JP2011154859A - Core rod, coiled type electrode group for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and method for manufacturing the non-aqueous electrolyte secondary battery - Google Patents

Core rod, coiled type electrode group for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and method for manufacturing the non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2011154859A
JP2011154859A JP2010015138A JP2010015138A JP2011154859A JP 2011154859 A JP2011154859 A JP 2011154859A JP 2010015138 A JP2010015138 A JP 2010015138A JP 2010015138 A JP2010015138 A JP 2010015138A JP 2011154859 A JP2011154859 A JP 2011154859A
Authority
JP
Japan
Prior art keywords
core rod
electrode group
secondary battery
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010015138A
Other languages
Japanese (ja)
Inventor
Shinichi Yuasa
真一 湯淺
Shinya Geshi
真也 下司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010015138A priority Critical patent/JP2011154859A/en
Publication of JP2011154859A publication Critical patent/JP2011154859A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery including a coiled type electrode group into whose center a core rod is inserted, in which battery reinforcing effect of a battery by the core rod is enhanced, the deformation of the core rod itself and the occurrence of an internal short-circuit are suppressed, and liquid-filling performance of the non-aqueous electrolyte into the battery is improved. <P>SOLUTION: The core rod 1 is a hollow cylinder with a splitting slit 2 that spirally goes around from one end 4 of the core rod 1 to the other end 5 along a longitudinal direction and a hollow part 3. Use of the coiled type electrode group into whose center the core rod 1 is inserted obtains the non-aqueous electrolyte secondary battery in which energy density is high, the occurrence of the internal short-circuit is suppressed and productivity is superior. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水電解質二次電池に関する。さらに詳しくは、本発明は主に、非水電解質二次電池の捲回型電極群の中心部に挿入される中空の芯棒の改良に関する。   The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention mainly relates to an improvement in a hollow core rod inserted into the center portion of a wound electrode group of a nonaqueous electrolyte secondary battery.

非水電解質二次電池は、容量、エネルギー密度及び出力が高く、小型化が容易なことから、電子機器、電気機器、工作機器、輸送機器等の電源として、広く使用されている。代表的な非水電解質二次電池には、捲回型電極群と非水電解質とを円筒型電池ケースに収容した円筒型電池がある。捲回型電極群は、正極と負極との間にセパレータを介在させて、これらを捲回することにより作製される。   Nonaqueous electrolyte secondary batteries are widely used as power sources for electronic equipment, electrical equipment, machine tools, transportation equipment, and the like because of their high capacity, energy density, and output, and because they can be easily miniaturized. A typical nonaqueous electrolyte secondary battery includes a cylindrical battery in which a wound electrode group and a nonaqueous electrolyte are accommodated in a cylindrical battery case. The wound electrode group is produced by winding a separator between a positive electrode and a negative electrode.

捲回型電極群の使用により、電池のエネルギー密度を高めることができる。しかしながら、捲回型電極群の中心部に面するか又は近接する正極及び負極は、充放電に伴って変形(座屈)を起こし易い。正極又は負極が変形した場合、変形部分がセパレータを突き破ることにより、内部短絡が発生する可能性がある。また、小型の円筒型電池に外部応力が加わった場合、電池ケースと共に捲回型電極群が変形することにより、内部短絡が発生する可能性がある。   By using the wound electrode group, the energy density of the battery can be increased. However, the positive electrode and the negative electrode facing or close to the center of the wound electrode group are likely to be deformed (buckled) with charge / discharge. When the positive electrode or the negative electrode is deformed, an internal short circuit may occur due to the deformed portion breaking through the separator. Further, when an external stress is applied to a small cylindrical battery, an internal short circuit may occur due to deformation of the wound electrode group together with the battery case.

特許文献1は、捲回型電極群と、捲回型電極群の中心部に収納された中空円筒状の金属製芯棒(以下単に「芯棒」とすることがある)と、を備える非水電解質二次電池を開示する。前記芯棒は、長手方向に沿って、一端から他端まで延びる直線状の割りスリットを有している。特許文献1には、前記芯棒を捲回型電極群の中心部に収納することにより、充放電に伴う電極の座屈が抑制されるとともに、外部からの応力を受けた場合に、電池ケース及び捲回型電極群の変形が抑制されると記載されている。   Patent Document 1 includes a wound electrode group and a hollow cylindrical metal core rod (hereinafter sometimes simply referred to as “core rod”) housed in the center of the wound electrode group. A water electrolyte secondary battery is disclosed. The core rod has a linear split slit extending from one end to the other end along the longitudinal direction. In Patent Document 1, by storing the core rod in the center of the wound electrode group, the buckling of the electrode due to charge / discharge is suppressed, and when the battery case receives external stress, And that the deformation of the wound electrode group is suppressed.

図4は、特許文献1の芯棒50の変形例を示す縦断面図である。芯棒50は、長手方向に延びる直線状の割りスリット51に沿う、周方向の両端面52a、52bを有している。このような芯棒50に外部応力が加わった場合に、図4に示すように、一方の端面52aが芯棒50の中空部53側に凹むことにより、他方の端面52bが一方の端面52aよりも起立した状態になり易い。その結果、起立した他方の端面52bが電極群54を圧迫し、内部短絡を引き起こすおそれがある。   FIG. 4 is a longitudinal sectional view showing a modification of the core rod 50 of Patent Document 1. In FIG. The core rod 50 has circumferential end faces 52a and 52b along a linear slit 51 extending in the longitudinal direction. When external stress is applied to such a core rod 50, as shown in FIG. 4, one end surface 52a is recessed toward the hollow portion 53 side of the core rod 50, so that the other end surface 52b is more than one end surface 52a. Are likely to stand up. As a result, the other standing end surface 52b may press the electrode group 54 and cause an internal short circuit.

特許文献2は、特許文献1の芯棒を改良した芯棒を開示する。特許文献2の芯棒は、特許文献1の芯棒における周方向の両端面を、それぞれ芯棒の内側(中空部)に向けて折り曲げて近接させた構造を有している。これにより、芯棒の剛性を向上させ、外部応力による芯棒の変形ひいては内部短絡の発生を抑制しようとしている。   Patent Literature 2 discloses a core rod obtained by improving the core rod of Patent Literature 1. The core rod of Patent Document 2 has a structure in which both end surfaces in the circumferential direction of the core rod of Patent Document 1 are bent toward the inner side (hollow portion) of the core rod and brought close to each other. As a result, the rigidity of the core rod is improved, and the deformation of the core rod due to external stress and the occurrence of an internal short circuit are suppressed.

特開平4−332481号公報Japanese Patent Laid-Open No. 4-332481 特開2003−92148号公報JP 2003-92148 A

特許文献2の芯棒は、周方向の両端面を折り曲げた部分が、芯棒の外周面の凹部になっている。このため、特許文献2の芯棒を電極群の中心部に挿入した場合、前記の折り曲げた部分と電極群との間に空隙ができる。この空隙に面するか又は近接する正極及び負極は、充放電に伴って座屈を起こし易くなり、内部短絡が発生するおそれがある。   In the core rod of Patent Document 2, portions where both end surfaces in the circumferential direction are bent are concave portions on the outer peripheral surface of the core rod. For this reason, when the core rod of Patent Document 2 is inserted into the center portion of the electrode group, a gap is formed between the bent portion and the electrode group. The positive electrode and the negative electrode facing or close to this gap are likely to buckle with charge / discharge, and an internal short circuit may occur.

また、特許文献2の芯棒を作製するには、金属板を円形に丸めて割りスリットを設ける工程と、割りスリットに沿う周方向の両端面を芯棒の中空部に向けて折り曲げる工程とが必要になる。これにより、製造工程が煩雑になり、芯棒の製造コストが高くなる。さらに、特許文献2の芯棒を用いて電池を組み立てる場合に、非水電解質の注液性が低下することにより、電池の生産性が低下し、電池の製造コストが高くなる。   Moreover, in order to produce the core rod of patent document 2, the process of rounding a metal plate into a circle and providing a slit, and the step of bending both end surfaces in the circumferential direction along the slit toward the hollow portion of the core rod. I need it. Thereby, a manufacturing process becomes complicated and the manufacturing cost of a core bar becomes high. Furthermore, when a battery is assembled using the core rod of Patent Document 2, the liquid injection property of the nonaqueous electrolyte is lowered, so that the productivity of the battery is lowered and the manufacturing cost of the battery is increased.

本発明の目的は、外部応力が加わっても変形し難く、電極の座屈を起こし難く、製造が容易であり、非水電解質の注液性を高め得る芯棒を提供し、さらに、耐短絡性に優れかつ生産性に優れた円筒型非水電解質二次電池を提供することである。   An object of the present invention is to provide a core rod that is difficult to deform even when external stress is applied, hardly buckles the electrode, is easy to manufacture, and can enhance the liquid injection property of a nonaqueous electrolyte, and further, is resistant to short circuiting. It is an object of the present invention to provide a cylindrical non-aqueous electrolyte secondary battery excellent in productivity and productivity.

本発明の芯棒は、円筒型非水電解質二次電池の捲回型電極群の中心部に挿入され、長手方向に沿って、一端から他端に向かって、らせん状に周回する割りスリットを有する中空筒である。   The core rod of the present invention is inserted into the central part of the wound electrode group of the cylindrical non-aqueous electrolyte secondary battery, and has a split slit that spirals around from one end to the other along the longitudinal direction. It is a hollow cylinder having.

また、本発明の円筒型非水電解質二次電池用の捲回型電極群は、前述の芯棒と、前述の芯棒の周囲に配置されて、帯状の正極と帯状の負極とをこれらの間にセパレータを介在させて捲回してなる電極群と、を備えている。   Further, the wound electrode group for the cylindrical nonaqueous electrolyte secondary battery of the present invention includes the above-described core rod and the periphery of the above-described core rod. And an electrode group that is wound with a separator interposed therebetween.

また、本発明の円筒型非水電解質二次電池は、前述の円筒型非水電解質二次電池用の捲回型電極群と、非水電解質と、電極群及び非水電解質を収容する電池ケースと、を備えている。   The cylindrical non-aqueous electrolyte secondary battery of the present invention includes a wound electrode group for the above-described cylindrical non-aqueous electrolyte secondary battery, a non-aqueous electrolyte, a battery case that houses the electrode group and the non-aqueous electrolyte. And.

また、本発明の円筒型非水電解質二次電池の製造方法は、捲回型電極群収容工程と電解質注液工程と電解質含浸工程とを備えている。捲回型電極群収容工程では、電池ケースに、前述の円筒型非水電解質二次電池用の捲回型電極群を収容する。電解質注液工程では、電池ケース内を減圧にして、前述の電極群に含まれる芯棒の中空部に非水電解質を注液する。電解質含浸工程では、電池ケース内を大気圧に戻すことにより、芯棒が有する割りスリットを通じて、非水電解質を電極群に含浸させる。   Moreover, the manufacturing method of the cylindrical nonaqueous electrolyte secondary battery of the present invention includes a wound electrode group accommodation step, an electrolyte injection step, and an electrolyte impregnation step. In the wound electrode group accommodation step, the aforementioned wound electrode group for the cylindrical nonaqueous electrolyte secondary battery is accommodated in the battery case. In the electrolyte injection step, the inside of the battery case is depressurized, and the nonaqueous electrolyte is injected into the hollow portion of the core rod included in the electrode group described above. In the electrolyte impregnation step, the electrode case is impregnated with the nonaqueous electrolyte through the split slit of the core rod by returning the inside of the battery case to atmospheric pressure.

