JP2011155276A - Organic photoelectric conversion element - Google Patents

Organic photoelectric conversion element Download PDF

Info

Publication number
JP2011155276A
JP2011155276A JP2011049529A JP2011049529A JP2011155276A JP 2011155276 A JP2011155276 A JP 2011155276A JP 2011049529 A JP2011049529 A JP 2011049529A JP 2011049529 A JP2011049529 A JP 2011049529A JP 2011155276 A JP2011155276 A JP 2011155276A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
organic photoelectric
conversion element
gap
conversion film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2011049529A
Other languages
Japanese (ja)
Inventor
Takashi Goto
崇 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011049529A priority Critical patent/JP2011155276A/en
Publication of JP2011155276A publication Critical patent/JP2011155276A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic photoelectric conversion element that efficiently reads signal charges out, and suppresses generation of a residual image. <P>SOLUTION: The organic photoelectric conversion element 10, having an organic photoelectric conversion film photoelectrically converting incident light to generate signal charges, includes a first electrode provided on one surface of the organic photoelectric conversion film 101 and a plurality of second electrodes arrayed on the other surface of the organic photoelectric conversion film 101, a gap between adjacent second electrodes being ≤3 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、入射光を光電変換し、信号電荷を生成する有機光電変換膜を備えた有機光電変換素子に関する。   The present invention relates to an organic photoelectric conversion element including an organic photoelectric conversion film that photoelectrically converts incident light and generates a signal charge.

従来、CCDイメージセンサやCMOSイメージセンサに代表される単板イメージセンサは、光電変換する画素(フォトダイオード)配列上に3種または4種のモザイク状色フィルタを設けることにより、各色フィルタに対応した色信号が出力される。そして出力された色信号を信号処理してカラー画像を生成する。しかし、モザイク状色フィルタを設けた撮像素子は、原色の色フィルタの場合、およそ入射光の2/3が色フィルタで吸収されるため、光利用効率が悪く、感度が低いという欠点がある。また、各画素で1色の色信号しか得られないため、解像度も悪い。特に、偽色が目立つ。   Conventionally, single-plate image sensors represented by CCD image sensors and CMOS image sensors correspond to each color filter by providing three or four types of mosaic color filters on a pixel (photodiode) array for photoelectric conversion. A color signal is output. Then, the output color signal is signal-processed to generate a color image. However, an image sensor provided with a mosaic color filter has the disadvantages that, in the case of a primary color filter, approximately 2/3 of incident light is absorbed by the color filter, so that the light use efficiency is poor and the sensitivity is low. Also, since only one color signal can be obtained for each pixel, the resolution is also poor. In particular, false colors are conspicuous.

このような欠点を克服するために、従来では、例えば下記特許文献1のような撮像素子が開発されている。この撮像素子では、シリコン基板内に光信号検出の3重のウエル(フォトダイオード)を設けることにより、シリコン基板の深さの違いにより、分光感度が異なる信号(表面から青、緑、赤の波長にピークを持つ)が得られる。解像度が良く、光の利用効率も良くなるが、RGB出力信号の分光感度特性の分離が十分でないため、色再現性が悪く、かつ、真のRGB信号を得るための出力信号の加減を行うが、この加減算によりS/Nが劣化するという欠点がある。そこで、特許文献2及び3のように、更に、RGB出力信号の分光感度特性の分離を良くする撮像素子が研究・開発されている。これらの撮像素子は、3層光電変換膜構造の撮像素子で、例えば、光入射面から順次B、G、Rの光に対して信号電荷を発生する光電変換膜を積層した画素構造で、しかも各画素毎に、各光電変換膜で光発生した信号電荷を独立に読み出すことが出来る読み出し部が一体化して設けられている。したがって、この撮像素子の場合、入射光が光電変換されて、読み出されるため、可視光の利用効率は100%に近く、しかも各画素でR、G、Bの3色の色信号が得られる。さらに、3層の光電変換膜の分光感度特性は独立に選択できるため、RGB出力信号の分光感度特性の分離が良好である。そのため、高感度で、高解像度(偽色が目立たない)で、かつ、色再現が良くS/Nも良い画像が得られる。   In order to overcome such drawbacks, conventionally, for example, an image sensor as disclosed in Patent Document 1 below has been developed. In this image sensor, by providing triple wells (photodiodes) for optical signal detection in the silicon substrate, signals with different spectral sensitivities (wavelengths of blue, green and red from the surface) due to differences in the depth of the silicon substrate. With a peak). Although the resolution is good and the light use efficiency is improved, the spectral sensitivity characteristics of the RGB output signal are not sufficiently separated, so the color reproducibility is poor and the output signal is adjusted to obtain a true RGB signal. This addition / subtraction has the disadvantage that the S / N deteriorates. Therefore, as in Patent Documents 2 and 3, an image sensor that improves separation of spectral sensitivity characteristics of RGB output signals has been researched and developed. These image sensors are image sensors with a three-layer photoelectric conversion film structure, for example, a pixel structure in which photoelectric conversion films that sequentially generate signal charges for B, G, and R light from the light incident surface are stacked. For each pixel, a readout unit that can independently read out signal charges generated by the photoelectric conversion films is provided in an integrated manner. Therefore, in the case of this image sensor, incident light is photoelectrically converted and read out, so that the use efficiency of visible light is close to 100%, and color signals of three colors R, G, and B are obtained in each pixel. Furthermore, since the spectral sensitivity characteristics of the three-layer photoelectric conversion film can be selected independently, the spectral sensitivity characteristics of the RGB output signals are well separated. Therefore, it is possible to obtain an image with high sensitivity, high resolution (false color is not conspicuous), color reproduction, and good S / N.

