JP2011149458A - Hydraulic clutch operating device - Google Patents

Hydraulic clutch operating device Download PDF

Info

Publication number
JP2011149458A
JP2011149458A JP2010009636A JP2010009636A JP2011149458A JP 2011149458 A JP2011149458 A JP 2011149458A JP 2010009636 A JP2010009636 A JP 2010009636A JP 2010009636 A JP2010009636 A JP 2010009636A JP 2011149458 A JP2011149458 A JP 2011149458A
Authority
JP
Japan
Prior art keywords
hydraulic
oil
friction engagement
pressure
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010009636A
Other languages
Japanese (ja)
Inventor
Makoto Dobashi
誠 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010009636A priority Critical patent/JP2011149458A/en
Publication of JP2011149458A publication Critical patent/JP2011149458A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic clutch operating device which controls a hydraulic pump to supply operating oil and lubricating oil to a hydraulic clutch, for improving the cooling effects of the lubricating oil on friction engaging parts by enhancing the control flexibility of the supply flow amount of lubricating oil while regulating the operating oil into indicated hydraulic pressure to control the engaging force of the friction engaging parts. <P>SOLUTION: The hydraulic clutch operating device H includes a pressure regulating valve 74 for separating discharge oil discharged by the hydraulic pump 73 into the operating oil of indicated hydraulic pressure to control the engaging force of the friction engaging parts 52, 62 of the hydraulic clutch C and the lubricating oil to be supplied to the friction engaging parts 52, 62, and for changing a flow path area to specify the supply flow amount of the lubricating oil. When the friction engaging parts 52, 62 engage with each other, a control device U controls the pressure regulating valve 74 to set the flow path area as a set area variably set in accordance with a rotating speed difference between the friction engaging parts 52, 62, and controls the hydraulic pump 73 so that the operating oil is regulated into the indicated hydraulic pressure by the pressure regulating valve 74 setting the flow path area as the set area. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、油圧クラッチの摩擦係合部を制御する油圧応動部材に、制御装置により制御される油圧ポンプから吐出された吐出油を作動油として作用させる油圧クラッチ作動装置に関する。そして、該油圧クラッチ作動装置は、例えば車両の駆動力配分装置に備えられる。   The present invention relates to a hydraulic clutch actuating device that causes hydraulic oil discharged from a hydraulic pump controlled by a control device to act as hydraulic oil on a hydraulically responsive member that controls a friction engagement portion of a hydraulic clutch. The hydraulic clutch actuating device is provided, for example, in a vehicle driving force distribution device.

油圧クラッチ作動装置が、係合状態および係合解除状態になる第1,第2摩擦係合要素から構成される摩擦係合部に加えられる係合力を制御する油圧応動部材を備える油圧クラッチと、油圧ポンプが吐出する吐出油の吐出流量を制御すべく該油圧ポンプを制御する制御装置とを備え、吐出油が、油圧応動部材に供給される作動油と摩擦係合部に供給される潤滑油とに分けられるものは知られている。(例えば、特許文献1参照)
また、油圧ポンプの吐出油の一部が調圧部材により調圧された作動油として油圧クラッチの油圧応動部材に供給される油圧クラッチ作動装置も知られている。(例えば、特許文献2参照)
A hydraulic clutch provided with a hydraulic responsive member for controlling an engagement force applied to a friction engagement portion constituted by first and second friction engagement elements in which the hydraulic clutch operation device is engaged and disengaged; A control device for controlling the hydraulic pump to control the discharge flow rate of the discharge oil discharged from the hydraulic pump, and the discharge oil is supplied to the hydraulic response member and the lubricating oil supplied to the friction engagement portion What is divided into and is known. (For example, see Patent Document 1)
There is also known a hydraulic clutch actuating device in which a part of the oil discharged from the hydraulic pump is supplied to the hydraulic responsive member of the hydraulic clutch as hydraulic oil that has been regulated by the pressure regulating member. (For example, see Patent Document 2)

特開2004−19769号公報Japanese Patent Application Laid-Open No. 2004-19769 特開平9−310748号公報JP 9-310748 A

油圧ポンプが吐出する吐出油が作動油と潤滑油とに分けられ、しかも作動油の油圧が摩擦係合部に付与される係合力に応じた指示油圧となるように油圧ポンプが制御される油圧クラッチ作動装置において、摩擦係合部を潤滑する潤滑油の給油流量を規定する流路面積が一定である場合、該給油流量は指示油圧に依存して変化する。
例えば、指示油圧が低圧で、係合力が小さく、したがって、摩擦係合部において作用するトルク(以下、「クラッチトルク」という。)が小さいときには、摩擦係合部に供給される潤滑油の給油流量が少なくなって、潤滑油による摩擦係合部の冷却効果が低下する。このため、摩擦係合部での回転速度差(摩擦係合部を構成する第1摩擦係合要素と第2摩擦係合要素との回転速度差)が大きいときには、係合力(すなわち、クラッチトルク)が小さいにも拘わらず、摩擦係合部での摩擦に起因する発熱量が多くなるので、摩擦係合部での潤滑油による冷却作用が不十分になることがある。
そこで、指示油圧が低圧のときの給油流量を多くするために、前記流路面積を大きくすると、指示油圧が高圧で、係合力が大きいときには、回転速度差が比較的小さいことから摩擦係合部での摩擦による発熱が少ないために、給油流量が過剰になって、油圧ポンプの駆動源(例えば、電動モータ)でのエネルギ消費が増加し、また油圧クラッチの回転部に接触する潤滑油による回転抵抗が増加して、油圧クラッチでの動力損失が増加する。
Oil pressure discharged from the hydraulic pump is divided into hydraulic oil and lubricating oil, and the hydraulic pump is controlled so that the hydraulic pressure of the hydraulic oil becomes the indicated hydraulic pressure corresponding to the engagement force applied to the friction engagement portion In the clutch operating device, when the flow passage area that defines the oil supply flow rate of the lubricating oil that lubricates the friction engagement portion is constant, the oil supply flow rate changes depending on the command oil pressure.
For example, when the command hydraulic pressure is low and the engagement force is small, and therefore the torque acting on the friction engagement portion (hereinafter referred to as “clutch torque”) is small, the oil supply flow rate of the lubricating oil supplied to the friction engagement portion This reduces the cooling effect of the frictional engagement portion by the lubricating oil. For this reason, when the rotational speed difference in the friction engagement portion (rotational speed difference between the first friction engagement element and the second friction engagement element constituting the friction engagement portion) is large, the engagement force (that is, the clutch torque). ) Is small, the amount of heat generated due to the friction at the friction engagement portion increases, and the cooling action by the lubricating oil at the friction engagement portion may be insufficient.
Therefore, if the flow passage area is increased in order to increase the oil supply flow rate when the command oil pressure is low, the friction engagement portion is relatively small when the command oil pressure is high and the engagement force is large because the rotational speed difference is relatively small. Since the heat generated by friction in the oil pump is small, the oil supply flow rate becomes excessive, the energy consumption at the drive source of the hydraulic pump (for example, an electric motor) increases, and the rotation by the lubricating oil that contacts the rotating part of the hydraulic clutch The resistance increases and the power loss in the hydraulic clutch increases.