本発明の芯棒は、らせん状に周回する割りスリットを有することにより、どの方向から外部応力が加わっても、変形し難い。その結果、芯棒の変形による内部短絡の発生が抑制される。また、本発明の芯棒を捲回型電極群の中心部に挿入した場合、芯棒表面と電極群との間に大きな空隙が発生しないので、この点でも、内部短絡が抑制される。
また、本発明の芯棒は、電池の変形を抑制するための補強材としても機能する。
The core rod of the present invention has a split slit that circulates in a spiral shape, so that it is difficult to deform no matter which direction external stress is applied. As a result, the occurrence of an internal short circuit due to the deformation of the core rod is suppressed. In addition, when the core rod of the present invention is inserted into the center portion of the wound electrode group, no large gap is generated between the surface of the core rod and the electrode group, so that an internal short circuit is also suppressed in this respect.
The core rod of the present invention also functions as a reinforcing material for suppressing battery deformation.

さらに、本発明の芯棒は、らせん状に周回する割りスリットを有することにより、非水電解質の注液性に優れている。本発明の芯棒を捲回型電極群の中心部に挿入し、芯棒の中空部に非水電解質を注液した場合、非水電解質が割りスリットを通って電極群に円滑に且つ容易に含浸する。したがって、本発明の芯棒を用いて円筒型非水電解質二次電池を作製した場合、非水電解質の注液作業の所要時間を短縮し、生産性を高めることができる。   Furthermore, the core rod of the present invention has a split slit that circulates in a spiral shape, and thus has excellent liquid-injecting properties of the nonaqueous electrolyte. When the core rod of the present invention is inserted into the center of the wound electrode group and the nonaqueous electrolyte is injected into the hollow portion of the core rod, the nonaqueous electrolyte passes through the slit and smoothly and easily into the electrode group. Impregnate. Therefore, when a cylindrical nonaqueous electrolyte secondary battery is produced using the core rod of the present invention, the time required for the nonaqueous electrolyte injection work can be shortened and productivity can be increased.

さらに、本発明の芯棒は、所定の形状に裁断された金属板を所定方向に丸めることにより容易に作製できる。したがって、端面を内側に向けて折り曲げる工程を必要とせず、製造工程が簡略化され、製造コストを低くすることができる。   Furthermore, the core rod of the present invention can be easily produced by rolling a metal plate cut into a predetermined shape in a predetermined direction. Therefore, the process of bending the end face toward the inside is not required, the manufacturing process is simplified, and the manufacturing cost can be reduced.

本発明の第1実施形態である芯棒の外観を模式的に示す斜視図である。It is a perspective view which shows typically the external appearance of the core rod which is 1st Embodiment of this invention. 図1に示す芯棒の製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the core bar shown in FIG. 本発明の第3実施形態である非水電解質二次電池の構成を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the structure of the nonaqueous electrolyte secondary battery which is 3rd Embodiment of this invention. 従来技術の芯棒の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the core rod of a prior art.

[芯棒]
図1は、本発明の第1実施形態である芯棒1の外観を模式的に示す斜視図である。図2は、図1に示す芯棒1の製造方法を示す斜視図である。
[Core]
FIG. 1 is a perspective view schematically showing an appearance of a core rod 1 according to the first embodiment of the present invention. FIG. 2 is a perspective view showing a manufacturing method of the core rod 1 shown in FIG.

芯棒1は、円筒型非水電解質二次電池の捲回型電極群の中心部に挿入される。円筒型非水電解質二次電池の捲回型電極群とは、帯状の正極と帯状の負極とをこれらの間にセパレータを介在させて捲回した電極群である。この捲回型電極群の中心部に芯棒1を挿入することにより、芯棒1の周囲に捲回型電極群が配置された、本発明の第2実施形態の電極群が得られる。   The core rod 1 is inserted into the central part of the wound electrode group of the cylindrical nonaqueous electrolyte secondary battery. The wound electrode group of the cylindrical nonaqueous electrolyte secondary battery is an electrode group in which a belt-like positive electrode and a belt-like negative electrode are wound with a separator interposed therebetween. By inserting the core rod 1 into the center of the wound electrode group, the electrode group of the second embodiment of the present invention in which the wound electrode group is disposed around the core rod 1 is obtained.

図1に示すように、芯棒1は中空筒であり、らせん状に周回する割りスリット2及び中空部3を有している。芯棒1は、割りスリット2を有していることを特徴とする。これにより、芯棒1に対してどの方向から外部応力が加わっても、割りスリット2が外部応力を吸収又は緩和するので、芯棒1が変形し難くなる。その結果、割りスリット2に沿う周方向の両端面の一方が凹み、他方が起立するといった変形が起り難くなり、その変形に伴う内部短絡の発生が抑制される。   As shown in FIG. 1, the core rod 1 is a hollow cylinder, and has a split slit 2 and a hollow portion 3 that circulate in a spiral shape. The core rod 1 has a split slit 2. Thereby, no matter which direction external stress is applied to the core rod 1, the split slit 2 absorbs or relaxes the external stress, so that the core rod 1 is hardly deformed. As a result, deformation such that one of both end surfaces in the circumferential direction along the split slit 2 is recessed and the other is standing up hardly occurs, and the occurrence of an internal short circuit due to the deformation is suppressed.

また、芯棒1の外周面には大きな凸部及び凹部が存在しないので、芯棒1の外周面はほぼ平滑になっている。このため、捲回型電極群の中心部に芯棒1を挿入した場合に、芯棒1の外周面のほぼ全面と電極群の内周面とが接触した状態になる。その結果、芯棒1の外周面と電極群の内周面との間には、電極の座屈を引き起こす大きな空隙が存在しない。これにより、充放電に伴う電極の座屈が起りにくくなり、内部短絡の発生が抑制される。なお、芯棒1の外周面に存在する割りスリット2は、スリット幅を適宜調整することにより、電極の座屈を引き起こす空隙にはならない。   Further, since there are no large convex portions and concave portions on the outer peripheral surface of the core rod 1, the outer peripheral surface of the core rod 1 is almost smooth. For this reason, when the core rod 1 is inserted into the center of the wound electrode group, almost the entire outer peripheral surface of the core rod 1 is in contact with the inner peripheral surface of the electrode group. As a result, there is no large gap between the outer peripheral surface of the core rod 1 and the inner peripheral surface of the electrode group that causes the electrode to buckle. Thereby, the buckling of the electrode accompanying charge / discharge hardly occurs, and the occurrence of an internal short circuit is suppressed. In addition, the split slit 2 which exists in the outer peripheral surface of the core rod 1 does not become the space | gap which causes the buckling of an electrode by adjusting a slit width suitably.

また、芯棒1は、電池の変形を抑制する補強材としての機能をも有している。
芯棒1が中心部に挿入された捲回型電極群を用いることにより、高エネルギー密度を有し、内部抵抗が低くて高出力が可能であり、内部短絡の発生が抑制された円筒型非水電解質二次電池を得ることができる。
The core rod 1 also has a function as a reinforcing material that suppresses deformation of the battery.
By using a wound electrode group in which the core rod 1 is inserted in the center, it has a high energy density, a low internal resistance, a high output, and an internal short circuit that suppresses the occurrence of an internal short circuit. A water electrolyte secondary battery can be obtained.

割りスリット2は、外部応力を吸収又は緩和する機能だけでなく、芯棒1の中空部3と、芯棒1が中心部に挿入された捲回型電極群と、を繋ぐ通路としての機能をも有している。芯棒1の中空部3に非水電解質を注液した場合に、非水電解質は割りスリット2を通じて捲回型電極群に含浸するので、非水電解質の捲回型電極群への含浸速度を速めることができる。   The split slit 2 not only functions to absorb or relieve external stress, but also functions as a passage that connects the hollow portion 3 of the core rod 1 and the wound electrode group in which the core rod 1 is inserted into the center portion. Also have. When the nonaqueous electrolyte is injected into the hollow portion 3 of the core rod 1, the nonaqueous electrolyte impregnates the wound electrode group through the slit 2, so the impregnation rate of the nonaqueous electrolyte into the wound electrode group is increased. You can speed up.

また、割りスリット2は、芯棒1の外周面をらせん状に周回することにより、芯棒1の外周面のほぼ全面に設けられている。その結果、非水電解質が、捲回型電極群全体にほぼ均一に行き渡り易くなる。   Further, the split slit 2 is provided on almost the entire outer peripheral surface of the core rod 1 by spiraling around the outer peripheral surface of the core rod 1. As a result, the nonaqueous electrolyte is likely to be distributed almost uniformly throughout the wound electrode group.

すなわち、芯棒1の外周面をらせん状に周回する割りスリット2は、非水電解質の捲回型電極群への含浸性を向上させる機能を有している。したがって、円筒型非水電解質二次電池の作製工程において、芯棒1の中空部3に非水電解質を注液すれば、非水電解質の注液及び捲回型電極群への含浸に要する時間を短縮できる。その結果、円筒型非水電解質二次電池を大量生産した場合に、生産性を向上させ、且つ、最終製品の性能のばらつきを少なくし、不良品率を低くすることができる。また、最終製品の信頼性を高めることができる。   That is, the split slit 2 that spirals around the outer peripheral surface of the core rod 1 has a function of improving the impregnation property of the nonaqueous electrolyte into the wound electrode group. Therefore, in the manufacturing process of the cylindrical nonaqueous electrolyte secondary battery, if the nonaqueous electrolyte is injected into the hollow portion 3 of the core rod 1, the time required for injecting the nonaqueous electrolyte and impregnating the wound electrode group Can be shortened. As a result, when a cylindrical non-aqueous electrolyte secondary battery is mass-produced, productivity can be improved, variation in the performance of the final product can be reduced, and the defective product rate can be lowered. In addition, the reliability of the final product can be increased.

割りスリット2は、芯棒1の長手方向に沿って、芯棒1の一端4から他端5に向かってらせん状に周回するように設けられている。
割りスリット2の周回数は特に制限されず、芯棒1の径及び長さ、割りスリット2のスリット幅等に応じて選択されるが、好ましくは1〜3回である。
The split slit 2 is provided so as to circulate spirally from one end 4 to the other end 5 of the core rod 1 along the longitudinal direction of the core rod 1.
The number of turns of the split slit 2 is not particularly limited, and is selected according to the diameter and length of the core rod 1, the slit width of the split slit 2, etc., but preferably 1 to 3 times.

割りスリット2の周回数が少なすぎると、外部応力を吸収又は緩和して、芯棒1の変形を抑制する効果が低下するおそれがある。その結果、外部応力が加わった場合に、芯棒1が変形し、変形に伴って内部短絡が発生するおそれがある。また、非水電解質の注液性が低下するおそれがある。一方、割りスリット2の周回数が多すぎると、外部応力を吸収又は緩和する作用よりも、芯棒1の剛性を低下させる作用の方が大きくなるおそれがある。その結果、外部応力が加わった場合に、芯棒1の変形及び内部短絡が起り易くなるおそれがある。   If the number of turns of the split slit 2 is too small, external stress is absorbed or relaxed, and the effect of suppressing deformation of the core rod 1 may be reduced. As a result, when an external stress is applied, the core rod 1 is deformed, and an internal short circuit may occur along with the deformation. Moreover, there exists a possibility that the injectability of a nonaqueous electrolyte may fall. On the other hand, if the number of turns of the split slit 2 is too large, the action of reducing the rigidity of the core rod 1 may be greater than the action of absorbing or relaxing external stress. As a result, when an external stress is applied, the core rod 1 may be easily deformed and an internal short circuit may occur.