特表2002−513145号公報JP-T-2002-513145 特表2002−502120号公報Special Table 2002-502120 特開2002−83946号公報JP 2002-83946 A

ところで、上記特許文献2及び3に示す有機光電変換膜を用いた固体撮像素子においては、1画素ごとに区画された画素電極を構築し、その上に有機光電変換膜および対向電極を全画素共通で積層する。この場合、隣接する画素電極間の隙間(ギャップ)では、画素電極上に比べて電界強度が小さいため、ギャップで発生した信号電荷が読み出されるまでに時間を要し、残像になるという問題点があった。   By the way, in the solid-state imaging device using the organic photoelectric conversion film described in Patent Documents 2 and 3, a pixel electrode divided for each pixel is constructed, and an organic photoelectric conversion film and a counter electrode are shared on all pixels. Laminate with. In this case, the gap (gap) between adjacent pixel electrodes has a smaller electric field strength than that on the pixel electrode, so that it takes time to read out signal charges generated in the gap, resulting in an afterimage. there were.

本発明は、上記事情に鑑みてなされたもので、その目的は、信号電荷を効率的に読み出すことができ、残像の発生を抑制することができる有機光電変換素子を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an organic photoelectric conversion element that can efficiently read out signal charges and suppress the occurrence of afterimages.

本発明者は、鋭意検討の結果、画素電極同士の間の隙間を所定の寸法以下とすることで、残像の発生を、実用上問題のないレベルまで抑制することができることがわかった。すなわち、本発明の上記目的は、下記構成によって達成される。   As a result of intensive studies, the present inventor has found that the occurrence of an afterimage can be suppressed to a level that does not cause a problem in practice by setting the gap between the pixel electrodes to a predetermined dimension or less. That is, the above object of the present invention is achieved by the following configuration.

(1)入射光を光電変換し、信号電荷を生成する有機光電変換膜を備えた有機光電変換素子であって、
前記有機光電変換膜の一方の面に設けられた第1電極と、
前記有機光電変換膜の他方の面に配列された複数の第2電極とを備え、
隣り合う第2電極同士の間の隙間が3μm以下であることを特徴とする有機光電変換素子。
(2)前記第1電極が光透過性を有する単一の対向電極で構成されていることを特徴とする上記(1)に記載の有機光電変換素子。
(3)前記複数の第2電極が画素領域ごとに配置された画素電極であることを特徴とする上記(1)又は(2)に記載の有機光電変換素子。
(4)前記第2電極が信号電荷を読み出し、出力部へ転送する読み出し回路に接続されていることを特徴とする上記(1)から(3)のいずれか1つに記載の有機光電変換素子。
(1) An organic photoelectric conversion element including an organic photoelectric conversion film that photoelectrically converts incident light and generates a signal charge,
A first electrode provided on one surface of the organic photoelectric conversion film;
A plurality of second electrodes arranged on the other surface of the organic photoelectric conversion film,
The organic photoelectric conversion element characterized by the clearance gap between adjacent 2nd electrodes being 3 micrometers or less.
(2) The organic photoelectric conversion element as described in (1) above, wherein the first electrode is composed of a single counter electrode having optical transparency.
(3) The organic photoelectric conversion element as described in (1) or (2) above, wherein the plurality of second electrodes are pixel electrodes arranged for each pixel region.
(4) The organic photoelectric conversion element according to any one of (1) to (3), wherein the second electrode is connected to a readout circuit that reads out signal charges and transfers them to an output unit. .

本発明によれば、信号電荷を効率的に読み出すことができ、残像の発生を抑制することができる有機光電変換素子を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the signal charge can be read efficiently and the organic photoelectric conversion element which can suppress generation | occurrence | production of an afterimage can be provided.

