) easily form an oil film in the compressor sliding portion.

これは、次の理由によると考えられる。   This is considered to be due to the following reason.

エステル基に含まれる炭素と酸素との二重結合(C=O)の酸素が負に帯電する傾向がある。これに対して、酸化鉄に含まれる鉄が正に帯電しやすい(陽イオンになりやすい)。このため、酸化鉄の鉄と二重結合の酸素との間にクーロン力による引力が生じ、吸着しやすくなると考えられる。   The oxygen in the double bond (C = O) of carbon and oxygen contained in the ester group tends to be negatively charged. On the other hand, iron contained in iron oxide tends to be positively charged (easily becomes a cation). For this reason, it is considered that an attractive force is generated between the iron oxide iron and the double-bonded oxygen due to Coulomb force, and is easily adsorbed.

この結果から、基油6〜8(冷凍機油成分(F)、(G)及び(H))を本発明における添加ポリオールエステル油として用いることとした。また、基油1〜5及び9〜15(冷凍機油成分(A)〜(E)及び(I)〜(O))は、本発明における冷凍機油主剤として用いることにした。   From these results, base oils 6 to 8 (refrigerator oil components (F), (G) and (H)) were decided to be used as additive polyol ester oils in the present invention. Base oils 1 to 5 and 9 to 15 (refrigerator oil components (A) to (E) and (I) to (O)) were used as the refrigerator oil main agent in the present invention.

(実施例1〜3)
(比較例1〜4)
本実施例の具体的な冷蔵庫の例を図1に示す。
(Examples 1-3)
(Comparative Examples 1-4)
An example of a specific refrigerator of the present embodiment is shown in FIG.

冷蔵庫箱体1内には、冷蔵室2及び冷凍室3があり、両室は壁によって仕切られている。冷蔵庫内を冷却するための冷凍サイクルは、圧縮機4、凝縮器5、脱水器6、キャピラリーチューブ、蒸発器7及び送風ファン8を含む構成である。   In the refrigerator box 1, there are a refrigerator compartment 2 and a freezer compartment 3, both of which are partitioned by a wall. The refrigeration cycle for cooling the inside of the refrigerator includes a compressor 4, a condenser 5, a dehydrator 6, a capillary tube, an evaporator 7, and a blower fan 8.

蒸発器7で冷やされた冷気は、送風ファン8により冷凍室3に送られ、その後、図中の矢印のようにダンパー9を通って冷蔵室2に送られ、ダンパー9を介して再び蒸発器7で冷却される流路を循環する。   The cold air cooled by the evaporator 7 is sent to the freezer compartment 3 by the blower fan 8, and then sent to the refrigerator compartment 2 through the damper 9 as shown by the arrow in the figure. 7 circulates in the flow path cooled.

次に、図1に示した冷蔵庫の冷凍サイクルについて説明する。冷蔵庫の基本的な冷凍サイクル構成図を図2に示す。   Next, the refrigeration cycle of the refrigerator shown in FIG. 1 will be described. A basic refrigeration cycle configuration diagram of the refrigerator is shown in FIG.

圧縮機4は、低温、低圧の冷媒ガスを圧縮し、高温、高圧の冷媒ガスを吐出して凝縮器5に送る。凝縮器5に送られた冷媒ガスは、その熱を空気中に放出しながら高温、高圧の冷媒液となり、脱水器6を介してキャピラリーチューブ10に送られる。キャピラリーチューブ10を通過する高温、高圧の冷媒液は、絞り効果により低温、低圧の湿り蒸気となり、蒸発器7へ送られる。蒸発器7に入った冷媒は、周囲から熱を吸収して蒸発し、これにより発生した冷気を送風ファン8により箱体内に送る。蒸発器7を出た低温、低圧の冷媒ガスは、圧縮機4に吸込まれ、同様の冷凍サイクルが繰り返される機構となっている。   The compressor 4 compresses the low-temperature and low-pressure refrigerant gas, discharges the high-temperature and high-pressure refrigerant gas, and sends it to the condenser 5. The refrigerant gas sent to the condenser 5 becomes a high-temperature and high-pressure refrigerant liquid while releasing its heat into the air, and is sent to the capillary tube 10 via the dehydrator 6. The high-temperature and high-pressure refrigerant liquid that passes through the capillary tube 10 becomes low-temperature and low-pressure wet steam due to the throttling effect, and is sent to the evaporator 7. The refrigerant that has entered the evaporator 7 absorbs heat from the surroundings and evaporates, and the air generated thereby is sent into the box by the blower fan 8. The low-temperature and low-pressure refrigerant gas exiting the evaporator 7 is sucked into the compressor 4 and a similar refrigeration cycle is repeated.

