JP2011153857A - Seal mechanism of fuel cladding tube - Google Patents

Seal mechanism of fuel cladding tube Download PDF

Info

Publication number
JP2011153857A
JP2011153857A JP2010014322A JP2010014322A JP2011153857A JP 2011153857 A JP2011153857 A JP 2011153857A JP 2010014322 A JP2010014322 A JP 2010014322A JP 2010014322 A JP2010014322 A JP 2010014322A JP 2011153857 A JP2011153857 A JP 2011153857A
Authority
JP
Japan
Prior art keywords
fuel cladding
cladding tube
ring
backup ring
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010014322A
Other languages
Japanese (ja)
Inventor
Masafumi Nakatsuka
雅文 中司
Hiroshi Sakamoto
寛 坂本
Toru Higuchi
徹 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Global Nuclear Fuel Japan Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Global Nuclear Fuel Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd, Global Nuclear Fuel Japan Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP2010014322A priority Critical patent/JP2011153857A/en
Publication of JP2011153857A publication Critical patent/JP2011153857A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seal mechanism which makes seal mechanisms at both ends of a fuel cladding tube have wide gaps so as to be remotely controlled when attaching the fuel cladding tube to a testing machine by remote control, and capable of closing the gaps and allows the slide of the fuel cladding tube on a sealing surface at the time of a high-temperature and a high-pressure test. <P>SOLUTION: The seal mechanism of the fuel cladding tube 11 has end plugs 15 and 21 arranged at both the ends of the fuel cladding tube 11, introduces a pressuring medium into the fuel cladding tube 11 via an inlet hole 13 formed at one end plug 21, and conducts a mechanical characteristic test on the fuel cladding tube 11 where a cross section having a predetermined gap G formed between the fuel cladding tube 11 and itself is composed of a backup ring 16 formed of a bent, hard, and plastic material, and a soft O-ring 14 arranged adjacent to the backup ring 16 before the mechanical characteristic test, and the gap G is closed by the deformation of the backup ring 16 at the time of the mechanical characteristic test. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、原子炉内で使用された照射済み燃料被覆管の機械的特性を測定するためのシール機構に関する。   The present invention relates to a sealing mechanism for measuring mechanical properties of irradiated fuel cladding used in a nuclear reactor.

一般的な管状材料の機械的特性を測定する技術として、管の引張試験以外に、片端を溶接もしくは機械的に閉じて、他の端に内圧導入穴付きの栓を同様な手法で固着させて、ガスや液体からなる加圧媒体を導入して、圧力と管の膨張量との関係および破裂時の最大圧力や破裂時の塑性変形を測定する試験(クローズドエンド内圧破裂試験)が知られている。その際のシールには溶接や機械的な固着法などの確立した技術が適用できる。   As a technique for measuring the mechanical properties of general tubular materials, in addition to tube tensile testing, one end is welded or mechanically closed, and a stopper with an internal pressure introduction hole is fixed to the other end in the same manner. There are known tests (closed-end internal pressure burst test) for measuring the relationship between the pressure and the amount of expansion of the pipe, the maximum pressure at burst and the plastic deformation at burst, by introducing a pressurized medium consisting of gas or liquid Yes. Well-established techniques such as welding and mechanical fixing can be applied to the seal at that time.

一方、同一目的で同様な内圧負荷試験法ではあるが、両端部を固着ではなく摺動可能な端栓構造での試験(オープンエンド内圧破裂試験)をおこなうと、試験片の短尺化や単軸応力負荷条件下でのデータが得られるので技術的なメリットが多い。このオープンエンド型の内圧負荷試験方法においては、管の少なくとも一端において、溶接端栓や機械的な締め付け力による端栓で内圧を保持するのではなく、内圧に起因する管の長手方向への引張力が作用しないように、管と圧力シール用端栓機構間の相互の動き(摺動)が自由である構造にする必要がある。これを達成するためには、高温、高圧下で摺動可能なシール機構が求められていた。   On the other hand, although the same internal pressure load test method is used for the same purpose, if the end plug structure is slidable rather than fixed at both ends (open end internal pressure burst test), the test piece is shortened or uniaxial There are many technical advantages because data can be obtained under stress loading conditions. In this open-end type internal pressure load test method, at least one end of a pipe is not held at the end by a welded end plug or a mechanical clamping force, but is pulled in the longitudinal direction of the pipe due to the internal pressure. It is necessary to have a structure in which the mutual movement (sliding) between the tube and the pressure sealing end plug mechanism is free so that no force acts. In order to achieve this, a seal mechanism that can slide under high temperature and high pressure has been demanded.

