JP2011153831A - Device for monitoring radiation in discharge canal of nuclear power plant - Google Patents

Device for monitoring radiation in discharge canal of nuclear power plant Download PDF

Info

Publication number
JP2011153831A
JP2011153831A JP2010013736A JP2010013736A JP2011153831A JP 2011153831 A JP2011153831 A JP 2011153831A JP 2010013736 A JP2010013736 A JP 2010013736A JP 2010013736 A JP2010013736 A JP 2010013736A JP 2011153831 A JP2011153831 A JP 2011153831A
Authority
JP
Japan
Prior art keywords
protective tube
detector
nuclear power
power plant
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010013736A
Other languages
Japanese (ja)
Inventor
Keikazu Tagawa
慶和 田川
Kunio Ishii
邦男 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010013736A priority Critical patent/JP2011153831A/en
Publication of JP2011153831A publication Critical patent/JP2011153831A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the upsizing of a radiation monitoring device placed in a discharge canal of a nuclear power plant. <P>SOLUTION: The device for monitoring radiation in a discharge canal of a nuclear power plant placed in a discharge canal where the sea water discharged from a nuclear power plant flows includes a detector which detects radiation in the sea water, a first cylindrical protection tube which accommodates the detector at its end and keeps the detector located below the seawater level, a second protection tube placed outside around the first protection tube to cover the part of it below the seawater level and a support structure for fixing the second protection tube onto a fixed structure. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、原子力プラントの放水路放射線モニタ装置に関する。   The present invention relates to a water discharge radiation monitoring apparatus for a nuclear power plant.

原子力プラントは、海水を取り入れて各種設備を冷却し、使用後の海水を放水路から海へ放出している。このとき、海水を放出する放水路の側壁には、放射線係数率を測定する水中機器として、放水路放射線モニタ装置を取り付けている。   Nuclear power plants take in seawater, cool various facilities, and discharge seawater after use from the spillway to the sea. At this time, a water discharge radiation monitor device is attached to the side wall of the water discharge channel that discharges seawater as an underwater device for measuring the radiation coefficient rate.

ここで、特開2001−151474号公報では、浮力を利用した水中機器の昇降装置が提案されている。   Here, Japanese Patent Laid-Open No. 2001-151474 proposes a lifting device for underwater equipment using buoyancy.

特開2001−151474号公報JP 2001-151474 A

この昇降装置は、水中機器に働く重力よりも大きな浮力を発生または外力を利用することによって、水中機器を移動させるための装置である。そのため、特許文献1には放水路放射線モニタ装置の設置構造は何ら開示されていない。   This lifting device is a device for moving an underwater device by generating a buoyancy larger than the gravity acting on the underwater device or using an external force. Therefore, Patent Document 1 does not disclose any installation structure of the discharge channel radiation monitor device.

また、放水路放射線モニタ装置を保護する保護管の全長は約7〜10mと長尺になる。そのため、放水路放射線モニタ装置の強度を確保するためには、装置を大型化する必要があった。   Moreover, the full length of the protective tube which protects a water discharge radiation monitor apparatus becomes long with about 7-10m. Therefore, in order to ensure the strength of the discharge channel radiation monitor device, it is necessary to enlarge the device.

そこで本発明は、原子力プラントの放水路に設けられた放射線モニタ装置の大型化を抑制することを目的とする。   Then, this invention aims at suppressing the enlargement of the radiation monitor apparatus provided in the water discharge channel of a nuclear power plant.

本発明は、海水中の放射線を検出する検出器と、端部に検出器を収容し、海水面より下側に検出器を配置する円筒状の第1保護管と、第1保護管の外周側に設けられ、海水面より下側の第1保護管を覆う第2保護管と、第2保護管を固定構造物に固定する支持構造体とを備えることを特徴とする。   The present invention includes a detector that detects radiation in seawater, a cylindrical first protective tube that houses the detector at the end, and is disposed below the seawater surface, and an outer periphery of the first protective tube And a support structure for fixing the second protection tube to the fixed structure. The second protection tube is provided on the side and covers the first protection tube below the seawater surface.

本発明によれば、原子力プラントの放水路に設けられた放射線モニタ装置の大型化を抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, the enlargement of the radiation monitor apparatus provided in the water discharge channel of a nuclear power plant can be suppressed.