割りスリット2のスリット幅は特に制限されず、芯棒1の径及び長さ、割りスリット2の周回数等に応じて選択されるが、好ましくは0.1mm〜2mmであり、さらに好ましくは0.2mm〜1.5mmである。スリット幅が小さすぎると、割りスリット2による外部応力を吸収又は緩和する効果が低くなり、芯棒1の変形が起り易くなり、内部短絡が発生するおそれがある。また、非水電解質の電極群への含浸性が低下するおそれがある。また、芯棒1を作製するための成形加工性が低下し、製造コストが上昇するおそれがある。   The slit width of the split slit 2 is not particularly limited, and is selected according to the diameter and length of the core rod 1, the number of rounds of the split slit 2, etc., but is preferably 0.1 mm to 2 mm, more preferably 0. .2 mm to 1.5 mm. If the slit width is too small, the effect of absorbing or mitigating external stress due to the split slit 2 is reduced, the core rod 1 is likely to be deformed, and an internal short circuit may occur. Further, the impregnation property of the nonaqueous electrolyte into the electrode group may be reduced. Moreover, there exists a possibility that the shaping | molding workability for producing the core rod 1 may fall, and manufacturing cost may rise.

一方、スリット幅が大きすぎると、割りスリット2による外部応力を吸収又は緩和する作用よりも、割りスリット2が芯棒1の剛性を低下させる作用の方が大きくなるおそれがある。その結果、芯棒1の変形に伴う内部短絡が起り易くなるおそれがある。また、割りスリット2が比較的大きな空隙になり、割りスリット2に沿う電極群の表面において、電極の座屈に伴う内部短絡が起り易くなるおそれがある。   On the other hand, if the slit width is too large, there is a possibility that the action of the split slit 2 reducing the rigidity of the core rod 1 is greater than the action of absorbing or relaxing external stress by the split slit 2. As a result, there is a possibility that an internal short circuit easily occurs due to the deformation of the core rod 1. Further, the split slit 2 becomes a relatively large gap, and an internal short circuit due to the buckling of the electrode may easily occur on the surface of the electrode group along the split slit 2.

芯棒1の長さは特に制限されず、非水電解質二次電池の設計等に応じて選択されるが、(芯棒1が挿入される捲回型電極群の幅方向の長さ−3(mm))〜(芯棒1が挿入される捲回型電極群の幅方向の長さ(mm))の範囲にするのが好ましい。   The length of the core rod 1 is not particularly limited, and is selected according to the design of the nonaqueous electrolyte secondary battery, etc. (the length in the width direction of the wound electrode group into which the core rod 1 is inserted-3 (Mm)) to (length in the width direction of the wound electrode group into which the core rod 1 is inserted (mm)) is preferable.

芯棒1は、例えば、図2に示すように、長方形(又は帯状)の金属板6を、円柱体7に矢符8の方向(円柱体7の周方向)に巻き付け加工し、中空筒状に成形し、必要に応じて得られた中空筒の両端をその長手方向に垂直な方向に切断加工することにより作製できる。
金属板6の材質は特に制限されないが、得られる芯棒1の剛性および電池使用環境における化学的安定性の観点から、鉄、ステンレス鋼などが好ましい。
For example, as shown in FIG. 2, the core rod 1 is formed by winding a rectangular (or belt-like) metal plate 6 around a cylindrical body 7 in the direction of an arrow 8 (circumferential direction of the cylindrical body 7) to form a hollow cylinder. It can be produced by cutting the both ends of the hollow cylinder obtained as necessary in a direction perpendicular to its longitudinal direction.
The material of the metal plate 6 is not particularly limited, but iron, stainless steel, and the like are preferable from the viewpoint of the rigidity of the obtained core rod 1 and the chemical stability in the battery usage environment.

金属板6の厚さは、金属板6の材質に応じて適宜選択できるが、金属板6の成形加工性と得られる芯棒1の剛性とを両立する観点から、好ましくは0.05mm〜1mm、さらに好ましくは0.1mm〜0.5mmである。金属板6の厚さが小さすぎると、割りスリット2を形成しても、芯棒1の変形が起こり易くなるおそれがある。金属板6の厚さが大きすぎると、金属板6の成形加工性が低下し、所望の周回数及びスリット幅を有する割りスリット2を形成することが難しくなるおそれがある。
円柱体7は、例えば、金属、セラミック等からなる。
The thickness of the metal plate 6 can be appropriately selected according to the material of the metal plate 6, but preferably 0.05 mm to 1 mm from the viewpoint of achieving both the moldability of the metal plate 6 and the rigidity of the obtained core rod 1. More preferably, it is 0.1 mm to 0.5 mm. If the thickness of the metal plate 6 is too small, the core rod 1 may be easily deformed even if the slit 2 is formed. If the thickness of the metal plate 6 is too large, the moldability of the metal plate 6 is lowered, and it may be difficult to form the split slit 2 having a desired number of turns and a slit width.
The cylindrical body 7 is made of, for example, metal, ceramic or the like.

芯棒1は、原料になる金属板を所定の形状に打ち抜いて金属板6を作製し、この金属板6を巻き加工するという簡便な方法で作製できる。したがって、芯棒1は、低コストで量産できる。   The core rod 1 can be produced by a simple method in which a metal plate 6 is punched into a predetermined shape to produce a metal plate 6 and the metal plate 6 is wound. Therefore, the core rod 1 can be mass-produced at a low cost.

[非水電解質二次電池]
図3は、本発明の第3実施形態である非水電解質二次電池10の構成を模式的に示す縦断面図である。
非水電解質二次電池10は、芯棒1と、芯棒1の周囲に配置されて、帯状の正極20と帯状の負極21とをこれらの間にセパレータ22を介在させて捲回してなる捲回型電極群11と、帯状の正極20と封口板28とを導通させる正極リード23と、帯状の負極21と電池ケース27とを導通させる負極リード24と、捲回型電極群11の長手方向両端部に装着される上部絶縁板25及び下部絶縁板26と、捲回型電極群11及び図示しない非水電解質を収容する有底円筒型の電池ケース27(以下単に「電池ケース27」とする)と、電池ケース27の開口に装着され、電池ケース27を封口する封口板28と、電池ケース27と封口板28との間に介在するガスケット29と、封口板28により支持される内圧作動型安全弁30と、を備える円筒型電池である。
[Nonaqueous electrolyte secondary battery]
FIG. 3 is a longitudinal sectional view schematically showing the configuration of the nonaqueous electrolyte secondary battery 10 according to the third embodiment of the present invention.
The nonaqueous electrolyte secondary battery 10 is formed by winding a core rod 1 and a strip-shaped positive electrode 20 and a strip-shaped negative electrode 21 with a separator 22 interposed between them. The reversible electrode group 11, the positive electrode lead 23 that conducts the strip-shaped positive electrode 20 and the sealing plate 28, the negative electrode lead 24 that conducts the strip-shaped negative electrode 21 and the battery case 27, and the longitudinal direction of the wound electrode group 11 A bottomed cylindrical battery case 27 (hereinafter simply referred to as a “battery case 27”) that accommodates an upper insulating plate 25 and a lower insulating plate 26 attached to both ends, a wound electrode group 11 and a non-aqueous electrolyte (not shown). ), A sealing plate 28 that is attached to the opening of the battery case 27 and seals the battery case 27, a gasket 29 that is interposed between the battery case 27 and the sealing plate 28, and an internal pressure operation type that is supported by the sealing plate 28. Safety valve 30 That is a cylindrical battery.

次に、非水電解質二次電池10の各構成部材について説明する。
帯状の正極20(以下単に「正極20」とする)は、正極集電体及び正極集電体の表面に形成される正極活物質層を備える。
Next, each component of the nonaqueous electrolyte secondary battery 10 will be described.
The strip-shaped positive electrode 20 (hereinafter simply referred to as “positive electrode 20”) includes a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector.

正極集電体には、多孔性基板及び無孔基板を使用できる。多孔性基板とは、厚さ方向の一方の表面から他方の表面に貫通する、複数の連通孔を有する導電性基板である。連通孔は、1つの細孔であってもよく、分岐及び/又は連結した複数の細孔からなっていてもよい。多孔性基板には、メッシュ体、ネット体、パンチングシート、エキスパンドメタル、ラス体、多孔質体、発泡体、不織布等がある。無孔基板には、金属箔、金属シート等がある。多孔性基板及び無孔基板の材料には、ステンレス鋼、チタン、アルミニウム、アルミニウム合金等の金属材料を使用できる。   A porous substrate and a non-porous substrate can be used for the positive electrode current collector. The porous substrate is a conductive substrate having a plurality of communication holes penetrating from one surface in the thickness direction to the other surface. The communication hole may be a single pore, or may be composed of a plurality of branched and / or connected pores. Examples of the porous substrate include a mesh body, a net body, a punching sheet, an expanded metal, a lath body, a porous body, a foam, and a nonwoven fabric. Non-porous substrates include metal foils and metal sheets. Metal materials such as stainless steel, titanium, aluminum, and aluminum alloy can be used as the material for the porous substrate and the non-porous substrate.

正極集電体の厚さは、非水電解質二次電池10の形状、寸法、放電容量等に応じて適宜選択されるが、好ましくは1〜500μm、さらに好ましくは5〜20μmである。正極集電体の厚さを前記範囲に設定することで、正極20の強度を維持しながら、正極20を軽量化できる。   The thickness of the positive electrode current collector is appropriately selected according to the shape, dimensions, discharge capacity, and the like of the nonaqueous electrolyte secondary battery 10, but is preferably 1 to 500 μm, more preferably 5 to 20 μm. By setting the thickness of the positive electrode current collector within the above range, the positive electrode 20 can be reduced in weight while maintaining the strength of the positive electrode 20.

本実施形態では、正極集電体に多孔性基板を用いることが好ましい。これにより、非水電解質の捲回型電極群11への含浸性がさらに向上する。より具体的には、後述する非水電解質二次電池10の製造方法の電解質含浸工程において、芯棒1の中空部3に注液された非水電解質の、割りスリット2を通じて捲回型電極群11に含浸する速度がさらに速くなる。その結果、電解質含浸工程の所要時間が短縮され、非水電解質二次電池10の生産性が向上する。また、非水電解質が捲回型電極群11全体にさらに均等に行き渡る。その結果、生産される製品における電池性能のばらつきが非常に少なくなり、不良品率が低下する。   In this embodiment, it is preferable to use a porous substrate for the positive electrode current collector. Thereby, the impregnation property to the wound electrode group 11 of a nonaqueous electrolyte further improves. More specifically, in the electrolyte impregnation step of the method for manufacturing the nonaqueous electrolyte secondary battery 10 to be described later, the wound electrode group of the nonaqueous electrolyte injected into the hollow portion 3 of the core rod 1 through the split slit 2. 11 is further impregnated. As a result, the time required for the electrolyte impregnation step is shortened, and the productivity of the nonaqueous electrolyte secondary battery 10 is improved. Further, the non-aqueous electrolyte spreads more evenly throughout the wound electrode group 11. As a result, variations in battery performance among products to be produced are greatly reduced, and the defective product rate is reduced.