有機光電変換素子の概略的な構成を示す断面図である。It is sectional drawing which shows schematic structure of an organic photoelectric conversion element. 画素電極の配置を示す平面図である。It is a top view which shows arrangement | positioning of a pixel electrode. 有機光電変換膜を構成する光電変換材料にメロシアニンを用いた場合の、有機光電変換素子の消灯時の残像の発生の比率を示すグラフである。It is a graph which shows the generation | occurrence | production ratio of the afterimage at the time of light extinction of an organic photoelectric conversion element at the time of using merocyanine for the photoelectric conversion material which comprises an organic photoelectric conversion film. 図3の有機光電変換素子の隙間(Gap)を変化させた場合の、1フレーム後の残像の発生の比率を示すグラフである。It is a graph which shows the generation | occurrence | production ratio of the afterimage after 1 frame at the time of changing the clearance gap (Gap) of the organic photoelectric conversion element of FIG. 有機光電変換膜を構成する光電変換材料にフタロシアニンを用いた場合の、有機光電変換素子の残像の発生の比率を示すグラフである。It is a graph which shows the generation | occurrence | production ratio of the afterimage of an organic photoelectric conversion element at the time of using a phthalocyanine for the photoelectric conversion material which comprises an organic photoelectric conversion film. 図5の有機光電変換素子の隙間(Gap)を変化させた場合の、1フレーム後の残像の発生の比率を示すグラフである。It is a graph which shows the ratio of generation | occurrence | production of the afterimage of 1 frame at the time of changing the clearance gap (Gap) of the organic photoelectric conversion element of FIG. 有機光電変換膜を構成する光電変換材料に4Hピランを用いた場合の、有機光電変換素子の残像の発生の比率を示すグラフである。It is a graph which shows the generation | occurrence | production ratio of the afterimage of an organic photoelectric conversion element at the time of using 4H pyran for the photoelectric conversion material which comprises an organic photoelectric conversion film. 図7の有機光電変換素子の隙間(Gap)を変化させた場合の、1フレーム後の残像の発生の比率を示すグラフである。It is a graph which shows the ratio of generation | occurrence | production of the afterimage of 1 frame at the time of changing the clearance gap (Gap) of the organic photoelectric conversion element of FIG. 画素電極の電極面積を変化させた場合の、フレーム数に対する残像の発生の比率の相関を示すグラフである。It is a graph which shows the correlation of the ratio of the generation of the afterimage with respect to the number of frames when the electrode area of the pixel electrode is changed. 対向電極の電圧を変化させた場合の、フレーム数に対する残像の発生の比率の相関を示すグラフである。It is a graph which shows the correlation of the ratio of afterimage generation with respect to the number of frames when the voltage of the counter electrode is changed.

以下、本発明の一実施形態を図面に基づいて詳しく説明する。
図1は、本実施形態の有機光電変換素子の概略的な構成を示す断面図である。図2は、画素電極の配置を示す平面図である。図1に示すように、有機光電変換素子10は、入射光を光電変換し、信号電荷を生成する有機光電変換膜101を備えている。有機光電変換膜101の一方の面に対向電極102が設けられ、他方の面に複数の画素電極100が設けられている。本実施形態では、有機光電変換膜101の図中における上側面から入射光が照射され、有機光電変換膜101で生成された信号電荷が有機光電変換膜101の図中における下側面から信号電荷が読み出される構成である。なお、画素電極100及び対向電極102は、撮像時に有機光電変換膜101内に電界を発生させることができれば特に限定されず、有機光電変換膜101の一方の面に第1電極を設け、他方の面に配列された複数の第2電極を設けることができる。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view illustrating a schematic configuration of the organic photoelectric conversion element of the present embodiment. FIG. 2 is a plan view showing the arrangement of the pixel electrodes. As shown in FIG. 1, the organic photoelectric conversion element 10 includes an organic photoelectric conversion film 101 that photoelectrically converts incident light and generates signal charges. A counter electrode 102 is provided on one surface of the organic photoelectric conversion film 101, and a plurality of pixel electrodes 100 are provided on the other surface. In the present embodiment, incident light is irradiated from the upper side of the organic photoelectric conversion film 101 in the drawing, and the signal charge generated by the organic photoelectric conversion film 101 is changed from the lower side of the organic photoelectric conversion film 101 in the drawing. This is a configuration to be read out. The pixel electrode 100 and the counter electrode 102 are not particularly limited as long as an electric field can be generated in the organic photoelectric conversion film 101 during imaging. The first electrode is provided on one surface of the organic photoelectric conversion film 101, and the other A plurality of second electrodes arranged on the surface can be provided.

対向電極102と有機光電変換膜101と一つの画素電極100との3層によって画素が構成されている。   A pixel is constituted by three layers of the counter electrode 102, the organic photoelectric conversion film 101, and one pixel electrode 100.