本発明は、このような事情に鑑みてなされたものであり、油圧クラッチに作動油および潤滑油を供給する油圧ポンプを制御する油圧クラッチ作動装置において、作動油を摩擦係合部での係合力を制御する指示油圧に調圧しながら、潤滑油の給油流量の制御の融通性を高め、以て潤滑油による摩擦係合部の冷却効果の向上、油圧ポンプを駆動するためのエネルギ消費の低減、または、潤滑油との接触による油圧クラッチの動力損失の低減を可能とする油圧クラッチ作動装置を提供することを目的とする。
そして、本発明は、さらに、摩擦係合部での回転速度差が大きいとき、または、回転速度差と指示油圧の積が大きいときに、潤滑油による摩擦係合部の冷却効果を高めることを目的する。
The present invention has been made in view of such circumstances, and in a hydraulic clutch operating device that controls a hydraulic pump that supplies hydraulic oil and lubricating oil to the hydraulic clutch, the hydraulic oil is applied at the friction engagement portion. The control oil pressure is adjusted to increase the flexibility of control of the lubricating oil supply flow rate, thereby improving the cooling effect of the friction engagement portion by the lubricating oil, reducing the energy consumption for driving the hydraulic pump, Alternatively, an object of the present invention is to provide a hydraulic clutch actuator that can reduce power loss of a hydraulic clutch due to contact with lubricating oil.
The present invention further enhances the cooling effect of the frictional engagement portion by the lubricating oil when the rotational speed difference at the frictional engagement portion is large or when the product of the rotational speed difference and the indicated hydraulic pressure is large. Purpose.

請求項1記載の発明は、係合状態および係合解除状態になる第1摩擦係合要素(52a,62a)および第2摩擦係合要素(52b,62b)から構成される摩擦係合部(52,62)と、前記摩擦係合部(52,62)に加えられる係合力を制御する油圧応動部材(53,63)とを備える油圧クラッチ(C)と、油圧ポンプ(73)と前記油圧ポンプ(73)が吐出する吐出油の吐出流量を制御すべく前記油圧ポンプ(73)を制御するポンプ制御手段(101)を備える制御装置(U)とを備え、前記吐出油の一部を前記油圧応動部材(53,63)の作動油とする作動油供給装置(K)と、を備える油圧クラッチ作動装置(H)において、前記作動油供給装置(K)は、前記係合力を制御すべく設定された指示油圧(pc)に前記作動油を調圧する調圧部材(74)を備え、前記調圧部材(74)は、前記吐出油を前記作動油と前記摩擦係合部(52,62)に供給される潤滑油とに分けると共に、前記潤滑油の給油流量を規定する流路面積を変更可能であり、前記制御装置(U)は、前記摩擦係合部(52,62)が前記係合状態になるとき、前記流路面積が前記第1摩擦係合要素(52a,62a)の回転速度と前記第2摩擦係合要素(52b,62b)の回転速度との差である回転速度差(ΔNL,ΔNR)に基づいて可変に設定される設定面積(Fa)になるように前記調圧部材(74)を制御し、前記ポンプ制御手段(101)は、前記摩擦係合部(52,62)が前記係合状態になるとき、前記流路面積を前記設定面積(Fa)としている前記調圧部材(74)により前記作動油が前記指示油圧(pc)に調圧されるように前記油圧ポンプ(73)を制御する油圧クラッチ作動装置(H)である。   According to the first aspect of the present invention, there is provided a frictional engagement portion (the first frictional engagement element (52a, 62a) and the second frictional engagement element (52b, 62b) which are engaged and disengaged). 52, 62) and a hydraulic clutch (C) including a hydraulic responsive member (53, 63) for controlling an engagement force applied to the friction engagement portion (52, 62), a hydraulic pump (73), and the hydraulic pressure A control device (U) including pump control means (101) for controlling the hydraulic pump (73) to control the discharge flow rate of the discharge oil discharged from the pump (73), and a part of the discharge oil A hydraulic clutch operating device (H) including a hydraulic oil supply device (K) serving as hydraulic oil for the hydraulic responsive member (53, 63), wherein the hydraulic oil supply device (K) controls the engagement force. The set hydraulic pressure (pc) A pressure adjusting member (74) for adjusting oil, and the pressure adjusting member (74) divides the discharged oil into the hydraulic oil and the lubricating oil supplied to the friction engagement portions (52, 62); The flow passage area defining the lubricating oil supply flow rate can be changed, and the control device (U) can change the flow passage area when the friction engagement portion (52, 62) is in the engaged state. Is variably based on a rotational speed difference (ΔNL, ΔNR) which is a difference between the rotational speed of the first friction engagement element (52a, 62a) and the rotational speed of the second friction engagement element (52b, 62b). The pressure adjusting member (74) is controlled so that the set area (Fa) is set, and the pump control means (101) is configured so that the friction engagement portion (52, 62) is in the engaged state. The pressure regulating member (74) having the channel area as the set area (Fa) A hydraulic clutch actuation system for controlling the hydraulic pump (73) as more the operating oil is pressure adjusted to the command hydraulic pressure (pc) (H).

これによれば、油圧応動部材により油圧クラッチの摩擦係合部が係合状態になるとき、油圧クラッチに作動油と潤滑油とを供給する油圧ポンプが、摩擦係合部に供給される潤滑油の給油流量を規定する流路面積を設定面積としている調圧部材により作動油が指示油圧に調圧されるように制御されるので、油圧応動部材は指示油圧に対応した係合力(したがって、クラッチトルク)を摩擦係合部に作用させることができる。しかも、作動油を指示油圧に調圧する調圧部材は、制御装置により制御されて、前記流路面積を第1,第2摩擦係合要素の回転速度差に応じて変化する設定面積にすることにより、給油流量を指示油圧以外に回転速度差に応じて変更できるので、給油流量が指示油圧のみに依存して決定される場合に比べて、給油流量の制御の融通性を高めることができる。
この結果、係合力(または、クラッチトルク)および回転速度差に応じて変化する摩擦係合部での発熱量に応じた給油流量の潤滑油の供給が可能になるため、潤滑油による摩擦係合部の冷却効果や潤滑性を向上させることができ、さらには、回転速度差が考慮されない場合に比べて潤滑油の過不足を改善できるので、油圧ポンプを駆動するためのエネルギ消費や動力損失の低減、または過剰な潤滑油との接触による油圧クラッチの動力損失の低減が可能になる。
According to this, when the friction engagement portion of the hydraulic clutch is engaged by the hydraulic response member, the hydraulic pump that supplies the hydraulic oil to the hydraulic clutch with the hydraulic oil is supplied to the friction engagement portion. Since the hydraulic oil is controlled to be regulated to the indicated hydraulic pressure by the pressure regulating member whose flow area defining the oil supply flow rate is set as the set area, the hydraulic responsive member is engaged with the engagement force corresponding to the indicated hydraulic pressure (and therefore the clutch Torque) can be applied to the friction engagement portion. In addition, the pressure regulating member that regulates the hydraulic oil to the command hydraulic pressure is controlled by the control device so that the flow passage area is set to a set area that changes according to the difference in rotational speed between the first and second friction engagement elements. As a result, the oil supply flow rate can be changed according to the rotational speed difference other than the command oil pressure, so that the flexibility of the control of the oil supply flow rate can be increased compared to the case where the oil supply flow rate is determined depending only on the command oil pressure.
As a result, since it becomes possible to supply the lubricating oil at the oil supply flow rate according to the heat generation amount at the friction engagement portion that changes according to the engagement force (or clutch torque) and the rotational speed difference, the friction engagement by the lubricating oil is possible. The cooling effect and lubricity of the parts can be improved, and the excess and deficiency of the lubricating oil can be improved compared with the case where the difference in rotational speed is not taken into account, so the energy consumption and power loss for driving the hydraulic pump can be reduced. It is possible to reduce power loss of the hydraulic clutch due to reduction or contact with excessive lubricating oil.

