JP2011153045A - Method for producing single crystal - Google Patents

Method for producing single crystal Download PDF

Info

Publication number
JP2011153045A
JP2011153045A JP2010016214A JP2010016214A JP2011153045A JP 2011153045 A JP2011153045 A JP 2011153045A JP 2010016214 A JP2010016214 A JP 2010016214A JP 2010016214 A JP2010016214 A JP 2010016214A JP 2011153045 A JP2011153045 A JP 2011153045A
Authority
JP
Japan
Prior art keywords
single crystal
opening
susceptor
seed substrate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010016214A
Other languages
Japanese (ja)
Inventor
Chiaki Ueno
千明 上野
Chiaki Domoto
千秋 堂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010016214A priority Critical patent/JP2011153045A/en
Publication of JP2011153045A publication Critical patent/JP2011153045A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a single crystal by which a high-quality single crystal can be obtained by suppressing cracks of a reactor in a hydride vapor phase growth method. <P>SOLUTION: The method for producing a single crystal is carried out by using a susceptor 1, which includes a through-hole 3 having a first opening 2a on a lower face opposing to a supply direction of a raw material gas 5, a second opening 2b on an upper face, wherein the second opening is smaller than the first opening 2a, and a slope face 2c for disposing a seed substrate 4 on an inner wall face, the through-hole 3 exhibiting a truncated cone shape that becomes narrower from the second opening 2b to the first opening 2a; and the method comprises supplying a raw material gas 5 to the susceptor 1 through the first opening 2a and discharging the raw material gas 5 passing through the seed substrate 4 to the outside of the susceptor 1 through the second opening 2b. Thus, the raw material gas 5 is inhibited from flowing into a reactor 7 disposed in the periphery of the susceptor 1, which reduces cracks of the reactor 7 and results in long-term growth of a single crystal, thereby a high-quality single crystal in a bulk state can be obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、単結晶体を気相成長法によって成長させる単結晶体の製造方法に関するものである。   The present invention relates to a method for producing a single crystal by growing the single crystal by a vapor phase growth method.

単結晶体のなかでも、例えばGaN,AlGaNなどの窒化物単結晶体は、発光ダイオード(LED),半導体レーザ(LD)などの発光素子,トランジスタ,パワーFET(Field Effect Transistor)などのパワーデバイスなどの電子素子などに用いられ、今後
、使用の拡大が見込まれている。
Among single crystals, nitride single crystals such as GaN and AlGaN are light emitting elements such as light emitting diodes (LEDs) and semiconductor lasers (LDs), power devices such as transistors, and power FETs (Field Effect Transistors). In the future, the use is expected to expand.

しかしながら、GaN,AlGaNなどの3族窒化物単結晶体は、高融点であること、N(窒素)の平衡蒸気圧が高いことなどから、液相からのバルク型の単結晶の製造が困難である。そのため、サファイア(Al),炭化珪素(SiC)などの種基板上に薄膜を気相成長させて、その薄膜を各種デバイス用に利用することが行われている。 However, Group 3 nitride single crystals such as GaN and AlGaN have a high melting point and a high equilibrium vapor pressure of N (nitrogen), which makes it difficult to produce bulk single crystals from the liquid phase. is there. Therefore, a thin film is grown on a seed substrate such as sapphire (Al 2 O 3 ) or silicon carbide (SiC), and the thin film is used for various devices.

例えば、特許文献1には、ハイドライド気相成長法を用い、アンモニアガスおよび塩化ガリウムガスの原料ガスを供給させることで窒化ガリウムの単結晶体を種基板上に設ける技術が記載されている。   For example, Patent Document 1 describes a technique in which a single crystal body of gallium nitride is provided on a seed substrate by supplying a source gas of ammonia gas and gallium chloride gas using a hydride vapor phase growth method.