冷蔵庫用の冷媒圧縮機は、レシプロ式等容積形圧縮機が主である。   Refrigerant equal volume compressors are mainly used as refrigerant compressors for refrigerators.

圧縮手段の例としてレシプロ式冷媒圧縮機の概略構造を図3に示す。   FIG. 3 shows a schematic structure of a reciprocating refrigerant compressor as an example of the compression means.

本図において、レシプロ式の冷媒圧縮機は、密閉容器11内に圧縮部及びモータ12を収納し、密閉容器底部(モータ12の下部)の油溜め部に冷凍機油13を貯溜している。圧縮部を構成するシリンダ14の内径に摺動可能なピストン15が嵌合され、このピストン15は、モータ12の回転力を伝える回転軸のクランクシャフト16の偏心回転によりシリンダ14内を往復運動し、これによって冷媒ガスを吸込、圧縮、吐出させる構造となっている。   In this figure, the reciprocating type refrigerant compressor houses a compression part and a motor 12 in a sealed container 11 and stores refrigerating machine oil 13 in an oil reservoir part at the bottom of the sealed container (lower part of the motor 12). A slidable piston 15 is fitted to the inner diameter of the cylinder 14 constituting the compression portion, and the piston 15 reciprocates in the cylinder 14 by the eccentric rotation of the crankshaft 16 of the rotating shaft that transmits the rotational force of the motor 12. Thus, the refrigerant gas is sucked, compressed and discharged.

圧縮された冷媒ガスは、吐出口17により外部冷凍サイクルに吐出される。モータ12の下部に設けられた油溜め部に貯溜されている冷凍機油13は、クランクシャフト16に設けられた油孔18を通って、圧縮機の各摺動部の潤滑に供給される。   The compressed refrigerant gas is discharged to the external refrigeration cycle through the discharge port 17. The refrigerating machine oil 13 stored in the oil reservoir provided in the lower part of the motor 12 is supplied to the lubrication of each sliding part of the compressor through the oil hole 18 provided in the crankshaft 16.

実施例1〜3においては、表1に示す基油1〜15(冷凍機油成分(A)〜(O))のうち鉄系材料への吸着能力が高い基油6〜8(冷凍機油成分(F)〜(H))を一つの成分として組み合わせたものを使用する。   In Examples 1 to 3, base oils 6 to 8 (refrigerating machine oil components (of refrigerating machine oil components (A) to (O)) shown in Table 1 having high adsorption ability to iron-based materials. A combination of F) to (H)) as one component is used.

上記の冷凍機油を含む冷媒をレシプロ式圧縮機に封入し、図1に示す冷蔵庫に設置し、恒温室(40℃)において高圧、高負荷で2160時間運転する長期寿命実機試験を行った。   A refrigerant containing the above refrigerating machine oil was sealed in a reciprocating compressor, installed in the refrigerator shown in FIG. 1, and a long-life test was performed in a constant temperature room (40 ° C.) under high pressure and high load for 2160 hours.

冷凍機油の組み合わせは、表2に示す。   Table 2 shows combinations of refrigerating machine oils.

Figure 2011157408
本表において、冷凍機油成分(A)〜(O)は、表1に示すものである。
Figure 2011157408
In this table, the refrigerator oil components (A) to (O) are shown in Table 1.

すなわち、(A)80重量%と吸着能力が高い(H)20重量%とを混合し、40℃における動粘度を5.2mm/sとした実施例1、(C)97重量%と吸着能力が高い(H)3重量%とを混合し、40℃における動粘度を8.1mm/sとした実施例2、及び(C)97重量%と吸着能力が高い(F)3重量%とを混合し、40℃における動粘度を8.0mm/sとした実施例3を用いた。 That is, (A) 80% by weight and high adsorption capacity (H) 20% by weight were mixed, and the kinematic viscosity at 40 ° C. was 5.2 mm 2 / s, Example 1 (C) 97% by weight and adsorption Example 2 in which 3% by weight of (H) having a high capacity was mixed and the kinematic viscosity at 40 ° C. was set to 8.1 mm 2 / s, and (C) 97% by weight and 3% by weight of (F) having a high adsorption capacity And Example 3 was used in which the kinematic viscosity at 40 ° C. was 8.0 mm 2 / s.