従来技術で内圧をシールするために、一般的には例えばJIS B2401で公知のようにOリングとJIS規格で推奨された間隙値に従うシール方法が用いられている。このシール方法を本技術分野に適用する際の固有の問題点として、まず、100MPa以上の高い内圧のシールが必要である。この高圧用シールの例として、従来技術ではOリング溝部の嵌め合い寸法を狭くする方法や、外力によりOリングに圧縮力を加える方法や、不支持領域に起因する内外圧力差を用いたブリッジマンシールの原理によりOリングに圧縮力を加える方法等が知られている(特許文献1、特許文献2)。   In order to seal the internal pressure in the prior art, a sealing method according to a clearance value recommended by an O-ring and a JIS standard is generally used as is known, for example, in JIS B2401. As an inherent problem when this sealing method is applied to this technical field, first, a high internal pressure seal of 100 MPa or more is required. As an example of this high-pressure seal, in the prior art, a method of narrowing the fitting size of the O-ring groove, a method of applying a compressive force to the O-ring by an external force, or a bridgeman using an internal / external pressure difference caused by an unsupported region A method of applying a compressive force to the O-ring by the principle of sealing is known (Patent Document 1, Patent Document 2).

しかしながら、これらの従来技術は、いずれも室温近傍の温度を前提にしており、原子炉の冷却材温度である約300℃の高温に対応できる技術ではなかった。
また、高温に対応した高圧シール技術として、金属製またはポリイミド樹脂製のOリングの断面形状を略K字形に改良した例も報告されているが(特許文献3)、これは大径の機器用シールには適用可能であるが、本技術分野の燃料被覆管等の小径管ではOリング寸法が小さいために全体の弾性変形量も少なく嵌め合いが厳しく、このシール技術を適用することができなかった。
However, all of these conventional techniques are based on temperatures near room temperature, and have not been able to cope with a high temperature of about 300 ° C., which is the coolant temperature of the nuclear reactor.
In addition, as a high-pressure sealing technique corresponding to high temperatures, an example in which the cross-sectional shape of a metal or polyimide resin O-ring is improved to a substantially K-shape has been reported (Patent Document 3). Although applicable to seals, small-diameter pipes such as fuel cladding pipes in this technical field have a small amount of elastic deformation due to the small O-ring dimensions, and the seal technology cannot be applied. It was.

一方、照射済み燃料被覆管の強度測定試験において、高温の端栓小径部を、Oリングとバックアップリングとを組み合わせてシールする技術が知られている(特許文献4)。そこで用いられる高温用Oリングの材質(公称使用温度)として、二トリルゴム(約90℃)、シリコンゴム(約180℃)、フッ素ゴム(約180℃)、テフロン(登録商標)(純テフロン、約200℃)、テフロン(充填材添加、約300℃)、ポリイミド(約300℃)、パーフロロエラストマー(約300℃)が用いられている。   On the other hand, in a strength measurement test of an irradiated fuel cladding tube, a technique is known in which a high-temperature end plug small-diameter portion is sealed by combining an O-ring and a backup ring (Patent Document 4). As the material (nominal operating temperature) of the high-temperature O-ring used there, nitrile rubber (about 90 ° C), silicon rubber (about 180 ° C), fluororubber (about 180 ° C), Teflon (registered trademark) (pure Teflon, about 200 ° C.), Teflon (filler added, about 300 ° C.), polyimide (about 300 ° C.), and perfluoroelastomer (about 300 ° C.) are used.

特開平8−201124号公報Japanese Patent Laid-Open No. 8-201124 特許第2336195号公報Japanese Patent No. 2336195 特許第2630634号公報Japanese Patent No. 2630634 特開2007−256164号公報JP 2007-256164 A

本発明が対象にしている原子炉の照射済み燃料被覆管は、管内表面に反応生成物が沈積し表面肌が荒れるとともに、炉内での冷却材圧力のために管断面は真円から歪む不都合な面があった。さらに強い放射能を有する燃料被覆管を供試管にする場合には、セルと称呼される小部屋内に収納可能なような小型装置でかつ、微力な締め付け力しか発生しない遠隔操作で試験体の組み立てを可能にする必要があった。このため、Oリングおよびバックアップリングを端栓と供に管に挿入してシール機構を組み立てるためにはJIS規格で推奨する以上の広い間隙が必要である。   The irradiated fuel cladding tube of the reactor targeted by the present invention has the disadvantage that the reaction product is deposited on the inner surface of the reactor and the surface skin becomes rough, and the cross section of the tube is distorted from a perfect circle due to the coolant pressure in the reactor. There was a serious aspect. When using a fuel cladding tube with even stronger radioactivity as a test tube, it is a small device that can be stored in a small chamber called a cell, and the test specimen can be remotely controlled with only a slight clamping force. There was a need to allow assembly. For this reason, in order to assemble the seal mechanism by inserting the O-ring and the backup ring into the pipe together with the end plug, a wider gap than recommended by the JIS standard is required.

