JP2011153038A - Refractory using refractory raw material coated with nanocarbon - Google Patents

Refractory using refractory raw material coated with nanocarbon Download PDF

Info

Publication number
JP2011153038A
JP2011153038A JP2010014585A JP2010014585A JP2011153038A JP 2011153038 A JP2011153038 A JP 2011153038A JP 2010014585 A JP2010014585 A JP 2010014585A JP 2010014585 A JP2010014585 A JP 2010014585A JP 2011153038 A JP2011153038 A JP 2011153038A
Authority
JP
Japan
Prior art keywords
mass
raw material
refractory
refractory raw
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010014585A
Other languages
Japanese (ja)
Inventor
Masahito Tanaka
雅人 田中
Chisato Fukuhara
知里 福原
Takenori Yoshitomi
丈記 吉富
Seiko In
聖昊 尹
Hitoshi Miyawaki
仁 宮脇
Katsunori Matsuo
賢典 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Krosaki Harima Corp
Original Assignee
Kyushu University NUC
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Krosaki Harima Corp filed Critical Kyushu University NUC
Priority to JP2010014585A priority Critical patent/JP2011153038A/en
Publication of JP2011153038A publication Critical patent/JP2011153038A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve especially the hot strength in a refractory using a refractory raw material coated with nanocarbon. <P>SOLUTION: The refractory is produced by adding an organic resin to a refractory raw material mixture containing a refractory raw material coated with nanocarbon in which at least a part of the surface of a refractory raw material particle is coated with carbon nanofibers and/or carbon nanotubes and kneading, and heat-treating the obtained body after molding, where the refractory raw material coated with nanocarbon having an amount of residual carbon obtained from the organic resin which is 1.2 mass% or more and 10.0 mass% or less to the mass of the whole refractory raw material mixture is used for the refractory. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、溶融金属用、焼却炉などの高温プロセスに使用される耐火物、その中で主として鉄鋼用に使用される耐火物に関する。   The present invention relates to a refractory used for high-temperature processes such as for molten metals and incinerators, and refractory used mainly for steel.

鉄鋼用に使用される耐火物として、黒鉛、ピッチ、カーボンブラック、またはフェノールレジン等の炭素原料を含有するカーボン含有耐火物は、耐熱衝撃性および耐スラグ性に優れており、例えば、転炉、取鍋、混銑車、もしくは真空脱ガス炉等の内張り材、浸漬ノズル、スライディングノズル等の連続鋳造用ノズル、または焼き付け材等の補修材として広く使用されている。   As refractories used for steel, carbon-containing refractories containing carbon raw materials such as graphite, pitch, carbon black, or phenol resin are excellent in thermal shock resistance and slag resistance. Widely used as lining materials such as ladle, kneading car or vacuum degassing furnace, nozzles for continuous casting such as immersion nozzles and sliding nozzles, or repair materials such as baking materials.

これらの耐火物は耐食性の改善や溶鋼中へのカーボンピックアップを防止するため低カーボン化が図られる場合があるが、そうすると耐熱衝撃性が低下するため、耐熱衝撃性の改善手法が検討されている。   These refractories may be reduced in carbon in order to improve corrosion resistance and prevent carbon pick-up in molten steel. However, since thermal shock resistance is lowered in this case, methods for improving thermal shock resistance are being investigated. .

これに対して本発明者らは、特許文献1にて、耐火原料粒子の表面にカーボンナノチューブ(以下「CNT」という。)またはカーボンナノファイバー(以下「CNF」という。)を被覆したナノカーボン被覆耐火原料を耐火原料配合物中に含有させることで耐熱衝撃性が大幅に改善されることを開示した。   On the other hand, the inventors disclosed in Patent Document 1 a nanocarbon coating in which the surface of the refractory raw material particles is coated with carbon nanotubes (hereinafter referred to as “CNT”) or carbon nanofibers (hereinafter referred to as “CNF”). It has been disclosed that the thermal shock resistance is greatly improved by including the refractory raw material in the refractory raw material composition.

しかしながら、特許文献1に開示した耐火物は、溶鋼流やガス流が激しい部位あるいはスクラップの落下による衝撃を受ける部位などに使用すると、摩耗溶損や衝撃による損傷が激しい場合があった。この原因を検討した結果、耐火物の熱間での強度が必ずしも十分ではないことが原因であると判明した。   However, when the refractory disclosed in Patent Document 1 is used in a portion where the molten steel flow or gas flow is intense or a portion subjected to an impact due to the falling of scrap, there is a case where wear damage or damage due to the impact is severe. As a result of examining the cause, it was found that the strength of the refractory in the heat was not always sufficient.