対向電極102は、光透過性の電極材料で構成され、全画素領域に対して共通の膜状であって、単一の部材によって構成されている。対向電極102は、図示しない電圧供給手段に電気的に接続されており、撮像時に、電圧が印加され電位V2に設定される。対向電極102は、光学的に透明又は光吸収が少ない材料によって構成され、例えば、ITOなどのような金属化合物や非常に薄い金属膜などによって構成されている。   The counter electrode 102 is made of a light transmissive electrode material, has a film shape common to all pixel regions, and is made of a single member. The counter electrode 102 is electrically connected to a voltage supply means (not shown), and a voltage is applied and set to the potential V2 during imaging. The counter electrode 102 is made of a material that is optically transparent or has little light absorption. For example, the counter electrode 102 is made of a metal compound such as ITO or a very thin metal film.

画素電極100は、対向電極102に対して平行な2次元平面において画素電極100同士が所定の間隔をおいて画素ごとに分離して形成されている。画素電極100は、金属や金属化合物などの導電性材料から構成されている。図2に示すように、各画素電極100は平面視において、略正方形状を有している。なお、各画素電極100の周縁端部には必要に応じてテーパーが形成されていてもよい。   The pixel electrode 100 is formed by separating the pixel electrodes 100 for each pixel at a predetermined interval on a two-dimensional plane parallel to the counter electrode 102. The pixel electrode 100 is made of a conductive material such as a metal or a metal compound. As shown in FIG. 2, each pixel electrode 100 has a substantially square shape in plan view. Note that a taper may be formed at the peripheral edge of each pixel electrode 100 as necessary.

有機光電変換膜101は、光が照射されると光電変換によって、入射光に応じた信号電荷を生成する有機材料から構成されている。有機光電変換膜101には、必要に応じて、正孔や電子の通過を防止するブロッキング層や輸送層が形成されていてもよい。有機光電変換膜101としては、メロシアニン、フタロシアニン、4Hピラン、キナクリドンなどの固有の分光感度を有する材料が用いられる。本実施形態においては、有機光電変換膜101は、全画素に対して共通に1枚の膜状に形成されている。   The organic photoelectric conversion film 101 is made of an organic material that generates a signal charge corresponding to incident light by photoelectric conversion when irradiated with light. The organic photoelectric conversion film 101 may be formed with a blocking layer or a transport layer that prevents passage of holes and electrons as necessary. As the organic photoelectric conversion film 101, a material having intrinsic spectral sensitivity such as merocyanine, phthalocyanine, 4H pyran, quinacridone, or the like is used. In this embodiment, the organic photoelectric conversion film 101 is formed in a single film shape in common for all pixels.

信号電荷は、電子/ホール(正孔)のいずれを用いてもよい。移動度の高いキャリアを用いることが望ましい。本実施形態では、信号電荷としてホールを用いている。   As the signal charge, either electron / hole (hole) may be used. It is desirable to use a carrier with high mobility. In the present embodiment, holes are used as signal charges.

各画素電極100は、電荷読み出し時に信号電荷を読み出して出力部へ転送する読み出し回路に配線層やプラグなどによって電気的に接続されている。読み出し回路は、半導体基板にMOS型トランジスタを備えた構成とすることができる。また、読み出し回路は、電荷結合素子を用いて電荷転送・出力方式、薄膜トランジスタを用いた電流出力方式などいずれでもよい。本発明にかかる有機光電変換素子は、読み出し回路の構成にかかわらず、後述する効果を得ることができる。   Each pixel electrode 100 is electrically connected by a wiring layer, a plug, or the like to a readout circuit that reads out a signal charge and transfers the signal charge to an output unit during charge readout. The readout circuit can be configured to include a MOS transistor on a semiconductor substrate. Further, the readout circuit may be any of a charge transfer / output system using a charge coupled device, a current output system using a thin film transistor, and the like. The organic photoelectric conversion element according to the present invention can obtain the effects described later regardless of the configuration of the readout circuit.

本実施形態において、図1及び図2に示すように、隣り合う画素電極100同士の間の隙間をaとし、画素電極100の幅(本実施形態のように正方形状の電極の場合、その周縁の一辺の長さ)をdとし、画素電極100の配置のピッチをpとし、有機光電変換膜101の厚さをtとした。また、有機光電変換膜101中における画素電極100上の電界をEとし、画素電極100同士の間の隙間における電界をE’とした。さらに、有機光電変換膜101の信号電荷の移動度をuとした。なお、電界E,E’はそれぞれ下記式で表すことができる。   In this embodiment, as shown in FIGS. 1 and 2, the gap between adjacent pixel electrodes 100 is a, and the width of the pixel electrode 100 (in the case of a square electrode as in this embodiment, the periphery thereof) D), the arrangement pitch of the pixel electrodes 100 is p, and the thickness of the organic photoelectric conversion film 101 is t. In addition, the electric field on the pixel electrode 100 in the organic photoelectric conversion film 101 was E, and the electric field in the gap between the pixel electrodes 100 was E ′. Furthermore, the mobility of the signal charge of the organic photoelectric conversion film 101 is u. The electric fields E and E ′ can be expressed by the following equations, respectively.

Figure 2011155276
Figure 2011155276


Figure 2011155276
Figure 2011155276

一般に有機光電変換膜101中におけるキャリアの移動に要する時間τは、有機光電変換膜101におけるキャリア移動度uを用いて、下記式によって表される。ここで、lは移動距離を示し、Eは電界強度を表している。   In general, the time τ required for carrier movement in the organic photoelectric conversion film 101 is expressed by the following equation using the carrier mobility u in the organic photoelectric conversion film 101. Here, l represents the moving distance, and E represents the electric field strength.

Figure 2011155276
Figure 2011155276

したがって、画素電極100直上における対向電極近傍で発生したキャリアが、画素電極に到達するまでに要する時間T1は下記式になる。   Accordingly, the time T1 required for carriers generated near the counter electrode immediately above the pixel electrode 100 to reach the pixel electrode is expressed by the following equation.

Figure 2011155276
Figure 2011155276

一方、ギャップの中央(最も電界強度が弱い箇所)の有機光電変換膜101の最表面において発生した信号電荷が画素電極100に到達するまでに要する時間T2は下記式になる。   On the other hand, the time T2 required for the signal charge generated on the outermost surface of the organic photoelectric conversion film 101 at the center of the gap (where the electric field strength is weakest) to reach the pixel electrode 100 is expressed by the following equation.

Figure 2011155276
Figure 2011155276

残像が発生しないためには、T1、T2のいずれもが1フレーム期間Tよりも短いことが必要になる。T1 < T2より、T2 < Tの関係を満たせば、残像は発生しない。   In order to prevent the afterimage from occurring, both T1 and T2 need to be shorter than one frame period T. From T1 <T2, if the relationship of T2 <T is satisfied, no afterimage is generated.

T=33msec.とし、V2-V1= 10Vとし、有機光電変換膜101が移動度u =1x10-6 cm2/V・sec、t= 200nmの場合、a<10μmを満たせば、理論上は残像が発生しないことになる。 When T = 33 msec., V2−V1 = 10 V, and the organic photoelectric conversion film 101 has a mobility u = 1x10 −6 cm 2 / V · sec, t = 200 nm, if a <10 μm is satisfied, the afterimage is theoretically Will not occur.

しかし、本発明者の研究によれば、実際に有機光電変換素子10を作った場合には上述の理論のような結果は得られず、隙間a を更に小さくしなければ依然として残像が発生することがわかった。この要因の一つとしては、有機光電変換膜101におけるいキャリアの振る舞いが上記の数式では表せない挙動を示していることが考えられる。   However, according to the research of the present inventor, when the organic photoelectric conversion element 10 is actually made, a result like the above-mentioned theory cannot be obtained, and an afterimage is still generated unless the gap a is further reduced. I understood. As one of the factors, it can be considered that the behavior of carriers in the organic photoelectric conversion film 101 exhibits a behavior that cannot be expressed by the above formula.

そこで、本発明者は、各構成を変化させた場合において、有機光電変換素子に残像がどの程度生じるかを確認するため、下記のような実験を行った。
図3は、有機光電変換膜を構成する光電変換材料にメロシアニンを用いた場合の、有機光電変換素子の消灯時の残像の発生の比率を示すグラフである。図4は、図3の有機光電変換素子の隙間(Gap)を変化させた場合の、1フレーム後の残像の発生の比率を示すグラフである。図5は、有機光電変換膜を構成する光電変換材料にフタロシアニンを用いた場合の、有機光電変換素子の残像の発生の比率を示すグラフである。図6は、図5の有機光電変換素子の隙間(Gap)を変化させた場合の、1フレーム後の残像の発生の比率を示すグラフである。図7は、有機光電変換膜を構成する光電変換材料に4Hピランを用いた場合の、有機光電変換素子の残像の発生の比率を示すグラフである。図8は、図7の有機光電変換素子の隙間(Gap)を変化させた場合の、1フレーム後の残像の発生の比率を示すグラフである。なお、図3,5,7に示すグラフにおいて、縦軸がフレーム数に対する残像の発生の比率(Sig.%)を示し、横軸がフレーム数を示している。ここで、各光電変換素子の測定の際には、0フレーム目に同期して光源を消灯した。また、図4,6,8に示すグラフにおいて、縦軸が1フレーム後の残像の発生の比率(Sig.%)を示し、横軸が隙間の寸法(μm)を示している。
Therefore, the present inventor conducted the following experiment in order to confirm how much an afterimage is generated in the organic photoelectric conversion element when each configuration is changed.
FIG. 3 is a graph showing the ratio of occurrence of afterimages when the organic photoelectric conversion element is turned off when merocyanine is used as the photoelectric conversion material constituting the organic photoelectric conversion film. FIG. 4 is a graph showing a ratio of afterimage generation after one frame when the gap (Gap) of the organic photoelectric conversion element in FIG. 3 is changed. FIG. 5 is a graph showing a ratio of occurrence of an afterimage of the organic photoelectric conversion element when phthalocyanine is used as the photoelectric conversion material constituting the organic photoelectric conversion film. FIG. 6 is a graph showing a ratio of afterimage generation after one frame when the gap (Gap) of the organic photoelectric conversion element in FIG. 5 is changed. FIG. 7 is a graph showing the ratio of occurrence of afterimages of organic photoelectric conversion elements when 4H pyran is used as the photoelectric conversion material constituting the organic photoelectric conversion film. FIG. 8 is a graph showing the ratio of afterimage generation after one frame when the gap (Gap) of the organic photoelectric conversion element in FIG. 7 is changed. In the graphs shown in FIGS. 3, 5, and 7, the vertical axis indicates the ratio of occurrence of afterimages to the number of frames (Sig.%), And the horizontal axis indicates the number of frames. Here, when measuring each photoelectric conversion element, the light source was turned off in synchronization with the 0th frame. In the graphs shown in FIGS. 4, 6, and 8, the vertical axis represents the afterimage generation ratio (Sig.%) After one frame, and the horizontal axis represents the gap size (μm).