また、シール機能の観点からは、冷却材温度相当の高温(約300℃)下で、かつ、照射された燃料被覆管が破裂する約100MPa以上の内圧の負荷状況下において、内圧による燃料被覆管の膨張時の管長さの縮みに起因する端栓との摺動を許容しながら内圧を保持する必要がある。その際、従来技術のシール機構で採用されている間隙では、高温用Oリングでも流動化して間隙から流出してシール機能を喪失するので間隙をより狭くする必要がある。しかしながら、小径の供試管に狭い間隙の硬質Oリングを遠隔操作で挿入してシール機構を組み立てることは技術的に困難であった。   Further, from the viewpoint of the sealing function, the fuel cladding tube due to the internal pressure under a high temperature (about 300 ° C.) equivalent to the coolant temperature and under an internal pressure load condition of about 100 MPa or more at which the irradiated fuel cladding tube bursts. Therefore, it is necessary to maintain the internal pressure while allowing sliding with the end plug due to the shortening of the tube length during expansion. At that time, in the gap adopted in the sealing mechanism of the prior art, even the high temperature O-ring is fluidized and flows out of the gap to lose the sealing function, so that the gap needs to be made narrower. However, it has been technically difficult to assemble a seal mechanism by remotely inserting a hard O-ring having a narrow gap into a small-diameter test tube.

また、Oリングの材質についても、特許文献4に示された従来のシール機構で用いられるシール材の耐熱温度は低圧力でかつ静止面同士をシールする条件で得られた値であり、当該被覆管の適用温度である300℃で約100MPaの内圧を負荷してOリングの選定試験を行った結果、ポリイミド材は硬度が高すぎて組み立て時の間隙を弾性変形を用いて閉じることができず、シール機能が発揮しなかった。さらに、製造時の間隙が狭いOリングを作製すると室温での組み立て時に割れが発生しやすいという問題があった。   As for the material of the O-ring, the heat-resistant temperature of the sealing material used in the conventional sealing mechanism shown in Patent Document 4 is a value obtained under conditions of low pressure and sealing the stationary surfaces, As a result of conducting an O-ring selection test with an internal pressure of about 100 MPa at 300 ° C., which is the applicable temperature of the tube, the polyimide material is too hard to close the gap during assembly using elastic deformation. The sealing function did not work. Further, when an O-ring having a narrow gap during manufacture is produced, there is a problem that cracks are likely to occur during assembly at room temperature.

また、摺動面のシールについては、300℃、100MPaの高温・高圧下でいずれの材料のOリングも内外圧差による大変形は避けられず、そのような大きな塑性変形下ではカタログ記載の公称使用温度より低い温度で劣化が加速し、シール性能を喪失した。
なお、パーフロロエラストマー材は耐溶剤性、耐熱性に優れた性能があるが加圧媒体が高温水蒸気の場合には弱く、容易に溶解が生じてシール性能が劣化した。
For seals on sliding surfaces, the O-rings of any material cannot avoid large deformation due to internal / external pressure differences under high temperatures and high pressures of 300 ° C and 100 MPa. Under such large plastic deformations, the nominal use described in the catalog Deterioration accelerated at a temperature lower than the temperature, and the sealing performance was lost.
The perfluoroelastomer material has excellent performance in solvent resistance and heat resistance. However, when the pressurizing medium is high-temperature steam, the perfluoroelastomer material is weak and easily melts to deteriorate the sealing performance.

図5は、従来のシール構造を採用した場合の高温高圧下でのシールの挙動を示したものである。組み立て作業のためには約25〜50μmの半径間隙が必要であるが、300℃の高温下でさらに軟化した軟質Oリングは約100MPaの高圧を受けると、低圧側に押し出され間隙を通過して流出する際に破損し、シール機能を喪失している。   FIG. 5 shows the behavior of the seal under high temperature and high pressure when the conventional seal structure is adopted. A radial gap of about 25-50 μm is required for the assembly work, but when the soft O-ring softened further at a high temperature of 300 ° C. is subjected to a high pressure of about 100 MPa, it is pushed out to the low pressure side and passes through the gap. Damaged when spilled, losing sealing function.