比較例1及び2としては、吸着能力が低い化合物同士の組み合わせを用いた。   As Comparative Examples 1 and 2, a combination of compounds having low adsorption ability was used.

具体的には、(K)80重量%と吸着能力が等しく、動粘度が高い(O)20重量%とを混合し、40℃における動粘度を8.5mm/sとした比較例1、及び(C)80重量%と実施例1〜3に比べて吸着能力が低い(E)20重量%とを混合し、40℃における動粘度を10.2mm/sとした比較例2を用いた。 Specifically, Comparative Example 1 in which (K) 80% by weight and adsorbing capacity are equal and kinematic viscosity (O) 20% by weight is mixed, and the kinematic viscosity at 40 ° C. is 8.5 mm 2 / s. And (C) 80% by weight and (E) 20% by weight, which is lower in adsorption capacity than Examples 1 to 3, are mixed, and the kinematic viscosity at 40 ° C. is 10.2 mm 2 / s. It was.

また、実施例2と同じ成分の組み合わせであって、成分2(H)の濃度を0.5重量%とした比較例3、及び成分2(H)の濃度を40重量%とした比較例4についても試験を行った。   Moreover, it is the same combination of the components as Example 2, and the comparative example 3 which made the density | concentration of the component 2 (H) 0.5 weight% and the comparative example 4 which made the density | concentration of the component 2 (H) 40 weight% Tests were also conducted.

上記の実施例及び比較例の冷凍機油には、いずれもリン系極圧添加剤を配合していない。   None of the refrigerating machine oils of the above Examples and Comparative Examples contains a phosphorus extreme pressure additive.

冷蔵庫の信頼性の向上においては、圧縮機の摩擦摩耗を抑制することが重要である。そのため、冷蔵庫の評価には、レシプロ式圧縮機の摩耗状態に着眼し、摺動面圧が10MPa以上となって最も厳しい条件に置かれる摺動部の鉄系材料を加工した部品であるコンロッド外球及びピストン内球の摩耗量を測定した。   In improving the reliability of the refrigerator, it is important to suppress the frictional wear of the compressor. Therefore, the evaluation of the refrigerator is focused on the wear state of the reciprocating compressor, and the connecting rod outside, which is a processed part of the iron-based material of the sliding part that has a sliding surface pressure of 10 MPa or more and is placed in the most severe conditions The wear amount of the sphere and the sphere in the piston was measured.

また、実施例1〜3の冷凍機油を用いた冷蔵庫について、JIS C 9801(家庭用電気冷蔵庫及び電気冷凍庫の特性及び試験方法)により消費電力量測定を行い、年間消費電力量を算出した。   Moreover, about the refrigerator using the refrigerating machine oil of Examples 1-3, power consumption amount measurement was performed by JISC9801 (the characteristic and test method of a household electric refrigerator and an electric freezer), and the annual power consumption was computed.

ここでは、比較例2の冷凍機油を用いた冷蔵庫の年間消費電力量を100%として表示した。   Here, the annual power consumption of the refrigerator using the refrigerating machine oil of Comparative Example 2 is displayed as 100%.

これらの試験における目標値は、ピストン内球面の摩耗量が10μm以下であり、年間消費電力量が100%未満である。   The target values in these tests are that the wear amount of the inner spherical surface of the piston is 10 μm or less, and the annual power consumption is less than 100%.

実施例1〜3及び比較例1〜4の結果は、表2に示す。   The results of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table 2.

表2から、実施例1〜3の冷凍機油を用いた冷蔵庫は、比較例1及び2の冷凍機油を用いた冷蔵庫のレシプロ式圧縮機と比べてピストン内球の摩耗量を大幅に低減できており、高い信頼性が得られる。さらに、実施例1〜3の冷凍機油を用いた冷蔵庫は、比較例2と比べて冷凍機油の動粘度を低くしたことにより、機械損失が低減され、年間消費電力量が少なくなっている。   From Table 2, the refrigerator using the refrigerating machine oil of Examples 1 to 3 can greatly reduce the wear amount of the piston inner sphere compared with the reciprocating compressor of the refrigerator using the refrigerating machine oil of Comparative Examples 1 and 2. And high reliability is obtained. Furthermore, the refrigerator using the refrigerating machine oil of Examples 1 to 3 has a lower kinematic viscosity of the refrigerating machine oil as compared with Comparative Example 2, thereby reducing the mechanical loss and reducing the annual power consumption.