請求項2記載の発明は、請求項1記載の油圧クラッチ作動装置(H)において、前記制御装置(U)は、前記流路面積を前記設定面積(Fa)としている前記調圧部材(74)により前記作動油が前記指示油圧(pc)に調圧される必要吐出流量を、前記回転速度差(ΔNL,ΔNR)と前記指示油圧(pc)とに基づいて算出し、前記ポンプ制御手段(101)は、前記摩擦係合部(52,62)が前記係合状態になるとき、吐出流量が前記必要吐出流量となるように前記油圧ポンプ(73)を制御するものである。
これによれば、指示油圧を得るために油圧ポンプが吐出する必要吐出流量が、回転速度差を考慮して決定されるので、吐出流量が必要吐出流量となるように油圧ポンプを制御することで、回転速度差に応じた給油流量の潤滑油を摩擦係合部に供給できる。
According to a second aspect of the present invention, in the hydraulic clutch actuating device (H) according to the first aspect, the control device (U) has the pressure regulating member (74) in which the flow passage area is the set area (Fa). Based on the rotational speed difference (ΔNL, ΔNR) and the command oil pressure (pc), a required discharge flow rate at which the hydraulic oil is regulated to the command oil pressure (pc) is calculated based on the pump control means (101 ) Controls the hydraulic pump (73) so that the discharge flow rate becomes the required discharge flow rate when the friction engagement portion (52, 62) is in the engaged state.
According to this, since the required discharge flow rate discharged from the hydraulic pump in order to obtain the indicated hydraulic pressure is determined in consideration of the rotational speed difference, the hydraulic pump is controlled so that the discharge flow rate becomes the required discharge flow rate. The lubricating oil having the oil supply flow rate corresponding to the rotational speed difference can be supplied to the friction engagement portion.

請求項3記載の発明は、請求項1または2記載の油圧クラッチ作動装置(H)において、前記作動油供給装置は、前記油圧ポンプ(73)を駆動する電動モータ(72)を備え、前記ポンプ制御手段(101)は、前記油圧ポンプ(73)を制御すべく前記電動モータ(72)を制御するものである。
これによれば、摩擦係合部に対する潤滑油の給油流量に回転速度差が考慮されない場合に比べて、電動モータでの電力消費を低減できる。
According to a third aspect of the present invention, in the hydraulic clutch actuator (H) according to the first or second aspect, the hydraulic oil supply device includes an electric motor (72) that drives the hydraulic pump (73), and the pump The control means (101) controls the electric motor (72) to control the hydraulic pump (73).
According to this, compared with the case where a rotational speed difference is not considered in the lubrication oil supply flow volume with respect to a friction engaging part, the power consumption in an electric motor can be reduced.

請求項4記載の発明は、請求項1から3のいずれか1項記載の油圧クラッチ作動装置(H)において、前記指示油圧(pc)は、前記係合力が大きくなるほど高くなり、前記設定面積(Fa)は、前記回転速度差(ΔNL,ΔNR)が大きくなるほど大きくなるものである。
これによれば、指示油圧が低く(したがって、係合力またはクラッチトルクが小さく)ても、回転速度差が大きくなって発熱量が多くなるときには、回転速度差に比例して設定面積が大きくなる分、多くの給油流量の潤滑油が摩擦係合部に供給されるので、摩擦係合部の冷却効果を高めることができる。また、指示油圧が高く(したがって、係合力またはクラッチトルクが大きく)、回転速度差が小さくなるときには、回転速度差に比例して設定面積が小さくなる分、少ない給油流量の潤滑油が摩擦係合部に供給されるため、油圧ポンプの負荷が高くなる指示油圧が高いときに過剰な潤滑油の供給を防止できるので、油圧ポンプの駆動源を小型化できる。
According to a fourth aspect of the present invention, in the hydraulic clutch actuator (H) according to any one of the first to third aspects, the indicated hydraulic pressure (pc) increases as the engagement force increases, and the set area ( Fa) increases as the rotational speed difference (ΔNL, ΔNR) increases.
According to this, even if the command hydraulic pressure is low (and therefore the engagement force or the clutch torque is small), when the rotational speed difference becomes large and the heat generation amount increases, the set area increases in proportion to the rotational speed difference. Since a large amount of lubricating oil is supplied to the friction engagement portion, the cooling effect of the friction engagement portion can be enhanced. In addition, when the command oil pressure is high (and therefore the engagement force or clutch torque is large) and the rotational speed difference is small, the set oil is reduced in proportion to the rotational speed difference, and the lubricating oil with a small oil supply flow rate is frictionally engaged. Since the supply of excessive lubricating oil can be prevented when the command hydraulic pressure at which the load on the hydraulic pump becomes high is high, the drive source of the hydraulic pump can be reduced in size.

請求項5記載の発明は、請求項1から3のいずれか1項記載の油圧クラッチ作動装置(H)において、前記指示油圧(pc)は、前記係合力が大きくなるほど高くなり、前記給油流量は、前記回転速度差(ΔNL,ΔNR)と前記指示油圧(pc)との積が大きくなるほど多くなるものである。
これによれば、回転速度差と指示油圧との積に比例した給油流量の潤滑油を摩擦係合部に供給できることから、指示油圧が低くても、回転速度差が大きくなって発熱量が多くなるときには、回転速度差が大きい分、多い給油流量の潤滑油を摩擦係合部に供給できるので、摩擦係合部の冷却効果を高めることができる。また、指示油圧が高く、回転速度差が小さくなるときには、回転速度差が小さい分、少ない給油流量の潤滑油が摩擦係合部に供給されるため、油圧ポンプの負荷が高くなる指示油圧が高いときに過剰な潤滑油の供給を防止できるので、油圧ポンプの駆動源を小型化できる。
According to a fifth aspect of the present invention, in the hydraulic clutch actuator (H) according to any one of the first to third aspects, the indicated hydraulic pressure (pc) increases as the engagement force increases, and the oil supply flow rate is As the product of the rotational speed difference (ΔNL, ΔNR) and the indicated hydraulic pressure (pc) increases, the difference increases.
According to this, since the lubricating oil having a lubrication flow rate proportional to the product of the rotational speed difference and the indicated hydraulic pressure can be supplied to the friction engagement portion, even if the indicated hydraulic pressure is low, the rotational speed difference becomes large and the heat generation amount is large. In this case, since the lubricating oil having a large oil supply flow rate can be supplied to the friction engagement portion as the rotational speed difference is large, the cooling effect of the friction engagement portion can be enhanced. In addition, when the command oil pressure is high and the rotation speed difference is small, the lubrication oil with a small oil supply flow rate is supplied to the friction engagement portion as the rotation speed difference is small. Since sometimes excessive supply of lubricating oil can be prevented, the drive source of the hydraulic pump can be reduced in size.

油圧クラッチに作動油および潤滑油を供給する油圧ポンプを制御する油圧クラッチ作動装置において、作動油を摩擦係合部での係合力を制御する指示油圧に調圧しながら、潤滑油の給油流量の制御の融通性を高め、以て潤滑油による摩擦係合部の冷却効果の向上、油圧ポンプを駆動するためのエネルギ消費の低減、または、潤滑油との接触による油圧クラッチの動力損失の低減を可能とする油圧クラッチ作動装置が得られる。
さらに、摩擦係合部での回転速度差が大きいとき、または、回転速度差が大きく、かつ指示油圧が小さいときに、潤滑油による摩擦係合部の冷却効果を高めることができる。
In a hydraulic clutch actuator that controls a hydraulic pump that supplies hydraulic oil and lubricating oil to the hydraulic clutch, control of the lubricating oil supply flow rate while adjusting the hydraulic oil to an indicated hydraulic pressure that controls the engagement force at the friction engagement portion Can improve the cooling effect of the friction engagement part by lubricating oil, reduce the energy consumption for driving the hydraulic pump, or reduce the power loss of the hydraulic clutch by contact with the lubricating oil A hydraulic clutch operating device is obtained.
Further, when the rotational speed difference at the friction engagement portion is large, or when the rotational speed difference is large and the indicated hydraulic pressure is small, the cooling effect of the friction engagement portion by the lubricating oil can be enhanced.