放水路放射線モニタ装置の実施例である。It is an Example of a discharge channel radiation monitor apparatus. 放水路放射線モニタ装置の比較例である。It is a comparative example of a water discharge radiation monitor apparatus. 本実施例の第2保護管の詳細図である。It is detail drawing of the 2nd protective tube of a present Example.

一般的に、測定器または発信機などの各種機器を水中で保持する場合、その周囲を保護する保護管および支持する支持構造体が付属する。また、支持構造体は、脱落や損傷が生じないよう十分な機械的強度を備えており、且つ、固定構造物に結合している。このとき、各種水中機器および支持構造体の合計質量が大きくなるほど、支持構造体を強固にする必要がある。そのため、支持構造体は過大もしくは過重量物となる傾向にある。   Generally, when various devices such as a measuring instrument or a transmitter are held in water, a protective tube for protecting the surroundings and a supporting structure for supporting the device are attached. Further, the support structure has sufficient mechanical strength so as not to drop off or be damaged, and is bonded to the fixed structure. At this time, it is necessary to strengthen the support structure as the total mass of the various underwater devices and the support structure increases. Therefore, the support structure tends to be excessive or excessively heavy.

また、水中の温度や電磁波などを測定するために機器を水中に設ける場合、その測定方法の種類により、測定器本体または測定器の周囲を水中に開放する必要がある。   In addition, when a device is provided in water to measure the temperature and electromagnetic waves in water, it is necessary to open the measuring instrument body or the surroundings of the measuring instrument in water depending on the type of measurement method.

以下の実施例では、原子力プラントにおける放水路放射線モニタ装置を挙げる。原子力プラントは、各種設備を冷却するために取り入れた海水を放水路から海へ放出している。このとき、原子力プラントから放出される海水の放射線係数率を測定するため、放水路放射線モニタ装置が放水路に取り付けられている。   In the following embodiments, a discharge channel radiation monitoring device in a nuclear power plant is cited. The nuclear power plant discharges seawater taken in to cool various facilities from the discharge channel to the sea. At this time, in order to measure the radiation coefficient rate of the seawater discharged from the nuclear power plant, a discharge channel radiation monitor device is attached to the discharge channel.

図2は、放水路放射線モニタ装置の比較例を示す。比較例のモニタ装置は、検出器4を保護する第1保護管5と、この第1保護管5の外周側に設けられた第2保護管8,第2保護管を固定する支持構造体9を備える。そして、円筒状の第2保護管8は、海水中で開口している。そのため、第1保護管5の先端部は海水中で露出した構造である。   FIG. 2 shows a comparative example of the discharge channel radiation monitoring device. The monitor device of the comparative example includes a first protective tube 5 that protects the detector 4, a second protective tube 8 provided on the outer peripheral side of the first protective tube 5, and a support structure 9 that fixes the second protective tube. Is provided. The cylindrical second protective tube 8 is opened in seawater. Therefore, the front-end | tip part of the 1st protective tube 5 is a structure exposed in seawater.

比較例の場合、測定結果の正確性を重視しているため、第1保護管に直接海水が接し、端部がむき出しになっている。そのため、第1保護管の周囲には、海洋性生物が多数付着し、保守点検時にそれら海洋性生物の除去作業が発生してしまう。   In the case of the comparative example, since importance is attached to the accuracy of the measurement result, seawater is in direct contact with the first protective tube, and the end portion is exposed. Therefore, many marine organisms adhere around the first protective tube, and the marine organisms are removed during maintenance and inspection.

また、水中機器が海水腐食によって汚損する可能性があるため、耐食性を有した保護管が必要となる。但し、保護管の肉厚は7.1mm程度である。そのため、ステンレス鋼等の耐食性を有する金属材料を保護管に使用した場合、そのステンレス鋼が大きな遮蔽材となる。   Moreover, since there is a possibility that the underwater equipment is fouled by seawater corrosion, a protection tube having corrosion resistance is required. However, the wall thickness of the protective tube is about 7.1 mm. Therefore, when a metal material having corrosion resistance such as stainless steel is used for the protective tube, the stainless steel becomes a large shielding material.