多孔性基板の使用による前述の効果をより顕著に得るためには、多孔性基板の中でも、連通孔(穿孔)を有する金属箔、パンチングシート、エキスパンドメタル、多孔性金属、めっきが施された不織布からなる基板等を用いるのが好ましい。   In order to obtain the above-mentioned effects by using the porous substrate more remarkably, among the porous substrates, metal foil having a communicating hole (perforation), punching sheet, expanded metal, porous metal, and non-woven fabric on which plating is applied It is preferable to use a substrate made of or the like.

正極活物質層は、正極集電体の厚さ方向の両方の表面に形成される。正極活物質層は、正極活物質を含有し、導電剤、結着剤等を含有してもよい。
正極活物質には、リチウムイオンを吸蔵及び放出できる物質を特に制限なく使用できるが、リチウム含有複合酸化物及びオリビン型リン酸リチウムが好ましい。
The positive electrode active material layer is formed on both surfaces in the thickness direction of the positive electrode current collector. The positive electrode active material layer contains a positive electrode active material, and may contain a conductive agent, a binder, and the like.
As the positive electrode active material, a material that can occlude and release lithium ions can be used without particular limitation, but lithium-containing composite oxides and olivine-type lithium phosphate are preferable.

リチウム含有複合酸化物は、リチウムと遷移金属元素とを含む金属酸化物又は前記金属酸化物中の遷移金属元素の一部が異種元素によって置換された金属酸化物である。遷移金属元素には、Sc、Y、Mn、Fe、Co、Ni、Cu、Cr等があり、Mn、Co、Ni等が好ましい。異種元素には、Na、Mg、Zn、Al、Pb、Sb、B等があり、Mg、Al等が好ましい。遷移金属元素及び異種元素は、それぞれ1種を単独で又は2種以上を組み合わせて使用できる。   The lithium-containing composite oxide is a metal oxide containing lithium and a transition metal element or a metal oxide in which a part of the transition metal element in the metal oxide is substituted with a different element. Examples of the transition metal element include Sc, Y, Mn, Fe, Co, Ni, Cu, and Cr, and Mn, Co, Ni, and the like are preferable. Examples of different elements include Na, Mg, Zn, Al, Pb, Sb, and B, and Mg, Al, and the like are preferable. A transition metal element and a different element can be used individually by 1 type or in combination of 2 or more types, respectively.

リチウム含有複合酸化物には、LilCoO2、LilNiO2、LilMnO2、LilComNi1-m2、LilCom1-mn、LilNi1-mmn、LilMn24、LilMn2-mn4(前記各式中、AはSc、Y、Mn、Fe、Co、Ni、Cu、Cr、Na、Mg、Zn、Al、Pb、Sb及びBよりなる群から選ばれる少なくとも1つの元素を示す。0<l≦1.2、m=0〜0.9、n=2.0〜2.3である。)等がある。 The lithium-containing composite oxide, Li l CoO 2, Li l NiO 2, Li l MnO 2, Li l Co m Ni 1-m O 2, Li l Co m A 1-m O n, Li l Ni 1- m A m O n , Li l Mn 2 O 4 , Li l Mn 2−m An O 4 (in the above formulas, A is Sc, Y, Mn, Fe, Co, Ni, Cu, Cr, Na, Mg And at least one element selected from the group consisting of Zn, Al, Pb, Sb and B. 0 <l ≦ 1.2, m = 0 to 0.9, and n = 2.0 to 2.3. .) Etc.

オリビン型リン酸リチウムには、LilMPO4(式中、lは前記に同じ。MはMn、Fe、Co及びNiよりなる群から選ばれる少なくとも1つの元素を示す。)、Lil1-aaPO4(式中、l及びMは前記に同じ。XはMg、Ti、Zn、Nb、Mo、Ta及びWよりなる群から選ばれる少なくとも1つの元素を示す。a=0〜1である。)等がある。 For olivine type lithium phosphate, Li l MPO 4 (wherein l is the same as described above, M represents at least one element selected from the group consisting of Mn, Fe, Co and Ni), Li l M 1 during -a X a PO 4 (wherein, l and M are as .X the above Mg, Ti, Zn, Nb, Mo, .a exhibits at least one element selected from the group consisting of Ta and W = 0 to 1) and the like.

正極活物質を表す前記各式において、符号lにより示されるリチウムのモル比は正極活物質の製造直後の値であり、充放電により増減する。正極活物質は1種を単独で又は2種以上を組み合わせて使用できる。   In each of the above expressions representing the positive electrode active material, the molar ratio of lithium indicated by the symbol 1 is a value immediately after the production of the positive electrode active material, and increases or decreases due to charge / discharge. A positive electrode active material can be used individually by 1 type or in combination of 2 or more types.

導電剤には、天然黒鉛、人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維等の導電性繊維類、フッ化カーボン等がある。導電剤は、1種を単独で又は2種以上を組み合わせて使用できる。   Conductive agents include graphite such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and conductive fibers such as carbon fiber and metal fiber. And carbon fluoride. A conductive agent can be used individually by 1 type or in combination of 2 or more types.

結着剤には、高分子材料を使用できる。高分子材料には、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリロニトリル、ポリアクリル酸、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリメタクリル酸、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン等の樹脂材料、スチレンブタジエンゴム等のゴム材料、カルボキシメチルセルロース等の水溶性高分子材料等がある。結着剤は、1種を単独で又は2種以上を組み合わせて使用できる。   A polymer material can be used for the binder. Polymer materials include polyvinylidene fluoride, polyhexafluoropropylene, copolymers of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, Resin materials such as polyacrylic acid, polymethyl acrylate, polyethyl acrylate, polymethacrylic acid, polymethyl methacrylate, polyethyl methacrylate, polyvinyl acetate, polyvinyl pyrrolidone, polyether, polyethersulfone, styrene butadiene rubber And water-soluble polymer materials such as carboxymethyl cellulose. A binder can be used individually by 1 type or in combination of 2 or more types.

正極活物質層は、正極合剤スラリーを正極集電体の表面に塗布し、得られた正極合剤スラリーの塗膜を乾燥及び圧延することにより形成できる。正極合剤スラリーは、正極活物質、導電剤及び結着剤を有機溶媒又は水に溶解又は分散させることにより調製できる。有機溶媒には、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、N−メチル−2−ピロリドン、ジメチルアミン、アセトン、シクロヘキサノン等を使用できる。   The positive electrode active material layer can be formed by applying the positive electrode mixture slurry to the surface of the positive electrode current collector, and drying and rolling the resulting coating film of the positive electrode mixture slurry. The positive electrode mixture slurry can be prepared by dissolving or dispersing a positive electrode active material, a conductive agent, and a binder in an organic solvent or water. As the organic solvent, dimethylformamide, dimethylacetamide, methylformamide, N-methyl-2-pyrrolidone, dimethylamine, acetone, cyclohexanone and the like can be used.

帯状の負極21(以下単に「負極21」とする)は、負極集電体及び負極集電体の表面に形成される負極活物質層を備える。
負極集電体には、多孔性基板及び無孔基板を使用できる。正極集電体と同様に、多孔性基板には、メッシュ体、ネット体、パンチングシート、エキスパンドメタル、ラス体、多孔質体、発泡体、不織布等があり、無孔基板には金属箔、金属シート等がある。多孔性基板及び無孔基板の材料には、ステンレス鋼、ニッケル、銅、銅合金、アルミニウム、アルミニウム合金等の金属材料を使用できる。
The strip-shaped negative electrode 21 (hereinafter simply referred to as “negative electrode 21”) includes a negative electrode current collector and a negative electrode active material layer formed on the surface of the negative electrode current collector.
As the negative electrode current collector, a porous substrate and a non-porous substrate can be used. As with the positive electrode current collector, porous substrates include mesh bodies, net bodies, punching sheets, expanded metals, lath bodies, porous bodies, foams, non-woven fabrics, etc., and non-porous substrates include metal foil and metal. There are sheets. Metal materials such as stainless steel, nickel, copper, copper alloy, aluminum, and aluminum alloy can be used as the material for the porous substrate and the non-porous substrate.

負極集電体の厚さは、非水電解質二次電池10の形状、寸法、放電容量等に応じて適宜選択されるが、好ましくは1〜500μm、さらに好ましくは5〜50μmである。負極集電体の厚さを前記範囲に設定することにより、負極21の強度を維持しながら、負極21を軽量化できる。   The thickness of the negative electrode current collector is appropriately selected according to the shape, size, discharge capacity, and the like of the nonaqueous electrolyte secondary battery 10, but is preferably 1 to 500 μm, more preferably 5 to 50 μm. By setting the thickness of the negative electrode current collector within the above range, the negative electrode 21 can be reduced in weight while maintaining the strength of the negative electrode 21.

本実施形態では、負極集電体に多孔性基板を用いるのが好ましい。これにより、正極集電体に多孔性基板を用いるのと同様に、後述する非水電解質二次電池の製造方法の電解質含浸工程において、非水電解質の捲回型電極群11への含浸性が向上する。その結果、非水電解質二次電池10の生産性、得られる最終製品の電池性能等が向上し、生産時間の短縮及び不良品率の減少を図ることができる。   In this embodiment, it is preferable to use a porous substrate for the negative electrode current collector. As a result, in the same manner as when the porous substrate is used for the positive electrode current collector, the impregnation property of the wound electrode group 11 of the nonaqueous electrolyte in the electrolyte impregnation step of the method for manufacturing the nonaqueous electrolyte secondary battery described later is improves. As a result, the productivity of the nonaqueous electrolyte secondary battery 10, the battery performance of the final product obtained, and the like can be improved, and the production time can be shortened and the defective product rate can be reduced.

このような効果を得る観点から、好ましい多孔性基板は、連通孔(穿孔)を有する金属箔、パンチングシート、エキスパンドメタル、多孔性金属、めっきが施された不織布からなる基板等である。
本実施形態では、正極集電体及び負極集電体のいずれか一方に多孔性基板を用いるのが好ましく、正極集電体及び負極集電体の両方に多孔性基板を用いるのがさらに好ましい。
From the viewpoint of obtaining such an effect, preferred porous substrates are a metal foil having a communicating hole (perforation), a punching sheet, an expanded metal, a porous metal, a substrate made of a plated nonwoven fabric, and the like.
In the present embodiment, it is preferable to use a porous substrate for either the positive electrode current collector or the negative electrode current collector, and it is more preferable to use a porous substrate for both the positive electrode current collector and the negative electrode current collector.