このように、高温(約300℃)かつ高圧(約100MPa)の環境下での摺動面の圧力シールは、リング材料に流動化の傾向があるので大変形した状態での耐熱性が必要であるとともに供試管内面とシール機構との間隙からのOリング材の流出を阻止するためにJIS等の従来技術で公知の間隙より著しく狭い値とする必要があることが分かった。
一方、本技術の適用分野では、燃料被覆管からなる供試管が強い放射能を有するためにセルと称呼される隔離部屋内で遠隔操作によってシール機構の組み立てを行う必要性から、組み立て時には供試管とOリングとの間隙は逆に広いことも同時に満たされなければならない等の相反する要件があった。
As described above, the pressure seal on the sliding surface under a high temperature (about 300 ° C.) and high pressure (about 100 MPa) environment requires fluidity in the ring material, and thus requires heat resistance in a largely deformed state. In addition, in order to prevent the O-ring material from flowing out from the gap between the inner surface of the test tube and the seal mechanism, it has been found that the value must be significantly narrower than the gap known in the prior art such as JIS.
On the other hand, in the application field of this technology, since the test tube made of the fuel cladding tube has strong radioactivity, it is necessary to assemble the seal mechanism by remote control in an isolation room called a cell. On the other hand, there is a conflicting requirement such that the gap between the O-ring and the O-ring must be satisfied at the same time.

本発明は上述課題を解決するためになされたもので、燃料被覆管に高温環境下で内圧を付加する機械特性試験時において、燃料被覆管を遠隔操作により試験機に装着する際は、燃料被覆管の両端部のシール機構は遠隔操作が可能なように広い間隙を有し、高温高圧試験時には当該間隙が閉じるとともにシール面での燃料被覆管の摺動を許容するシール機構を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. In a mechanical characteristic test in which an internal pressure is applied to a fuel cladding tube in a high temperature environment, when the fuel cladding tube is remotely mounted, the fuel cladding tube The seal mechanism at both ends of the pipe has a wide gap so that it can be remotely operated, and at the time of high-temperature and high-pressure tests, the gap is closed and a seal mechanism that allows the fuel clad pipe to slide on the seal surface is provided. Objective.

上記課題を解決するために、本発明に係る燃料被覆管のシール機構は、燃料被覆管の両端に端栓を配置し、一方の端栓に設けられた導入孔を経由して前記燃料被覆管内に加圧媒体を導入し、高温下で前記燃料被覆管の膨張量や破壊内圧を測定することにより燃料被覆管の機械的特性試験をおこなう燃料被覆管のシール機構において、前記シール機構は、前記機械的特性試験の前は前記燃料被覆管との間に所定の間隙が形成される断面が屈曲した硬質かつ可塑性材料からなるバックアップリングと、前記バックアップリングに隣接して配置される軟質0リングとからなり、前記シール機構は、前記バックアップリングが前記端栓側になるように前記両端の端栓内側に配置されるとともに、前記機械的特性試験時に前記バックアップリングの変形により前記間隙が閉じることを特徴とする。   In order to solve the above-mentioned problems, a sealing mechanism for a fuel cladding tube according to the present invention includes end plugs disposed at both ends of the fuel cladding tube, and the inside of the fuel cladding tube via an introduction hole provided in one end plug. In the fuel cladding tube sealing mechanism, a mechanical property test of the fuel cladding tube is performed by introducing a pressurized medium into the fuel cell and measuring an expansion amount and a fracture internal pressure of the fuel cladding tube at a high temperature. Before the mechanical property test, a backup ring made of a hard and plastic material having a bent cross-section with a predetermined gap formed between the fuel cladding tube and a soft 0-ring arranged adjacent to the backup ring; The sealing mechanism is disposed inside the end plugs at both ends so that the backup ring is on the end plug side, and the back-up ring is deformed during the mechanical property test. Characterized in that more the gap is closed.

本発明によれば、燃料被覆管のシール機構のバックアップリングを屈曲させることにより、燃料被覆管に高温環境下で内圧を付加する機械特性試験時において、燃料被覆管を遠隔操作により試験機に装着する際は、燃料被覆管の両端部のシール機構は遠隔操作が可能なように広い間隙を有し、高温高圧試験時には当該間隙が閉じるとともにシール面での燃料被覆管の摺動を許容するシール機構を提供することができる。   According to the present invention, by bending the backup ring of the seal mechanism of the fuel cladding tube, the fuel cladding tube is mounted on the tester by remote control during a mechanical property test in which internal pressure is applied to the fuel cladding tube in a high temperature environment. In this case, the seal mechanism at both ends of the fuel cladding tube has a wide gap so that it can be remotely operated. During high temperature and high pressure tests, the gap is closed and the seal that allows the fuel cladding tube to slide on the seal surface A mechanism can be provided.

本発明の実施形態に係るシール機構の構成図。The block diagram of the seal mechanism which concerns on embodiment of this invention. 本発明の実施形態に係るシール機構の全体構成図。The whole block diagram of the seal mechanism concerning the embodiment of the present invention. 本発明の実施形態に係るバックアップリングの構成図。The block diagram of the backup ring which concerns on embodiment of this invention. 本発明の実施形態に係るシール機構の機械的特性試験時の状態を示す図。The figure which shows the state at the time of the mechanical characteristic test of the seal mechanism which concerns on embodiment of this invention. 従来のシール機構の構成図。The block diagram of the conventional sealing mechanism.

本発明に係る燃料被覆管等のシール機構は、原子炉で使用された結果、放射性材料になった照射済みの原子炉用燃料被覆管等の小径の管状部材を適宜切断して供試管とし、セルと称呼される室の中に遠隔操作により設置し、供試管の内部に内圧を負荷して供試管の強度等の機械的な特性を測定するために、供試管の両端部が端栓と相互に摺動可能な状態で、高温雰囲気下で供試管が破裂を生じるのに十分な高圧を保持することが可能なシール機構に関する。
なお、以下の説明では、長尺の燃料被覆管から試験のために適宜の長さに切断された供試管も、便宜上、燃料被覆管という。
The sealing mechanism such as the fuel cladding tube according to the present invention is used as a test tube by appropriately cutting a small-diameter tubular member such as an irradiated nuclear reactor fuel cladding tube as a result of being used in a nuclear reactor, In order to measure the mechanical properties such as the strength of the test tube by applying the internal pressure to the inside of the test tube and measuring the mechanical properties such as the strength of the test tube, both ends of the test tube are connected to the end plugs. The present invention relates to a seal mechanism capable of maintaining a high pressure sufficient to cause a test tube to rupture in a high temperature atmosphere while being slidable with respect to each other.
In the following description, a test tube cut from a long fuel cladding tube to an appropriate length for testing is also referred to as a fuel cladding tube for convenience.

以下、本発明に係る燃料被覆管(供試管)のシール機構の実施形態を、図面を参照して説明する。
図1及び図2は燃料被覆管の内圧破裂試験をおこなう際の、燃料被覆管、端栓及びシール機構の配置図である。
Embodiments of a sealing mechanism for a fuel cladding tube (test tube) according to the present invention will be described below with reference to the drawings.
FIGS. 1 and 2 are layout diagrams of the fuel cladding tube, the end plug, and the seal mechanism when performing the internal pressure burst test of the fuel cladding tube.

図1及び図2において、試験対象の燃料被覆管11は、その一方の端部に端栓15が嵌合され、他方の端部に加圧媒体が導入される導入孔13が設けられた端栓21が嵌合される。燃料被覆管11の両端部外周には、燃料被覆管11と端栓15、21との嵌合状態を維持する端部膨張拘束リング12が配置されている。端栓15、21の内側面には凸部15a、21aが形成されており、当該凸部15a、21aの周囲に軟質のOリング14と高温可塑性材料からなる“く”の字状に屈曲したバックアップリング16が隣接して配置される。   1 and 2, an end plug 15 is fitted to one end of the fuel cladding tube 11 to be tested, and an end provided with an introduction hole 13 for introducing a pressurized medium to the other end. The stopper 21 is fitted. End expansion restraint rings 12 that maintain the fitted state between the fuel cladding tube 11 and the end plugs 15, 21 are disposed on the outer periphery of both ends of the fuel cladding tube 11. Convex portions 15a and 21a are formed on the inner side surfaces of the end plugs 15 and 21, and the convex portions 15a and 21a are bent around the convex portions 15a and 21a in a "<" shape made of a soft O-ring 14 and a high-temperature plastic material. A backup ring 16 is disposed adjacent to the backup ring 16.

この燃料被覆管11の内圧破裂試験をおこなう際は、両端栓15、21を試験機の基盤に固定し(図示せず)、燃料被覆管11の内部に導入孔13から内圧を負荷する。その際、両端栓11、21には内圧により外方へ力が加わるが、基盤からの反力22、23によって端栓11、21は燃料被覆管から抜けることはない。   When the internal pressure burst test of the fuel cladding tube 11 is performed, both end plugs 15 and 21 are fixed to the base of the testing machine (not shown), and the internal pressure is applied to the inside of the fuel cladding tube 11 through the introduction hole 13. At this time, force is applied to the both end plugs 11 and 21 by the internal pressure, but the end plugs 11 and 21 are not pulled out of the fuel cladding tube by the reaction forces 22 and 23 from the base.

このように構成された本実施形態のシール機構の作用を図3により説明する。
本実施形態に係るシール機構を組み込む際は、高温可塑性のバックアップリング16の外径が燃料被覆管11の内径よりも十分大きい間隙Gを形成するような寸法に加工されているので、シール機構の組み込みを遠隔操作により簡単におこなうことができる。
The operation of the sealing mechanism of this embodiment configured as described above will be described with reference to FIG.
When incorporating the seal mechanism according to this embodiment, the outer diameter of the high-temperature plastic backup ring 16 is processed so as to form a gap G that is sufficiently larger than the inner diameter of the fuel cladding tube 11. Installation can be done easily by remote control.

内圧負荷時において、軟質のOリング14が加圧媒体13により“く”の字状の高温可塑性のバックアップリング16及び端栓15、21側に押し出されると、バックアップリング16は、所定温度以上で“I”字状に塑性変形していく。   When the soft O-ring 14 is pushed out to the side of the high temperature plastic backup ring 16 and the end plugs 15 and 21 by the pressurizing medium 13 when the internal pressure is applied, the backup ring 16 becomes above a predetermined temperature. Plastically deforms into an “I” shape.

組み立て時において、“く”の字状のバックアップリング16と燃料被覆管11との初期間隙Gと、バックアップリング16の塑性変形領域部の長さLと、端栓15の内面に対する塑性変形領域部の傾斜角度θには、G=L(1−cos(θ))の関係にすることにより、例えば、Lが1.5mm、θが15°とすると間隙Gは約0.05mm(50μm)になる。   At the time of assembly, the initial gap G between the “<”-shaped backup ring 16 and the fuel cladding tube 11, the length L of the plastic deformation region of the backup ring 16, and the plastic deformation region of the inner surface of the end plug 15 For example, when L is 1.5 mm and θ is 15 °, the gap G is about 0.05 mm (50 μm) by making the inclination angle θ of G = L (1-cos (θ)). Become.

この寸法のバックアップリング16を軟質アルミニウムで作製すると、300℃の高温において、バックアップリング16は内圧により“く”字状から“I”字状に塑性変形することにより、間隙Gが閉じる。これにより、軟質Oリング14高温・高圧下で流動化しても、外部に流出することなく、燃料被覆管11の内部を気密に保持することができる。   When the backup ring 16 of this size is made of soft aluminum, the gap G is closed by plastic deformation of the backup ring 16 from a "<" shape to an "I" shape due to internal pressure at a high temperature of 300 [deg.] C. As a result, even if the soft O-ring 14 is fluidized under high temperature and high pressure, the inside of the fuel cladding tube 11 can be kept airtight without flowing out to the outside.

図4は、バックアップリング16が“く”字状から“I”字状に塑性変形し、間隙Gは丁度ゼロになるように閉じている状況を示す図である。これにより、軟質Oリング14は高温によって大きく変形するが、外部へ流出したり破損することがない。   FIG. 4 is a diagram showing a state in which the backup ring 16 is plastically deformed from a “<” shape to an “I” shape, and the gap G is closed so as to be exactly zero. As a result, the soft O-ring 14 is greatly deformed by high temperature, but does not flow out or break outside.

また、“I”字状に変形したバックアップリング16の外径は燃料被覆管11の内径に略等しいように初期寸法を定めたので、両金属面が機械的に固着することなく、燃料被覆管11の膨張に伴い管長さが収縮しても、端栓15、21に対して摺動可能になっている。   In addition, since the initial dimension is determined so that the outer diameter of the backup ring 16 deformed in an “I” shape is substantially equal to the inner diameter of the fuel cladding tube 11, the fuel cladding tube does not mechanically adhere to both metal surfaces. Even if the tube length contracts with the expansion of 11, the end plugs 15 and 21 are slidable.

なお、上記実施形態では、バックアップリングは断面が”く”の字状に屈曲した形状のものを用いているが、高温高圧試験時に間隙が閉じるものであれば、例えば、断面が曲線状又は波形状の屈曲形状としてもよい。   In the above-described embodiment, the backup ring has a cross-sectional shape bent in a “<” shape. However, if the gap is closed during the high-temperature and high-pressure test, for example, the cross-section has a curved shape or a wave shape. It may be a bent shape.

以上説明したように、本実施形態によれば、原子炉内で使用された照射済みの燃料被覆管に高温環境下で内圧を付加する機械特性試験時において、燃料被覆管を遠隔操作により試験機に装着する際は、燃料被覆管の両端部のシール機構は遠隔操作が可能なように広い間隙を有し、高温高圧試験時には当該間隙が閉じるとともにシール面での燃料被覆管の摺動を許容するシール機構を提供することができる。   As described above, according to the present embodiment, in the mechanical characteristic test in which the internal pressure is applied to the irradiated fuel cladding tube used in the nuclear reactor under a high temperature environment, the fuel cladding tube is remotely operated by a test machine. When installing the, the seal mechanism at both ends of the fuel cladding tube has a wide gap so that it can be remotely controlled. During high temperature and high pressure tests, the gap is closed and the fuel cladding tube is allowed to slide on the sealing surface. A sealing mechanism can be provided.

11…燃料被覆管(供試管)、12…端部膨張拘束リング、13…導入孔、14…Oリング、15,21…端栓、15a,21a…凸部、16…バックアップリング、51…バックアップリング。   DESCRIPTION OF SYMBOLS 11 ... Fuel cladding tube (test tube), 12 ... End part expansion restraint ring, 13 ... Introduction hole, 14 ... O-ring, 15, 21 ... End plug, 15a, 21a ... Convex part, 16 ... Backup ring, 51 ... Backup ring.

Claims (4)

燃料被覆管の両端に端栓を配置し、一方の端栓に設けられた導入孔を経由して前記燃料被覆管内に加圧媒体を導入し、高温下で前記燃料被覆管の膨張量や破壊内圧を測定することにより燃料被覆管の機械的特性試験をおこなう燃料被覆管のシール機構において、
前記シール機構は、前記機械的特性試験の前は前記燃料被覆管との間に所定の間隙が形成される断面が屈曲した硬質かつ可塑性材料からなるバックアップリングと、前記バックアップリングに隣接して配置される軟質Oリングとからなり、
前記シール機構は、前記バックアップリングが前記端栓側になるように前記両端の端栓内側に配置されるとともに、前記機械的特性試験時に前記バックアップリングの変形により前記間隙が閉じることを特徴とする燃料被覆管のシール機構。
End plugs are arranged at both ends of the fuel cladding tube, and a pressurized medium is introduced into the fuel cladding tube via an introduction hole provided in one of the end plugs. In the fuel cladding tube sealing mechanism, which performs the mechanical characteristics test of the fuel cladding tube by measuring the internal pressure,
Prior to the mechanical property test, the seal mechanism is disposed adjacent to the backup ring, and a backup ring made of a hard and plastic material having a bent cross section that forms a predetermined gap with the fuel cladding tube. Consisting of a soft O-ring,
The seal mechanism is arranged inside the end plugs at both ends so that the backup ring is on the end plug side, and the gap is closed by deformation of the backup ring during the mechanical characteristic test. Fuel cladding sealing mechanism.
前記軟質Oリングは耐熱性の高分子樹脂からなり、前記バックアップリングは高温下で塑性変形を生じる軟質アルミニウムからなることを特徴とする請求項1記載の燃料被覆管のシール機構。   2. The fuel cladding sealing mechanism according to claim 1, wherein the soft O-ring is made of a heat-resistant polymer resin, and the backup ring is made of soft aluminum that undergoes plastic deformation at high temperatures. 前記バックアップリングは断面がくの字状であることを特徴とする請求項1又は2記載の燃料被覆管のシール機構。   3. The fuel cladding tube sealing mechanism according to claim 1, wherein the backup ring has a U-shaped cross section. 前記燃料被覆管が原子炉の燃料被覆管から切り出された照射済み燃料被覆管であることを特徴とする請求項1乃至3いずれかに記載の燃料被覆管のシール機構。   The fuel cladding tube sealing mechanism according to any one of claims 1 to 3, wherein the fuel cladding tube is an irradiated fuel cladding tube cut out from a fuel cladding tube of a nuclear reactor.
JP2010014322A 2010-01-26 2010-01-26 Seal mechanism of fuel cladding tube Pending JP2011153857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010014322A JP2011153857A (en) 2010-01-26 2010-01-26 Seal mechanism of fuel cladding tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010014322A JP2011153857A (en) 2010-01-26 2010-01-26 Seal mechanism of fuel cladding tube