図3に示す有機光電変換素子において、画素電極同士の間の隙間を5μm,4μm,3μm,2μmと変化させて、それぞれ残像の発生の程度を比較した。すると、隙間を5μm及び4μmとした場合には、1〜3フレームで残像が発生が認められたが、隙間を3μm及び2μmとした場合には残像はフレーム数にかかわらず、実用上問題のないレベルに抑制できたことがわかった。   In the organic photoelectric conversion element shown in FIG. 3, the gaps between the pixel electrodes were changed to 5 μm, 4 μm, 3 μm, and 2 μm, and the degree of occurrence of afterimages was compared. Then, when the gap was 5 μm and 4 μm, afterimages were observed in 1 to 3 frames. However, when the gap was 3 μm and 2 μm, the afterimages had no practical problem regardless of the number of frames. It was found that the level could be suppressed.

また、図4に示すように隙間を3μm以下とした場合、1フレーム後の残像の発生をほぼゼロに抑制することができることがわかった。   In addition, as shown in FIG. 4, it was found that when the gap is 3 μm or less, the afterimage after one frame can be suppressed to almost zero.

図5に示す有機光電変換素子において、画素電極同士の間の隙間を6μm,4.5μm,3μm,1.5μmと変化させて、それぞれ残像の発生の程度を比較した。すると、隙間を6μm及び4.5μmとした場合には、1〜4フレームで残像が発生が認められたが、隙間を3μm及び1.5μmとした場合には残像はフレーム数にかかわらず、実用上問題のないレベルに抑制できたことがわかった。   In the organic photoelectric conversion element shown in FIG. 5, the gaps between the pixel electrodes were changed to 6 μm, 4.5 μm, 3 μm, and 1.5 μm, and the degree of occurrence of afterimages was compared. Then, when the gap was 6 μm and 4.5 μm, an afterimage was observed in 1 to 4 frames, but when the gap was 3 μm and 1.5 μm, the afterimage was practical regardless of the number of frames. It turned out that it was able to be suppressed to the level without a problem above.

また、図6に示すように隙間を3μm以下とした場合、1フレーム後の残像の発生をほぼゼロに抑制することができることがわかった。   Further, as shown in FIG. 6, it was found that when the gap is 3 μm or less, the afterimage after one frame can be suppressed to almost zero.

図7に示す有機光電変換素子において、画素電極同士の間の隙間を5.5μm,4μm,3μm,2.5μmと変化させて、それぞれ残像の発生の程度を比較した。すると、隙間を5μm及び4μmとした場合には、1〜4フレームで残像が発生が認められたが、隙間を3μm及び2.5μmとした場合には残像はフレーム数にかかわらず、実用上問題のないレベルに抑制できたことがわかった。   In the organic photoelectric conversion element shown in FIG. 7, the gaps between the pixel electrodes were changed to 5.5 μm, 4 μm, 3 μm, and 2.5 μm, and the degree of occurrence of afterimages was compared. Then, when the gap was 5 μm and 4 μm, an afterimage was observed in 1 to 4 frames. However, when the gap was 3 μm and 2.5 μm, the afterimage was a practical problem regardless of the number of frames. It turned out that it was able to be suppressed to the level without.

また、図8に示すように隙間を3μm以下とした場合、1フレーム後の残像の発生をほぼゼロに抑制することができることがわかった。   In addition, as shown in FIG. 8, it was found that when the gap is 3 μm or less, the occurrence of afterimage after one frame can be suppressed to almost zero.

このように、有機光電変換膜に各光電変換材料(メロシアニン、フタロシアニン、4Hピラン)を用いた構成において、光電変換材料にかかわらず、画素電極同士の隙間を3μm以下とした場合に残像が問題にならないレベルまで低減でき、一方で隙間を4μm以上とした場合には残像が顕著に現れることがわかった。   Thus, in the configuration using each photoelectric conversion material (merocyanine, phthalocyanine, 4H pyran) for the organic photoelectric conversion film, an afterimage becomes a problem when the gap between the pixel electrodes is 3 μm or less regardless of the photoelectric conversion material. It was found that the afterimage appeared significantly when the gap was 4 μm or more.

次に、画素電極の面積及び対向電極に印加する電圧を変化させた場合に、フレームに対する残像を測定した。なお、本測定では、光電変換材料としてメロシアニンを使用した。
図9は、画素電極の電極面積を変化させた場合の、フレーム数に対する残像の発生の比率の相関を示すグラフである。ここで、電極面積を5μm×5μm、10μm×10μm、15μm×15μmとした構成においてそれぞれの相関を測定した。また、本測定では、画素電極同士の隙間を3μmとし、対向電極に印加する電圧を10Vとした。この結果、画素電極同士の隙間を3μmのとき、電極面積にかかわらず、フレーム数ごとの残像の発生を抑制できることができた。
Next, an afterimage with respect to the frame was measured when the area of the pixel electrode and the voltage applied to the counter electrode were changed. In this measurement, merocyanine was used as a photoelectric conversion material.
FIG. 9 is a graph showing the correlation of the ratio of afterimage generation to the number of frames when the electrode area of the pixel electrode is changed. Here, each correlation was measured in a configuration in which the electrode area was 5 μm × 5 μm, 10 μm × 10 μm, and 15 μm × 15 μm. In this measurement, the gap between the pixel electrodes was 3 μm, and the voltage applied to the counter electrode was 10V. As a result, when the gap between the pixel electrodes was 3 μm, it was possible to suppress the occurrence of afterimages for each number of frames regardless of the electrode area.

図10は、対向電極の電圧を変化させた場合の、フレーム数に対する残像の発生の比率の相関を示すグラフである。ここで、対向電極の電圧(V2)を5V、7V、10Vとした構成においてそれぞれの相関を測定した。また、本測定では、画素電極同士の隙間を3μmとし、画素電極の電極面積を10μm×10μmとした。この結果、画素電極同士の隙間を3μmのとき、対向電極の電圧にかかわらず、フレーム数ごとの残像の発生を抑制できることができた。   FIG. 10 is a graph showing the correlation of the ratio of afterimage generation to the number of frames when the counter electrode voltage is changed. Here, each correlation was measured in a configuration in which the voltage (V2) of the counter electrode was 5V, 7V, and 10V. In this measurement, the gap between the pixel electrodes was 3 μm, and the electrode area of the pixel electrode was 10 μm × 10 μm. As a result, when the gap between the pixel electrodes was 3 μm, it was possible to suppress the occurrence of afterimages for each number of frames regardless of the voltage of the counter electrode.

上記測定を検証すると、有機光電変換素子は、画素電極の電極面積や対向電極の電圧に依存することなく、画素電極同士の隙間によって残像に影響があることがわかった。つまり、画素電極同士の隙間を3μm以下とすることで、画素電極の電極面積や対向電極の電圧にかかわらず、残像の発生を抑制することができる。   When the above measurement was verified, it was found that the organic photoelectric conversion element has an influence on the afterimage due to the gap between the pixel electrodes without depending on the electrode area of the pixel electrode or the voltage of the counter electrode. That is, by setting the gap between the pixel electrodes to 3 μm or less, it is possible to suppress the occurrence of an afterimage regardless of the electrode area of the pixel electrode and the voltage of the counter electrode.

本発明にかかる有機光電変換素子は、画素電極同士の間の隙間を3μm以下とする構成であるため、残像の発生を抑制することができ、有機光電変換膜で生成された信号電荷が膜中に残存することを抑制することで、信号電荷を効率的に読み出すことができる。   Since the organic photoelectric conversion element according to the present invention has a configuration in which the gap between the pixel electrodes is 3 μm or less, generation of an afterimage can be suppressed, and the signal charge generated by the organic photoelectric conversion film is in the film. The signal charge can be efficiently read out by suppressing the remaining in the signal.