負極活物質層は、負極集電体の厚さ方向の両方の表面に形成される。負極活物質層は負極活物質を含有し、必要に応じて、結着剤、導電剤、増粘剤等を含有する。
負極活物質には、炭素材料、合金系活物質、リチウム、リチウム合金、リチウム含有複合酸化物等がある。炭素材料には、天然黒鉛、人造黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、非晶質炭素等がある。合金系活物質には、珪素、珪素酸化物、錫、錫酸化物等がある。リチウム含有複合酸化物にはリチウムチタン含有酸化物、リチウムバナジウム含有酸化物等がある。
The negative electrode active material layer is formed on both surfaces in the thickness direction of the negative electrode current collector. The negative electrode active material layer contains a negative electrode active material, and contains a binder, a conductive agent, a thickener and the like as necessary.
Examples of the negative electrode active material include a carbon material, an alloy-based active material, lithium, a lithium alloy, and a lithium-containing composite oxide. Examples of the carbon material include natural graphite, artificial graphite, coke, graphitized carbon, carbon fiber, spherical carbon, and amorphous carbon. Examples of the alloy-based active material include silicon, silicon oxide, tin, and tin oxide. Examples of the lithium-containing composite oxide include a lithium titanium-containing oxide and a lithium vanadium-containing oxide.

導電剤及び結着剤には、正極活物質層に含有される導電剤及び結着剤と同じ材料をそれぞれ使用できる。増粘剤には、非水電解質二次電池の分野で常用されるものを使用でき、例えば、カルボキシメチルセルロース等がある。   As the conductive agent and the binder, the same materials as the conductive agent and the binder contained in the positive electrode active material layer can be used, respectively. As the thickener, those commonly used in the field of non-aqueous electrolyte secondary batteries can be used, and examples thereof include carboxymethyl cellulose.

負極活物質層は、例えば、負極合剤スラリーを負極集電体の表面に塗布し、得られた負極合剤スラリーの塗膜を乾燥及び圧延することにより形成できる。負極合剤スラリーは、例えば、負極活物質と、導電剤、結着剤及び増粘剤よりなる群から選ばれる少なくとも1つと、を有機溶媒又は水に溶解又は分散させることにより調製できる。有機溶媒には、正極合剤スラリーの調製に用いられるのと同じ有機溶媒を使用できる。   The negative electrode active material layer can be formed, for example, by applying a negative electrode mixture slurry to the surface of the negative electrode current collector, and drying and rolling the coating film of the obtained negative electrode mixture slurry. The negative electrode mixture slurry can be prepared by, for example, dissolving or dispersing a negative electrode active material and at least one selected from the group consisting of a conductive agent, a binder, and a thickener in an organic solvent or water. As the organic solvent, the same organic solvent used for preparing the positive electrode mixture slurry can be used.

また、負極活物質層は、負極集電体の表面に、負極活物質と、導電剤、結着剤、粘着剤及びその他の添加剤よりなる群から選ばれる少なくとも1つと、を含む混合物を、プレス成形等により所定の形状に圧着することにより、形成できる。また、負極活物質として合金系活物質を用いる場合は、真空蒸着法等の気相法により負極活物質層を形成できる。   Further, the negative electrode active material layer includes a mixture containing a negative electrode active material and at least one selected from the group consisting of a conductive agent, a binder, an adhesive, and other additives on the surface of the negative electrode current collector, It can be formed by press-bonding to a predetermined shape by press molding or the like. When an alloy-based active material is used as the negative electrode active material, the negative electrode active material layer can be formed by a vapor phase method such as a vacuum vapor deposition method.

セパレータ22は、正極20と負極21との間に介在するように配置されるリチウムイオン透過性絶縁層である。セパレータ22には、細孔を有する多孔質フィルムを使用できる。前記多孔質フィルムには、微多孔膜、織布、不織布等がある。微多孔膜は、単層膜又は多層膜(複合膜)である。また、微多孔膜、織布、不織布等を2層以上積層して、セパレータ22として用いてもよい。   The separator 22 is a lithium ion permeable insulating layer disposed so as to be interposed between the positive electrode 20 and the negative electrode 21. The separator 22 can be a porous film having pores. Examples of the porous film include a microporous film, a woven fabric, and a non-woven fabric. The microporous film is a single layer film or a multilayer film (composite film). Further, two or more layers of microporous membrane, woven fabric, nonwoven fabric, etc. may be laminated and used as the separator 22.

セパレータ22の材料には各種樹脂材料を使用できるが、耐久性、シャットダウン機能、非水電解質二次電池10の安全性等を考慮すると、ポリエチレン、ポリプロピレン等のポリオレフィンが好ましい。セパレータ22の厚さは、好ましくは5〜50μm、さらに好ましくは8〜40μmである。セパレータ22の空孔率は、好ましくは30〜70%、さらに好ましくは35〜60%である。空孔率は、セパレータ22の体積に対する、セパレータ22中に存在する細孔の総容積の百分率である。   Various resin materials can be used as the material of the separator 22, but polyolefins such as polyethylene and polypropylene are preferable in view of durability, shutdown function, safety of the nonaqueous electrolyte secondary battery 10, and the like. The thickness of the separator 22 is preferably 5 to 50 μm, more preferably 8 to 40 μm. The porosity of the separator 22 is preferably 30 to 70%, more preferably 35 to 60%. The porosity is a percentage of the total volume of pores present in the separator 22 with respect to the volume of the separator 22.

捲回型電極群11に含浸される非水電解質は、リチウム塩と、非水溶媒とを含有する。
リチウム塩には、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、LiBCl4、ホウ酸塩類、イミド塩類等がある。リチウム塩の非水溶媒1リットル中の濃度は、好ましくは0.5mol〜2molである。
The nonaqueous electrolyte impregnated in the wound electrode group 11 contains a lithium salt and a nonaqueous solvent.
Lithium salts include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , lower aliphatic lithium lithium carbonate, LiCl, LiBr , LiI, LiBCl 4 , borates, imide salts and the like. The concentration of the lithium salt in 1 liter of the non-aqueous solvent is preferably 0.5 mol to 2 mol.

非水溶媒には、各種の非プロトン性有機溶媒を使用できる。その具体例には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状炭酸エステル、テトラヒドロフラン、1,3−ジオキソラン等の環状エーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン等の鎖状エーテル、γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステル、酢酸メチル等の鎖状エステル等がある。非水溶媒は、1種を単独で又は2種以上を組み合わせて使用できる。   Various aprotic organic solvents can be used as the non-aqueous solvent. Specific examples thereof include cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate, chain carbonates such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate, cyclic ethers such as tetrahydrofuran and 1,3-dioxolane, 1, Examples include chain ethers such as 2-dimethoxyethane and 1,2-diethoxyethane, cyclic carboxylic acid esters such as γ-butyrolactone and γ-valerolactone, and chain esters such as methyl acetate. A nonaqueous solvent can be used individually by 1 type or in combination of 2 or more types.

非水電解質は、リチウム塩及び非水溶媒の他に、添加剤を含有することができる。添加剤には、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート等の充放電効率を向上させる添加剤、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル等の電池を不活性化する添加剤等がある。添加剤は1種を単独で又は2種以上を組み合わせて使用できる。   The non-aqueous electrolyte can contain an additive in addition to the lithium salt and the non-aqueous solvent. Examples of the additive include additives that improve charge and discharge efficiency such as vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate, and additives that inactivate the battery such as cyclohexylbenzene, biphenyl, and diphenyl ether. An additive can be used individually by 1 type or in combination of 2 or more types.

正極リード23には、アルミニウム製リード等を使用できる。負極リード24には、ニッケル製リード、銅製リード等を使用できる。上部絶縁板25、下部絶縁板26及びガスケット29は、ゴム材料、樹脂材料等を所定の形状に成形することにより作製される。電池ケース27、封口板28及び安全弁30は、鉄、ステンレス鋼等の金属材料を所定の形状に成形することにより作製される。   An aluminum lead or the like can be used for the positive electrode lead 23. As the negative electrode lead 24, a nickel lead, a copper lead, or the like can be used. The upper insulating plate 25, the lower insulating plate 26, and the gasket 29 are manufactured by molding a rubber material, a resin material, or the like into a predetermined shape. The battery case 27, the sealing plate 28, and the safety valve 30 are manufactured by molding a metal material such as iron or stainless steel into a predetermined shape.

[非水電解質二次電池の製造方法]
次に、図1〜図3を参照しつつ、本発明の第4実施形態である非水電解質二次電池の製造方法について説明する。本実施形態の製造方法は、電極群収容工程、電解質注液工程及び電解質含浸工程を備えている。
[Method for producing non-aqueous electrolyte secondary battery]
Next, a method for manufacturing a nonaqueous electrolyte secondary battery according to the fourth embodiment of the present invention will be described with reference to FIGS. The manufacturing method of this embodiment includes an electrode group accommodation step, an electrolyte injection step, and an electrolyte impregnation step.

(1)電極群収容工程
電極群収容工程では、電池ケース27に、捲回型電極群11を収容する。捲回型電極群11は、正極20と負極21とを、これらの間にセパレータ22を介在させて捲回することにより作製される。捲回型電極群11の中心部には、芯棒1が挿入される。本実施形態では、捲回型電極群11は、長手方向両端部に、上部絶縁板25及び下部絶縁板26を装着した状態で、電池ケース27に収容される。また、本実施形態では、捲回型電極群11の電池ケース27への収容と同時に、正極リード23と封口板28との接続及び負極リード24と電池ケース27との接続が行われる。これらの接続は、溶接等により行われる。
(1) Electrode Group Housing Step In the electrode group housing step, the wound electrode group 11 is housed in the battery case 27. The wound electrode group 11 is produced by winding the positive electrode 20 and the negative electrode 21 with a separator 22 interposed therebetween. The core rod 1 is inserted into the center of the wound electrode group 11. In the present embodiment, the wound electrode group 11 is accommodated in the battery case 27 with the upper insulating plate 25 and the lower insulating plate 26 attached to both ends in the longitudinal direction. In the present embodiment, the positive electrode lead 23 and the sealing plate 28 are connected and the negative electrode lead 24 and the battery case 27 are connected at the same time when the wound electrode group 11 is housed in the battery case 27. These connections are made by welding or the like.

(2)電解質注液工程
電解質注液工程では、捲回型電極群11が収容された電池ケース27の内部を減圧にした状態で、芯棒1の中空部3に非水電解質を注液する。このように、芯棒1の中空部3に非水電解質を注液することにより、注液操作を簡便かつ確実に実施することができ、注液操作に要する時間を短縮できる。
(2) Electrolyte Injection Process In the electrolyte injection process, a nonaqueous electrolyte is injected into the hollow portion 3 of the core rod 1 while the inside of the battery case 27 in which the wound electrode group 11 is housed is decompressed. . Thus, by injecting the nonaqueous electrolyte into the hollow portion 3 of the core rod 1, the injection operation can be performed easily and reliably, and the time required for the injection operation can be shortened.

電解質注液工程における減圧条件は特に制限されず、非水電解質の組成、正極活物質層及び負極活物質層の組成、正極集電体及び負極集電体の形態(無孔又は多孔性)等の各種条件に応じて適宜選択されるが、好ましくは150〜680mmHg(199×102Pa〜907×102Pa)である。減圧条件が小さすぎると、非水電解質の蒸発による成分の変質や周囲への飛散等が生じるおそれがある。一方、減圧条件が大きすぎると、非水電解質の捲回型電極群11への含浸速度や含浸量が不十分になるおそれがある。 The pressure reduction conditions in the electrolyte pouring step are not particularly limited, the composition of the nonaqueous electrolyte, the composition of the positive electrode active material layer and the negative electrode active material layer, the form of the positive electrode current collector and the negative electrode current collector (non-porous or porous), etc. is appropriately selected depending on various conditions, preferably 150~680mmHg (199 × 10 2 Pa~907 × 10 2 Pa). If the depressurization condition is too small, there is a risk that deterioration of components due to evaporation of the nonaqueous electrolyte, scattering to the surroundings, and the like may occur. On the other hand, if the depressurization condition is too large, the impregnation rate and the impregnation amount of the nonaqueous electrolyte into the wound electrode group 11 may be insufficient.