特開2007−126320号公報JP 2007-126320 A

しかし、特許文献1の製造方法では、種基板を通過した原料ガスがサセプタの外周に広がり、サセプタの外側に設けられたリアクタに沿って流れることになる。このため、原料ガス中の未反応ガスが反応してリアクタに付着する傾向があった。リアクタは例えば石英などによって作製されており、長時間単結晶成長を行ったあとに、リアクタを冷却すると、リアクタに付着した窒化ガリウムにより、リアクタが割れるという課題があった。   However, in the manufacturing method of Patent Document 1, the raw material gas that has passed through the seed substrate spreads around the susceptor and flows along a reactor provided outside the susceptor. For this reason, the unreacted gas in the raw material gas tends to react and adhere to the reactor. The reactor is made of, for example, quartz, and there has been a problem that when the reactor is cooled after a single crystal growth for a long time, the reactor is cracked by gallium nitride attached to the reactor.

本発明は、上記従来の問題点に鑑みて完成されたものであり、リアクタの割れを抑制し、高品質な単結晶体を提供する。   The present invention has been completed in view of the above-mentioned conventional problems, and suppresses cracking of the reactor, and provides a high-quality single crystal.

本発明の一実施形態にかかる単結晶体の製造方法は、原料ガスの供給方向と対向した下面に第1の開口と、上面に前記第1の開口よりも小さい第2の開口と、内壁面に種基板を設置するための設置面と、を有し、前記第2の開口から前記第1の開口に向かって先細りとなる錐台形状を示す貫通孔を具備するサセプタに対して、前記種基板を前記設置面に設置する工程1と、前記第1の開口から前記原料ガスを前記種基板に供給させる工程2と、前記原料ガスのうち前記種基板を通過した前記原料ガスを、前記第2の開口まで移動させたのち、前記第2の開口から前記サセプタの外に放出させる工程3と、を具備する。   A method for producing a single crystal according to an embodiment of the present invention includes a first opening on a lower surface facing a supply direction of a source gas, a second opening smaller than the first opening on an upper surface, and an inner wall surface. A susceptor having a through-hole having a frustum shape tapered from the second opening toward the first opening. Step 1 for installing a substrate on the installation surface, Step 2 for supplying the source gas to the seed substrate from the first opening, and the source gas passing through the seed substrate among the source gases, And moving to the second opening, and then releasing from the second opening to the outside of the susceptor.

前記貫通孔は多角錘台形状を示すことが好ましい。   It is preferable that the through hole has a polygonal frustum shape.

前記サセプタの前記設置面は凹部の底部であり、工程1は、前記種基板における単結晶成長面と前記貫通孔の斜面とが同一面をなすように前記凹部に前記種基板を設置する工程
であることが好ましい。
The installation surface of the susceptor is a bottom of a recess, and step 1 is a step of installing the seed substrate in the recess so that the single crystal growth surface of the seed substrate and the slope of the through hole are flush with each other. Preferably there is.

前記錐台形状の貫通孔の中心軸に沿って前記サセプタを回転させる工程をさらに具備することが好ましい。   It is preferable that the method further includes a step of rotating the susceptor along a central axis of the frustum-shaped through hole.

前記気相成長法はハイドライド気相成長法であり、成長させる前記単結晶体は窒化物単結晶から構成されることが好ましい。   The vapor phase growth method is a hydride vapor phase growth method, and the single crystal to be grown is preferably composed of a nitride single crystal.

本発明の単結晶体の製造方法によれば、気相成長法において特定形状のサセプタを用いることにより、種基板を通過した原料ガスがサセプタの外周側に広がって流れることを抑制することができる。よって、サセプタの外周に設けられたリアクタに原料ガスが流れることを抑制し、リアクタの割れを低減させ、結果として長時間単結晶体の成長を行うことができるようになり、バルク状の高品質な単結晶体を提供することができる。   According to the method for producing a single crystal of the present invention, by using a susceptor having a specific shape in a vapor phase growth method, it is possible to suppress the source gas that has passed through the seed substrate from spreading to the outer peripheral side of the susceptor. . Therefore, it is possible to suppress the flow of the raw material gas to the reactor provided on the outer periphery of the susceptor, reduce the cracking of the reactor, and as a result, the single crystal can be grown for a long time, resulting in a high quality in bulk form. Single crystal can be provided.

本発明の単結晶体の製造方法に用いるサセプタ1の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the susceptor 1 used for the manufacturing method of the single crystal of this invention. 図1のサセプタ1を用いた気相成長装置の垂直断面図である。FIG. 2 is a vertical sectional view of a vapor phase growth apparatus using the susceptor 1 of FIG. 1. 別の態様のサセプタ1を示す斜視図である。It is a perspective view which shows the susceptor 1 of another aspect. 図2の気相成長装置におけるサセプタ1付近を拡大した図2の拡大図である。FIG. 3 is an enlarged view of FIG. 2 in which the vicinity of the susceptor 1 in the vapor phase growth apparatus of FIG. 2 is enlarged.

以下、本発明の単結晶体の製造方法について、実施形態の一例を説明する。   Hereinafter, an exemplary embodiment of the method for producing a single crystal of the present invention will be described.

本発明の単結晶体の製造方法は、気相成長法を用いる。気相成長法としては、ハイドライド気相成長法(HVPE法)、有機金属気相成長法(MOVPE法)、昇華法などが挙げられる。なかでも、成長速度が速く、品質も良く、窒化物体を作製させやすいという理由によりHVPE法が好ましい。   The method for producing a single crystal of the present invention uses a vapor phase growth method. Examples of the vapor phase growth method include a hydride vapor phase growth method (HVPE method), a metal organic vapor phase growth method (MOVPE method), and a sublimation method. Among them, the HVPE method is preferable because it has a high growth rate, good quality, and easy to produce a nitride body.

本発明においては貫通孔3が設けられたサセプタ1を用いる。図1に示すようにサセプタ1において、貫通孔3は、下面に設けられた第1の開口2aと、上面に設けられた第2の開口2bと、貫通孔3内壁の斜面であって種基板4を設置する設置面2cと、から構成される。貫通孔3は、第1の開口2aから第2の開口2bに向かって先細りとなる錐台形状を示す。とくに貫通孔3は、多角錐台形状であることが好ましく、なかでも、底面の角数の小さい多角錐台、とくに四角錐代形状であることがとくに好ましい。貫通孔3が、底面の角数の小さい多角錐台形状であることにより、設置面2cである斜面の面積が大きくなるため、大きな面積の種基板を設置することができるためである。   In the present invention, the susceptor 1 provided with the through hole 3 is used. As shown in FIG. 1, in the susceptor 1, the through hole 3 is a first opening 2 a provided on the lower surface, a second opening 2 b provided on the upper surface, and a slope of the inner wall of the through hole 3. And an installation surface 2c on which 4 is installed. The through-hole 3 has a frustum shape that tapers from the first opening 2a toward the second opening 2b. In particular, the through-hole 3 preferably has a polygonal frustum shape, and particularly preferably a polygonal frustum having a small number of corners on the bottom surface, particularly a quadrangular pyramid shape. This is because the through hole 3 has a polygonal truncated pyramid shape with a small number of corners on the bottom surface, so that the area of the inclined surface, which is the installation surface 2c, is increased, so that a seed substrate having a large area can be installed.

図2には、図1のサセプタ1を用いた気相成長装置を示す。サセプタ1は、円筒状のリアクタ7中に、サセプタ1の保持体9によって吊り下げられる。サセプタ1の斜面2cには、種基板4を設ける。   FIG. 2 shows a vapor phase growth apparatus using the susceptor 1 of FIG. The susceptor 1 is suspended in a cylindrical reactor 7 by a holding body 9 of the susceptor 1. A seed substrate 4 is provided on the inclined surface 2 c of the susceptor 1.

種基板4は斜め下を向くように設けられることが好ましく、これにより、リアクタ7内において生じる不純物が種基板4上に付着しにくくなる。   The seed substrate 4 is preferably provided so as to face obliquely downward, so that impurities generated in the reactor 7 are less likely to adhere to the seed substrate 4.

また、図2の気相成長装置は、リアクタ7の内壁面を沿わせるようにエッチングガス11を流す。このエッチングガス11としては、単結晶体をエッチング可能なガスが選択される。例えば、単結晶体が3族窒化物単結晶体である場合、エッチングガス11としては
、塩化水素、ホウ化水素、臭化水素、フッ化水素などのハロゲン化水素が挙げられる。とくに単結晶体がGaNの場合、エッチング性能に最も優れることからHClが好ましい。
In the vapor phase growth apparatus of FIG. 2, the etching gas 11 is caused to flow along the inner wall surface of the reactor 7. As this etching gas 11, a gas capable of etching a single crystal is selected. For example, when the single crystal is a group III nitride single crystal, examples of the etching gas 11 include hydrogen halides such as hydrogen chloride, hydrogen boride, hydrogen bromide, and hydrogen fluoride. In particular, when the single crystal is GaN, HCl is preferable because it has the best etching performance.

しかしながら、通常のサセプタを用いた場合、種基板にもエッチングガスが当たり、成長した単結晶が削られる課題があったが、本発明において用いられるサセプタ1を用いることで、エッチングガス11は図2に示すように、サセプタ1の外側を通るようになるため、このような課題が解決される。   However, when an ordinary susceptor is used, the etching gas hits the seed substrate and there is a problem that the grown single crystal is scraped. By using the susceptor 1 used in the present invention, the etching gas 11 is changed to that shown in FIG. As shown in FIG. 4, since the outer side of the susceptor 1 is passed, such a problem is solved.

図2の種基板4は、貫通孔3の斜面が平坦であるが、図3に示すように、貫通孔3の斜面に対して凹部2dを設け(図3(a)参照)、その底面を種基板4の設置面2cとするように、凹部2d内に種基板4を設けることが好ましい(図3(b)参照)。この構成により、種基板4とサセプタ1との接触面積が大きくなるため、種基板4とサセプタ1との接着性が向上する。また、図3(b)に示すように、貫通孔3の斜面に止め具を設け、これにより種基板4を保持することが好ましい。   The seed substrate 4 in FIG. 2 has a flat inclined surface of the through hole 3, but as shown in FIG. 3, a recess 2d is provided on the inclined surface of the through hole 3 (see FIG. 3 (a)), and its bottom surface is formed. The seed substrate 4 is preferably provided in the recess 2d so as to be the installation surface 2c of the seed substrate 4 (see FIG. 3B). With this configuration, since the contact area between the seed substrate 4 and the susceptor 1 is increased, the adhesion between the seed substrate 4 and the susceptor 1 is improved. Moreover, as shown in FIG.3 (b), it is preferable to provide a stopper in the slope of the through-hole 3, and hold | maintain the seed substrate 4 by this.

図2に示す気相成長装置において、前述のように種基板4を設置したサセプタ1は、保持体9により回転が加えられる。図4に示すようにサセプタ1の回転軸Aは、鉛直方向である。ここで、鉛直方向とは重力方向を示し、−5°〜5°の範囲内のずれは許容とする。また、サセプタ1の回転軸Aは、錐台形状の貫通孔3の中心軸と一致していることが好ましい。サセプタ1の回転数としては、例えば、2rpm〜50rpm程度の範囲から選択することが可能である。   In the vapor phase growth apparatus shown in FIG. 2, the susceptor 1 on which the seed substrate 4 is installed as described above is rotated by the holding body 9. As shown in FIG. 4, the rotation axis A of the susceptor 1 is in the vertical direction. Here, the vertical direction indicates the direction of gravity, and deviation within a range of −5 ° to 5 ° is allowed. The rotation axis A of the susceptor 1 preferably coincides with the central axis of the frustum-shaped through hole 3. The rotation speed of the susceptor 1 can be selected from the range of about 2 rpm to 50 rpm, for example.

気相成長装置においてサセプタ1の下には、ガス供給管8が設けられ、このガス供給管8から原料ガス5が種基板4に供給される。   In the vapor phase growth apparatus, a gas supply pipe 8 is provided below the susceptor 1, and the source gas 5 is supplied from the gas supply pipe 8 to the seed substrate 4.

原料ガス5としては、例えば、成長させる単結晶体が窒化ガリウムのような3−5族単結晶である場合は、3族元素ガスおよび5族元素ガスを用いる。なお、3族元素ガスとは、周期表の第13族元素(たとえば、ガリウム、アルミニウム、インジウムなど)を含むガスをいう。例えば、塩化ガリウム、塩化アルミニウム、塩化インジウムなどが挙げられる。また、5族元素ガスとは、周期表の第15族元素(たとえば、窒素、砒素など)を含むガスをいい、例えば、アンモニアなどが挙げられる。   As the source gas 5, for example, when the single crystal to be grown is a group 3-5 single crystal such as gallium nitride, a group 3 element gas and a group 5 element gas are used. The group 3 element gas refers to a gas containing a group 13 element (eg, gallium, aluminum, indium, etc.) in the periodic table. Examples include gallium chloride, aluminum chloride, and indium chloride. The group 5 element gas means a gas containing a group 15 element (for example, nitrogen, arsenic, etc.) in the periodic table, and examples thereof include ammonia.

原料ガス5は、種基板4の表面(単結晶成長面)に供給されるようにガス供給管8から供給される(図4の5a)。そして、反応に用いられなかったガスなどの種基板4を通過した原料ガス5bは、貫通孔3の斜面に沿って第2の開口2bに向かう。そして、原料ガス5bは第2の開口2bからサセプタ1の外に出される。貫通孔3は錐台形状を示すため、第2の開口2bから放出された原料ガス5bは、サセプタ1の外周側に流れることが少なくなり、結果として、サセプタ1の外周側に設けられたリアクタ7と原料ガス5bとの接触を抑制することができる。とくに、図3に示すように、種基板4の単結晶成長面と貫通孔の斜面とが同一面をなすように凹部2dに種基板4を設置する場合、原料ガス5が層流の状態で結晶成長することができるため好ましい。   The source gas 5 is supplied from the gas supply pipe 8 so as to be supplied to the surface (single crystal growth surface) of the seed substrate 4 (5a in FIG. 4). Then, the source gas 5 b that has passed through the seed substrate 4 such as a gas that has not been used for the reaction travels along the slope of the through hole 3 toward the second opening 2 b. Then, the source gas 5b is discharged out of the susceptor 1 from the second opening 2b. Since the through hole 3 has a frustum shape, the source gas 5b released from the second opening 2b is less likely to flow to the outer peripheral side of the susceptor 1, and as a result, the reactor provided on the outer peripheral side of the susceptor 1 7 and the source gas 5b can be prevented from contacting each other. In particular, as shown in FIG. 3, when the seed substrate 4 is installed in the recess 2d so that the single crystal growth surface of the seed substrate 4 and the inclined surface of the through hole are flush with each other, the source gas 5 is in a laminar state. It is preferable because it allows crystal growth.

このようなサセプタ1を用いて得られた単結晶体は、厚みが10mm以上のバルク状単結晶体が得られる。また、得られた単結晶体の平均転位密度が1×10cm−2以下と低い高品質な単結晶体が得られた。このように、大きな厚みを有し、かつ結晶品質のばらつきが小さい単結晶体から、ダイシングにより、複数枚の単結晶基板を切り出すことができる。 A single crystal obtained using such a susceptor 1 is a bulk single crystal having a thickness of 10 mm or more. Further, a high-quality single crystal having a low average dislocation density of 1 × 10 9 cm −2 or less was obtained. In this manner, a plurality of single crystal substrates can be cut out from a single crystal body having a large thickness and having a small variation in crystal quality by dicing.

なお、得られた単結晶体は、例えば、以下に示す方法により基板形状に加工される。   In addition, the obtained single crystal is processed into a substrate shape by the following method, for example.

まず、ダイアモンド砥石を使用して成長させた単結晶体を外周研削して所定の外径とする。次に、単結晶体を、ダイアモンド砥粒などを固着させたワイヤ、または、真鍮ワイヤにダイアモンドまたはSiC砥粒をスラリーで滴下しながら、ワイヤの往復運動で結晶を切断するワイヤーソーにより、所定厚み(例えば0.6mm)のウェハ形状に切り出す。   First, the outer periphery of a single crystal grown using a diamond grindstone is ground to a predetermined outer diameter. Next, a single crystal body is fixed to a predetermined thickness by a wire saw in which diamond abrasive grains or the like are fixed, or a diamond or SiC abrasive grain is dripped onto a brass wire with a slurry, and the wire is reciprocated to cut the crystal. Cut into a wafer shape (for example, 0.6 mm).

そして、単結晶ウェハの両面をダイアモンド砥粒、または、SiC砥粒を用いて粗研磨した後に、コロイダルシリカを用いてデバイス工程で使用する表面を鏡面研磨することにより、単結晶ウェハ基板を得る。   And after rough-polishing both surfaces of a single crystal wafer using a diamond abrasive grain or a SiC abrasive grain, the surface used in a device process is mirror-polished using colloidal silica, and a single crystal wafer substrate is obtained.

以下、各構成についての詳細を示す。   Details of each configuration will be described below.

(サセプタ1)
サセプタ1にはグラファイトを用いることができるが、単結晶体の原料ガスとして腐食性のアンモニアおよび塩化水素を使用する場合、表面にSiC、BNおよびTaCからなる群から選ばれる1種以上をコーティングしておくことが好ましい。なお、コーティング法としては、CVD法、スパッタ法などが挙げられる。これによりサセプタ1の耐食性が向上する。なお、BNのなかでもPBNが好ましい。PBNとは、焦性窒化ホウ素(パイロリティックBN(p−BN))である。
(Susceptor 1)
Graphite can be used for the susceptor 1, but when corrosive ammonia and hydrogen chloride are used as the raw material gas for the single crystal, the surface is coated with at least one selected from the group consisting of SiC, BN and TaC. It is preferable to keep it. Examples of the coating method include a CVD method and a sputtering method. Thereby, the corrosion resistance of the susceptor 1 is improved. PBN is preferable among BN. PBN is pyrogenic boron nitride (pyrolytic BN (p-BN)).

サセプタ1の貫通孔3における錐台形状の斜面の傾斜角は、原料ガス5の供給方向に対して30〜70°であることが好ましい。   The inclination angle of the frustum-shaped slope in the through-hole 3 of the susceptor 1 is preferably 30 to 70 ° with respect to the supply direction of the source gas 5.

(種基板4)
種基板4の具体例として、GaN,AlGaNなどの3族窒化物単結晶体、サファイア、SiC、GaN単結晶、AlN単結晶、またはGaN単結晶およびAlN単結晶の混晶などを挙げることができる。種基板4としては、得られる単結晶体の品質に優れることから、成長させる単結晶体と同一の材料、つまり、ホモエピタキシャル成長させるものが好ましい。例えば、GaN単結晶体を作製する場合、種基板4としてはGaN基板が好ましい。成長用の種基板4の厚みは0.3〜0.6mm程度である。また、種基板4が円板状である場合、種基板4の直径は20mm〜60mmである。
(Seed board 4)
Specific examples of the seed substrate 4 include group III nitride single crystals such as GaN and AlGaN, sapphire, SiC, GaN single crystals, AlN single crystals, or mixed crystals of GaN single crystals and AlN single crystals. . The seed substrate 4 is preferably made of the same material as that of the single crystal to be grown, that is, one that is homoepitaxially grown, since the quality of the obtained single crystal is excellent. For example, when producing a GaN single crystal, the seed substrate 4 is preferably a GaN substrate. The thickness of the seed substrate 4 for growth is about 0.3 to 0.6 mm. Moreover, when the seed substrate 4 is disk shape, the diameter of the seed substrate 4 is 20 mm-60 mm.

(リアクタ7およびガス供給管8)
気相成長装置を形成するリアクタ7とガス供給管8とは、石英などからなり、形状は円筒状、角筒状などの筒状体のものが好適に用いられる。
(Reactor 7 and gas supply pipe 8)
The reactor 7 and the gas supply pipe 8 forming the vapor phase growth apparatus are made of quartz or the like, and those having a cylindrical shape such as a cylindrical shape or a rectangular tube shape are preferably used.

(ヒータ6)
ヒータ6は、リアクタ7の外周部に周設される。単結晶体の製造にて行われる加熱は、単結晶成長開始時は1000〜1300℃である。
(Heater 6)
The heater 6 is provided around the outer periphery of the reactor 7. The heating performed in the production of the single crystal is 1000 to 1300 ° C. at the start of single crystal growth.

1:サセプタ
2a:第1の開口
2b:第2の開口
2c:設置面
2d:凹部
3:貫通孔
4:種基板
5:原料ガス
5a:種基板4の表面(単結晶成長面)に供給される原料ガス
5b:種基板4を通過した原料ガス
6:ヒータ
7:リアクタ
8:ガス供給管
9:サセプタ1の保持体
10:止め具
11:エッチングガス
A:サセプタ1の回転軸
1: Susceptor 2a: 1st opening 2b: 2nd opening 2c: Installation surface 2d: Concavity 3: Through hole 4: Seed substrate 5: Source gas 5a: Supplied to the surface (single crystal growth surface) of seed substrate 4 Source gas 5b: Source gas that has passed through the seed substrate 4 6: Heater 7: Reactor 8: Gas supply pipe 9: Holding body of susceptor 1 10: Stopper 11: Etching gas A: Rotating shaft of susceptor 1

Claims (5)

気相成長法による単結晶の製造方法であって、
原料ガスの供給方向と対向した下面に第1の開口と、上面に前記第1の開口よりも小さい第2の開口と、内壁面に種基板を設置するための設置面と、を有し、前記第2の開口から前記第1の開口に向かって先細りとなる錐台形状を示す貫通孔を具備するサセプタに対して、前記種基板を前記設置面に設置する工程1と、
前記第1の開口から前記原料ガスを前記種基板に供給させる工程2と、
前記原料ガスのうち前記種基板を通過した前記原料ガスを、前記第2の開口まで移動させたのち、前記第2の開口から前記サセプタの外に放出させる工程3と、
を具備する単結晶体の製造方法。
A method for producing a single crystal by vapor deposition,
A first opening on the lower surface facing the supply direction of the source gas, a second opening smaller than the first opening on the upper surface, and an installation surface for installing the seed substrate on the inner wall surface, Step 1 of installing the seed substrate on the installation surface with respect to a susceptor having a through hole showing a frustum shape tapered from the second opening toward the first opening;
Step 2 of supplying the source gas to the seed substrate from the first opening;
The source gas that has passed through the seed substrate out of the source gas is moved to the second opening and then released from the second opening to the outside of the susceptor; and
A method for producing a single crystal comprising:
前記貫通孔は多角錘台形状を示す請求項1記載の単結晶体の製造方法。   The method for producing a single crystal body according to claim 1, wherein the through hole has a polygonal frustum shape. 前記サセプタの前記設置面は凹部の底部であり、
工程1は、前記種基板における単結晶成長面と前記貫通孔の斜面とが同一面をなすように前記凹部に前記種基板を設置する工程である請求項1または2記載の単結晶体の製造方法。
The installation surface of the susceptor is a bottom of a recess;
3. The process for producing a single crystal according to claim 1, wherein step 1 is a step of installing the seed substrate in the recess so that the single crystal growth surface of the seed substrate and the slope of the through hole are flush with each other. Method.
前記錐台形状の貫通孔の中心軸に沿って前記サセプタを回転させる工程をさらに具備する請求項1乃至3のいずれかの単結晶体の製造方法。   The method for producing a single crystal body according to any one of claims 1 to 3, further comprising a step of rotating the susceptor along a central axis of the frustum-shaped through hole. 前記気相成長法はハイドライド気相成長法であり、
成長させる前記単結晶体は窒化物単結晶から構成される請求項1乃至4のいずれか記載の単結晶体の製造方法。
The vapor deposition method is a hydride vapor deposition method,
The method for producing a single crystal according to claim 1, wherein the single crystal to be grown is composed of a nitride single crystal.
JP2010016214A 2010-01-28 2010-01-28 Method for producing single crystal Pending JP2011153045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016214A JP2011153045A (en) 2010-01-28 2010-01-28 Method for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016214A JP2011153045A (en) 2010-01-28 2010-01-28 Method for producing single crystal

Publications (1)

Publication Number Publication Date
JP2011153045A true JP2011153045A (en) 2011-08-11

Family

ID=44539290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016214A Pending JP2011153045A (en) 2010-01-28 2010-01-28 Method for producing single crystal

Country Status (1)

Country Link
JP (1) JP2011153045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123036A1 (en) * 2013-02-06 2014-08-14 東洋炭素株式会社 Silicon carbide-tantalum carbide composite and susceptor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123036A1 (en) * 2013-02-06 2014-08-14 東洋炭素株式会社 Silicon carbide-tantalum carbide composite and susceptor
JPWO2014123036A1 (en) * 2013-02-06 2017-02-02 東洋炭素株式会社 Silicon carbide-tantalum carbide composite and susceptor
US9764992B2 (en) 2013-02-06 2017-09-19 Toyo Tanso Co., Ltd. Silicon carbide-tantalum carbide composite and susceptor

Similar Documents

Publication Publication Date Title
US20110012109A1 (en) Method of forming a group iii-nitride crystalline film on a patterned substrate by hydride vapor phase epitaxy (hvpe)
US8716049B2 (en) Growth of group III-V material layers by spatially confined epitaxy
JP6062436B2 (en) Susceptor, crystal growth apparatus and crystal growth method
JP2006108435A (en) Nitride semiconductor wafer
TW201027598A (en) Compound semiconductor manufacturing device, compound semiconductor manufacturing method, and jig for manufacturing compound semiconductor
KR20120116433A (en) Single-crystal substrate, group iii element nitride crystal obtained using same, and process for producing group iii element nitride crystal
KR100718118B1 (en) Method and apparatus for growth of crack-free gan bulk crystal
JP2010222232A (en) Single crystal body, single crystal substrate, and production method and production apparatus of single crystal body
JP2014047097A (en) Manufacturing method for nitride semiconductor crystal
JP2011091196A (en) Method of manufacturing single crystal body
JP2011153045A (en) Method for producing single crystal
JP2011173749A (en) Method for producing nitride semiconductor single crystal
JP2013227202A (en) Method for manufacturing semiconductor crystal of nitride of group 13 metal in periodic table and semiconductor light-emitting device using semiconductor crystal of nitride of group 13 metal in periodic obtained by the manufacturing method
CN111349908A (en) SiC chemical vapor deposition device
JP2010030846A (en) Method for producing nitride material
US10329687B2 (en) Method for producing Group III nitride semiconductor including growing Group III nitride semiconductor through flux method
JP2005064336A (en) Method for manufacturing group iii nitride compound semiconductor substrate
JP2010083683A (en) Production method of single crystal body and production apparatus for single crystal body
JP2011173750A (en) Method for producing single crystal body
JP2007042846A (en) Hydride vapor phase epitaxy apparatus, method of manufacturing group iii nitride semiconductor substrate, and group iii nitride semiconductor substrate
JP2020125217A (en) Manufacturing method and manufacturing apparatus of group iii nitride crystal
JP2011100783A (en) Vapor growth device
JP2010219225A (en) Vapor growth apparatus of group iii nitride semiconductor
JP2014116331A (en) Crystal growth device, crystal growth method and susceptor
JP2011046578A (en) Method for producing single crystal body and method for producing free-standing single-crystal substrate