特開2008−133177号公報JP 2008-133177 A

本発明が解決しようとする課題は、ナノカーボン被覆耐火原料を使用した耐火物において、とくにその熱間強度を向上させることにある。   The problem to be solved by the present invention is to improve the hot strength particularly in a refractory using a nanocarbon-coated refractory raw material.

本発明で用いるナノカーボン被覆耐火原料のCNFおよびCNTは、工業上、応用が広く試みられるようになり、強度付与を目的として用いられることも多い。そのため耐火物に応用する際においても同様の効果が期待されるところであったが、その応用例は報告されていない。本発明者らは、CNFおよびCNTを耐火物の組織中に均一に分散させるために、これらを耐火原料粒子の表面に被覆させることが非常に有効であることを特許文献1にて開示したが、さらにこれらを組織中に強固に固定するためには有機樹脂から生成する残炭分を十分に付与する必要があること、さらにそのときの残炭量は耐火原料配合物全体の質量に対して1.2質量%以上10.0質量%以下である必要があることを見出し、本発明を完成させたものである。   CNF and CNT, which are nanocarbon-coated refractory raw materials used in the present invention, have been widely applied industrially, and are often used for the purpose of imparting strength. Therefore, the same effect was expected when applied to refractories, but no application example has been reported. The present inventors have disclosed in Patent Document 1 that it is very effective to coat the surface of the refractory raw material particles in order to uniformly disperse CNF and CNT in the structure of the refractory. Furthermore, in order to firmly fix these in the structure, it is necessary to sufficiently give the remaining carbon content generated from the organic resin, and the residual carbon amount at that time is based on the total mass of the refractory raw material composition The present invention has been completed by finding that it is necessary to be 1.2% by mass or more and 10.0% by mass or less.

すなわち本発明は、耐火原料粒子の表面の少なくとも一部にカーボンナノファイバーおよび/またはカーボンナノチューブが被覆されたナノカーボン被覆耐火原料を含む耐火原料配合物に有機樹脂を添加して混練し、得られた坏土を成形後熱処理して製造される耐火物であって、有機樹脂から得られる残炭量が耐火原料配合物全体の質量に対して1.2質量%以上10.0質量%以下であることを特徴とする。   That is, the present invention is obtained by adding and kneading an organic resin to a refractory raw material composition containing a nanocarbon-coated refractory raw material in which carbon nanofibers and / or carbon nanotubes are coated on at least a part of the surface of the refractory raw material particles. A refractory produced by heat-treating the kneaded clay after molding, and the amount of residual carbon obtained from the organic resin is 1.2% by mass or more and 10.0% by mass or less with respect to the total mass of the refractory raw material composition. It is characterized by being.

ナノカーボンとしてCNFまたはCNTを耐火原料粒子の表面に被覆させる方法は特許文献1に記載しているので省略する。なお、CNFおよびCNTは同様の効果を発揮するのでそれぞれ単独の被覆でも両者が混在した状態での被覆でも構わない。また、被覆は耐火原料粒子全体を被覆することが最も好ましいが、部分的な被覆でも効果を発揮することができる。   Since the method of coating the surface of the refractory raw material particles with CNF or CNT as nanocarbon is described in Patent Document 1, it is omitted. In addition, since CNF and CNT exhibit the same effect, they may be either a single coating or a coating in a state where both are mixed. Moreover, it is most preferable that the coating covers the entire refractory raw material particles, but the effect can be exhibited even with a partial coating.

表面にCNFおよび/またはCNTが被覆される耐火原料粒子の平均径は300μm以下でより効率的に効果を発現し、これよりも粗い粒子では効果が小さくなる。さらに好ましくは100μm以下である。   The average diameter of the refractory raw material particles whose surface is coated with CNF and / or CNT is more effective when the average diameter is 300 μm or less, and the effect is smaller with particles coarser than this. More preferably, it is 100 micrometers or less.

CNFおよび/またはCNTの被覆量はとくに限定されるものではないが、耐火原料粒子全体に対して0.1質量%以上30質量%以下が適当である。0.1質量%未満の場合は組織を強化する効果が小さく、30質量%よりも多い場合は緻密な耐火物が得られ難くなって耐食性の低下が大きくなる。好ましくは1質量%以上20質量%以下であり、より好ましくは3質量%以上10質量%以下である。なお、被覆量はナノカーボン被覆耐火原料全体の平均値である。   The coating amount of CNF and / or CNT is not particularly limited, but is suitably 0.1% by mass or more and 30% by mass or less with respect to the entire refractory raw material particles. When the amount is less than 0.1% by mass, the effect of strengthening the structure is small, and when the amount is more than 30% by mass, a dense refractory is hardly obtained and the corrosion resistance is greatly reduced. Preferably they are 1 mass% or more and 20 mass% or less, More preferably, they are 3 mass% or more and 10 mass% or less. The coating amount is an average value of the entire nanocarbon-coated refractory raw material.

CNFおよび/またはCNTを被覆する耐火原料粒子およびナノカーボン被覆耐火原料粒子と混合されて耐火原料配合物を構成する耐火原料としては、一般に耐火物用として使用される原料であればとくに限定されるものではなく、例えばマグネシア、アルミナ、シリカ、スピネル、ムライト、カルシア、ドロマイト、ジルコニア、ジルコン、クロミアおよびこれらの化合物、複合物などが使用可能である。   The refractory raw material that is mixed with the refractory raw material particles that coat CNF and / or CNT and the nanocarbon-coated refractory raw material particles to constitute the refractory raw material mixture is particularly limited as long as it is a raw material that is generally used for refractories. For example, magnesia, alumina, silica, spinel, mullite, calcia, dolomite, zirconia, zircon, chromia, and compounds and composites thereof can be used.

残炭分を付与する有機樹脂としてはフェノール樹脂、フラン樹脂あるいはそれらにピッチ成分を相溶させた残炭率が高い有機樹脂が好ましい。フェノール樹脂の場合、ノボラック型、レゾール型のいずれでもよい。とくにノボラック型の場合は通常と同じく硬化促進剤としてヘキサメチレンテトラミンを適量添加する。その溶剤はエチレングリコールやフルフラールなどのアルコール系溶剤が使用でき、ピッチ成分を相溶させることもできる。また、粉末状のノボラック型樹脂を適量の溶剤とともに使用する方法もある。これらの有機樹脂の残炭率は10質量%以上が適当で、好ましくは35質量%以上である。10質量%未満では揮発分の増加によって緻密な耐火物が得られなくなり耐食性の低下が大きくなる。   As the organic resin for imparting a residual carbon content, a phenol resin, a furan resin, or an organic resin having a high residual carbon ratio in which a pitch component is dissolved therein is preferable. In the case of a phenol resin, either a novolak type or a resol type may be used. Particularly in the case of the novolak type, an appropriate amount of hexamethylenetetramine is added as a curing accelerator as usual. As the solvent, an alcohol solvent such as ethylene glycol or furfural can be used, and the pitch component can also be dissolved. There is also a method of using a powdered novolac resin together with an appropriate amount of solvent. The residual carbon ratio of these organic resins is suitably 10% by mass or more, preferably 35% by mass or more. If it is less than 10% by mass, a dense refractory cannot be obtained due to an increase in volatile content, and the corrosion resistance is greatly reduced.

有機樹脂から得られる残炭量を1.2%質量以上とする理由は、1.2質量%未満では熱間強度向上の効果が小さく、10.0質量%よりも多いときは有機樹脂を多量に添加することになるため、揮発分の増加や有機樹脂の膨張収縮などによって加熱された際に耐火物に亀裂を生じて熱間強度が低下する場合があるためである。   The reason why the amount of residual carbon obtained from the organic resin is 1.2% by mass or more is that if the amount is less than 1.2% by mass, the effect of improving the hot strength is small, and if it is more than 10.0% by mass, a large amount of organic resin is used. This is because the refractory material may crack when heated due to an increase in volatile content, expansion or contraction of the organic resin, and the hot strength may be reduced.

有機樹脂は坏土の成形体の熱処理中に分解しながら重合し炭素のネットワークを生成する。この炭素のネットワークがCNFおよびCNTと結合あるいは物理的に絡み合うことで結合組織が強化され熱間強度の向上に寄与するものと考えられる。   The organic resin is polymerized while being decomposed during the heat treatment of the clay molded body to form a carbon network. It is considered that this carbon network is combined or physically entangled with CNF and CNT, so that the connective tissue is strengthened and the hot strength is improved.

さらに高強度化の効果を一層発現させるためには、アルミニウム、シリコン、マグネシウムおよびこれらの合金(以下、総称して「特定金属類」という。)を併用添加することが有効である。これらの特定金属類が炭素と反応する過程で炭化物を生成するが、この反応に供される炭素源としてCNFおよびCNTが非常に有効に作用する。すなわち、これらの特定金属類がCNFおよびCNTと反応することで従来生成されるものよりも遥かに微小な炭化物が生成し、これが結合組織を強化することで、熱間強度がより一層向上すると考えられる。   In order to further enhance the effect of increasing the strength, it is effective to add aluminum, silicon, magnesium and alloys thereof (hereinafter collectively referred to as “specific metals”) together. Although these specific metals generate carbides in the process of reacting with carbon, CNF and CNT act very effectively as carbon sources to be subjected to this reaction. That is, when these specific metals react with CNF and CNT, carbides much finer than those conventionally produced are formed, and this strengthens the connective tissue, thereby further improving the hot strength. It is done.

これらの特定金属類は単独で使用しても良いし、2種以上を併用してもその効果を発揮することができる。添加量は耐火原料配合物全体の質量に対して外掛けで0.1質量%以上6.0質量%以下であることが好ましい。0.1質量%未満では添加した効果が明確に現れず、6.0質量%を超える添加は過剰に結合組織を強化することになり耐熱衝撃性が低下するためである。   These specific metals may be used alone or in combination of two or more, and the effect can be exhibited. The addition amount is preferably 0.1% by mass or more and 6.0% by mass or less based on the total mass of the refractory raw material composition. When the amount is less than 0.1% by mass, the added effect does not appear clearly, and when the amount exceeds 6.0% by mass, the connective structure is excessively strengthened and the thermal shock resistance is lowered.

また、これらの特定金属類に硼化物を併用添加することも有用である。硼化物としては炭化硼素、硼化カルシウム、硼化ジルコニウム、硼化マグネシウムなどが挙げられる。添加量は耐火原料配合物全体の質量に対して外掛けで0.1質量%以上3質量%以下が好ましい。   It is also useful to add borides to these specific metals. Examples of borides include boron carbide, calcium boride, zirconium boride, and magnesium boride. The addition amount is preferably 0.1% by mass or more and 3% by mass or less based on the total mass of the refractory raw material composition.

本発明では、ナノカーボン被覆耐火原料を耐火原料の一部として使用し、有機樹脂を添加して混練し、得られた坏土を成形後熱処理して製造する耐火物において、有機樹脂から得られる残炭量が耐火原料配合物全体の質量に対して1.2質量%以上10.0質量%以下となるようにすることで、熱間強度が飛躍的に向上する。   In the present invention, the nanocarbon-coated refractory raw material is used as a part of the refractory raw material, the organic resin is added and kneaded, and the obtained clay is molded and heat-treated to be produced from the organic resin. By making the amount of residual charcoal 1.2 mass% or more and 10.0 mass% or less with respect to the mass of the whole refractory raw material mixture, the hot strength is dramatically improved.

また、この効果はアルミニウム、シリコン、マグネシウムおよびこれらの合金の中から選択される1種または2種以上を耐火原料配合物全体の質量に対して外掛けで0.1質量%以上6.0質量%以下添加することでさらに向上する。   In addition, this effect is achieved by 0.1% by mass or more and 6.0% by mass of one or more selected from aluminum, silicon, magnesium and alloys thereof with respect to the total mass of the refractory raw material composition. It is further improved by adding up to 10%.

その結果、熱間強度と耐熱衝撃性に優れた耐火物が得られるため、例えばMgO−C系のれんがとして、転炉においてはスクラップが直撃する装入壁の寿命向上、溶鋼流が通過する際の摩耗、外的応力による折損が発生しやすい出鋼孔スリーブの寿命向上に寄与できる。あるいはAl−C系のれんがとして、溶鋼流による内孔摩耗が激しいロングノズルや長尺なため折損しやすい浸漬ノズルやロングストッパーに適用することで寿命の向上やトラブルの防止に寄与できる。 As a result, a refractory excellent in hot strength and thermal shock resistance can be obtained. For example, as a MgO-C brick, in a converter, the life of the charging wall directly hit by scrap in the converter is increased, and the molten steel flow passes. This can contribute to the improvement of the service life of a steel hole sleeve that is likely to break due to wear and external stress. Alternatively, as an Al 2 O 3 -C-based brick, it can contribute to the improvement of life and prevention of troubles by applying it to long nozzles with long inner hole wear due to molten steel flow and long immersion nozzles and long stoppers that are easy to break. .

残炭量と熱間強度の関係を示す。The relationship between the amount of residual coal and hot strength is shown.

以下、本発明の実施の形態を実施例に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on examples.

表1は、本発明の実施例および比較例に使用した配合物の配合割合および有機樹脂の残炭量と各種物性を評価した結果を示す。   Table 1 shows the results of evaluating the blending ratio of the blends used in the examples and comparative examples of the present invention, the amount of residual carbon of the organic resin, and various physical properties.

表1において、ナノカーボン被覆耐火原料としてのCNFおよびCNT被覆マグネシアは、単体として平均粒径70μmの電融マグネシア(純度98質量%)を硝酸鉄およびモリブデン酸アンモニウムを溶解した水溶液に浸漬し、ろ過、乾燥することにより触媒を担持させた後、CVD処理を行うことで得た。CVD処理は850℃のメタン気流中で行い、CNFおよびCNTを生成させ耐火原料粒子(電融マグネシア粒子)を被覆させた。CNTの被覆量は6質量%であった。CNFおよびCNTの被覆量は、CVD処理後の重量から処理中に減少する触媒量の分を補正し、CVD処理前後の重量差から算出した。なお、使用した電融マグネシアの粒径の測定はレーザー回折式粒度分布測定装置で行った。   In Table 1, CNF and CNT-covered magnesia as nanocarbon-coated refractory raw materials were immersed in an aqueous solution in which iron nitrate and ammonium molybdate were dissolved in an electrofused magnesia (purity 98 mass%) having an average particle size of 70 μm as a simple substance and filtered. It was obtained by carrying out a CVD treatment after supporting the catalyst by drying. The CVD treatment was carried out in a methane stream at 850 ° C. to generate CNF and CNT and coat the refractory raw material particles (electrofused magnesia particles). The coating amount of CNT was 6% by mass. The coating amount of CNF and CNT was calculated from the weight difference before and after the CVD process by correcting the amount of the catalyst that decreases during the process from the weight after the CVD process. In addition, the particle size of the electrofused magnesia used was measured with a laser diffraction particle size distribution analyzer.

表1に示すように、純度98%のマグネシアを80質量%、純度99%の鱗状黒鉛を15質量%、および上記のCNFおよびCNT被覆マグネシアを5質量%配合した耐火原料配合物に、有機樹脂としてノボラック型樹脂をエチレングリコールで希釈した残炭率40質量%の液状フェノール樹脂および残炭率60質量%のノボラック型粉末フェノール樹脂と適量のヘキサメチレンテトラミンおよびメタノールを添加しミキサーにて混練して坏土を得た。この坏土を並型形状にプレス成形し、250℃で5時間加熱した。   As shown in Table 1, an organic resin is blended into a fireproof raw material blend containing 80% by mass of magnesia having a purity of 98%, 15% by mass of scaly graphite having a purity of 99%, and 5% by mass of the above CNF and CNT-coated magnesia. As follows: A novolak resin diluted with ethylene glycol, a liquid phenol resin having a residual carbon ratio of 40% by mass, a novolac powder phenol resin having a residual carbon ratio of 60% by mass, appropriate amounts of hexamethylenetetramine and methanol were added and kneaded in a mixer. I got dredged soil. This clay was press-molded into a normal shape and heated at 250 ° C. for 5 hours.

有機樹脂の残炭量についてはJIS−K6910の5.20に記載の固定炭素分の測定方法に準拠した測定より有機樹脂の残炭率を算出し、耐火原料配合物に対する添加量と残炭率から有機樹脂の残炭量を算出した。   About the residual carbon amount of organic resin, the residual carbon rate of organic resin is calculated from the measurement based on the measurement method of the fixed carbon content described in 5.20 of JIS-K6910, and the added amount and residual carbon rate to the refractory raw material composition From this, the amount of residual carbon of the organic resin was calculated.

こうして得られた供試れんがについて熱間曲げ強さ、耐食性および耐熱衝撃性を評価した。熱間曲げ強さについてはJIS−R2656に準拠して窒素雰囲気中1400℃にて測定を行った。耐食性については回転浸食法により、CaO/SiO=3.0(質量比)、T.Fe=16質量%のスラグを用いて1700℃で5時間試験を行った。評価結果は実施例1の溶損寸法を100として指数で表示した。指数は数字が小さいほど耐食性が良好であることを意味する。耐熱衝撃性については40×40×230mmのサンプルを1500℃の溶銑中に3分間浸漬し、その後空冷を15分間行い、この操作を10回繰り返した後の亀裂の大きさを目視で観察し、亀裂無し、微、中、大の4段階で評価した。 The test bricks thus obtained were evaluated for hot bending strength, corrosion resistance and thermal shock resistance. About hot bending strength, it measured at 1400 degreeC in nitrogen atmosphere based on JIS-R2656. Regarding the corrosion resistance, CaO / SiO 2 = 3.0 (mass ratio), T.R. The test was conducted at 1700 ° C. for 5 hours using Fe = 16% by mass of slag. The evaluation results were expressed as an index, with the erosion dimension of Example 1 being 100. The smaller the number, the better the corrosion resistance. For thermal shock resistance, a 40 × 40 × 230 mm sample was immersed in 1500 ° C. hot metal for 3 minutes, then air-cooled for 15 minutes, and the size of the crack was visually observed after repeating this operation 10 times. Evaluation was made in four stages: no crack, fine, medium and large.

図1には有機樹脂の残炭量と熱間曲げ強さの関係を示す。図1において、◇印はCNFおよびCNT被覆マグネシアを配合した例(図1では「CNFおよびCNT被覆原料使用」と表記)で、表1上段の各例に対応する。△印はCNFおよびCNT被覆マグネシアに加えて特定金属類としてアルミニウムを添加した例(図1では「同アルミ添加」と表記)で、表1中段の各例に対応する。□印はCNFおよびCNT被覆マグネシアを配合していない例(図1では「従来品」と表記)で、表1下段の各例に対応する。   FIG. 1 shows the relationship between the amount of residual carbon of the organic resin and the hot bending strength. In FIG. 1, ◇ indicates an example in which CNF and CNT-coated magnesia are blended (indicated as “use of CNF and CNT-coated raw material” in FIG. 1), and corresponds to each example in the upper part of Table 1. The Δ mark is an example in which aluminum is added as a specific metal in addition to CNF and CNT-coated magnesia (indicated as “addition of the same aluminum” in FIG. 1), and corresponds to each example in the middle of Table 1. □ is an example in which CNF and CNT-coated magnesia are not blended (indicated as “conventional product” in FIG. 1), and corresponds to each example in the lower part of Table 1.

表1および図1から、まず、CNFおよびCNT被覆マグネシアを配合したれんがはこれを配合していない場合と比較して大幅に熱間強度が向上していることがわかる。また、CNFおよびCNT被覆マグネシアに加えてアルミニウムを添加することで、さらに熱間強度が向上していることがわかる。ただし、残炭量が1.2質量%未満ではその改善効果は小さく、10.0質量%を超えると強度が逆に低下している。これは熱処理中にれんがに亀裂が発生したためである。また、残炭量が10.0質量%を超えると耐食性の低下も著しい。したがって、残炭量は1.2質量%以上10.0質量%以下である必要がある。ちなみに、特許文献1の実施例は全て有機樹脂量が2質量%であるが、これは残炭量で0.8質量%に相当することから、熱間強度が低い。   From Table 1 and FIG. 1, it can be seen that, first, bricks containing CNF and CNT-coated magnesia have significantly improved hot strength as compared with the case where they are not blended. It can also be seen that the hot strength is further improved by adding aluminum in addition to CNF and CNT-coated magnesia. However, when the amount of remaining coal is less than 1.2% by mass, the improvement effect is small, and when it exceeds 10.0% by mass, the strength is decreased. This is because a crack occurred in the brick during the heat treatment. Moreover, when the amount of residual coal exceeds 10.0 mass%, a corrosion-resistant fall will also be remarkable. Therefore, the amount of residual coal needs to be 1.2 mass% or more and 10.0 mass% or less. Incidentally, in all the examples of Patent Document 1, the amount of the organic resin is 2% by mass, but this corresponds to 0.8% by mass in terms of the amount of residual carbon, so the hot strength is low.

また、耐熱衝撃性の観点では、一般に強度が増大すると耐熱衝撃性が低下するにもかかわらず、アルミニウム無添加の実施例1〜6と比較例9〜14を比較すると、本発明の実施例の耐熱衝撃性は比較例と同等以上であり、本発明品が高熱間強度でかつ耐熱衝撃性にも優れていることわかる。   From the viewpoint of thermal shock resistance, when Examples 1-6 and Comparative Examples 9-14 without addition of aluminum are compared with those of Comparative Examples 9-14, although the thermal shock resistance generally decreases as the strength increases, The thermal shock resistance is equal to or higher than that of the comparative example, and it can be seen that the product of the present invention has high hot strength and excellent thermal shock resistance.

Figure 2011153038
Figure 2011153038

次に特定金属類の添加量およびその種類の影響を調査するため表2に示すように、純度99%のアルミナを80質量%、純度99%の鱗状黒鉛を15質量%、CNFおよびCNTを6質量%被覆したアルミナ(CNFおよびCNT被覆アルミナ)を5質量%配合した耐火原料配合物に、有機樹脂としてノボラック型樹脂をエチレングリコールで希釈した残炭率40質量%の液状フェノール樹脂を6質量%および残炭率60質量%のノボラック型粉末フェノール樹脂を1質量%と適量のヘキサメチレンテトラミンおよびメタノールを添加してミキサーにて混練して坏土を得た。この坏土を並型形状にプレス成形し、250℃で5時間加熱した。   Next, in order to investigate the influence of the addition amount and the kind of the specific metals, as shown in Table 2, 80% by mass of alumina having a purity of 99%, 15% by mass of scaly graphite having a purity of 99%, 6% of CNF and CNT 6% by mass of a liquid phenolic resin having a residual carbon ratio of 40% by mass obtained by diluting a novolac-type resin as an organic resin with ethylene glycol in a refractory raw material formulation in which 5% by mass of alumina (CNF and CNT-coated alumina) coated with 5% by mass is mixed. Further, 1% by mass of a novolac-type powdered phenol resin having a residual carbon ratio of 60% by mass and appropriate amounts of hexamethylenetetramine and methanol were added and kneaded by a mixer to obtain a clay. This clay was press-molded into a normal shape and heated at 250 ° C. for 5 hours.

こうして得られた供試れんがについて、熱間曲げ強さおよび耐熱衝撃性を前述した方法と同様に評価した。耐食性については回転浸食法により、CaO/SiO=1.2(質量比)、T.Fe=10質量%のスラグを用いて1700℃で5時間試験を行った。評価結果は実施例13の溶損寸法を100として指数で表示した。指数は数字が小さいほど耐食性が良好であることを意味する。 The test bricks thus obtained were evaluated for hot bending strength and thermal shock resistance in the same manner as described above. Regarding the corrosion resistance, CaO / SiO 2 = 1.2 (mass ratio), T.R. The test was conducted at 1700 ° C. for 5 hours using Fe = 10 mass% slag. The evaluation results were expressed as an index with the melt damage size of Example 13 as 100. The smaller the number, the better the corrosion resistance.

表2の実施例13から16より、アルミニウムを0.1質量%以上添加することで熱間強度が大幅に向上することがわかる。ただし、実施例17に示すように6.0質量%を超えると耐熱衝撃性が低下する場合があるので6.0質量%以下が好ましい。   From Examples 13 to 16 in Table 2, it can be seen that the hot strength is greatly improved by adding 0.1% by mass or more of aluminum. However, as shown in Example 17, if it exceeds 6.0% by mass, the thermal shock resistance may decrease, so 6.0% by mass or less is preferable.

また、実施例18から実施例22に示すようにシリコン、アルミ・マグネシウム合金の添加あるいは併用、さらに硼化物との併用によっても熱間強度が大幅に向上することがわかる。   Further, as shown in Examples 18 to 22, it can be seen that the hot strength is greatly improved by adding or using silicon, an aluminum / magnesium alloy, or using it together with a boride.

Figure 2011153038
Figure 2011153038

Claims (2)

耐火原料粒子の表面の少なくとも一部にカーボンナノファイバーおよび/またはカーボンナノチューブが被覆されたナノカーボン被覆耐火原料を含む耐火原料配合物に有機樹脂を添加して混練し、得られた坏土を成形後熱処理して製造される耐火物であって、有機樹脂から得られる残炭量が耐火原料配合物全体の質量に対して1.2質量%以上10.0質量%以下であることを特徴とするナノカーボン被覆耐火原料を使用した耐火物。   Add the organic resin to the refractory raw material composition containing the nanocarbon-coated refractory raw material with carbon nanofibers and / or carbon nanotubes coated on at least a part of the surface of the refractory raw material particles, knead and mold the resulting clay A refractory produced by post-heat treatment, characterized in that the amount of residual carbon obtained from the organic resin is 1.2% by mass or more and 10.0% by mass or less with respect to the total mass of the refractory raw material composition. Refractory using nano carbon coated refractory raw material. アルミニウム、シリコン、マグネシウムおよびこれらの合金の中から選択される1種または2種以上を耐火原料配合物全体の質量に対して外掛けで0.1質量%以上6.0質量%以下添加した請求項1に記載のナノカーボン被覆耐火原料を使用した耐火物。   Claims in which one or more selected from aluminum, silicon, magnesium and alloys thereof are added in an amount of 0.1% by mass or more and 6.0% by mass or less based on the total mass of the refractory raw material composition Item 2. A refractory using the nanocarbon-coated refractory raw material according to item 1.
JP2010014585A 2010-01-26 2010-01-26 Refractory using refractory raw material coated with nanocarbon Pending JP2011153038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010014585A JP2011153038A (en) 2010-01-26 2010-01-26 Refractory using refractory raw material coated with nanocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010014585A JP2011153038A (en) 2010-01-26 2010-01-26 Refractory using refractory raw material coated with nanocarbon

Publications (1)

Publication Number Publication Date
JP2011153038A true JP2011153038A (en) 2011-08-11

Family

ID=44539283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014585A Pending JP2011153038A (en) 2010-01-26 2010-01-26 Refractory using refractory raw material coated with nanocarbon

Country Status (1)

Country Link
JP (1) JP2011153038A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166682A (en) * 2012-01-16 2013-08-29 Nakashima Medical Co Ltd Method of producing ceramic composite material, and ceramic composite material
JP2014162692A (en) * 2013-02-26 2014-09-08 Nakashima Medical Co Ltd Method for manufacturing ceramic composite material, and ceramic composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217667A (en) * 1983-05-23 1984-12-07 川崎炉材株式会社 Lime non-baked refractories
JP2008133177A (en) * 2006-10-26 2008-06-12 Kurosaki Harima Corp Refractory raw material coated with nanocarbon, its manufacturing method, refractory using the same and manufacturing method of refractory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217667A (en) * 1983-05-23 1984-12-07 川崎炉材株式会社 Lime non-baked refractories
JP2008133177A (en) * 2006-10-26 2008-06-12 Kurosaki Harima Corp Refractory raw material coated with nanocarbon, its manufacturing method, refractory using the same and manufacturing method of refractory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166682A (en) * 2012-01-16 2013-08-29 Nakashima Medical Co Ltd Method of producing ceramic composite material, and ceramic composite material
JP2014162692A (en) * 2013-02-26 2014-09-08 Nakashima Medical Co Ltd Method for manufacturing ceramic composite material, and ceramic composite material

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
JP4634263B2 (en) Magnesia carbon brick
JP5097861B1 (en) Magnesia-carbon brick
JP6279052B1 (en) Magnesia carbon brick and method for producing the same
JP2009221031A (en) Zirconia-carbon-containing refractory and method for producing the same
WO2008056655A1 (en) Durable sleeve bricks
JP5192774B2 (en) Nanocarbon-coated refractory raw material and production method thereof, and refractory using the same and production method thereof
JP5697210B2 (en) Converter operating method, magnesia carbon brick used in the converter, manufacturing method of the brick, and lining structure of the converter lining
JP6354073B2 (en) Carbon-containing fired brick refractories
JP6376102B2 (en) Carbon-containing unfired brick refractory
JP2011153038A (en) Refractory using refractory raw material coated with nanocarbon
JP4496090B2 (en) Method for producing amorphous refractories containing water-based carbon
JP5192970B2 (en) Basic plate refractories for sliding nozzle devices
JP4791761B2 (en) Carbon-containing refractories
JP6414000B2 (en) Method for producing carbon-containing brick refractories
JP6414033B2 (en) Steelmaking smelting vessel
JP2003171170A (en) Magnesia-carbon brick
JP4856513B2 (en) Carbon-containing refractories
KR100503353B1 (en) CHEMICAL COMPOSITION FOR MgO-CARBON REFRACTORY
JP6326839B2 (en) Carbon-containing refractories
KR101672470B1 (en) Refractory for slag dart, slag dart including the same and manufacturing method of slag dart
JP2023094019A (en) Carbon-containing fired brick refractory and manufacturing method of carbon-containing fired brick refractory
JP2004141899A (en) Sliding nozzle plate for ladle
JP2023094018A (en) Carbon-containing non-fired brick refractory and manufacturing method of carbon-containing non-fired brick refractory
JP2006152160A (en) Carbon-black-dispersed organic solvent, carbon-black-dispersed organic resin prepared by adding and mixing the organic solvent, and carbon-containing refractory using the organic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820