(3)電解質含浸工程
電解質含浸工程では、捲回型電極群11が収容された電池ケース27の内部の圧力を大気圧に戻す。これにより、芯棒1の中空部3に注液された非水電解質が、芯棒1の割りスリット2を通じて、捲回型電極群11に含浸される。らせん状に周回する割りスリット2を有する芯棒1の中空部3に非水電解質を注液することにより、非水電解質の捲回型電極群11への含浸速度を速めることができる。また、非水電解質を捲回型電極群11全体にほぼ均一に行き渡らせることができる。
(3) Electrolyte impregnation step In the electrolyte impregnation step, the pressure inside the battery case 27 in which the wound electrode group 11 is accommodated is returned to atmospheric pressure. As a result, the nonaqueous electrolyte injected into the hollow portion 3 of the core rod 1 is impregnated in the wound electrode group 11 through the split slit 2 of the core rod 1. By injecting the nonaqueous electrolyte into the hollow portion 3 of the core rod 1 having the split slits 2 that spirally circulate, the impregnation rate of the nonaqueous electrolyte into the wound electrode group 11 can be increased. Further, the nonaqueous electrolyte can be distributed almost uniformly throughout the wound electrode group 11.

これにより、電解質含浸工程の所要時間を短縮し、且つ、最終製品の性能の高水準での均一化を図り、不良品率を低下させることができる。その結果、非水電解質二次電池を大量生産する場合の生産性が顕著に向上し、低コスト化及び高品質化を実現できる。
なお、このような効果は、捲回型電極群11に含まれる正極20及び負極21の集電体として、多孔性基板を用いた場合に、さらに向上する。
Thereby, the time required for the electrolyte impregnation step can be shortened, the performance of the final product can be made uniform at a high level, and the defective product rate can be reduced. As a result, productivity when mass-producing nonaqueous electrolyte secondary batteries is significantly improved, and cost reduction and quality improvement can be realized.
Such an effect is further improved when a porous substrate is used as the current collector of the positive electrode 20 and the negative electrode 21 included in the wound electrode group 11.

電解質含浸工程の後、電池ケース27の開口部にガスケット29を介して封口板28を装着し、電池ケース27の開口端部をガスケット29に向けてかしめることにより、非水電解質二次電池10が得られる。   After the electrolyte impregnation step, the sealing plate 28 is attached to the opening of the battery case 27 via the gasket 29, and the opening end of the battery case 27 is caulked toward the gasket 29, whereby the nonaqueous electrolyte secondary battery 10. Is obtained.

以下に実施例及び比較例を挙げ、本発明をさらに具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
次のようにして作製される帯状正極、帯状負極及び非水電解質、並びに次に示すセパレータ及び芯棒を用いて、捲回型電極群及び非水電解質二次電池を作製した。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to only these examples.
Example 1
A wound electrode group and a non-aqueous electrolyte secondary battery were manufactured using the strip-shaped positive electrode, strip-shaped negative electrode and non-aqueous electrolyte produced as follows, and the separator and core rod shown below.

(1)帯状正極の作製
コバルト酸リチウム3kgと、ポリフッ化ビニリデンの12質量%NMP(N−メチル−2−ピロリドン)溶液(商品名:PVDF#1320、(株)クレハ製)1kgと、アセチレンブラック90gと、適量のNMPとを、双腕式練合機で攪拌し、正極合剤スラリーを調製した。このスラリーを、厚さ15μmのアルミニウム箔(正極集電体)の両面に塗布し、得られた塗膜を乾燥及び圧延して正極活物質層を形成し、総厚160μmの正極を作製した。この正極を裁断して、56mm幅の帯状正極を得た。
(1) Production of strip-shaped positive electrode 3 kg of lithium cobaltate, 12 kg of NMP (N-methyl-2-pyrrolidone) solution of polyvinylidene fluoride (trade name: PVDF # 1320, manufactured by Kureha Corporation), 1 kg of acetylene black 90 g and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a positive electrode mixture slurry. This slurry was applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 15 μm, and the obtained coating film was dried and rolled to form a positive electrode active material layer, thereby producing a positive electrode having a total thickness of 160 μm. The positive electrode was cut to obtain a strip-shaped positive electrode having a width of 56 mm.

(2)帯状負極の作製
人造黒鉛3kgと、変性スチレンブタジエンゴムの40質量%水性分散液(商品名:BM−400B、日本ゼオン(株)製)75gと、カルボキシメチルセルロース30gと、適量の水とを、双腕式練合機で攪拌し、負極合剤スラリーを調製した。このスラリーを厚さ10μmの銅箔(負極集電体)の両面に塗布し、得られた塗膜を乾燥及び圧延して負極活物質層を形成し、総厚180μmの負極を作製した。この負極を裁断して、57mm幅の帯状負極を得た。
(2) Production of strip-shaped negative electrode 3 kg of artificial graphite, 75 g of a 40% by mass aqueous dispersion of a modified styrene butadiene rubber (trade name: BM-400B, manufactured by Nippon Zeon Co., Ltd.), 30 g of carboxymethyl cellulose, and an appropriate amount of water Was stirred with a double-arm kneader to prepare a negative electrode mixture slurry. This slurry was applied to both surfaces of a 10 μm thick copper foil (negative electrode current collector), and the obtained coating film was dried and rolled to form a negative electrode active material layer, thereby preparing a negative electrode having a total thickness of 180 μm. The negative electrode was cut to obtain a strip-shaped negative electrode having a width of 57 mm.

(3)セパレータ
セパレータとしては、厚さ20μmのポリエチレン製多孔質フィルム(商品名:A089、セルガード(株)製)を用いた。
(3) Separator As the separator, a polyethylene porous film (trade name: A089, manufactured by Celgard Co., Ltd.) having a thickness of 20 μm was used.

(4)芯棒
芯棒としては、厚さ0.2mmの冷間圧延ステンレス鋼(SUS304−CS)からなり、外周面にらせん状に周回する割りスリットが形成された、径3mm、長さ58mmの円筒状芯棒を用いた。割りスリットのスリット幅は0.5mmであり、周回数は0.5回であった。
(4) Core rod The core rod is made of cold-rolled stainless steel (SUS304-CS) with a thickness of 0.2 mm, and has a split slit that spirals around the outer peripheral surface. The diameter is 3 mm and the length is 58 mm. A cylindrical core rod was used. The slit width of the split slit was 0.5 mm, and the number of turns was 0.5.

(5)非水電解質の調製
エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの体積比1:1:1の混合溶媒に、LiPF6を溶解させ、さらにビニレンカーボネートを添加して、非水電解質を調製した。LiPF6の濃度は、前記混合溶媒1リットルに対して1モルとした。ビニレンカーボネートの添加量は、前記混合溶媒100質量部に対して3質量部とした。
(5) Preparation of non-aqueous electrolyte LiPF 6 is dissolved in a mixed solvent of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate in a volume ratio of 1: 1: 1, and vinylene carbonate is further added to prepare a non-aqueous electrolyte. did. The concentration of LiPF 6 was 1 mol with respect to 1 liter of the mixed solvent. The amount of vinylene carbonate added was 3 parts by mass with respect to 100 parts by mass of the mixed solvent.

(6)非水電解質二次電池の作製
(6−1)電極群収容工程
帯状正極と帯状負極との間にセパレータを介在させてこれらを捲回し、円柱状の捲回型電極群を作製した。アルミニウム製正極リードにより、正極集電体と安全弁を有する封口板の下面とを接続した。ニッケル製負極リードにより、負極集電体とニッケルめっきを表面に施した鉄製の有底円筒型電池ケース(内径18mm)の内底面とを接続した。捲回型電極群の長手方向両端にポリプロピレン製絶縁板を装着した後、捲回型電極群を電池ケース内に収容した。捲回型電極群の中心部(中心の空洞部分、初期直径4mm)に、芯棒を挿入した。
(6) Production of non-aqueous electrolyte secondary battery (6-1) Electrode group housing step A separator is interposed between the belt-like positive electrode and the belt-like negative electrode, and these are wound to produce a cylindrical wound electrode group. . The positive electrode current collector and the lower surface of the sealing plate having the safety valve were connected by an aluminum positive electrode lead. The negative electrode current collector was connected to the inner bottom surface of an iron-bottomed cylindrical battery case (inner diameter: 18 mm) with nickel plating on the surface by a nickel negative electrode lead. After the polypropylene insulating plates were attached to both ends in the longitudinal direction of the wound electrode group, the wound electrode group was accommodated in the battery case. A core rod was inserted into the center part of the wound electrode group (center cavity, initial diameter 4 mm).

(6−2)電解質注液工程及び電解質含浸工程
前記捲回型電極群を収容した電池ケース内を減圧(260mmHg≒約346.6×102Pa)にした状態で、芯棒の中空部に非水電解質5.0gを注液し、前記の減圧状態を10秒間維持した。その後、電池ケース内を大気圧に戻し、芯棒の割りスリットを通じて、非水電解質を捲回型電極群に含浸させた。
(6-2) Electrolyte injection step and electrolyte impregnation step In the state where the inside of the battery case containing the wound electrode group is decompressed (260 mmHg≈346.6 × 10 2 Pa), A nonaqueous electrolyte (5.0 g) was injected, and the reduced pressure state was maintained for 10 seconds. Thereafter, the inside of the battery case was returned to atmospheric pressure, and the wound electrode group was impregnated with the nonaqueous electrolyte through the split slit of the core rod.

次に、電池ケースの開口にポリプロピレン製ガスケットを介して封口板を配置し、電池ケースの開口端部を封口板の周縁部にかしめた。これにより、内径18mm、高さ65mm、設計容量2000mAhの円筒型リチウム二次電池を作製した。   Next, a sealing plate was disposed in the opening of the battery case via a polypropylene gasket, and the opening end of the battery case was crimped to the peripheral edge of the sealing plate. Thus, a cylindrical lithium secondary battery having an inner diameter of 18 mm, a height of 65 mm, and a design capacity of 2000 mAh was produced.

(実施例2〜5)
芯棒における割スリットの周回数を、1回(実施例2)、2回(実施例3)、3回(実施例4)又は4回(実施例5)に変更する以外は、実施例1と同様にして、内径18mm、高さ65mm、設計容量2000mAhの円筒型リチウム二次電池をそれぞれ作製した。
(Examples 2 to 5)
Example 1 except that the number of rounds of the split slit in the core rod is changed to 1 (Example 2), 2 (Example 3), 3 (Example 4) or 4 (Example 5). In the same manner, cylindrical lithium secondary batteries having an inner diameter of 18 mm, a height of 65 mm, and a design capacity of 2000 mAh were produced.