従って、主蒸気放射線モニタ装置に使用する保護管と同様に、放水路放射線モニタ装置にも遮蔽効果の小さいアルミ材等を使用する必要があった。なお、主蒸気放射線モニタ装置は、原子力発電所の蒸気タービンに供給される蒸気の放射線濃度を連続的に監視するシステムである。主蒸気放射線モニタ装置の保護管は、全長約2〜3mの構造物であり、監視計器の周囲を機械的・化学的に保護する金属管である。この主蒸気放射線モニタ保護管は、耐食アルミ材を用いている。   Therefore, it is necessary to use an aluminum material or the like having a small shielding effect for the discharge channel radiation monitoring device as well as the protective tube used for the main steam radiation monitoring device. The main steam radiation monitoring device is a system that continuously monitors the radiation concentration of steam supplied to the steam turbine of the nuclear power plant. The protection tube of the main vapor radiation monitoring device is a structure having a total length of about 2 to 3 m, and is a metal tube that mechanically and chemically protects the surroundings of the monitoring instrument. This main vapor radiation monitor protective tube uses a corrosion-resistant aluminum material.

一方、放水路放射線モニタ装置の保護管全長は約7〜10mと長尺である。十分な強度を担保するために、アルミ材(保護管)の厚みを大きくすると、アルミ材の厚さを7.1mmよりも大きくする必要があり、製造コスト面や施工性が低下する。また、放水路放射線モニタ保護管にアルミ材を適用する場合、モニタ装置の自重が大きくなり、強度不足の問題が生じていた。このように、強度を維持するためには、モニタ装置が大型化するという問題があった。   On the other hand, the overall length of the protective tube of the discharge channel radiation monitoring device is about 7 to 10 m. If the thickness of the aluminum material (protection tube) is increased in order to ensure sufficient strength, the thickness of the aluminum material needs to be larger than 7.1 mm, and the manufacturing cost and workability are reduced. In addition, when aluminum material is applied to the discharge channel radiation monitor protective tube, the weight of the monitor device is increased, resulting in a problem of insufficient strength. As described above, in order to maintain the strength, there is a problem that the monitor device is enlarged.

以下、実施例1を説明する。本実施例は、放射線係数率検出器を内包する放水路放射線モニタ装置である場合の一例である。   Example 1 will be described below. The present embodiment is an example in the case of a discharge channel radiation monitor device including a radiation coefficient rate detector.

図1は、本実施例のモニタ装置を示す。プラント内機器の冷却材として取り込まれた海水1は、主流路2より放出される。主流路の上部には、空間を有するコンクリートの側壁3で構成される接合槽が設置されている。   FIG. 1 shows a monitor device of this embodiment. Seawater 1 taken in as a coolant for equipment in the plant is discharged from the main flow path 2. In the upper part of the main flow path, a joining tank composed of a concrete side wall 3 having a space is installed.

放水路放射線モニタ装置は、放射線係数率を検出する検出器4,検出器を保護する2つの保護管,装置を側壁3に固定する支持構造体9を備える。検出器4の内部には、放射線係数率を検出させるシンチレータ7が設けられている。また、検出器4は、測定結果を伝送するためのケーブル11がコネクタ12により取り付けられている。ケーブル11の他端には、伝送されてきた信号を増幅するための増幅器13が接続されており、さらにケーブル14を介して、放射線モニタ19が接続されている。   The discharge channel radiation monitor device includes a detector 4 that detects a radiation coefficient rate, two protective tubes that protect the detector, and a support structure 9 that fixes the device to the side wall 3. Inside the detector 4, a scintillator 7 for detecting the radiation coefficient rate is provided. Further, the detector 4 is attached with a connector 12 by a cable 11 for transmitting the measurement result. An amplifier 13 for amplifying the transmitted signal is connected to the other end of the cable 11, and a radiation monitor 19 is further connected via the cable 14.

検出器4は、円筒状の第1保護管5,第2保護管15により保護されている。第1保護管5は、一方の端部が閉止され、他方の端部が開口した円筒状の構造物である。ケーブル11は、第1保護管5の開口部より外部へ引き出されている。また、第1保護管5は、海水面に対して垂直方向に設置され、閉止された端部が海水面より下側に位置する。検出器4は、第1保護管5の閉止された端部に位置する。   The detector 4 is protected by a cylindrical first protective tube 5 and a second protective tube 15. The first protective tube 5 is a cylindrical structure in which one end is closed and the other end is opened. The cable 11 is drawn out from the opening of the first protective tube 5. Moreover, the 1st protection pipe 5 is installed in the orthogonal | vertical direction with respect to the seawater surface, and the closed edge part is located below the seawater surface. The detector 4 is located at the closed end of the first protective tube 5.