比較例1においては、冷凍機油の動粘度を低くしたことにより、年間消費電力量の低減が認められる。しかし、低粘度油と高粘度油を混合しても鉄系材料に対する吸着能力が低い組み合わせであるために潤滑性が保たれず、試験開始から数時間において摺動が最も厳しいコンロッド−ピストン間で焼付きが発生し、試験を中断した。そのため、摩耗量の測定ができなかった。   In Comparative Example 1, a reduction in annual power consumption is recognized by reducing the kinematic viscosity of the refrigerating machine oil. However, even if low viscosity oil and high viscosity oil are mixed, it is a combination with low adsorption capacity for ferrous materials, so lubricity is not maintained, and between the connecting rod-piston where sliding is the most severe within a few hours from the start of the test. Seizure occurred and the test was interrupted. Therefore, the amount of wear could not be measured.

動粘度の低いポリオールエステル油と動粘度の高いポリオールエステル油とを混合した比較例2においては、吸着能力が低い化合物を配合しているため、圧縮機の摺動部の摩耗が増加してしまい、目標値の摩耗量10μm以下が達成できない。   In Comparative Example 2 in which a polyol ester oil having a low kinematic viscosity and a polyol ester oil having a high kinematic viscosity are mixed, since a compound having a low adsorption capacity is blended, the wear of the sliding portion of the compressor increases. The target wear amount of 10 μm or less cannot be achieved.

この結果から、鉄系材料に対する吸着能力がともに低い、低粘度油と高粘度油とを組み合わせた冷凍機油を用いた場合、冷蔵庫及びレシプロ式圧縮機の摩耗量の抑制と効率向上との両立をすることはできないことがわかる。   From this result, when using refrigeration oil that combines low viscosity oil and high viscosity oil with low adsorption capacity for iron-based materials, both reducing the amount of wear and improving efficiency of refrigerators and reciprocating compressors. You can't do that.

また、比較例3は、実施例2で効果が確認された冷凍機油の組み合わせにおいて、鉄系材料に吸着能力が高い化合物(H)の配合量を0.5重量%としたものである。冷蔵庫の年間消費電力量の低減は可能であるが、摩耗を抑制できないことがわかる。これは、圧縮機の摺動部に十分な量の冷凍機油が吸着していないためと考えられる。   Comparative Example 3 is a combination of the refrigerating machine oils whose effects were confirmed in Example 2, with the compounding amount of the compound (H) having a high adsorption capacity in the iron-based material being 0.5% by weight. It can be seen that the annual power consumption of the refrigerator can be reduced, but the wear cannot be suppressed. This is presumably because a sufficient amount of refrigerating machine oil is not adsorbed on the sliding portion of the compressor.

さらに、これと同じ冷凍機油の組み合わせにおいて、吸着能力が高い化合物(H)を40重量%配合した冷蔵庫においては、摩耗を大幅に抑制できているが、年間消費電力量を低減することができない。これは、圧縮機の摺動部に十分な量の冷凍機油が吸着しているが、動粘度が高くなり、圧縮機の効率が低下するためと考えられる。   Furthermore, in the refrigerator combined with 40% by weight of the compound (H) having a high adsorption capacity in the same combination of refrigerating machine oils, the wear can be greatly suppressed, but the annual power consumption cannot be reduced. This is presumably because a sufficient amount of refrigeration oil is adsorbed on the sliding portion of the compressor, but the kinematic viscosity increases and the efficiency of the compressor decreases.