(実施例6〜10)
芯棒における割スリットの周回数を2回に変更し、且つ、スリット幅を0.2mm(実施例6)、0.8mm(実施例7)、1.5mm(実施例8)、2mm(実施例9)又は2.5mm(実施例10)に変更する以外は、実施例1と同様にして、内径18mm、高さ65mm、設計容量2000mAhの円筒型リチウム二次電池をそれぞれ作製した。
(Examples 6 to 10)
The number of rounds of the split slit in the core rod was changed to 2 and the slit width was 0.2 mm (Example 6), 0.8 mm (Example 7), 1.5 mm (Example 8), 2 mm (implemented) Except for changing to Example 9) or 2.5 mm (Example 10), cylindrical lithium secondary batteries having an inner diameter of 18 mm, a height of 65 mm, and a design capacity of 2000 mAh were produced in the same manner as in Example 1.

(実施例11)
芯棒における割スリットの周回数を2回に変更し、正極集電体として、連通孔(穿孔)を有するアルミニウム箔(厚さ15μm、穿孔の平均孔径0.5mm、開孔率40%)を使用し、且つ、負極集電体として、連通孔(穿孔)を有する銅箔(厚さ10μm、穿孔の平均孔径0.5mm、開孔率40%)を使用する以外は、実施例1と同様にして、内径18mm、高さ65mm、設計容量2000mAhの円筒型リチウム二次電池を作製した。開孔率は、集電体の体積に対する、集電体が有する連通孔の全容積の百分率である。
(Example 11)
The number of rounds of the split slit in the core rod was changed to 2 times, and an aluminum foil having a communication hole (perforation) (thickness 15 μm, average diameter of the perforation 0.5 mm, opening rate 40%) was used as the positive electrode current collector. The same as in Example 1 except that a copper foil (thickness 10 μm, average hole diameter 0.5 mm, hole opening ratio 40%) having communication holes (perforations) was used as the negative electrode current collector. Thus, a cylindrical lithium secondary battery having an inner diameter of 18 mm, a height of 65 mm, and a design capacity of 2000 mAh was produced. The open area ratio is a percentage of the total volume of the communication holes of the current collector with respect to the volume of the current collector.

(比較例1)
芯棒として、厚さ0.2mmの冷間圧延ステンレス鋼(SUS304−CS)からなり、長手方向に延びる直線状の割りスリット(スリット幅0.5mm)が外周面に形成された、径3mm、長さ58mmの円筒状芯棒を用いる以外は、実施例1と同様にして、内径18mm、高さ65mm、設計容量2000mAhの円筒型リチウム二次電池を作製した。
実施例1〜11及び比較例1で得られた電池の特徴を、表1にまとめて示す。
(Comparative Example 1)
The core rod is made of cold-rolled stainless steel (SUS304-CS) having a thickness of 0.2 mm, and a linear slit (slit width 0.5 mm) extending in the longitudinal direction is formed on the outer peripheral surface. A cylindrical lithium secondary battery having an inner diameter of 18 mm, a height of 65 mm, and a design capacity of 2000 mAh was produced in the same manner as in Example 1 except that a cylindrical core rod having a length of 58 mm was used.
Table 1 summarizes the characteristics of the batteries obtained in Examples 1 to 11 and Comparative Example 1.

Figure 2011154859
Figure 2011154859

(試験例1)
実施例1〜11及び比較例1の電池の作製に際し、電解質注液工程において電池ケース内を減圧状態(260mmHg×10秒間)にして芯棒の中空部に非水電解質を注液した。引き続き、電解質含浸工程において電池ケース内部の圧力を大気圧に戻し、非水電解質を捲回型電極群に含浸させた。なお、電池ケース内部の圧力を大気圧に戻した直後には、各芯棒の中空部の端部に非水電解質が残存していることを目視により確認した。
(Test Example 1)
In producing the batteries of Examples 1 to 11 and Comparative Example 1, the inside of the battery case was reduced in pressure (260 mmHg × 10 seconds) in the electrolyte pouring step, and a nonaqueous electrolyte was poured into the hollow portion of the core rod. Subsequently, in the electrolyte impregnation step, the pressure inside the battery case was returned to atmospheric pressure, and the wound electrode group was impregnated with the nonaqueous electrolyte. Note that immediately after the pressure inside the battery case was returned to atmospheric pressure, it was visually confirmed that the nonaqueous electrolyte remained at the end of the hollow portion of each core rod.

[含浸面積及び電解質残量]
電池ケース内部の圧力を大気圧に戻した直後に、捲回型電極群を電池ケースから取り出し、含浸面積及び電解質残量(g)を調べた。含浸面積は、捲回型電極群を平板状にほぐし、正極の面積と負極の面積との合計に対する、非水電解質が含浸している正極の面積と負極の面積との合計の割合として求めた。また、電解質残量は、芯棒の中空部の端部に残存する非水電解質の液量を測定することにより求めた。結果を表2に示す。
[Impregnation area and electrolyte remaining amount]
Immediately after returning the pressure inside the battery case to atmospheric pressure, the wound electrode group was taken out of the battery case, and the impregnation area and the electrolyte remaining amount (g) were examined. The impregnated area was determined as a ratio of the total area of the positive electrode and the negative electrode impregnated with the non-aqueous electrolyte with respect to the total of the positive electrode area and the negative electrode area after loosening the wound electrode group into a flat plate shape. . Moreover, the electrolyte remaining amount was calculated | required by measuring the liquid quantity of the nonaqueous electrolyte which remains in the edge part of the hollow part of a core rod. The results are shown in Table 2.

[含浸時間]
電解質含浸工程において、電池ケース内部の圧力を大気圧に戻した直後に、芯棒の中空部の端部に残存する非水電解質が目視によりなくなるまでの時間を、含浸時間(分)として求めた。結果を表2に示す。
[内部抵抗]
実施例1〜11及び比較例1の電池の内部抵抗(mΩ)を測定し、結果を表2に示す。
[Impregnation time]
In the electrolyte impregnation step, immediately after the pressure inside the battery case was returned to atmospheric pressure, the time until the nonaqueous electrolyte remaining at the end of the hollow portion of the core rod disappeared visually was determined as the impregnation time (minutes). . The results are shown in Table 2.
[Internal resistance]
The internal resistance (mΩ) of the batteries of Examples 1 to 11 and Comparative Example 1 was measured, and the results are shown in Table 2.

Figure 2011154859
Figure 2011154859

表2から、実施例1〜11の電池は、比較例1の従来の電池に比べて、非水電解質の含浸面積が増加し及び含浸速度が高まり、非水電解質の含浸性が向上していることが明らかである。   From Table 2, the batteries of Examples 1 to 11 have an increased non-aqueous electrolyte impregnation area and an increased impregnation rate and improved non-aqueous electrolyte impregnation compared to the conventional battery of Comparative Example 1. It is clear.

実施例1〜11の電池では、らせん状に周回する割りスリットが、外周面のほぼ全面に形成された芯棒を捲回型電極群の中心部に挿入している。このような芯棒の中空部に非水電解質を注液した場合、非水電解質は割りスリットを通じて捲回型電極群に浸透していく。したがって、実施例1〜11の電池では、非水電解質が、捲回型電極群全体にほぼ均一に行き渡り易くなり、非水電解質の含浸性が向上したと考えられる。   In the batteries of Examples 1 to 11, the split slit that circulates in a spiral shape inserts a core rod formed on almost the entire outer peripheral surface into the center of the wound electrode group. When a nonaqueous electrolyte is injected into the hollow portion of such a core rod, the nonaqueous electrolyte penetrates into the wound electrode group through the slit. Therefore, in the batteries of Examples 1 to 11, it is considered that the nonaqueous electrolyte easily spreads almost uniformly throughout the wound electrode group, and the impregnation property of the nonaqueous electrolyte was improved.

また、実施例11の電池は、実施例1〜10の電池に比べて、非水電解質の含浸性がさらに向上していることが明らかである。これは、実施例11の電池において、連通孔を有する金属箔を正極集電体及び負極集電体としてを用いたことによると考えられる。すなわち、割りスリットと各集電体の連通孔とが相乗的に作用することにより、含浸面積がさらに増加し、含浸速度がさらに高くなり、含浸性がさらに向上したと考えられる。   In addition, it is apparent that the battery of Example 11 is further improved in the impregnation property of the nonaqueous electrolyte as compared with the batteries of Examples 1-10. This is presumably because, in the battery of Example 11, a metal foil having communication holes was used as the positive electrode current collector and the negative electrode current collector. That is, it is considered that the impregnation area is further increased, the impregnation speed is further increased, and the impregnation property is further improved by the synergistic action of the split slit and the communication hole of each current collector.

また、表2から、実施例1〜11の電池は、比較例1の従来の電池に比べて、内部抵抗値が約1/3以下であり、高出力が可能であることが明らかである。   Also, from Table 2, it is clear that the batteries of Examples 1 to 11 have an internal resistance value of about 1/3 or less, and can have a high output as compared with the conventional battery of Comparative Example 1.

[内部短絡に対する安全性]
実施例1〜11及び比較例1の各電池を治具により固定した。各電池の側面上方から金属板を介して各電池に13kNの押し潰し力を印加し、印加前後の電池電圧を測定して、内部短絡の発生状況を調べた。
[Safety against internal short circuit]
The batteries of Examples 1 to 11 and Comparative Example 1 were fixed with a jig. A crushing force of 13 kN was applied to each battery from above the side surface of each battery through a metal plate, and the battery voltage before and after application was measured to examine the occurrence of internal short circuit.

実施例2〜4、6〜9及び11の電池は、内部短絡が発生しなかったが、実施例1、5及び10並びに比較例1の電池は、内部短絡が発生した。内部短絡発生後の各電池を分解したところ、割りスリットに沿う周方向の端面の一方が起立した状態になっていた。特に、比較例1の電池では、起立した端面が、正極及びセパレータを貫通し、負極まで達していた。   The batteries of Examples 2 to 4, 6 to 9 and 11 did not cause an internal short circuit, but the batteries of Examples 1, 5 and 10 and Comparative Example 1 had an internal short circuit. When each battery after the occurrence of an internal short circuit was disassembled, one of the end faces in the circumferential direction along the split slit was standing. In particular, in the battery of Comparative Example 1, the standing end face penetrated the positive electrode and the separator and reached the negative electrode.

実施例1の電池では、割りスリットの周回数が少なすぎるため、外部応力に対して、芯棒の変形を抑制する効果が低下し、内部短絡に至ったものと考えられる。また、実施例5の電池では、割りスリットの周回数が多すぎるために、芯棒の剛性が低下し、内部短絡が発生したと考えられる。実施例10の電池では、割りスリットの幅が大きすぎるために、外部応力を吸収又は緩和する作用よりも、芯棒の剛性を低下させる作用が大きくなり、芯棒が電極群を内側から押圧する力が不足したため、内部短絡に至ったものと考えられる。   In the battery of Example 1, since the number of turns of the split slit is too small, it is considered that the effect of suppressing the deformation of the core rod with respect to the external stress is reduced, leading to an internal short circuit. Moreover, in the battery of Example 5, since the number of rounds of the split slit is too large, it is considered that the rigidity of the core rod was reduced and an internal short circuit occurred. In the battery of Example 10, since the width of the split slit is too large, the effect of reducing the rigidity of the core rod is greater than the effect of absorbing or relaxing external stress, and the core rod presses the electrode group from the inside. It is thought that an internal short circuit was caused due to lack of force.