そして、第1保護管5及び検出器4の周囲も含めて覆うように、第2保護管15が設けられている。図3は第2保護管15の構造を示す。第2保護管15は、強度補強用円筒鋼材15aに底板15bが溶着されている。また、底板15bの中心部に開けた穴15cと同等の内径を有する薄肉円筒鋼材15d、さらに底板15eが溶着されている。このように、第2保護管15は、内径が異なる2つの円筒を組み合わせて製作している。   And the 2nd protective tube 15 is provided so that the circumference | surroundings of the 1st protective tube 5 and the detector 4 may also be covered. FIG. 3 shows the structure of the second protective tube 15. The second protective tube 15 has a bottom plate 15b welded to a strength reinforcing cylindrical steel material 15a. A thin cylindrical steel material 15d having an inner diameter equivalent to the hole 15c opened in the center of the bottom plate 15b and a bottom plate 15e are welded. Thus, the second protective tube 15 is manufactured by combining two cylinders having different inner diameters.

また、第1保護管5と第2保護管15は、その上部において第1保護管側フランジ16と第2保護管側フランジ17およびボルト18によって締結されている。   Further, the first protective tube 5 and the second protective tube 15 are fastened at the upper portion thereof by a first protective tube side flange 16, a second protective tube side flange 17 and a bolt 18.

支持構造体9は、第2保護管15など一式を支持固定するための金属製部材であり、保護管一式の全加重を支えている。支持構造体9は、側壁3に埋め込まれた金物プレート10および第2保護管15に溶着結合される。また、支持構造体9は、保護管一式の全荷重の大きさに見合った強度を保有させるために、複数個設置したり、寸法や取り付け方法を変更したりする場合がある。   The support structure 9 is a metal member for supporting and fixing a set such as the second protection tube 15 and supports the entire weight of the protection tube set. The support structure 9 is welded to the hardware plate 10 and the second protective tube 15 embedded in the side wall 3. In addition, a plurality of support structures 9 may be installed, or the dimensions and attachment methods may be changed in order to maintain the strength corresponding to the total load of the protective tube set.

このように、本実施例(図1)の放水路放射線モニタ装置では、第1保護管5の外周側に設けられた第2保護管15は、海水面より下側の第1保護管5を覆うように固定されている。   Thus, in the discharge channel radiation monitor apparatus of the present embodiment (FIG. 1), the second protective tube 15 provided on the outer peripheral side of the first protective tube 5 has the first protective tube 5 below the seawater surface. It is fixed to cover.

第2保護管15が海水面より下側の第1保護管5を覆うことにより、海水面より下側の装置体積が増加する。具体的には、比較例における水面下の装置体積は第1保護管5で決まるのに対し、本実施例では第2保護管15により決まる。そのため、比較例に比べて水面下の装置体積が増加する分、モニタ装置に働く浮力が増加し、支持構造体9の固定部に印加される荷重が小さくなる。従って、支持構造体の重量を増加させたり、支持構造体の設置数を増加させずに、モニタ装置の強度を保つことができ、放射線モニタ装置の大型化を抑制できる。そして、狭隘部への設置も可能となり、コスト低減が可能である。   When the second protective tube 15 covers the first protective tube 5 below the seawater surface, the device volume below the seawater surface increases. Specifically, the apparatus volume under the surface of the water in the comparative example is determined by the first protective tube 5, whereas in the present embodiment, it is determined by the second protective tube 15. Therefore, the buoyancy acting on the monitor device increases as the device volume below the surface of the water increases compared to the comparative example, and the load applied to the fixed portion of the support structure 9 is reduced. Therefore, the strength of the monitor device can be maintained without increasing the weight of the support structure or increasing the number of support structures installed, and the size of the radiation monitor device can be suppressed. And installation in a narrow part is also possible, and cost reduction is possible.

具体的には、実施例1に示すように、放射線モニタ装置の最外に位置する第2保護管15は水と接する範囲(水面下)に水の侵入口を作らず、内空体積による浮力と放射線モニタ装置との荷重の差を小さくすることである。この場合、放射線モニタ装置の全荷重から内空体積と水の密度および重力加速度の積を減算したものが、支持構造体に印加される実際の荷重となる。   Specifically, as shown in the first embodiment, the second protective tube 15 located on the outermost side of the radiation monitor device does not form a water entrance in a range in contact with water (below the water surface), and the buoyancy due to the internal volume. And reducing the load difference between the radiation monitor device. In this case, the actual load applied to the support structure is obtained by subtracting the product of the inner volume, water density, and gravity acceleration from the total load of the radiation monitor device.