以上より、レシプロ式圧縮機の摩耗が大幅に抑制され、かつ、年間消費電力量が少ない冷蔵庫を得るためには、鉄系材料に対する吸着能力が高い化合物を1〜30重量%配合した冷凍機油を用いることが望ましいことがわかる。また、鉄系材料に対する吸着能力が高い化合物を2〜25重量%配合した冷凍機油を用いることは更に望ましい。   As described above, in order to obtain a refrigerator in which the wear of the reciprocating compressor is greatly suppressed and the annual power consumption is small, a refrigerator oil containing 1 to 30% by weight of a compound having a high adsorption capacity for iron-based materials is used. It can be seen that it is desirable to use it. Further, it is more desirable to use a refrigerating machine oil blended with 2 to 25% by weight of a compound having a high adsorption capacity for iron-based materials.

鉄系材料に吸着能力が高い化合物の配合量が1重量%未満の場合、圧縮機摺動部の十分な耐摩耗性が得られず、30重量%を超えると年間消費電力量の低減が難しいように、特性を両立することができない。   If the compounding amount of the compound having a high adsorption capacity in the iron-based material is less than 1% by weight, sufficient wear resistance of the compressor sliding portion cannot be obtained, and if it exceeds 30% by weight, it is difficult to reduce the annual power consumption. Thus, the characteristics cannot be compatible.

本発明によれば、冷凍機油の粘度(動粘度)を低くするとともに、摺動面における油膜維持し、摺動面の摩耗を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, while reducing the viscosity (kinematic viscosity) of refrigerating machine oil, the oil film in a sliding surface can be maintained and abrasion of a sliding surface can be suppressed.

本発明によれば、鉱油単独で摺動面の潤滑性を維持し、環境漏洩時の生態毒性が大きく、バーゼル条約の規制物質(国内法:特定有害廃棄物等の輸出入等の規制に関する法律)に該当しているTCP:トリクレジルホスフェートに代表される極圧添加剤を使用することなく、耐摩耗性を向上させることができる。   According to the present invention, the mineral oil alone maintains the lubricity of the sliding surface, the ecotoxicity at the time of environmental leakage is great, and the Basel Convention regulated substance (Domestic law: Law on the regulation of import / export of specified hazardous waste, etc.) The wear resistance can be improved without using an extreme pressure additive typified by TCP: tricresyl phosphate.

本発明は、レシプロ式冷媒圧縮機及び冷蔵庫に適用可能である。   The present invention is applicable to a reciprocating refrigerant compressor and a refrigerator.

1:箱体、2:冷蔵室、3:冷凍室、4:圧縮機、5:凝縮器、6:脱水器、7:蒸発器、8:送風ファン、9:ダンパー、10:キャピラリーチューブ、11:密閉容器、12:モータ、13:冷凍機油、14:シリンダ、15:ピストン、16:クランクシャフト、17:吐出口、18:油孔。   1: box, 2: cold room, 3: freezer, 4: compressor, 5: condenser, 6: dehydrator, 7: evaporator, 8: blower fan, 9: damper, 10: capillary tube, 11 : Closed container, 12: motor, 13: refrigerator oil, 14: cylinder, 15: piston, 16: crankshaft, 17: discharge port, 18: oil hole.

Claims (5)