Publications (1)

Publication Number Publication Date
JP2011153857A true JP2011153857A (en) 2011-08-11

Family

ID=44539945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014322A Pending JP2011153857A (en) 2010-01-26 2010-01-26 Seal mechanism of fuel cladding tube

Country Status (1)

Country Link
JP (1) JP2011153857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059193A (en) * 2012-09-18 2014-04-03 Japan Atomic Energy Agency Method and jig for manufacturing cladding tube specimen of fuel rod

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256164A (en) * 2006-03-24 2007-10-04 Nippon Nuclear Fuel Dev Co Ltd Circumferential-directional strength measuring instrument for fuel sheath tube
JP2008051285A (en) * 2006-08-28 2008-03-06 Mitsubishi Cable Ind Ltd Sealing structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256164A (en) * 2006-03-24 2007-10-04 Nippon Nuclear Fuel Dev Co Ltd Circumferential-directional strength measuring instrument for fuel sheath tube
JP2008051285A (en) * 2006-08-28 2008-03-06 Mitsubishi Cable Ind Ltd Sealing structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7013002659; '軽水炉用燃料被覆管の強度延性および水素化物のふるまいに関する試験研究' 動力炉・核燃料開発事業団東海事業所技術レポート N841-74-08, 197404, 全29頁, 動力炉・核燃料開発事業団東海事業所 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059193A (en) * 2012-09-18 2014-04-03 Japan Atomic Energy Agency Method and jig for manufacturing cladding tube specimen of fuel rod

Similar Documents

Publication Publication Date Title
US20080267731A1 (en) Bolted flanged connection on a basis of shape memory effect and inverse flexion flange design
JP2007139192A (en) Seal assembly and seal assembly manufacturing and operating method
JP4753026B2 (en) Equipment for measuring the circumferential strength of fuel cladding tubes
US9823152B2 (en) Differential pressure sensor assembly
US9791389B2 (en) Pre-stressed gamma densitometer window and method of fabrication
CN104266961A (en) Thermal oxidation accelerated aging test device and service life prediction method for in-service polyethylene pipeline
JP2009122024A (en) Closing apparatus for testing piping withstand pressure, and tool for testing piping withstand pressure
Gilbert et al. In-reactor creep measurements
JP2011153857A (en) Seal mechanism of fuel cladding tube
JP2007182929A (en) Pipe repairing method
SE433141B (en) APPLY TO APPLY A PROTECTION LAYER ON THE SURFACE OF THE CORRESPONDING CORE REACTOR FUEL RODS OF Zirconium Alloy
JP2005326264A (en) Leakage amount measuring device of gasket
JP3202545U (en) Internal pressure loading mechanism on tubular specimen
Chen Fatigue behaviour of coke drum materials and its application to extend the service lives of coke drums
Sawa et al. Effect of material properties of gasket on the sealing performance of pipe flange connections at elevated temperature
Sato et al. FEM stress analysis and sealing performance of bolted flanged connections using PTFE blended gaskets under internal pressure
JP6092348B1 (en) Biaxial stress loading device and test method for tubular specimen
JP5148798B2 (en) Sealing socket and how to attach it to the tube
Sato et al. Fem stress analysis of long-term sealing performance for bolted pipe flange connections with ptfe blended gaskets under elevated temperature
CN114624132A (en) Radial fatigue performance testing device for pipes
Van Zyl et al. Numerical Simulation of the Creep Failure of a Steam Reformer Outlet Manifold
Sun et al. Effect of external bending moment and creep on sealing behavior of bolted flanged connections
Katoh et al. Determination of He and D permeability of neutron-irradiated SiC tubes to examine the potential for release due to micro-cracking
Bouzid et al. On the strength and tightness of ASME B16. 5 and B16. 47 series a standard flanges
Sato et al. FEM Stress Analysis and Mechanical Characteristics of Bolted Pipe Connections With Larger Nominal Diameter Inserting PTFE Blended Gasket Under Internal Pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203