また、放水路放射線モニタ装置が設置される主流路2は、4m/s程度の早い流速で海水が流れる。そのため、第1保護管5が10mを超えるような長尺となる場合を考えると、比較例の構造では、保護管軸の法線方向に対する強度が低下する。また、比較例では、第1保護管と第2保護管の接点が最上部フランジだけであるため、装置の十分な強度を担保することは困難である。装置の強度を担保できない理由は、第1保護管5の先端(検出器周り)が水中に開放されているために、第1保護管5が直接的に流速の影響を受けているためである。   Moreover, the main flow path 2 in which the discharge channel radiation monitor apparatus is installed flows seawater at a fast flow rate of about 4 m / s. Therefore, considering the case where the first protective tube 5 is longer than 10 m, the strength of the protective tube shaft in the normal direction is reduced in the structure of the comparative example. In the comparative example, since the contact point of the first protective tube and the second protective tube is only the uppermost flange, it is difficult to ensure sufficient strength of the device. The reason why the strength of the device cannot be ensured is that the first protective tube 5 is directly affected by the flow velocity because the tip (around the detector) of the first protective tube 5 is open to the water. .

そのため、本実施例では、第2保護管15が、海水面より下側の第1保護管5を覆うように固定することで、外径80mm,肉厚4mm程度の薄肉部材の第1保護管5でも強度不足を回避できる。第1保護管5の肉厚を4mm程度に抑えることで、検出器4の内部に格納される放射線係数率の検出を目的としたシンチレータ7への遮蔽影響を小さくし、k−40を3.7×10-2[Bq/cm3]の単位で優位に検出するという要求感度を満足させることができる。このように、第1保護管5の周囲に、アルミよりも大きな強度を有したステンレス鋼等の鉄鋼材料で作られた第2保護管15により第1保護管5の大部分を覆うことで強度を補強している。 Therefore, in this embodiment, the second protective tube 15 is fixed so as to cover the first protective tube 5 below the seawater surface, so that the first protective tube is a thin member having an outer diameter of about 80 mm and a thickness of about 4 mm. Even 5 can avoid the lack of strength. By suppressing the thickness of the first protective tube 5 to about 4 mm, the shielding effect on the scintillator 7 for the purpose of detecting the radiation coefficient rate stored in the detector 4 is reduced, and k-40 is set to 3. It is possible to satisfy the required sensitivity of detecting predominantly in units of 7 × 10 −2 [Bq / cm 3 ]. As described above, the first protective tube 5 is covered with the second protective tube 15 made of a steel material such as stainless steel having a strength higher than that of aluminum around the first protective tube 5 so that the first protective tube 5 is covered with the strength. Is reinforced.

但し、上記は検出器の設置目的を阻害しないことが前提である。実施例1の場合であれば、円筒状の第2保護管は、検出器を覆う部分(薄肉円筒鋼材15d)の肉厚が、他の部分(強度補強用円筒鋼材15a)に比べて薄く形成されている。このように、測定器周囲の第2保護管(薄肉円筒鋼材15d)を従来の7.1mmの肉厚から5.5mmの肉厚に薄くすることで、放射線係数率測定における遮蔽影響を小さくできる。   However, the above is premised on not obstructing the installation purpose of the detector. In the case of Example 1, the cylindrical second protective tube is formed so that the thickness of the portion covering the detector (thin cylindrical steel material 15d) is thinner than that of the other portion (strength reinforcing cylindrical steel material 15a). Has been. Thus, by reducing the thickness of the second protective tube (thin cylindrical steel material 15d) around the measuring instrument from the conventional thickness of 7.1 mm to 5.5 mm, the shielding effect in the radiation coefficient rate measurement can be reduced. .

また、本実施例のモニタ装置は、第2保護管15が海水面より下側の第1保護管5を覆うことにより、第1保護管5と第2保護管15との間に海水が流入することを防止できる。そのため、水中生物が第1保護管5に付着したり、水中機器が腐食することを防止できる。また、水中生物の侵入・生育が防止され、さらに水および酸素と接することで発生する金属腐食についても、その懸念を払拭できる。   In the monitoring apparatus of this embodiment, the second protective tube 15 covers the first protective tube 5 below the seawater surface, so that seawater flows between the first protective tube 5 and the second protective tube 15. Can be prevented. Therefore, it is possible to prevent underwater organisms from adhering to the first protective tube 5 and corroding the underwater equipment. In addition, invasion and growth of underwater organisms are prevented, and the concern about metal corrosion caused by contact with water and oxygen can be eliminated.

更に図3に示すように、本実施例の第2保護管15は、下側内径が上側内径に比べて小さい。第1保護管5は、複数の管を中心軸方向に並べてボルト等で接合されている。このとき、第2保護管15の下側内径が上側内径に比べて小さくなるように内径を決めておけば、第1保護管5を第2保護管15の下端部で固定しつつ、第1保護管5の接合部を第1保護管5の外周側に設けることができる。このように、第1保護管5の接合部を第1保護管5の外周側に設けることで、第1保護管5の製作・分解が容易になる。   Furthermore, as shown in FIG. 3, the second protective tube 15 of the present embodiment has a lower inner diameter that is smaller than the upper inner diameter. The first protective tube 5 is formed by arranging a plurality of tubes in the central axis direction and joining them with bolts or the like. At this time, if the inner diameter is determined so that the lower inner diameter of the second protective tube 15 is smaller than the upper inner diameter, the first protective tube 5 is fixed at the lower end of the second protective tube 15 while the first protective tube 5 is fixed. The joint portion of the protective tube 5 can be provided on the outer peripheral side of the first protective tube 5. Thus, by providing the joint portion of the first protective tube 5 on the outer peripheral side of the first protective tube 5, the first protective tube 5 can be easily manufactured and disassembled.

1 海水
2 主流路
3 側壁
4 検出器
5 第1保護管
7 シンチレータ
8,15 第2保護管
11,14 ケーブル
12 コネクタ
13 増幅器
19 放射線モニタ
DESCRIPTION OF SYMBOLS 1 Seawater 2 Main flow path 3 Side wall 4 Detector 5 1st protective tube 7 Scintillator 8, 15 2nd protective tube 11, 14 Cable 12 Connector 13 Amplifier 19 Radiation monitor

Claims (3)

原子力プラントから排出される海水が流れる放水路に設けられた、原子力プラントの放水路放射線モニタ装置であって、
前記海水中の放射線を検出する検出器と、
端部に前記検出器を収容し、前記海水面より下側に前記検出器を配置する円筒状の第1保護管と、
前記第1保護管の外周側に設けられ、前記海水面より下側の前記第1保護管を覆う第2保護管と、
前記第2保護管を固定構造物に固定する支持構造体とを備えることを特徴とする原子力プラントの放水路放射線モニタ装置。
A nuclear power plant radiation monitoring device provided in a water discharge channel through which seawater discharged from the nuclear power plant flows,
A detector for detecting radiation in the seawater;
A cylindrical first protective tube that houses the detector at an end, and disposes the detector below the seawater surface;
A second protective tube provided on an outer peripheral side of the first protective tube and covering the first protective tube below the seawater surface;
A water discharge radiation monitoring apparatus for a nuclear power plant, comprising a support structure for fixing the second protective tube to a fixed structure.
請求項1記載の放水路放射線モニタ装置であって、
前記第2保護管の下側内径が上側内径に比べて小さいことを特徴とする放水路放射線モニタ装置。
The discharge channel radiation monitoring device according to claim 1,
The water discharge radiation monitoring apparatus, wherein the lower inner diameter of the second protective tube is smaller than the upper inner diameter.
請求項1記載の放水路放射線モニタ装置であって、
円筒状の前記第2保護管は、前記検出器を覆う部分の肉厚が、他の部分に比べて薄く形成されていることを特徴とする放水路放射線モニタ装置。
The discharge channel radiation monitoring device according to claim 1,
The cylindrical second protective tube is a discharge channel radiation monitoring device characterized in that the thickness of the portion covering the detector is thinner than the other portions.
JP2010013736A 2010-01-26 2010-01-26 Device for monitoring radiation in discharge canal of nuclear power plant Pending JP2011153831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013736A JP2011153831A (en) 2010-01-26 2010-01-26 Device for monitoring radiation in discharge canal of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013736A JP2011153831A (en) 2010-01-26 2010-01-26 Device for monitoring radiation in discharge canal of nuclear power plant

Publications (1)

Publication Number Publication Date
JP2011153831A true JP2011153831A (en) 2011-08-11

Family

ID=44539927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013736A Pending JP2011153831A (en) 2010-01-26 2010-01-26 Device for monitoring radiation in discharge canal of nuclear power plant

Country Status (1)

Country Link
JP (1) JP2011153831A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191090A (en) * 2010-03-12 2011-09-29 Chugoku Electric Power Co Inc:The Underwater radiation measuring device
CN109473187A (en) * 2018-10-31 2019-03-15 西安交通大学 LAYER FLUID stirs and make muddy process and heat-transfer character experimental system visualizing and method under ocean condition
KR20220157780A (en) * 2021-05-21 2022-11-29 한국원자력연구원 Floating type radiation detection apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664624A (en) * 1979-10-31 1981-06-01 Toshiba Corp Enclosing device for measuring element
JPS6072584U (en) * 1983-10-26 1985-05-22 富士電機株式会社 Radiation detection device
JPS6283989U (en) * 1985-11-14 1987-05-28
JPH02105179U (en) * 1989-02-08 1990-08-21
JPH05297199A (en) * 1992-04-23 1993-11-12 Toshiba Corp Radiation transmitting window body structure
JP2001151474A (en) * 1999-11-26 2001-06-05 Nichiyu Giken Kogyo Co Ltd Elevating device for underwater observation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664624A (en) * 1979-10-31 1981-06-01 Toshiba Corp Enclosing device for measuring element
JPS6072584U (en) * 1983-10-26 1985-05-22 富士電機株式会社 Radiation detection device
JPS6283989U (en) * 1985-11-14 1987-05-28
JPH02105179U (en) * 1989-02-08 1990-08-21
JPH05297199A (en) * 1992-04-23 1993-11-12 Toshiba Corp Radiation transmitting window body structure
JP2001151474A (en) * 1999-11-26 2001-06-05 Nichiyu Giken Kogyo Co Ltd Elevating device for underwater observation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191090A (en) * 2010-03-12 2011-09-29 Chugoku Electric Power Co Inc:The Underwater radiation measuring device
CN109473187A (en) * 2018-10-31 2019-03-15 西安交通大学 LAYER FLUID stirs and make muddy process and heat-transfer character experimental system visualizing and method under ocean condition
KR20220157780A (en) * 2021-05-21 2022-11-29 한국원자력연구원 Floating type radiation detection apparatus
KR102560545B1 (en) 2021-05-21 2023-07-28 한국원자력연구원 Floating type radiation detection apparatus

Similar Documents

Publication Publication Date Title
KR101674603B1 (en) Apparatus for monitoring galvanic corrosion
JP2011153831A (en) Device for monitoring radiation in discharge canal of nuclear power plant
CN108548583A (en) A kind of Level monitor of hydraulic engineering
CN104122192A (en) A device and a method for detecting metal corrosion status
JP5020342B2 (en) Underwater radiation measurement device
JP2010175322A (en) Water level follow-up temperature sensor
KR101908894B1 (en) Floating Type Apparatus For Detecting Radiation In Real Time
JP4922146B2 (en) Spent fuel pool water monitoring device
CN102023067A (en) Early warning device and method for collapse of deep-sea cage floating pipe
JP6038646B2 (en) Radioactivity measuring device
JP5173012B2 (en) Spent fuel pool water monitoring device
JP2008256681A (en) System for monitoring pressure fluctuations in nuclear power plant
CN107176266A (en) A kind of marine locator installs equipment
JP4781379B2 (en) Capacitance type sensor cover and capacitance type sensor
CN206107493U (en) Ocean exploration ware erection equipment
CN211978040U (en) Corrosion-resistant radar liquid level meter
JP2016024146A (en) Support structure of immersion water level gage and water level measurement system
JP2007170919A (en) Method of measuring vibration of heat exchanger
JP2013170430A (en) Tsunami protection system
KR102697268B1 (en) The ultrasonic sensor system to detect void ingrease in post-tensioning duct
CN207591419U (en) A kind of anti-corrosion filter unit
JP4701198B2 (en) Water level measuring device for suppression chamber
RU2503955C1 (en) Device to detect and identify hidden hazardous substances under water
JPH08261861A (en) Flexible tube for oil pipe
JP4784547B2 (en) Marine hose hose line monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820