冷媒としてイソブタンを用い、下記化学式(1)で表されるモノエステル油(式中、Rは炭素数5〜9のアルキル基を表し、Rは炭素数8〜10のアルキル基を表す。)、下記化学式(2)で表されるポリオールエステル油(式中、Rは炭素数5〜9のアルキル基を表す。)及び下記化学式(3)で表されるポリオールエステル油(式中、Rは炭素数5〜9のアルキル基を表す。)からなる群から選択される少なくとも一種類の基油を含む冷凍機油主剤と、下記化学式(4)で表される添加ポリオールエステル油(式中、Rは炭素数7〜9のアルキル基を表す。)とを含む冷凍機油を封入したレシプロ式圧縮機であって、前記添加ポリオールエステル油の組成が1〜30重量%であることを特徴とするレシプロ式圧縮機。
Figure 2011157408
Figure 2011157408
Figure 2011157408
Figure 2011157408
A monoester oil represented by the following chemical formula (1) using isobutane as a refrigerant (wherein R 1 represents an alkyl group having 5 to 9 carbon atoms, and R 2 represents an alkyl group having 8 to 10 carbon atoms). ), A polyol ester oil represented by the following chemical formula (2) (wherein R 3 represents an alkyl group having 5 to 9 carbon atoms) and a polyol ester oil represented by the following chemical formula (3) (wherein R 3 represents an alkyl group having 5 to 9 carbon atoms.) A refrigerating machine main agent containing at least one kind of base oil selected from the group consisting of: and an added polyol ester oil represented by the following chemical formula (4) (formula Wherein R 4 represents an alkyl group having 7 to 9 carbon atoms.) And a reciprocating compressor containing a refrigerating machine oil containing 1 to 30% by weight of the additive polyol ester oil. Features a reciprocating compressor.
Figure 2011157408
Figure 2011157408
Figure 2011157408
Figure 2011157408
前記冷凍機油主剤の40℃における動粘度が10mm/s以下であり、前記添加ポリオールエステル油の40℃における動粘度が130mm/s以上であることを特徴とする請求項1記載のレシプロ式圧縮機。 The reciprocating type according to claim 1, wherein the refrigerating machine oil main component has a kinematic viscosity at 40 ° C of 10 mm 2 / s or less, and the added polyol ester oil has a kinematic viscosity at 40 ° C of 130 mm 2 / s or more. Compressor. 鉄系材料で形成された摺動部を含み、前記摺動部における接触面圧が10MPa以上であることを特徴とする請求項1又は2に記載のレシプロ式圧縮機。   3. The reciprocating compressor according to claim 1, wherein the reciprocating compressor includes a sliding portion formed of an iron-based material, and a contact surface pressure at the sliding portion is 10 MPa or more. 前記添加ポリオールエステル油は、鉄系材料に対する吸着能力が前記冷凍機油主剤より1.6倍以上高いことを特徴とする請求項1〜3のいずれか一項に記載のレシプロ式圧縮機。   The reciprocating compressor according to any one of claims 1 to 3, wherein the added polyol ester oil has an adsorption capacity for an iron-based material that is 1.6 times or more higher than that of the refrigerating machine oil main component. 請求項1〜4のいずれか一項に記載のレシプロ式圧縮機を用いたことを特徴とする冷蔵庫。   A refrigerator using the reciprocating compressor according to any one of claims 1 to 4.
JP2010017514A 2010-01-29 2010-01-29 Reciprocating compressor and refrigerator using the same Expired - Fee Related JP5667362B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010017514A JP5667362B2 (en) 2010-01-29 2010-01-29 Reciprocating compressor and refrigerator using the same
PCT/JP2011/051257 WO2011093249A1 (en) 2010-01-29 2011-01-25 Reciprocating compressor and refrigerator using the same
KR1020127015967A KR101396306B1 (en) 2010-01-29 2011-01-25 Reciprocating compressor and refrigerator using the same
CN201180006955.2A CN102712872B (en) 2010-01-29 2011-01-25 Reciprocation compressor and use the refrigerator chamber of this reciprocation compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010017514A JP5667362B2 (en) 2010-01-29 2010-01-29 Reciprocating compressor and refrigerator using the same

Publications (3)

Publication Number Publication Date
JP2011157408A true JP2011157408A (en) 2011-08-18
JP2011157408A5 JP2011157408A5 (en) 2012-12-13
JP5667362B2 JP5667362B2 (en) 2015-02-12

Family

ID=44319237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017514A Expired - Fee Related JP5667362B2 (en) 2010-01-29 2010-01-29 Reciprocating compressor and refrigerator using the same

Country Status (4)