10 有機光電変換素子
100 画素電極
101 有機光電変換膜
102 対向電極
a (画素電極同士の間の)隙間
DESCRIPTION OF SYMBOLS 10 Organic photoelectric conversion element 100 Pixel electrode 101 Organic photoelectric conversion film 102 Opposite electrode a (between pixel electrodes) gap

Claims (4)

入射光を光電変換し、信号電荷を生成する有機光電変換膜を備えた有機光電変換素子であって、
前記有機光電変換膜の一方の面に設けられた第1電極と、
前記有機光電変換膜の他方の面に配列された複数の第2電極とを備え、
隣り合う第2電極同士の間の隙間が3μm以下であることを特徴とする有機光電変換素子。
An organic photoelectric conversion element including an organic photoelectric conversion film that photoelectrically converts incident light and generates a signal charge,
A first electrode provided on one surface of the organic photoelectric conversion film;
A plurality of second electrodes arranged on the other surface of the organic photoelectric conversion film,
The organic photoelectric conversion element characterized by the clearance gap between adjacent 2nd electrodes being 3 micrometers or less.
前記第1電極が光透過性を有する単一の対向電極で構成されていることを特徴とする請求項1に記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 1, wherein the first electrode is composed of a single counter electrode having light transmittance. 前記複数の第2電極が画素領域ごとに配置された画素電極であることを特徴とする請求項1又は2に記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 1, wherein the plurality of second electrodes are pixel electrodes arranged for each pixel region. 前記第2電極が信号電荷を読み出し、出力部へ転送する読み出し回路に接続されていることを特徴とする請求項1から3のいずれか1つに記載の有機光電変換素子。   4. The organic photoelectric conversion element according to claim 1, wherein the second electrode is connected to a readout circuit that reads out a signal charge and transfers the signal charge to an output unit. 5.
JP2011049529A 2011-03-07 2011-03-07 Organic photoelectric conversion element Abandoned JP2011155276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049529A JP2011155276A (en) 2011-03-07 2011-03-07 Organic photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049529A JP2011155276A (en) 2011-03-07 2011-03-07 Organic photoelectric conversion element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007323481A Division JP2009147147A (en) 2007-12-14 2007-12-14 Organic photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2011155276A true JP2011155276A (en) 2011-08-11

Family

ID=44540980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049529A Abandoned JP2011155276A (en) 2011-03-07 2011-03-07 Organic photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2011155276A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054447A (en) * 2004-07-16 2006-02-23 Fuji Photo Film Co Ltd Functional element, its manufacturing method, solid-state imaging element and its manufacturing method
JP2007012796A (en) * 2005-06-29 2007-01-18 Fujifilm Holdings Corp Organic and inorganic hybrid photoelectric conversion device
JP2007059516A (en) * 2005-08-23 2007-03-08 Fujifilm Corp Photoelectric conversion element, manufacturing method thereof, and image pickup element
JP2007103786A (en) * 2005-10-06 2007-04-19 Fujifilm Corp Solid state imaging element
JP2007220941A (en) * 2006-02-17 2007-08-30 Matsushita Electric Ind Co Ltd Photoelectric conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054447A (en) * 2004-07-16 2006-02-23 Fuji Photo Film Co Ltd Functional element, its manufacturing method, solid-state imaging element and its manufacturing method
JP2007012796A (en) * 2005-06-29 2007-01-18 Fujifilm Holdings Corp Organic and inorganic hybrid photoelectric conversion device
JP2007059516A (en) * 2005-08-23 2007-03-08 Fujifilm Corp Photoelectric conversion element, manufacturing method thereof, and image pickup element
JP2007103786A (en) * 2005-10-06 2007-04-19 Fujifilm Corp Solid state imaging element
JP2007220941A (en) * 2006-02-17 2007-08-30 Matsushita Electric Ind Co Ltd Photoelectric conversion device

Similar Documents

Publication Publication Date Title
US10032810B2 (en) Image sensor with dual layer photodiode structure
US10453898B2 (en) Solid state image sensor pixel electrode below a photoelectronic conversion film
US10020340B2 (en) Solid-state image sensing element and imaging system
JP6139610B2 (en) Imaging sensor using infrared transmission filter for green subtraction
JP5661201B2 (en) Solid-state imaging device
KR101621158B1 (en) Solid-state imaging device
JPWO2016072281A1 (en) Solid-state imaging device, manufacturing method thereof, and electronic device
JP2016033981A5 (en)
JP2013243324A5 (en)
JP2007082063A (en) Solid-state imaging element
TW201605032A (en) Color filter and photodiode patterning configuration
JP4769535B2 (en) Solid-state image sensor
JP2009147147A (en) Organic photoelectric conversion device
JP2014225536A (en) Solid-state imaging device and camera
US11594568B2 (en) Image sensor and electronic device
JP2011187725A (en) Solid state image pickup device
JP2006165362A (en) Solid-state imaging element
TWI820154B (en) Solid-state imaging devices and electronic equipment
US20220028918A1 (en) Imaging device
JP2009267912A (en) Color imaging apparatus
WO2015198876A1 (en) Imaging element, and electronic device
JP2011155276A (en) Organic photoelectric conversion element
US20220217294A1 (en) Imaging device
WO2021084995A1 (en) Imaging element
JP4751690B2 (en) Solid-state image sensor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110404

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110614

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130726