以上の結果から、芯棒の割りスリットがらせん形状を有することで、非水電解質の含浸性と内部短絡の発生を抑制する効果とを両立できることがわかった。   From the above results, it was found that the split slit of the core rod has a spiral shape, so that both the impregnation property of the nonaqueous electrolyte and the effect of suppressing the occurrence of internal short circuit can be achieved.

本発明の芯棒は、捲回型電極群を用いる非水電解質二次電池全般に使用でき、特に、小型且つ円筒型の非水電解質二次電池に好適に使用できる。
本発明の非水電解質二次電池は、従来の非水電解質二次電池と同様の用途に使用でき、例えば、電子機器、電気機器、工作機器、輸送機器等の主電源又は補助電源として有用である。電子機器には、パーソナルコンピュータ、携帯電話、モバイル機器、携帯情報端末、携帯用ゲーム機器、ビデオカメラ等がある。電気機器には、掃除機等がある。工作機器には、電動工具、ロボット等がある。輸送機器には、ハイブリッド電気自動車、電気自動車、燃料電池自動車、プラグインHEV等がある。
The core rod of the present invention can be used for all non-aqueous electrolyte secondary batteries using a wound electrode group, and can be particularly suitably used for small and cylindrical non-aqueous electrolyte secondary batteries.
The non-aqueous electrolyte secondary battery of the present invention can be used for the same applications as conventional non-aqueous electrolyte secondary batteries, and is useful as a main power source or auxiliary power source for electronic devices, electrical devices, machine tools, transportation devices, etc. is there. Electronic devices include personal computers, mobile phones, mobile devices, personal digital assistants, portable game devices, video cameras, and the like. The electrical equipment includes a vacuum cleaner. Machine tools include electric tools and robots. Transportation equipment includes hybrid electric vehicles, electric vehicles, fuel cell vehicles, plug-in HEVs, and the like.

1 芯棒
2 割りスリット
3 中空部
4 一端
5 他端
6 金属板
7 円柱体
8 矢符
10 非水電解質二次電池
11 捲回型電極群
20 帯状の正極
21 帯状の負極
22 セパレータ
23 正極リード
24 負極リード
25 上部絶縁板
26 下部絶縁板
27 電池ケース
28 封口板
29 ガスケット
30 安全弁
DESCRIPTION OF SYMBOLS 1 Core rod 2 Split slit 3 Hollow part 4 One end 5 Other end 6 Metal plate 7 Column body 8 Arrow 10 Nonaqueous electrolyte secondary battery 11 Winding electrode group 20 Band-shaped positive electrode 21 Band-shaped negative electrode 22 Separator 23 Positive electrode lead 24 Negative electrode lead 25 Upper insulating plate 26 Lower insulating plate 27 Battery case 28 Sealing plate 29 Gasket 30 Safety valve

Claims (8)

長手方向に沿って、一端から他端に向かって、らせん状に周回する割りスリットを有する中空筒であることを特徴とする、円筒型非水電解質二次電池の捲回型電極群の中心部に挿入される芯棒。   A central part of a wound electrode group of a cylindrical non-aqueous electrolyte secondary battery, characterized in that it is a hollow cylinder having a split slit that spirally turns from one end to the other end along the longitudinal direction. Core rod to be inserted into. 前記割りスリットのらせん状の周回数が1〜3である請求項1に記載の芯棒。   The core rod according to claim 1, wherein the split slit has a helical turn number of 1 to 3. 前記割りスリットのスリット幅が0.1mm〜2mmである請求項1又は2に記載の芯棒。   The core rod according to claim 1 or 2, wherein a slit width of the split slit is 0.1 mm to 2 mm. 請求項1〜3の何れか1項に記載の芯棒と、前記芯棒の周囲に配置されて、帯状の正極と帯状の負極とをこれらの間にセパレータを介在させて捲回してなる電極群と、を備える円筒型非水電解質二次電池用捲回型電極群。   An electrode comprising: the core rod according to any one of claims 1 to 3; and a belt-like positive electrode and a belt-like negative electrode that are wound around the core rod with a separator interposed therebetween. A wound electrode group for a cylindrical non-aqueous electrolyte secondary battery. 前記正極は、正極集電体と前記正極集電体の両面に形成された正極活物質層とを備え、且つ、前記負極は、負極集電体と前記負極集電体の両面に形成された負極活物質層とを備え、前記正極集電体及び前記負極集電体がそれぞれ複数の連通孔を有する多孔性基板である請求項4に記載の円筒型非水電解質二次電池用捲回型電極群。   The positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on both surfaces of the positive electrode current collector, and the negative electrode is formed on both surfaces of the negative electrode current collector and the negative electrode current collector. The wound type for a cylindrical nonaqueous electrolyte secondary battery according to claim 4, further comprising a negative electrode active material layer, wherein each of the positive electrode current collector and the negative electrode current collector is a porous substrate having a plurality of communication holes. Electrode group. 請求項4又は5に記載の円筒型非水電解質二次電池用の捲回型電極群と、非水電解質と、前記電極群及び前記非水電解質を収容する電池ケースと、を備える円筒型非水電解質二次電池。   A cylindrical non-aqueous electrolyte comprising: a wound electrode group for the cylindrical non-aqueous electrolyte secondary battery according to claim 5; a non-aqueous electrolyte; and a battery case that houses the electrode group and the non-aqueous electrolyte. Water electrolyte secondary battery. 電池ケースに、請求項4に記載の円筒型非水電解質二次電池用捲回型電極群を収容する電極群収容工程と、
前記電池ケース内を減圧にして、前記電極群に含まれる芯棒の中空部に非水電解質を注液する電解質注液工程と、
前記電池ケース内を大気圧に戻すことにより、前記芯棒が有する割りスリットを通じて、前記非水電解質を前記電極群に含浸させる電解質含浸工程と、を備える円筒型非水電解質二次電池の製造方法。
An electrode group housing step for housing the wound electrode group for the cylindrical nonaqueous electrolyte secondary battery according to claim 4 in a battery case;
An electrolyte injection step of reducing the pressure inside the battery case and injecting a nonaqueous electrolyte into the hollow portion of the core rod included in the electrode group,
An electrolyte impregnation step for impregnating the non-aqueous electrolyte into the electrode group through a slit formed in the core rod by returning the inside of the battery case to atmospheric pressure, and a method for producing a cylindrical non-aqueous electrolyte secondary battery .
電池ケースに、請求項5に記載の円筒型非水電解質二次電池用捲回型電極群を収容する電極群収容工程と、
前記電池ケース内を減圧にして、前記電極群に含まれる芯棒の中空部に非水電解質を注液する電解質注液工程と、
前記電池ケース内を大気圧に戻すことにより、前記芯棒が有する割りスリットと、前記電極群に含まれる正極集電体及び負極集電体がそれぞれ有する連通孔とを通じて、前記非水電解質を前記電極群に含浸させる電解質含浸工程と、を備える非水電解質二次電池の製造方法。
An electrode group housing step of housing the wound electrode group for the cylindrical nonaqueous electrolyte secondary battery according to claim 5 in a battery case;
An electrolyte injection step of reducing the pressure inside the battery case and injecting a nonaqueous electrolyte into the hollow portion of the core rod included in the electrode group,
By returning the inside of the battery case to atmospheric pressure, the non-aqueous electrolyte is passed through the slits of the core rod and the communication holes of the positive electrode current collector and the negative electrode current collector included in the electrode group, respectively. An electrolyte impregnation step for impregnating the electrode group. A method for producing a nonaqueous electrolyte secondary battery.
JP2010015138A 2010-01-27 2010-01-27 Core rod, coiled type electrode group for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and method for manufacturing the non-aqueous electrolyte secondary battery Pending JP2011154859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015138A JP2011154859A (en) 2010-01-27 2010-01-27 Core rod, coiled type electrode group for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and method for manufacturing the non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015138A JP2011154859A (en) 2010-01-27 2010-01-27 Core rod, coiled type electrode group for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and method for manufacturing the non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2011154859A true JP2011154859A (en) 2011-08-11

Family

ID=44540690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015138A Pending JP2011154859A (en) 2010-01-27 2010-01-27 Core rod, coiled type electrode group for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and method for manufacturing the non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2011154859A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167116A1 (en) * 2015-04-16 2016-10-20 Necエナジーデバイス株式会社 Method and device for manufacturing secondary cell
WO2022186083A1 (en) * 2021-03-01 2022-09-09 株式会社村田製作所 Non-aqueous electrolyte secondary battery
KR20230040518A (en) * 2021-09-16 2023-03-23 주식회사 비츠로셀 Cylindrical lithium secondary battery with improved safety through control of electrolyte

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167116A1 (en) * 2015-04-16 2016-10-20 Necエナジーデバイス株式会社 Method and device for manufacturing secondary cell
JPWO2016167116A1 (en) * 2015-04-16 2018-02-15 Necエナジーデバイス株式会社 Secondary battery manufacturing method and manufacturing apparatus
US10476097B2 (en) 2015-04-16 2019-11-12 Envision Aesc Energy Devices Ltd. Method of manufacturing secondary battery and apparatus for the same
WO2022186083A1 (en) * 2021-03-01 2022-09-09 株式会社村田製作所 Non-aqueous electrolyte secondary battery
KR20230040518A (en) * 2021-09-16 2023-03-23 주식회사 비츠로셀 Cylindrical lithium secondary battery with improved safety through control of electrolyte
KR102626004B1 (en) * 2021-09-16 2024-01-17 주식회사 비츠로셀 Cylindrical lithium secondary battery with improved safety through control of electrolyte

Similar Documents

Publication Publication Date Title
KR101452875B1 (en) Non-aqueous secondary battery
JP4306697B2 (en) Secondary battery
JP5079461B2 (en) Positive electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR102361368B1 (en) Lithium ion secondary battery
EP2942828A1 (en) Lithium electrode and lithium secondary battery comprising same
EP3567663A1 (en) Non-aqueous electrolyte secondary battery and material for use in same
JP6746506B2 (en) Non-aqueous electrolyte secondary battery
JP2007273183A (en) Negative electrode and secondary battery
KR101476963B1 (en) Cylindrical battery
WO2019189332A1 (en) Electrode for lithium ion battery, lithium ion battery, and electrode roll body for lithium ion battery
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR20110066164A (en) Nonaqueous electrolyte secondary battery
EP2621001A1 (en) Positive electrode, method of manufacturing the same, and lithium battery comprising the positive electrode
JP2019164965A (en) Lithium ion secondary battery
WO2013108841A1 (en) Non-aqueous electrolyte secondary cell containing scavenger
JP6725261B2 (en) Lithium ion secondary battery
JP2011154859A (en) Core rod, coiled type electrode group for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and method for manufacturing the non-aqueous electrolyte secondary battery
JP2018170142A (en) Lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2018170113A (en) Positive electrode and lithium ion secondary battery
JP2007242348A (en) Lithium-ion secondary battery
JP6855882B2 (en) Positive electrode and lithium ion secondary battery
JP6392566B2 (en) Nonaqueous electrolyte secondary battery
JP7017108B2 (en) Active materials, electrodes and lithium-ion secondary batteries
WO2019102883A1 (en) Nonaqueous-electrolyte cell