Country Link
JP (1) JP5667362B2 (en)
KR (1) KR101396306B1 (en)
CN (1) CN102712872B (en)
WO (1) WO2011093249A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127243A (en) * 2011-11-17 2013-06-27 Panasonic Corp Refrigerant compressor
JP2015017730A (en) * 2013-07-10 2015-01-29 日立アプライアンス株式会社 Air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073681A (en) * 2001-09-03 2003-03-12 Hitachi Ltd Working medium composition for refrigerator and refrigerator using the composition
JP2007248020A (en) * 2006-03-20 2007-09-27 Hitachi Appliances Inc Hermetically closed compressor, refrigeration unit, and refrigerator
CN101544925A (en) * 2008-03-26 2009-09-30 日本能源株式会社 Refrigerator oil for refrigerant
JP2010065190A (en) * 2008-09-12 2010-03-25 Japan Energy Corp Refrigerating oil, and working fluid for use in refrigeration machine, as well as refrigerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3012907B2 (en) * 1989-12-28 2000-02-28 日石三菱株式会社 Refrigeration oil for non-chlorinated chlorofluorocarbon refrigerant
JPH08505160A (en) * 1992-06-03 1996-06-04 ヘンケル・コーポレイション Polyol ester lubricant for refrigeration compressors operating at high temperatures
JPH11315293A (en) * 1999-03-11 1999-11-16 Nippon Mitsubishi Oil Corp Refrigerator oil for non-chlorine-based cfc refrigerant
JP4936656B2 (en) * 2003-11-21 2012-05-23 日油株式会社 Lubricating oil composition for refrigerator
CA2487587C (en) * 2003-11-21 2012-04-24 Nof Corporation A polyol ester for use within a refrigeration lubricant composition compatible with chlorine-free hydrofluorocarbon refrigerants
JP4824448B2 (en) * 2006-03-20 2011-11-30 シャープ株式会社 Cooling method and cooling device
CN104119998B (en) * 2008-03-26 2017-04-12 日本能源株式会社 refrigerating machine oil for refrigerant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073681A (en) * 2001-09-03 2003-03-12 Hitachi Ltd Working medium composition for refrigerator and refrigerator using the composition
JP2007248020A (en) * 2006-03-20 2007-09-27 Hitachi Appliances Inc Hermetically closed compressor, refrigeration unit, and refrigerator
CN101544925A (en) * 2008-03-26 2009-09-30 日本能源株式会社 Refrigerator oil for refrigerant
JP2009235179A (en) * 2008-03-26 2009-10-15 Japan Energy Corp Refrigerating machine oil used for refrigerant
JP2010065190A (en) * 2008-09-12 2010-03-25 Japan Energy Corp Refrigerating oil, and working fluid for use in refrigeration machine, as well as refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127243A (en) * 2011-11-17 2013-06-27 Panasonic Corp Refrigerant compressor
JP2015017730A (en) * 2013-07-10 2015-01-29 日立アプライアンス株式会社 Air conditioner

Also Published As

Publication number Publication date
JP5667362B2 (en) 2015-02-12
KR101396306B1 (en) 2014-05-19
KR20120099076A (en) 2012-09-06
WO2011093249A1 (en) 2011-08-04
CN102712872B (en) 2015-12-16
CN102712872A (en) 2012-10-03

Similar Documents

Publication Publication Date Title
KR101280701B1 (en) Compressor for refrigerating air conditioning and refrigerating air conditioner
JP5562920B2 (en) Compressor for refrigeration and air-conditioning equipment
CN104145006B (en) Working fluid composition for refrigerating machine, refrigerator oil and its manufacture method
JP6615526B2 (en) Refrigerator oil and working fluid composition for refrigerator
WO2012086518A1 (en) Compressor for refrigeration and air-conditioning, and refrigerating and air-conditioning apparatus
KR102525762B1 (en) Low gwp heat transfer compositions
TWI712683B (en) Electric compressor and refrigerating air-conditioning device
KR20110023764A (en) A refrigerating air conditioner using 2,3,3,3-tetrafluoropropene
WO2015050120A1 (en) Refrigerator oil composition and refrigerator
WO2014134821A1 (en) Low gwp heat transfer compositions including co2
JP5248960B2 (en) Refrigerator oil, working fluid for refrigerator, and refrigerator
KR101580319B1 (en) Refrigerating Machine Oil For Refrigerant
JP5667362B2 (en) Reciprocating compressor and refrigerator using the same
JP5248959B2 (en) Refrigerator oil, working fluid for refrigerator, and refrigerator
JP2003073681A (en) Working medium composition for refrigerator and refrigerator using the composition
JP5572242B2 (en) Refrigerator oil, working fluid for refrigerator, and refrigerator
JP3437177B2 (en) refrigerator
JP4046932B2 (en) Working medium for refrigerator and refrigerator
JP2012087801A (en) Hermetic compressor
JP2002194375A (en) Working medium composition for freezing/air conditioning use and freezing/air conditioning unit using the same
JPH08240362A (en) Freezer device
JP2002194369A (en) Working medium composition for air conditioning and air conditioner using the same composition
JP5572243B2 (en) Refrigerator oil, working fluid for refrigerator, and refrigerator
JPH0791535B2 (en) Working medium for refrigerator and refrigerating apparatus using the medium
JPH08253779A (en) Compressor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141212

R150 Certificate of patent or registration of utility model

Ref document number: 5667362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees