JP2011153272A - Method for decomposing and recovering vulcanized rubber - Google Patents

Method for decomposing and recovering vulcanized rubber Download PDF

Info

Publication number
JP2011153272A
JP2011153272A JP2010017317A JP2010017317A JP2011153272A JP 2011153272 A JP2011153272 A JP 2011153272A JP 2010017317 A JP2010017317 A JP 2010017317A JP 2010017317 A JP2010017317 A JP 2010017317A JP 2011153272 A JP2011153272 A JP 2011153272A
Authority
JP
Japan
Prior art keywords
vulcanized rubber
decomposing
recovering
rubber
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010017317A
Other languages
Japanese (ja)
Inventor
Yuichi Ishino
裕一 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010017317A priority Critical patent/JP2011153272A/en
Priority to PCT/JP2011/000497 priority patent/WO2011093104A1/en
Publication of JP2011153272A publication Critical patent/JP2011153272A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/08Depolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/04Oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/26Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing carboxylic acid groups, their anhydrides or esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/30Polymeric waste or recycled polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2319/00Characterised by the use of rubbers not provided for in groups C08J2307/00 - C08J2317/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for decomposing and recovering a vulcanized rubber, the method exhibiting a low reaction temperature and a high energy efficiency and being excellent in reactivity and in recycle recovery of a decomposition reactant. <P>SOLUTION: In the method for decomposing and recovering a vulcanized rubber, divalent iron ion is used as a reaction initiator; a vulcanized rubber including a filler is decomposed by a lipid peroxidation reaction of linoleic acid, or the like; a decomposed rubber component is dissolved in an organic solvent; and the lipid is eliminated by reprecipitating the rubber component in an alcohol including an alkali added thereto, thus recovering the rubber component. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、加硫ゴムの分解回収方法に関し、より詳しくは分解反応温度が低くエネルギー効率に優れ、分解速度も速く、さらに、回収の容易な反応物に分解し、該分解反応物をリサイクル容易に回収する、加硫ゴムの分解回収方法に関する。   The present invention relates to a method for decomposing and recovering vulcanized rubber. More specifically, the present invention relates to a method for decomposing and recovering vulcanized rubber. More specifically, the decomposition reaction temperature is low, the energy efficiency is high, the decomposition rate is high, and the decomposition reaction product is easily decomposed. The present invention relates to a method for decomposing and recovering vulcanized rubber.

ゴム製品はプラスチック製品とともに再利用しにくい材料であり、セメント工場などを中心として燃料として利用されている場合が多い。しかしながら、近年環境問題に対する関心の高まりとともに、ゴム製品を燃料として燃やすのではなく、コンポストのように低温で分解する省エネルギー型の方法や分解した材料を再利用するマテリアルリサイクルの方法の開発が求められている。   Rubber products are difficult to reuse together with plastic products, and are often used as fuel mainly in cement factories. However, with increasing interest in environmental issues in recent years, instead of burning rubber products as fuel, there is a need to develop energy-saving methods that decompose at low temperatures, such as compost, and material recycling methods that reuse decomposed materials. ing.

従来、加硫ゴムのリサイクル技術としては脱硫反応が知られているが、反応温度が高いため、エネルギー効率が悪いという問題点がある。また、反応温度が低いリサイクル技術としては微生物分解が知られているが、分解速度が遅いという問題点がある。   Conventionally, desulfurization reaction is known as a technology for recycling vulcanized rubber, but there is a problem that energy efficiency is poor because of high reaction temperature. Moreover, microbial decomposition is known as a recycling technique with a low reaction temperature, but there is a problem that the decomposition rate is slow.

こうした中、例えば特許文献1には、加硫ゴムを、特定の有機溶媒中、特定の酸の存在下で、分解させる加硫ゴムの分解方法が開示されている。また、非特許文献1、2には、微生物酵素成分等を用いたポリイソプレンゴム等の分解方法が開示されている。   Under such circumstances, for example, Patent Document 1 discloses a method for decomposing a vulcanized rubber in which the vulcanized rubber is decomposed in a specific organic solvent in the presence of a specific acid. Non-Patent Documents 1 and 2 disclose a method for decomposing polyisoprene rubber or the like using a microbial enzyme component or the like.

特開2006−70127号公報JP 2006-70127 A

Macromolecular Bioscience 第2003巻 第3号 第668−674頁 (2003)Macromolecular Bioscience Volume 2003 Issue 3 Pages 668-674 (2003) Biomacromolecules 第4巻 第2号 第314−320頁 (2003)Biomacromolecules Vol. 4, No. 2, pp. 314-320 (2003)

しかしながら、昨今の加硫ゴムのリサイクル技術においては、分解反応温度が低くエネルギー効率に優れるのみならず、分解速度も速く、さらにリサイクル回収の容易な分解生成物が得られる必要があり、優れたエネルギー効率のみならず、分解速度や回収容易性に優れた加硫ゴムのリサイクル技術が求められているのに対し、上記のような加硫ゴムのリサイクル技術において、エネルギー効率と分解速度とが、両立できない状況である。例えば、微生物分解のように、エネルギー効率が優れれば、分解速度が遅く、一方、脱硫反応のように、分解速度が速ければ、エネルギー効率が悪く、エネルギー効率と分解速度とを両立する加硫ゴムのリサイクル技術に関しては、依然として改善の余地が残されている。さらに、リサイクル回収が容易な分解生成物が得られる技術と両立する加硫ゴムのリサイクル技術に関しても、依然として改善の余地が残されている。   However, in recent vulcanized rubber recycling technology, it is necessary not only to have a low decomposition reaction temperature and excellent energy efficiency, but also to have a high decomposition rate and to obtain a decomposition product that can be easily recycled and recovered. While there is a need for vulcanized rubber recycling technology that is superior not only in efficiency but also in decomposition speed and ease of recovery, energy efficiency and decomposition speed are compatible in the above vulcanized rubber recycling technology. It is a situation that cannot be done. For example, if the energy efficiency is excellent, such as microbial decomposition, the decomposition rate is slow. On the other hand, if the decomposition rate is fast, such as a desulfurization reaction, the energy efficiency is poor, and vulcanization that achieves both energy efficiency and decomposition rate is achieved. There is still room for improvement in rubber recycling technology. Furthermore, there is still room for improvement with respect to the technology for recycling vulcanized rubber, which is compatible with the technology for obtaining a decomposition product that can be easily recycled.

そこで、本発明は、分解反応温度が低くエネルギー効率に優れ、分解速度も速く、さらにリサイクル回収の容易な分解生成物が得られる加硫ゴムの分解回収方法を提供することを目的としている。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for decomposing and recovering vulcanized rubber that has a low decomposition reaction temperature, is excellent in energy efficiency, has a high decomposition rate, and can yield a decomposition product that can be easily recycled and recovered.

本発明者は、上記課題を解決すべく鋭意検討し、特定の分解反応工程と処理回収工程による加硫ゴムの分解回収方法を見出し、本発明を完成させるに至った。   The inventor has intensively studied to solve the above problems, and has found a method for decomposing and recovering vulcanized rubber by a specific decomposition reaction process and a process recovery process, and has completed the present invention.

すなわち、本発明の加硫ゴムの分解回収方法は、脂質過酸化反応により加硫ゴムを分解する工程と、前記加硫ゴムを分解した後、分解されたゴム成分を有機溶媒に溶解し、アルカリを添加したアルコール中でゴム成分を再沈することにより脂質を除去し、ゴム分を回収する工程を含むことを特徴とする。   That is, the method for decomposing and recovering vulcanized rubber according to the present invention comprises a step of decomposing vulcanized rubber by a lipid peroxidation reaction, decomposing the vulcanized rubber, dissolving the decomposed rubber component in an organic solvent, The method further comprises a step of removing the lipid by reprecipitation of the rubber component in the alcohol added with the step of recovering the rubber component.

また、前記脂質としてリノール酸を使用することが望ましく、また、反応開始剤として
二価の鉄イオンを使用することが望ましい。
また、前記加硫ゴムがジエン系ゴムであることが望ましい。
また、前記加硫ゴムが充填剤を含むことが望ましく、更に、前記充填剤がシリカ、カーボンブラックから選択される少なくとも一種であることがより望ましい。
また、前記加硫ゴム中の老化防止剤を有機溶媒で抽出することが望ましい。
また、前記有機溶媒に溶解した後、不溶分をろ過することが望ましく、また、該不溶分を遠心分離することが望ましい。
Moreover, it is desirable to use linoleic acid as the lipid, and it is desirable to use divalent iron ions as the reaction initiator.
The vulcanized rubber is preferably a diene rubber.
The vulcanized rubber preferably contains a filler, and more preferably, the filler is at least one selected from silica and carbon black.
Moreover, it is desirable to extract the anti-aging agent in the vulcanized rubber with an organic solvent.
Moreover, after dissolving in the organic solvent, it is desirable to filter the insoluble matter, and it is desirable to centrifuge the insoluble matter.

本発明の加硫ゴムの分解回収方法によれば、分解反応温度が低くエネルギー効率に優れ、分解速度も速く、さらにリサイクル回収の容易な分解生成物が得られる加硫ゴムの分解回収方法を提供することができる。このように、本発明の加硫ゴムの分解回収方法は、工業的採算性のみならず、省エネルギーやリサイクル性等の環境配慮も重視されつつある昨今の加硫ゴム再利用処理においても充分に対応することが可能な方法である。   According to the method for decomposing and recovering vulcanized rubber of the present invention, there is provided a method for decomposing and recovering vulcanized rubber, which has a low decomposition reaction temperature, is excellent in energy efficiency, has a high decomposition rate, and is capable of obtaining a decomposition product that is easy to recycle. can do. As described above, the method for decomposing and recovering vulcanized rubber according to the present invention is sufficient for not only industrial profitability but also recent vulcanized rubber recycling treatment in which environmental considerations such as energy saving and recyclability are being emphasized. This is a possible method.

以下、本発明について詳細に説明する。
本発明の加硫ゴムの分解回収方法は、脂質過酸化反応により加硫ゴムを分解する工程と、前記加硫ゴムの分解方法によって加硫ゴムを分解した後、分解されたゴム成分を有機溶媒に溶解し、アルカリを添加したアルコール中でゴム成分を再沈することにより脂質を除去し、ゴム分を回収する工程を含むことを特徴としている。
Hereinafter, the present invention will be described in detail.
The method for decomposing and recovering vulcanized rubber according to the present invention comprises a step of decomposing vulcanized rubber by a lipid peroxidation reaction, decomposing vulcanized rubber by the method of decomposing vulcanized rubber, It is characterized in that it comprises a step of removing the lipid by reprecipitation of the rubber component in alcohol added with alkali and recovering the rubber component.

[分解工程]
本発明の前段、分解工程は、脂質過酸化反応によってラジカルを発生させ、加硫ゴムの二重結合部位を分解する工程である。
[Disassembly process]
The decomposition step of the present invention is a step of generating radicals by a lipid peroxidation reaction and decomposing the double bond site of the vulcanized rubber.

[対象物:加硫ゴム]
分解対象物の加硫ゴムは、少なくともゴム成分と加硫剤を含むゴム組成物を加硫してなる。分解可能なゴム成分としては、天然ゴム、合成ポリイソプレンゴム、ブタジエンゴム、SBRなどが挙げられる。加硫剤としては、可溶性硫黄; 単体硫黄(遊離硫黄);有機シランポリスルフィド類、アミンジスルフィド類、ポリスルフィド類等の硫黄供与加硫剤又は硫黄オレフィン付加物類及び不溶性の高分子硫黄等が挙げられる。さらに、活性化剤、遅延剤、加硫促進剤、オイル等の加工助剤、粘着付与性樹脂を含む樹脂、可塑剤、顔料、追加充填剤、脂肪酸、酸化亜鉛、ワックス、酸化防止剤、オゾン劣化防止剤、素練り促進剤等の様々な一般的に使用される添加物を含む加硫ゴム、好ましくはジエン系ゴムを含むものであれば如何なるものも対象物とすることができる。また、前記加硫ゴムが充填剤を含むものが望ましく、該充填剤がシリカ、カーボンブラックから選択される少なくとも一種であることがより望ましい。具体的に対象物としては、加硫ゴムを用いて製造された各種工業製品や家庭用品又はその廃棄物、或いは、当該工業製品及び廃棄物を前処理した処理物等を挙げることができる。工業製品等としては、例えば、タイヤ、マット、ホース、ベルト、ゴルフボール、免震支承材、各種シール・パッキング類、ケーブル被覆材、各種クッション、手袋、輪ゴム、接着剤等を挙げることができる。
[Subject: Vulcanized rubber]
The vulcanized rubber to be decomposed is formed by vulcanizing a rubber composition containing at least a rubber component and a vulcanizing agent. Examples of the decomposable rubber component include natural rubber, synthetic polyisoprene rubber, butadiene rubber, and SBR. Examples of the vulcanizing agent include soluble sulfur; elemental sulfur (free sulfur); sulfur-donating vulcanizing agents such as organosilane polysulfides, amine disulfides, polysulfides, or sulfur olefin adducts, and insoluble polymer sulfur. . In addition, activators, retarders, vulcanization accelerators, processing aids such as oil, resins containing tackifying resins, plasticizers, pigments, additional fillers, fatty acids, zinc oxide, waxes, antioxidants, ozone Any vulcanized rubber containing various commonly used additives such as a deterioration inhibitor and a peptizer, preferably a diene rubber, can be used as an object. The vulcanized rubber preferably contains a filler, more preferably at least one selected from silica and carbon black. Specific examples of the object include various industrial products and household products manufactured using vulcanized rubber, or wastes thereof, or processed products obtained by pretreating the industrial products and wastes. Examples of industrial products include tires, mats, hoses, belts, golf balls, seismic isolation bearing materials, various seals and packing materials, cable covering materials, various cushions, gloves, rubber bands, adhesives, and the like.

[前処理]
前処理としては、具体的に、工業製品等の対象物をシュレッダー等により粉砕する処理、加熱処理及び加熱・加湿処理等を挙げることができる。さらに、老化防止剤を有機溶媒で抽出する前処理を行うことが好ましい。
[Preprocessing]
Specific examples of the pretreatment include a process of pulverizing an object such as an industrial product with a shredder, a heat treatment, a heating / humidification treatment, and the like. Furthermore, it is preferable to perform a pretreatment for extracting the anti-aging agent with an organic solvent.

[分解反応]
分解反応は、脂質過酸化反応によってラジカルを発生させ、加硫ゴムの二重結合部位を分解する反応である。脂質過酸化反応としては、フェントン試薬と不飽和脂肪酸の存在下で、加硫ゴムを分解する工程が好適である。
[Decomposition reaction]
The decomposition reaction is a reaction that generates radicals by a lipid peroxidation reaction and decomposes the double bond site of the vulcanized rubber. As the lipid peroxidation reaction, a step of decomposing vulcanized rubber in the presence of a Fenton reagent and an unsaturated fatty acid is suitable.

[開始剤]
開始物質としてフェントン(Fenton)試薬として知られている、2価の鉄イオンを使用すると、反応が早く進む。フェントン試薬とは、過酸化水素(H22)と鉄(II)塩とを混合した酸化呈色試薬である。
フェントン試薬としては、過酸化水素(H22)と鉄(II)塩との混合物を使用することができる。鉄(II)塩としては、例えば、硫酸鉄(II)(FeSO)、フマル酸第一鉄、シュウ酸第一鉄、塩化第一鉄、クエン酸第一鉄ナトリウム、グルコン酸第一鉄、クエン酸第一鉄、オロチン酸第一鉄及び酢酸第一鉄等を使用することができ、好ましくは、硫酸鉄(II)(FeSO)を使用することができる。
フェントン試薬(1ml)の構成要素としての鉄(II)塩の濃度は、例えば、0.1〜50mMが好ましく、0.3〜10mMがより好ましく、0.5〜3mMとすることがより一層好ましい。また、フェントン試薬の構成要素として過酸化水素の濃度は、例えば、0.001〜5mMが好ましく、0.03〜1mMがより好ましく、0.05〜0.3mMがより一層好ましい。
[Initiator]
The reaction proceeds faster when divalent iron ions, known as Fenton reagents, are used as starting materials. The Fenton reagent is an oxidation color reagent in which hydrogen peroxide (H 2 O 2 ) and iron (II) salt are mixed.
As the Fenton reagent, a mixture of hydrogen peroxide (H 2 O 2 ) and iron (II) salt can be used. Examples of the iron (II) salt include iron (II) sulfate (FeSO 4 ), ferrous fumarate, ferrous oxalate, ferrous chloride, sodium ferrous citrate, ferrous gluconate, Ferrous citrate, ferrous orotate, ferrous acetate, and the like can be used, and preferably, iron (II) sulfate (FeSO 4 ) can be used.
The concentration of the iron (II) salt as a constituent of the Fenton reagent (1 ml) is, for example, preferably 0.1 to 50 mM, more preferably 0.3 to 10 mM, and even more preferably 0.5 to 3 mM. . The concentration of hydrogen peroxide as a constituent element of the Fenton reagent is, for example, preferably 0.001 to 5 mM, more preferably 0.03 to 1 mM, and still more preferably 0.05 to 0.3 mM.

[反応機構]
この反応は、フェントン反応と呼ばれる。フェントン試薬の酸化機構は、以下の反応により水酸化ラジカル(OH)を発生するためと考えられている。
22 + Fe2+ → Fe3+ + HO + OH
該フェントン反応により発生した水酸化ラジカル(OH)は、迅速な有機化学物質の酸化分解に対して有用な活性酸素種である。
[Reaction mechanism]
This reaction is called the Fenton reaction. Oxidation mechanism of Fenton reagent is believed to generate radicals hydroxide (OH ·) by the following reaction.
H 2 O 2 + Fe 2+ → Fe 3+ + HO - + OH ·
Hydroxyl radicals (OH · ) generated by the Fenton reaction are useful active oxygen species for rapid oxidative decomposition of organic chemical substances.

Figure 2011153272
Figure 2011153272

水酸化ラジカル(OH)が、開始剤の働きをする。脂質(L−H)から、水素を引き抜き、脂質アルキルラジカル(L)に変える。さらに、酸化反応等を経ることで、脂質ラジカル類(L,LO,LOO)となる。この脂質アルキルラジカルは、不安定で、雰囲気中の酸素と速やかに反応して、脂質ペルオキシラジカル(LOO)となる。該脂質ペルオキシラジカルは、水素引き抜きをして、脂質ペルオキシド(LOOH)となる。この過酸化結合(O−O結合)は、容易に開裂し、水酸化ラジカル(OH)と脂質アルコキシラジカル(LO)の2つを生成して、ラジカル濃度を急激に増加させる。これら脂質ラジカル類が、加硫ゴム(R−H)をラジカル化する(R)。脂質アルコキシラジカル(LO)は、脂質ペルオキシラジカル(LOO)や水酸化ラジカル(OH)よりも水素引き抜き速度が大きく、反応の中心的な位置を占める。このため、加硫ゴムは、主に脂質ラジカル類によってラジカル化される。 Radical hydroxide (OH ·) is, to the work of the initiator. Lipid (L-H), hydrogen abstraction, changes in lipid radical (L ·). Further, by going through the oxidation reaction or the like, lipid radicals (L ·, LO ·, LOO ·) becomes. The lipid radical is unstable, it reacts rapidly with oxygen in the atmosphere, the lipid peroxy radicals (LOO ·). The lipid peroxy radical abstracts hydrogen and becomes lipid peroxide (LOOH). The peroxide bonds (O-O bonds) are readily cleaved to generate two radicals hydroxide (OH ·) and lipid alkoxy radicals (LO ·), sharply increases the radical concentration. These lipid radicals radicalize vulcanized rubber (R—H) (R · ). Lipid alkoxy radical (LO ·) has a large hydrogen abstraction rate than lipid peroxy radicals (LOO ·) and hydroxyl radicals (OH ·), occupies a central position of the reaction. For this reason, vulcanized rubber is radicalized mainly by lipid radicals.

加硫ゴムラジカルは、酸化されて加硫ゴムペルオキシラジカル(ROO)、加硫ゴムアルコキシラジカル(RO)を経て、その一部が、ベータ−開裂を起こす。このようにして、加硫ゴムは酸化ラジカル反応で、低分子化して、分解反応が進行する。
OH + L−H → H2O + L
,LO,LOO +R−H → L−H,LOH,LOOH + R
+ O2 → ROO → RO → ベータ開裂(β−scission)
加硫ゴムの二重結合部位が、脂質ラジカル類の攻撃を受けて、ベータ開裂することで、分解していく。
2=O → R + R2=O
Vulcanized rubber radicals can be oxidized vulcanized rubber peroxy radicals (ROO ·), through the vulcanized rubber alkoxy radicals (RO ·), a portion thereof, beta - causing cleavage. In this way, the vulcanized rubber is reduced in molecular weight by the oxidation radical reaction, and the decomposition reaction proceeds.
OH · + L−H → H 2 O + L ·
L , LO , LOO + RH → L−H, LOH, LOOH + R
R · + O 2 → ROO · → RO · → beta-cleavage
The double bond site of vulcanized rubber is decomposed by beta-cleavage under the attack of lipid radicals.
R 1 R 2 = O · → R 1 · + R 2 = O

通常リサイクルされる加硫ゴムにおいては、添加成分として、酸化防止剤や老化防止剤が含まれている。ラジカルを直接捕捉するタイプのフェノール系防止剤等や、ペルオキシドを分解し、ラジカル増殖を阻止するタイプのリン酸系防止剤等が加硫ゴムに練りこまれている。このため、通常リサイクルされる加硫ゴムでは、ラジカル連鎖反応を主とする、脂質過酸化反応に対する抵抗が大きく、分解速度は遅くなる。このため、老化防止剤を有機溶媒で抽出する前処理を行うことが好ましい。   Ordinarily recycled vulcanized rubber contains antioxidants and antioxidants as additive components. A vulcanized rubber is kneaded with a phenolic type inhibitor that directly captures radicals, a phosphoric acid type inhibitor that decomposes peroxide and prevents radical growth, and the like. For this reason, normally recycled vulcanized rubber has high resistance to lipid peroxidation, mainly radical chain reaction, and slows the degradation rate. For this reason, it is preferable to perform the pretreatment which extracts an anti-aging agent with an organic solvent.

[脂質]
上記脂質過酸化反応には、脂質を使用する。該脂質としては、不飽和脂肪酸が好ましい。不飽和脂肪酸として、リノール酸を使用することが特に好ましい。リノール酸以外の不飽和脂肪酸としては、例えば、リノレン酸、アラキドン酸及びオレイン酸を使用することができる。例えば不飽和脂肪酸の濃度は、0.1mM〜100mMが好ましく、1mM〜20mMがより好ましく、3mM〜10mMがより一層好ましい。
[Lipid]
A lipid is used for the lipid peroxidation reaction. The lipid is preferably an unsaturated fatty acid. It is particularly preferred to use linoleic acid as the unsaturated fatty acid. As unsaturated fatty acids other than linoleic acid, for example, linolenic acid, arachidonic acid and oleic acid can be used. For example, the concentration of the unsaturated fatty acid is preferably from 0.1 mM to 100 mM, more preferably from 1 mM to 20 mM, and even more preferably from 3 mM to 10 mM.

[反応系]
反応系は、例えば、フェントン試薬及び不飽和脂肪酸並びに界面活性剤などその他の成分を、適当な緩衝液等に混合することによって調製することができる。調製した反応系に対象物を接触させる際には、反応系に対象物を浸漬するだけでもよいし、反応系に対象物が浸漬した状態で攪拌してもよい。さらに通気しながら反応系に対象物を接触させてもよい。
[Reaction system]
The reaction system can be prepared by, for example, mixing other components such as Fenton reagent, unsaturated fatty acid, and surfactant in an appropriate buffer. When the target object is brought into contact with the prepared reaction system, the target object may be simply immersed in the reaction system, or may be stirred while the target object is immersed in the reaction system. Furthermore, you may make a target object contact a reaction system, ventilating.

[反応条件]
反応系の温度は、15〜50℃の範囲に維持することが好ましく、25〜45℃の範囲に維持することがより好ましく、35〜40℃の範囲に維持することがより一層好ましい。また、反応系のpHは、5〜9の範囲に維持することが好ましく、6〜8の範囲に維持することがより好ましく、6.5〜7.5の範囲に維持することがより一層好ましい。さらに、反応系に含まれる対象物の割合は、0.1〜10g/Lが好ましく、0.5〜5g/Lに維持することがより好ましい。また、反応時間は、1〜240時間が好ましく、6〜48時間がより好ましい。BHTなどの反応停止剤を添加して反応を停止することが好ましい。
[Reaction conditions]
The temperature of the reaction system is preferably maintained in the range of 15 to 50 ° C, more preferably in the range of 25 to 45 ° C, and still more preferably in the range of 35 to 40 ° C. The pH of the reaction system is preferably maintained in the range of 5-9, more preferably in the range of 6-8, and even more preferably in the range of 6.5-7.5. . Furthermore, 0.1-10 g / L is preferable and, as for the ratio of the target object contained in a reaction system, it is more preferable to maintain at 0.5-5 g / L. The reaction time is preferably 1 to 240 hours, more preferably 6 to 48 hours. It is preferable to stop the reaction by adding a reaction terminator such as BHT.

[回収工程]
分解されたゴム成分を有機溶媒に溶解し、アルカリを添加したアルコール中でゴム成分を再沈することにより脂質を除去し、ゴム分を回収する工程である。
一般に加硫ゴムはいかなる有機溶媒にも不溶であるが、本発明による分解方法により、有機溶媒に可溶となる。有機溶媒としては、トルエン、テトラヒドロフラン、シクロヘキサン、クロロホルムなど未加硫の原料ゴムが可溶であるものを選択する。ただし、分解前の試料にカーボンブラックなどの充填剤が配合されている場合と配合されていない場合で、回収方法が異なる。
[Recovery process]
In this process, the decomposed rubber component is dissolved in an organic solvent, and the rubber component is reprecipitated in an alcohol to which an alkali is added to remove the lipid and recover the rubber component.
In general, vulcanized rubber is insoluble in any organic solvent, but becomes soluble in an organic solvent by the decomposition method of the present invention. As the organic solvent, one in which unvulcanized raw rubber such as toluene, tetrahydrofuran, cyclohexane and chloroform is soluble is selected. However, the recovery method differs depending on whether or not a filler such as carbon black is blended in the sample before decomposition.

充填剤が配合されていない場合は分解物が液状になるため、反応液との分離はクロロホルムなどの水と混ざらないで、且つゴムを溶解する有機溶媒を反応液に加え、ゴム分を液−液抽出する必要がある。
カーボンブラックなどの充填剤が配合されている場合は、反応液と分解ゴムの分離はろ紙などを用いたろ過やデカンテーションにより、容易に分離することができるが、分解されたゴム成分には充填剤が含まれるため、分解物を有機溶媒に溶解するとカーボンブラック、シリカや酸化亜鉛などの無機充填剤などが不溶成分として残るため、これらをろ過や遠心分離によって除去する。
When no filler is blended, the decomposition product becomes liquid, so that separation from the reaction solution is not mixed with water such as chloroform, and an organic solvent that dissolves rubber is added to the reaction solution, and the rubber component is liquid- Liquid extraction is required.
When a filler such as carbon black is blended, the reaction solution and decomposed rubber can be easily separated by filtration or decantation using filter paper, etc., but the decomposed rubber component is filled. Therefore, when the decomposition product is dissolved in an organic solvent, carbon black, inorganic fillers such as silica and zinc oxide remain as insoluble components, and these are removed by filtration or centrifugation.

[脂質の除去]
次に、脂質の除去処理を行う。上記の処理で分解されたゴム分が溶解された有機溶媒中には脂質過酸化反応で使われた不飽和脂肪酸が混入している。そこで、発明者は鋭意検討した結果、アルカリを添加したアルコール中にゴム分解物を再沈すると、効率良く不飽和脂肪酸とゴムが分離できることを見出した。ここで、アルカリとしては、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウムが例示されるが水酸化カリウム水溶液が好適である。アルカリの濃度としては0.1〜5Nが好ましく、さらに好ましくは0.2〜2Nである。アルコールとしては、メタノール、エタノール、プロパノールなどが例示されるがエタノールが好ましい。
[Removal of lipid]
Next, a lipid removal process is performed. In the organic solvent in which the rubber component decomposed by the above treatment is dissolved, the unsaturated fatty acid used in the lipid peroxidation reaction is mixed. Thus, as a result of intensive studies, the inventors have found that unsaturated fatty acids and rubber can be efficiently separated by reprecipitation of a rubber decomposition product in an alcohol to which an alkali is added. Here, examples of the alkali include potassium hydroxide, sodium hydroxide, calcium hydroxide, and magnesium hydroxide, but a potassium hydroxide aqueous solution is preferable. The alkali concentration is preferably 0.1 to 5N, and more preferably 0.2 to 2N. Examples of the alcohol include methanol, ethanol, propanol and the like, but ethanol is preferable.

[分離処理]
上記の処理で分解されたゴムを取り出すと、このゴムは有機溶媒に可溶となる。このため、容易に回収できるだけでなく、原料ゴムに類似の構造であり、マテリアルリサイクルに利用しやすい状態での回収ができる。
[Separation process]
When the rubber decomposed by the above treatment is taken out, the rubber becomes soluble in an organic solvent. For this reason, not only can it be easily recovered, but it has a structure similar to that of the raw rubber and can be recovered in a state where it can be easily used for material recycling.

[評価方法]
回収したゴムは乾燥して重量測定を行った。また、分子量測定のため、試料を0.1%濃度でテトラヒドロフランに溶解し、0.45μのフィルターで濾過し、GPC装置に100μlを注入した。カラムはTSK−GMHを使用し、検出器は示差屈折率検出器を使用した。なお、本明細書において、重量平均分子量(Mw)とは、GPCにより測定されたポリスチレン換算で求められる値を意味する。
[Evaluation methods]
The recovered rubber was dried and weighed. For molecular weight measurement, a sample was dissolved in tetrahydrofuran at a concentration of 0.1%, filtered through a 0.45 μ filter, and 100 μl was injected into the GPC apparatus. The column used was TSK-GMH, and the detector used was a differential refractive index detector. In addition, in this specification, a weight average molecular weight (Mw) means the value calculated | required by polystyrene conversion measured by GPC.

上述のように、本発明の加硫ゴムの分解回収方法は、反応温度が低くエネルギー効率性が高いだけでなく、反応速度の速さにも、分解反応物のリサイクル回収性にも優れる。そのため、本発明の加硫ゴムの分解回収方法は、マテリアルリサイクルに好適に利用することができ、より具体的には、ゴム製品等の添加剤などとして非常に有用である。   As described above, the method for decomposing and recovering a vulcanized rubber according to the present invention not only has a low reaction temperature and high energy efficiency, but also has an excellent reaction rate and excellent recyclability of decomposition products. Therefore, the method for decomposing and recovering vulcanized rubber of the present invention can be suitably used for material recycling, and more specifically, it is very useful as an additive for rubber products and the like.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

(実施例1)
過酸化水素0.2mM、硫酸第一鉄(硫酸鉄(II)[FeSO])1mM、リノール酸5mM、緩衝剤15mM、非イオン系界面活性剤0.01mMの組成の100mlの反応液中で、37℃、24時間、攪拌しながら、ラテックス手袋ゴム0.1gを分解した。この反応液に10mMのBHTを含むクロロホルム50mlを加え、ゴム成分を液−液抽出した。このクロロホルム溶液を反応液と分離した後、クロロホルム溶液を、1N水酸化カリウムを添加したエタノールに滴下し、ゴム成分を回収した。回収したゴム量は0.06gであり、重量平均分子量は13500であった。
Example 1
In a 100 ml reaction solution having a composition of 0.2 mM hydrogen peroxide, 1 mM ferrous sulfate (iron (II) sulfate [FeSO 4 ]), 5 mM linoleic acid, 15 mM buffer, and 0.01 mM nonionic surfactant. While stirring at 37 ° C. for 24 hours, 0.1 g of latex glove rubber was decomposed. To this reaction solution, 50 ml of chloroform containing 10 mM BHT was added, and the rubber component was subjected to liquid-liquid extraction. After the chloroform solution was separated from the reaction solution, the chloroform solution was added dropwise to ethanol to which 1N potassium hydroxide had been added to recover the rubber component. The recovered rubber amount was 0.06 g, and the weight average molecular weight was 13,500.

(実施例2)
実施例1と同様な組成で、その配合を表1に示したカーボン配合加硫天然ゴム0.1gを分解回収した。加硫ゴム分解物が、重量平均分子量9550の液状のゴムとして0.03g回収できた。
(Example 2)
With the same composition as in Example 1, 0.1 g of a carbon-containing vulcanized natural rubber whose composition was shown in Table 1 was recovered by decomposition. 0.03 g of a vulcanized rubber decomposition product was recovered as a liquid rubber having a weight average molecular weight of 9550.

Figure 2011153272
Figure 2011153272

(比較例1)
実施例1の反応液から硫酸第1鉄を除いた反応液で、実施例1と同様な処理を行っても、手袋ゴムは分解しなかった。
(Comparative Example 1)
Even when the same treatment as in Example 1 was performed with the reaction solution obtained by removing ferrous sulfate from the reaction solution in Example 1, the glove rubber was not decomposed.

実施例1により、本方法で加硫ゴムが容易に分解でき、液状ゴムとして好適に回収できることがわかる。また、実施例2によりさらにカーボン配合の加硫ゴムからも液状ゴムが得られることがわかる。   It can be seen from Example 1 that the vulcanized rubber can be easily decomposed by this method and can be suitably recovered as a liquid rubber. It can also be seen from Example 2 that a liquid rubber can be obtained from a vulcanized rubber compounded with carbon.

本発明により、脂質過酸化反応により加硫ゴムを分解した後、分解されたゴム成分を有機溶媒に溶解し、アルカリを添加したアルコール中でゴム成分を再沈することにより脂質を除去し、ゴム分を回収する方法が提供された。本発明の方法は常温常圧に近い条件での化学反応を利用した分解回収方法であるので、エネルギー消費量が少なく、炭酸ガス排出量等の環境負荷も少なく、コストも安いという利点があり、さらに、回収されたゴム分が利用しやすいという利点があるので、廃タイヤなどの使用済み加硫ゴムの再利用などに大いに資すると考えられる。   According to the present invention, after the vulcanized rubber is decomposed by a lipid peroxidation reaction, the decomposed rubber component is dissolved in an organic solvent, and the rubber component is reprecipitated in an alcohol to which an alkali is added to remove the lipid, and the rubber A method of recovering minutes was provided. Since the method of the present invention is a decomposition and recovery method using a chemical reaction under conditions close to normal temperature and pressure, there is an advantage that the energy consumption is small, the environmental load such as carbon dioxide emission is small, and the cost is low, Furthermore, since the recovered rubber component is easy to use, it is considered that it greatly contributes to the reuse of used vulcanized rubber such as waste tires.

Claims (9)

脂質過酸化反応により加硫ゴムを分解する工程と、前記加硫ゴムを分解した後、分解されたゴム成分を有機溶媒に溶解し、アルカリを添加したアルコール中でゴム成分を再沈することにより脂質を除去し、ゴム分を回収する工程を含む加硫ゴムの分解回収方法。   A step of decomposing vulcanized rubber by a lipid peroxidation reaction, and after decomposing the vulcanized rubber, by dissolving the decomposed rubber component in an organic solvent and reprecipitating the rubber component in alcohol to which alkali is added. A method for decomposing and recovering vulcanized rubber, comprising a step of removing lipids and recovering rubber. 前記脂質過酸化反応を脂質としてリノール酸を使用して行うことを特徴とする請求項1に記載の加硫ゴムの加硫ゴムの分解回収方法。   The method for decomposing and recovering a vulcanized rubber of a vulcanized rubber according to claim 1, wherein the lipid peroxidation reaction is performed using linoleic acid as a lipid. 前記脂質過酸化反応の反応開始剤として二価の鉄イオンを使用することを特徴とする請求項1又は2に記載の加硫ゴムの分解回収方法。   The method for decomposing and recovering vulcanized rubber according to claim 1 or 2, wherein divalent iron ions are used as a reaction initiator for the lipid peroxidation reaction. 前記加硫ゴムがジエン系ゴムを含むことを特徴とする請求項1から請求項3のいずれかに記載の加硫ゴムの分解回収方法。   The method for decomposing and recovering a vulcanized rubber according to any one of claims 1 to 3, wherein the vulcanized rubber contains a diene rubber. 前記加硫ゴムが充填剤を含むことを特徴とする請求項1から請求項4のいずれかに記載の加硫ゴムの分解回収方法。   The method for decomposing and recovering vulcanized rubber according to any one of claims 1 to 4, wherein the vulcanized rubber contains a filler. 前記充填剤がシリカ、カーボンブラックから選択される少なくとも一種であることを特徴とする請求項5に記載の加硫ゴムの分解回収方法。   6. The method for decomposing and recovering vulcanized rubber according to claim 5, wherein the filler is at least one selected from silica and carbon black. 前記加硫ゴムが老化防止剤を含み、該老化防止剤を有機溶媒で抽出することを特徴とする請求項1から請求項6のいずれかに記載の加硫ゴムの分解回収方法。   The method for decomposing and recovering vulcanized rubber according to any one of claims 1 to 6, wherein the vulcanized rubber contains an anti-aging agent, and the anti-aging agent is extracted with an organic solvent. 前記有機溶媒に溶解した後、不溶分をろ過することを特徴とする請求項1から請求項7のいずれかに記載の加硫ゴムの分解回収方法。   The method for decomposing and recovering vulcanized rubber according to any one of claims 1 to 7, wherein insoluble matter is filtered after dissolving in the organic solvent. 前記有機溶媒に溶解した後、不溶分を遠心分離することを特徴とする請求項1から請求項8のいずれかに記載の加硫ゴムの分解回収方法。   The method for decomposing and recovering vulcanized rubber according to any one of claims 1 to 8, wherein the insoluble matter is centrifuged after being dissolved in the organic solvent.
JP2010017317A 2010-01-28 2010-01-28 Method for decomposing and recovering vulcanized rubber Withdrawn JP2011153272A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010017317A JP2011153272A (en) 2010-01-28 2010-01-28 Method for decomposing and recovering vulcanized rubber
PCT/JP2011/000497 WO2011093104A1 (en) 2010-01-28 2011-01-28 Vulcanized rubber separation and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010017317A JP2011153272A (en) 2010-01-28 2010-01-28 Method for decomposing and recovering vulcanized rubber

Publications (1)

Publication Number Publication Date
JP2011153272A true JP2011153272A (en) 2011-08-11

Family

ID=44319095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017317A Withdrawn JP2011153272A (en) 2010-01-28 2010-01-28 Method for decomposing and recovering vulcanized rubber

Country Status (2)

Country Link
JP (1) JP2011153272A (en)
WO (1) WO2011093104A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10179479B2 (en) 2015-05-19 2019-01-15 Bridgestone Americas Tire Operations, Llc Plant oil-containing rubber compositions, tread thereof and race tires containing the tread

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP627598A0 (en) * 1998-10-01 1998-10-22 Advanced Projects Group Pty. Ltd. Method for treatment of vulcanized rubber
JP2006070127A (en) * 2004-09-01 2006-03-16 Yokohama Rubber Co Ltd:The Decomposition method of vulcanized rubber and decomposed rubber composition
JP2007161911A (en) * 2005-12-15 2007-06-28 Mitsubishi Materials Corp Method for recovering rubber from organic waste liquid
JP4775724B2 (en) * 2008-03-24 2011-09-21 独立行政法人国立高等専門学校機構 Rubber decomposing agent and decomposing method

Also Published As

Publication number Publication date
WO2011093104A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
Shah et al. Biodegradation of natural and synthetic rubbers: A review
Zhang et al. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery
JP2010138359A (en) Natural rubber, method of producing the same, rubber composition, and pneumatic tire using the composition
CN102585041A (en) Modified natural rubber, production method thereof, tire rubber composition, and pneumatic tire
JP4641214B2 (en) Rubber composition for tire, method for producing the same, and pneumatic tire using the rubber composition for tire
JP2007146114A (en) Production method for natural rubber having lowered viscosity, natural rubber obtained thereby and rubber composition containing the same
US6525105B1 (en) Methods of separating vulcanized or unvulcanized rubber and separating rubber composite, rubber composition containing recovered rubber or recovered carbon black, and process for producing carbon black
CN110157443A (en) The composition of DDT and its application in a kind of processing contaminated soil
JP2011153272A (en) Method for decomposing and recovering vulcanized rubber
US9193806B2 (en) Method for producing an epoxidized natural rubber, rubber composition for tires, and pneumatic tire
CN104475260A (en) Flotation system and method for separating ABS (Acrylonitrile Butadiene Styrene) and HIPS (High Impact Polystyrene)
TWI796773B (en) Process for reducing the hydrophobic functional group-containing volatile organic compound content and hydrophilic volatile organic compound content of recycled polyolefin and use of the process
JP2000095895A (en) Reclamation of vulcanized rubber
CN102558413B (en) Method for removing inorganic salts from halogenated polymer solution and method for halogenating polymer
CN101081840A (en) Production method of rubber vulcanization accelerator N-cyclohexyl-2-benzothiazole sulfonamide
WO2021211021A2 (en) Method for regeneration of rubber
CN108101865B (en) Preparation method of rubber vulcanization accelerator CBBS
Ikeda et al. Recycling of monomers and fillers from high-temperature-vulcanized silicone rubber using tetramethylammonium hydroxide
CN102108055A (en) Processing for recovering methyl anthranilate
JP2004359774A (en) Rubber composition for tread, and pneumatic tire obtained using the same
JP4652147B2 (en) Novel microorganism WU-YS09 strain, method for microbial degradation of rubber
JP2006070127A (en) Decomposition method of vulcanized rubber and decomposed rubber composition
CN113171584B (en) Iron removing liquid and method for removing iron ions of high-boiling residues of VCM device
JP5134282B2 (en) Oil-extended rubber and method for producing the same
JP4603880B2 (en) Novel microorganism BS-HA1 strain, method for microbial degradation of rubber

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402