本発明の一実施形態を示し、本発明が適用された油圧クラッチ作動装置を備える車両用動力伝達装置の概念図である。1 is a conceptual diagram of a vehicle power transmission device including a hydraulic clutch actuator to which the present invention is applied according to an embodiment of the present invention. 図1の動力伝達装置の要部断面図である。It is principal part sectional drawing of the power transmission device of FIG. 図1の動力伝達装置の油圧クラッチ作動装置の、油圧回路を中心とした図である。It is a figure centering on the hydraulic circuit of the hydraulic clutch actuator of the power transmission device of FIG. 図1の動力伝達装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the power transmission device of FIG. 図1の動力伝達装置における摩擦係合部での回転速度差および指示油圧の変化を説明するグラフと、潤滑油の給油流量の変化を説明するグラフである。FIG. 2 is a graph for explaining a change in rotational speed difference and a command oil pressure at a friction engagement portion in the power transmission device of FIG. 1 and a graph for explaining a change in the lubricating oil supply flow rate.

以下、本発明の実施形態を図1〜図5を参照して説明する。
図1を参照すると、本発明の実施形態において、油圧クラッチ作動装置Hは、4輪の車両に搭載される動力伝達装置としての駆動力配分装置Aに備えられる。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
Referring to FIG. 1, in the embodiment of the present invention, the hydraulic clutch actuator H is provided in a driving force distribution device A as a power transmission device mounted on a four-wheel vehicle.

駆動力配分装置Aは、横置き配置の内燃機関であるエンジンEおよび該エンジンEが発生するトルク(または駆動力)が入力されるトランスミッションMから構成されるパワーユニットPと共に、車体の前部に配置される。
パワーユニットPの後方に配置されてパワーユニットPのトルクが入力される駆動力配分装置Aの左右の端部からそれぞれ左方および右方に延びて配置される左右のドライブ軸10L,10Rには、左右の駆動輪である前輪WL,WRがそれぞれ装着される。
なお、この実施形態において、前後、左右および上下の各方向は、車両を基準としている。
The driving force distribution device A is disposed at the front portion of the vehicle body together with a power unit P including an engine E which is an internal combustion engine arranged horizontally and a transmission M to which torque (or driving force) generated by the engine E is input. Is done.
The left and right drive shafts 10L and 10R, which are arranged behind the power unit P and extend leftward and rightward from the left and right ends of the driving force distribution device A to which the torque of the power unit P is input, The front wheels WL and WR which are the driving wheels are respectively mounted.
In this embodiment, the front and rear, left and right, and up and down directions are based on the vehicle.

図1,図2に示されるように、駆動力配分装置Aは、トランスミッションMからのトルクが入力される差動機構Dと、差動機構Dからのトルクが入力されると共に左右の前輪WL,WR間でトルクを配分する伝動機構としての配分機構Bとを備える。
差動機構Dは、トランスミッションMの出力軸に連結されて駆動される入力軸1に設けられた入力ギヤ2および該入力ギヤ2に噛合する外歯ギヤ3から構成される入力部と、外歯ギヤ3が外周に設けられたギヤケース33と、該ギヤケース33内に配置されるギヤ機構である遊星ギヤ機構Gaと、左右の出力軸9L,9Rとを備える。差動機構Dは、トランスミッションMのケーシングの一部である左右のケーシング31,32から構成されるケーシング30内に収納される。ギヤケース33は、軸受37,38を介して左右のケーシング31,32に回転可能に支持される。
As shown in FIGS. 1 and 2, the driving force distribution device A includes a differential mechanism D to which torque from the transmission M is input, and torque from the differential mechanism D to the left and right front wheels WL, And a distribution mechanism B as a transmission mechanism for distributing torque between the WRs.
The differential mechanism D includes an input portion that includes an input gear 2 provided on an input shaft 1 that is connected to and driven by an output shaft of the transmission M, and an external gear 3 that meshes with the input gear 2, and an external tooth The gear 3 includes a gear case 33 provided on the outer periphery, a planetary gear mechanism Ga which is a gear mechanism disposed in the gear case 33, and left and right output shafts 9L and 9R. The differential mechanism D is housed in a casing 30 including left and right casings 31 and 32 that are part of the casing of the transmission M. The gear case 33 is rotatably supported by the left and right casings 31 and 32 via bearings 37 and 38.

遊星ギヤ機構Gaは、外歯ギヤ3と一体に設けられてギヤケース33にボルト36により固定されたリングギヤ4と、該リングギヤ4の内側に同軸に配置されたサンギヤ5と、リングギヤ4に噛合する複数のアウタプラネタリギヤ6および該アウタプラネタリギヤ6とサンギヤ5とに噛合する複数のインナプラネタリギヤ7からなるプラネタリギヤ群と、各プラネタリギヤ6,7を回転可能に支持するキャリア8とを備える。アウタプラネタリギヤ6およびインナプラネタリギヤ7は、キャリア8に設けられた複数のプラネタリギヤ軸39,40にそれぞれ回転可能に支持される。   The planetary gear mechanism Ga is integrally provided with the external gear 3 and is fixed to the gear case 33 with bolts 36, the sun gear 5 coaxially disposed inside the ring gear 4, and a plurality of meshing gears with the ring gear 4. The outer planetary gear 6 and a plurality of inner planetary gears 7 meshing with the outer planetary gear 6 and the sun gear 5, and a carrier 8 that rotatably supports the planetary gears 6, 7. The outer planetary gear 6 and the inner planetary gear 7 are rotatably supported by a plurality of planetary gear shafts 39 and 40 provided on the carrier 8, respectively.

左出力軸9Lはキャリア8を左ドライブ軸10Lに連結し、右出力軸9Rはサンギヤ5を右ドライブ軸10Rに連結する。右出力軸9Rは、互いにスプライン結合された第1軸9R1および第2軸9R2から構成される2分割構造を有する。両出力軸9R,9Lは、両ドライブ軸10L,10Rと同軸の回転軸であり、後記第1〜第3回転体47,46,48およびキャリア部材11と共に、共通の1つの回転中心線Lcを有する。   The left output shaft 9L connects the carrier 8 to the left drive shaft 10L, and the right output shaft 9R connects the sun gear 5 to the right drive shaft 10R. The right output shaft 9R has a two-divided structure including a first shaft 9R1 and a second shaft 9R2 that are spline-coupled to each other. Both output shafts 9R, 9L are rotational axes coaxial with both drive shafts 10L, 10R, and together with the first to third rotating bodies 47, 46, 48 and the carrier member 11 described later, Have.

キャリア8の左部にスプライン結合された左出力軸9Lは、ギヤケース33および左ケーシング31を貫通して左方に延出し、左ドライブ軸10Lにスプライン結合される。キャリア8の右部にスプライン結合された管状の軸である第1回転体47は、ギヤケース33および右ケーシング32を貫通して右方に延出する。第1回転体47の右端部の内側に管状の軸である第2回転体46がスプライン結合される。
第1回転体47内に配置された第1軸9R1はサンギヤ5にスプライン結合され、第2回転体46内に配置された第2軸9R2は、油圧クラッチCのクラッチハウジング20を貫通して右方に延出して右ドライブ軸10Rにスプライン結合される。
The left output shaft 9L splined to the left portion of the carrier 8 extends leftward through the gear case 33 and the left casing 31, and is splined to the left drive shaft 10L. The first rotating body 47, which is a tubular shaft splined to the right portion of the carrier 8, extends rightward through the gear case 33 and the right casing 32. A second rotating body 46 that is a tubular shaft is splined inside the right end of the first rotating body 47.
The first shaft 9R1 disposed in the first rotating body 47 is spline-coupled to the sun gear 5, and the second shaft 9R2 disposed in the second rotating body 46 passes through the clutch housing 20 of the hydraulic clutch C to the right. And is splined to the right drive shaft 10R.

差動機構Dを介して入力されたパワーユニットPのトルクを伝達する伝動機構としての配分機構Bは、左右の前輪WL,WR間でのトルクの伝達を可能とするギヤ機構Gbと、油圧クラッチCによりギヤ機構Gbを通じて配分されるトルクの制御を行う油圧クラッチ作動装置H(図3も参照)とを備える。油圧クラッチCは、ボルト43により結合された第1,第2ハウジングとしての左右のハウジング41,42から構成されるクラッチハウジング20を備える。   A distribution mechanism B as a transmission mechanism that transmits torque of the power unit P input via the differential mechanism D includes a gear mechanism Gb that enables transmission of torque between the left and right front wheels WL and WR, and a hydraulic clutch C. Is provided with a hydraulic clutch actuator H (see also FIG. 3) that controls the torque distributed through the gear mechanism Gb. The hydraulic clutch C includes a clutch housing 20 including left and right housings 41 and 42 as first and second housings connected by bolts 43.

クラッチハウジング20により形成される収納室であるクラッチ室21に収納されると共に遊星ギヤ機構から構成されるギヤ機構Gbは、第2軸9R2に同軸に配置されたサンギヤ群およびキャリア部材11と、第2軸9R2の周囲に周方向に等間隔で配置された複数のピニオン軸12と、各ピニオン軸12に回転可能に支持される第1〜第3ピニオン13〜15が一体に形成されたピニオン部材16とを備える。   A gear mechanism Gb that is housed in a clutch chamber 21 that is a housing chamber formed by the clutch housing 20 and that is composed of a planetary gear mechanism, includes a sun gear group and a carrier member 11 that are arranged coaxially with the second shaft 9R2, and a first gear mechanism Gb. A plurality of pinion shafts 12 arranged at equal intervals in the circumferential direction around the two shafts 9R2 and a pinion member integrally formed with first to third pinions 13 to 15 that are rotatably supported by the respective pinion shafts 12 16.

前記サンギヤ群は、第2軸9R2に回転可能に支持されて第1ピニオン13に噛合すると共にキャリア8に連結される第1サンギヤ17と、第2軸9R2に固定されて第2ピニオン14に噛合する第2サンギヤ18と、第2軸9R2に回転可能に支持されて第3ピニオン15に噛合する第3サンギヤ19とから構成される。
第1サンギヤ17は、ハウジング41に軸受25を介して回転可能に支持される第2回転体46にスプライン結合され、第2サンギヤ18は、第2回転体46に軸受49を介して回転可能に支持されると共に軸受24を介して右ハウジング42に回転可能に支持される第2軸9R2にスプライン結合され、第3サンギヤ19は、第2軸9R2に軸受26を介して回転可能に支持された管状の第3回転体48に一体成形されて結合される。
キャリア部材11は、第2回転体46に軸受27を介して回転可能に支持され、第3回転体48に軸受28を介して回転可能に支持される。
サンギヤ17〜19、各ピニオン13〜15および第2軸9R2の各回転速度は、車速が高くなるほど高くなり得る。したがって、ギヤ機構Gbは、車速が高くなるほど回転速度が高くなる回転部として、サンギヤ17〜19および各ピニオン13〜15を備える。
The sun gear group is rotatably supported by the second shaft 9R2 and meshes with the first pinion 13, and is coupled to the carrier 8 and is fixed to the second shaft 9R2 and meshes with the second pinion 14. And a third sun gear 19 that is rotatably supported by the second shaft 9R2 and meshes with the third pinion 15.
The first sun gear 17 is splined to a second rotating body 46 that is rotatably supported by the housing 41 via a bearing 25, and the second sun gear 18 is rotatable to the second rotating body 46 via a bearing 49. The third sun gear 19 is supported by the second shaft 9R2 through the bearing 26 so as to be splined to the second shaft 9R2 that is supported and rotatably supported by the right housing 42 through the bearing 24. The tubular third rotating body 48 is integrally formed and coupled.
The carrier member 11 is rotatably supported by the second rotating body 46 via the bearing 27 and is rotatably supported by the third rotating body 48 via the bearing 28.
The rotational speeds of the sun gears 17 to 19, the pinions 13 to 15, and the second shaft 9R2 can be higher as the vehicle speed is higher. Therefore, the gear mechanism Gb includes the sun gears 17 to 19 and the pinions 13 to 15 as rotating parts whose rotational speed increases as the vehicle speed increases.

油圧クラッチ作動装置Hは、配分機構Bでのトルクの伝達形態を変更する油圧クラッチCと、油圧ポンプ73が吐出する吐出油の一部である作動油により油圧クラッチCの作動を制御する作動油供給装置Kとを備える。
油圧クラッチCは、いずれも湿式の摩擦式多板クラッチである第1,第2油圧クラッチである左右の油圧クラッチCL,CRにより構成され、クラッチハウジング20は両油圧クラッチCL,CRに共通のハウジングである。
The hydraulic clutch operating device H controls the operation of the hydraulic clutch C by the hydraulic clutch C that changes the torque transmission form in the distribution mechanism B and the hydraulic oil that is part of the discharged oil discharged by the hydraulic pump 73. And a supply device K.
The hydraulic clutch C is composed of left and right hydraulic clutches CL and CR, which are first and second hydraulic clutches, both of which are wet friction type multi-plate clutches. The clutch housing 20 is a housing common to both hydraulic clutches CL and CR. It is.

両油圧クラッチCL,CRが収納されるクラッチ室21内には、油圧ポンプ73から吐出された吐出油のうちで、作動油以外の部分が潤滑油として供給される。そして、この潤滑油の供給により、クラッチ室21内には、図示されないオーバーフロー手段(例えば、クラッチハウジング20に設けられた孔により構成されるオーバーフロー通路、またはクラッチハウジング20に設けられた堰状の仕切壁)により決定される油面レベルを有する所要量の潤滑油が貯留され、各油圧クラッチCL,CRの摩擦係合部52,62はこの貯留した潤滑油に部分的に浸漬している。   In the clutch chamber 21 in which both the hydraulic clutches CL and CR are accommodated, a portion other than the hydraulic oil among the discharged oil discharged from the hydraulic pump 73 is supplied as lubricating oil. By supplying this lubricating oil, the clutch chamber 21 has overflow means (not shown), for example, an overflow passage formed by holes provided in the clutch housing 20 or a dam-like partition provided in the clutch housing 20. A required amount of lubricating oil having an oil level determined by the wall) is stored, and the friction engagement portions 52 and 62 of the hydraulic clutches CL and CR are partially immersed in the stored lubricating oil.

左油圧クラッチCLは、回転体としてのキャリア部材11の一部で構成されるトルク作用部50と、左ハウジング41の一部で構成されるトルク被作用部51と、トルク作用部50とトルク被作用部51との間に配置されてトルクの伝達を可能とする第1摩擦係合部52と、該摩擦係合部52に付与される係合力を制御する油圧応動部材としての油圧応動式のピストン53と、係合解除方向にピストン53を付勢する付勢部材としての戻しバネ54とを備える。   The left hydraulic clutch CL includes a torque acting part 50 constituted by a part of the carrier member 11 as a rotating body, a torque acting part 51 constituted by a part of the left housing 41, a torque acting part 50 and a torque covered part. A first friction engagement portion 52 arranged between the action portion 51 and capable of transmitting torque, and a hydraulically responsive type as a hydraulic response member for controlling an engagement force applied to the friction engagement portion 52. A piston 53 and a return spring 54 as a biasing member that biases the piston 53 in the disengagement direction are provided.

同様に、右油圧クラッチCRは、第3回転体48の一部で構成されるトルク作用部60と、右ハウジング42の一部で構成されるトルク被作用部61と、トルク作用部60とトルク被作用部61との間に配置されてトルクの伝達を可能とする第2摩擦係合部62と、該摩擦係合部62に付与される係合力を制御する油圧応動部材としての油圧応動式のピストン63と、係合解除方向にピストン63を付勢する付勢部材としての戻しバネ64とを備える。   Similarly, the right hydraulic clutch CR includes a torque acting part 60 constituted by a part of the third rotating body 48, a torque acted part 61 constituted by a part of the right housing 42, a torque acting part 60 and a torque. A second friction engagement portion 62 that is arranged between the operated portion 61 and enables transmission of torque, and a hydraulic response type as a hydraulic response member that controls an engagement force applied to the friction engagement portion 62. And a return spring 64 as a biasing member that biases the piston 63 in the disengagement direction.

各油圧クラッチCL,CRの摩擦係合部52,62は、交互に積層された複数の板状の第1摩擦係合要素52a,62aおよび複数の板状の第2摩擦係合要素52b,62bから構成される。トルク作用側係合部としての第1摩擦係合要素52a,62aは、トルクが入力されるトルク作用部50,60にスプライン結合されて一体回転可能に設けられ、トルク被作用側係合部としての第2摩擦係合要素52b,62bは、この実施形態では非回転部材であるトルク被作用部51,61にスプライン結合されて一体に設けられる。   The frictional engagement portions 52 and 62 of the hydraulic clutches CL and CR include a plurality of plate-like first friction engagement elements 52a and 62a and a plurality of plate-like second friction engagement elements 52b and 62b, which are alternately stacked. Consists of The first friction engagement elements 52a and 62a as the torque acting side engaging portions are spline-coupled to the torque acting portions 50 and 60 to which torque is input and are provided so as to be integrally rotatable, and serve as the torque acting side engaging portions. The second friction engagement elements 52b and 62b are spline-coupled to the torque acted portions 51 and 61, which are non-rotating members in this embodiment, and are provided integrally.

各油圧クラッチCL,CRにおいて、ピストン53,63は、トルク被作用部51,61との協働により形成される油室55,65に供給される作動油の油圧に応じて、摩擦係合部52,62を係合させる係合力を発生する。したがって、ピストン53,63は、油室55,65内の作動油の油圧に応じて係合力を変更可能である。
そして、係合力が摩擦係合部52,62に作用するとき、第1,第2摩擦係合要素52a,52b,62a,62bは、互いに摩擦により係合して、第1摩擦係合要素52a,62aが第2摩擦係合要素52b,62bにトルクを作用させる係合状態になり、したがって油圧クラッチCL,CRが係合状態になる。一方、油室55,65内の作動油の油圧が低下して係合力が摩擦係合部52,62に作用しないとき、第1,第2摩擦係合要素52a,52b,62a,62bは、互いに係合解除されて、第1摩擦係合要素52a,62aが第2摩擦係合要素52b,62bにトルクを作用させない係合解除状態になり、したがって油圧クラッチCL,CRが係合解除状態になる。
In each of the hydraulic clutches CL and CR, the pistons 53 and 63 are friction engagement portions according to the hydraulic pressure of the hydraulic oil supplied to the oil chambers 55 and 65 formed in cooperation with the torque operated portions 51 and 61. Engaging force for engaging 52 and 62 is generated. Therefore, the pistons 53 and 63 can change the engagement force according to the hydraulic pressure of the hydraulic oil in the oil chambers 55 and 65.
When the engagement force acts on the friction engagement portions 52, 62, the first and second friction engagement elements 52a, 52b, 62a, 62b engage with each other by friction, and the first friction engagement element 52a. 62a is in an engaged state in which torque is applied to the second friction engagement elements 52b, 62b, and therefore, the hydraulic clutches CL, CR are engaged. On the other hand, when the hydraulic pressure of the hydraulic oil in the oil chambers 55 and 65 decreases and the engagement force does not act on the friction engagement portions 52 and 62, the first and second friction engagement elements 52a, 52b, 62a and 62b are The first friction engagement elements 52a and 62a are disengaged from each other so that torque is not applied to the second friction engagement elements 52b and 62b, and therefore the hydraulic clutches CL and CR are disengaged. Become.

なお、明細書および特許請求の範囲の記載において、摩擦係合部52,62が「係合状態になる」との表現には、摩擦係合部52,62が係合状態になっているときが含まれ、同様に、摩擦係合部52,62が「係合解除状態になる」との表現には、摩擦係合部52,62が係合解除状態になっているときが含まれるとする。   In the description of the specification and claims, the expression that the friction engagement portions 52 and 62 are “engaged” means that the friction engagement portions 52 and 62 are in the engagement state. Similarly, the expression that the friction engagement portions 52 and 62 are “disengaged” includes the case where the friction engagement portions 52 and 62 are in the disengagement state. To do.

図2,図3を参照すると、作動油供給装置Kは、駆動源としての電動モータ72と、油圧ポンプ73および調圧弁74を備える油圧回路70と、油圧ポンプ73の吐出流量、ピストン53,63を作動させる作動油の油圧および油圧クラッチCを含む配分機構Bに供給される潤滑油の給油流量を制御する制御装置Uと、を備える。   2 and 3, the hydraulic oil supply device K includes an electric motor 72 as a drive source, a hydraulic circuit 70 including a hydraulic pump 73 and a pressure regulating valve 74, a discharge flow rate of the hydraulic pump 73, and pistons 53 and 63. And a control device U for controlling the oil supply flow rate of the lubricating oil supplied to the distribution mechanism B including the hydraulic oil pressure and the hydraulic clutch C.

油圧回路70は、左ケーシング31の下部および左ハウジング41の下部により構成されてオイルが貯留する貯油部71と、電動モータ72により回転駆動される油圧ポンプ73と、ピストン53,63を作動させる作動油の油圧を調整する調圧部材としての調圧弁74と、各油室55,65に対する作動油の給排を行うことにより油室55,65の油圧を制御するいずれも油圧制御弁としての第1,第2油圧切換弁75L,75Rと、油路Lを形成する導管などの油路形成部材とを備える。   The hydraulic circuit 70 is constituted by a lower part of the left casing 31 and a lower part of the left housing 41, and an oil storage part 71 that stores oil, a hydraulic pump 73 that is rotationally driven by an electric motor 72, and an operation that operates pistons 53 and 63. Both the pressure regulating valve 74 as a pressure regulating member for adjusting the oil pressure of the oil and the oil pressure of the oil chambers 55 and 65 by controlling the hydraulic pressure of the oil chambers 55 and 65 by supplying and discharging the hydraulic oil to and from the oil chambers 55 and 65 are the first hydraulic control valves. 1 and 2nd oil pressure change-over valves 75L and 75R, and oil passage formation members, such as a conduit which forms oil passage L, are provided.

油圧クラッチCに作動油および潤滑油を供給するための専用の油圧ポンプ73は、定容量型の容積型回転ポンプとしてのトロコイドポンプから構成され、左ハウジング41に結合されたポンプボディ73aと、該ポンプボディ73aに結合されたポンプカバー73bと、ポンプボディ73aおよびポンプカバー73bで形成される収納室内に収納されるインナロータ73iおよびアウタロータ73oからなるポンプロータとを備える。インナロータ73iは、ポンプボディ73aに取り付けられた電動モータ72が備える回転軸72aに一体に固定され、電動モータ72によりアウタロータ73oと共に回転駆動される。   The dedicated hydraulic pump 73 for supplying hydraulic oil and lubricating oil to the hydraulic clutch C is composed of a trochoid pump as a constant displacement positive displacement rotary pump, and a pump body 73a coupled to the left housing 41, A pump cover 73b coupled to the pump body 73a, and a pump rotor including an inner rotor 73i and an outer rotor 73o housed in a housing chamber formed by the pump body 73a and the pump cover 73b. The inner rotor 73i is integrally fixed to a rotating shaft 72a included in an electric motor 72 attached to the pump body 73a, and is rotated together with the outer rotor 73o by the electric motor 72.

図3を参照すると、リニアソレノイド弁により構成される調圧弁74は、筒状の弁ボディ74aと、該弁ボディ74a内に摺動可能に配置された弁体であるスプール74bと、スプール74bを駆動する駆動部としてのソレノイド74cと、戻しバネ74dとを備えるスプール弁である。
調圧弁74は、制御装置Uにより制御されて、油圧ポンプ73からの吐出油を、油室55,65に供給される作動油と、配分機構Bの潤滑部に供給される潤滑油とに分流させると共に、該作動油を調圧する。
ここで、前記潤滑部には、各油圧クラッチCL,CRの摩擦係合部52,62および軸受24〜28と、摩擦係合部52,62および軸受24〜28と共に油圧クラッチCL,CRのクラッチハウジング20内に収納される部材であるギヤ機構Gbを構成する各ギヤ17〜19、各ピニオン13〜15そして第2,第3回転体46,48、第2軸9R2などが含まれる。
Referring to FIG. 3, a pressure regulating valve 74 constituted by a linear solenoid valve includes a cylindrical valve body 74a, a spool 74b which is a valve body slidably disposed in the valve body 74a, and a spool 74b. It is a spool valve provided with a solenoid 74c as a drive unit for driving and a return spring 74d.
The pressure regulating valve 74 is controlled by the control device U to split the discharge oil from the hydraulic pump 73 into hydraulic oil supplied to the oil chambers 55 and 65 and lubricating oil supplied to the lubrication part of the distribution mechanism B. And the pressure of the hydraulic oil is adjusted.
Here, the lubrication portion includes the friction engagement portions 52 and 62 and the bearings 24 to 28 of the hydraulic clutches CL and CR, and the clutches of the hydraulic clutch CL and CR together with the friction engagement portions 52 and 62 and the bearings 24 to 28. Each gear 17-19, each pinion 13-15 which comprises the gear mechanism Gb which is a member accommodated in the housing 20, and the 2nd, 3rd rotary body 46,48, 2nd axis | shaft 9R2, etc. are contained.

調圧弁74は、潤滑油の流量である給油流量を制御することで作動油を調圧すべく、潤滑油の給油流量を規定する流量規定部74eの流路面積を変更可能であり、該流路面積の大きさを制御することにより、油圧ポンプ73による吐出流量の制御との協働で、ピストン53,63の作動油を係合力の大きさに応じて制御装置Uにより算出される指示油圧pcに調圧する。
流量規定部74eは、弁ボディ74aにおいて環状の出口ポート74oを形成する弁ボディ側規定部74a1とスプール74bのランドである弁体側規定部74b1とにより構成される可変絞り部であり、流路面積は該可変絞り部での流路面積である。
The pressure regulating valve 74 can change the flow path area of the flow rate defining portion 74e that regulates the lubricating oil supply flow rate so as to regulate the hydraulic oil by controlling the oil supply flow rate that is the flow rate of the lubricating oil. By controlling the size of the area, the command oil pressure pc calculated by the control device U according to the magnitude of the engagement force is applied to the hydraulic oil of the pistons 53 and 63 in cooperation with the control of the discharge flow rate by the hydraulic pump 73. Adjust pressure.
The flow rate defining portion 74e is a variable restricting portion configured by a valve body side defining portion 74a1 that forms an annular outlet port 74o in the valve body 74a and a valve body side defining portion 74b1 that is a land of the spool 74b. Is the channel area at the variable throttle.

ソレノイド弁により構成される各油圧切換弁75L,75Rは、ピストン53,63に作用する作動油を、調圧弁74により調圧された油圧である指示油圧pcを有する作動油と、指示油圧pcの作動油が油室55,65から排出されて該指示油圧pcよりも低圧の係合解除油圧を有する作動油とに切り換える。
前記係合解除油圧は、各油圧切換弁75L,75Rが油室55,65をドレン76に連通させたときのドレン圧であり、ピストン53,63が摩擦係合部52,62に係合力を加えない油圧である。ドレン76は、貯油部71に連通する排出油路、または左ケーシング31および左ハウジング41により形成された内部空間(貯油部71の上方空間である。)である。
The hydraulic pressure changeover valves 75L and 75R each constituted by a solenoid valve are a combination of hydraulic oil acting on the pistons 53 and 63, hydraulic oil having a command hydraulic pressure pc which is a hydraulic pressure regulated by the pressure regulating valve 74, and the command hydraulic pressure pc. The hydraulic oil is discharged from the oil chambers 55 and 65 and switched to hydraulic oil having a disengagement hydraulic pressure lower than the command hydraulic pressure pc.
The disengagement hydraulic pressure is a drain pressure when the hydraulic pressure switching valves 75L and 75R cause the oil chambers 55 and 65 to communicate with the drain 76, and the pistons 53 and 63 exert an engagement force on the friction engagement portions 52 and 62. Hydraulic pressure not applied. The drain 76 is an exhaust oil passage communicating with the oil storage section 71 or an internal space formed by the left casing 31 and the left housing 41 (the space above the oil storage section 71).

図3を参照すると、油圧ポンプ73の吸入ポートと貯油部71とが、オイルストレーナ77が設けられた吸入油路L1を介して連通し、油圧ポンプ73の吐出ポートにて油圧ポンプ73に通じる吐出油路L2は、各油圧切換弁75L,75Rに通じる作動油用油路L10と、調圧弁74の入口ポート74iに通じる潤滑油用油路L20とに分岐する。
そして、油圧ポンプ73と油室55,65とは、吐出油路L2と、油圧切換弁75L,75Rが設けられた作動油用油路L10とを介して連通し、油圧ポンプ73と油圧クラッチCのクラッチ室21とが、吐出油路L2と、調圧弁74およびオイルフィルタ78,79が設けられた潤滑油用油路L20を介して連通する。
Referring to FIG. 3, the suction port of the hydraulic pump 73 and the oil storage portion 71 communicate with each other via the suction oil passage L <b> 1 provided with the oil strainer 77, and the discharge communicated with the hydraulic pump 73 at the discharge port of the hydraulic pump 73. The oil passage L2 branches into a hydraulic oil passage L10 that communicates with the hydraulic pressure switching valves 75L and 75R and a lubricating oil passage L20 that communicates with the inlet port 74i of the pressure regulating valve 74.
The hydraulic pump 73 and the oil chambers 55 and 65 communicate with each other via the discharge oil passage L2 and the hydraulic oil passage L10 provided with the hydraulic switching valves 75L and 75R. The clutch chamber 21 communicates with the discharge oil passage L2 through a lubricating oil passage L20 provided with a pressure regulating valve 74 and oil filters 78 and 79.

作動油用油路L10は、吐出油路L2と各油圧切換弁75L,75Rとを連通させる上流側作動油用油路L11と、油圧切換弁75Lと油室55とを連通させて作動油をピストン53に作用させる第1下流側作動油用油路L12と、油圧切換弁75Rと油室65とを連通させて作動油をピストン63に作用させる第2下流側作動油用油路L13とを有する。したがって、油圧切換弁75Lは、第1下流側作動油用油路L12を上流側作動油用油路L11とドレン76とに択一的に連通させ、油圧切換弁75Rは、第2下流側作動油用油路L13を上流側作動油用油路L11とドレン76とに択一的に連通させる。   The hydraulic oil passage L10 communicates the hydraulic oil by connecting the upstream hydraulic oil passage L11, which connects the discharge oil passage L2 and the hydraulic switching valves 75L, 75R, and the hydraulic switching valve 75L and the oil chamber 55. A first downstream hydraulic oil passage L12 that acts on the piston 53, and a second downstream hydraulic fluid passage L13 that causes the hydraulic switching valve 75R and the oil chamber 65 to communicate with each other to act on the piston 63. Have. Therefore, the hydraulic switching valve 75L selectively communicates the first downstream hydraulic oil passage L12 with the upstream hydraulic fluid passage L11 and the drain 76, and the hydraulic switching valve 75R operates in the second downstream operation direction. The oil passage L13 is selectively communicated with the upstream hydraulic oil passage L11 and the drain 76.

潤滑油用油路L20は、吐出油路L2と調圧弁74の入口ポート74iとを連通させる上流側潤滑油用油路L21と、調圧弁74の出口ポート74oとクラッチ室21とを連通させる下流側潤滑油用油路L22とを有する。下流側潤滑油用油路L22は、回転中心線Lcに平行な方向である軸線方向で、左油圧クラッチCL寄りで左ハウジング41においてクラッチ室21に開口する第1油路L23と右油圧クラッチCR寄りで右ハウジング42においてクラッチ室21に開口する第2油路L24とに分岐する。クラッチ室21が前記軸線方向で第1室21Lおよび第2室21Rにほぼ二等分されるとき、第1室21Lに開口する第1油路L23は摩擦係合部52付近を中心に潤滑油を供給し、第2室21Rに開口する第2油路L24は、摩擦係合部62付近を中心に潤滑油を供給する。   The lubricating oil passage L20 is connected to the upstream lubricating oil passage L21 that connects the discharge oil passage L2 and the inlet port 74i of the pressure regulating valve 74, and to the downstream that connects the outlet port 74o of the pressure regulating valve 74 and the clutch chamber 21. And a side lubricating oil passage L22. The downstream lubricating oil passage L22 has a first oil passage L23 and a right hydraulic clutch CR that open to the clutch chamber 21 in the left housing 41 near the left hydraulic clutch CL in an axial direction that is parallel to the rotation center line Lc. At the right side, the right housing 42 branches to a second oil passage L24 that opens to the clutch chamber 21. When the clutch chamber 21 is substantially equally divided into the first chamber 21L and the second chamber 21R in the axial direction, the first oil passage L23 opened to the first chamber 21L is a lubricating oil centered around the friction engagement portion 52. The second oil passage L24 that opens to the second chamber 21R supplies lubricating oil around the friction engagement portion 62.

図3,図4を参照すると、制御装置Uは、車両および油圧クラッチ作動装置Hの状態を検出する状態検出手段80と、該状態検出手段80からの検出信号が入力されると共に状態検出手段80により検出された各状態に基づいて電動モータ72、調圧弁74および油圧切換弁75L,75Rの作動を制御する電子制御ユニット(以下、「ECU」という。)90とから構成される。
ECU90は、入出力インターフェース、中央演算処理装置および記憶装置を備えるコンピュータである。該記憶装置には、後記する各種マップが格納されている。
なお、状態検出手段80の一部はECU90の機能として該ECU90に備えられるが、図4では、説明の便宜上、状態検出手段80として扱われている。
Referring to FIGS. 3 and 4, the control device U includes a state detection unit 80 that detects the state of the vehicle and the hydraulic clutch actuator H, and a detection signal from the state detection unit 80 and the state detection unit 80. The electronic control unit (hereinafter referred to as “ECU”) 90 that controls the operation of the electric motor 72, the pressure regulating valve 74, and the hydraulic pressure switching valves 75L and 75R based on the respective states detected by the above.
The ECU 90 is a computer that includes an input / output interface, a central processing unit, and a storage device. The storage device stores various maps described later.
A part of the state detection means 80 is provided in the ECU 90 as a function of the ECU 90, but in FIG. 4, it is treated as the state detection means 80 for convenience of explanation.

状態検出手段80は、車速Vを検出する車速検出手段81、車両の操向ハンドルの操舵角θを検出する操舵角検出手段82、各トルク作用部50,60の回転速度である第1回転速度NL,NRを検出する第1回転速度検出手段84,85、油圧ポンプ73のポンプ回転速度Np(電動モータ72の回転速度と等価である。)を検出するポンプ回転速度検出手段86と、吐出油の温度として下流側潤滑油用油路L22での潤滑油の油温Tを検出する油温検出手段87と、を含む。
各回転速度検出手段84,85,86は、回転速度の検出対象である回転部材と一体に回転するパルサの回転角を検出する回転角検出手段の検出信号に基づいて回転速度を検出する周知の検出手段である。
The state detection means 80 includes a vehicle speed detection means 81 that detects the vehicle speed V, a steering angle detection means 82 that detects the steering angle θ of the steering handle of the vehicle, and a first rotation speed that is the rotation speed of each of the torque acting portions 50 and 60. First rotation speed detection means 84 and 85 for detecting NL and NR, pump rotation speed detection means 86 for detecting the pump rotation speed Np of the hydraulic pump 73 (equivalent to the rotation speed of the electric motor 72), and discharge oil And an oil temperature detecting means 87 for detecting the oil temperature T of the lubricating oil in the downstream lubricating oil passage L22.
Each of the rotational speed detecting means 84, 85, 86 is a well-known method for detecting the rotational speed based on a detection signal of a rotational angle detecting means for detecting a rotational angle of a pulsar that rotates integrally with a rotational member that is a rotational speed detection target. It is a detection means.

ECU90は、油圧クラッチCL,CRを係合状態にするか、係合解除状態にするかを決定するクラッチ作動決定手段91と、各摩擦係合部52,62での回転速度差ΔNL,ΔNR、すなわち第1摩擦係合要素52a,62a(図2参照)の回転速度でもある第1回転速度NL,NRとトルク被作用部51,61の回転速度(第2摩擦係合要素52b,62b(図2参照)の回転速度でもある。)である第2回転速度との回転速度差ΔNL,ΔNRを算出する回転速度差算出手段92と、回転速度差ΔNL,ΔNRに基づいて調圧弁74の流路面積の設定面積Faを算出する設定面積算出手段93と、車速Vおよび操舵角θに基づいて指示油圧pcを算出する指示油圧算出手段94と、回転速度差ΔNL,ΔNRまたは設定面積Faと指示油圧pcとに基づいて吐出油の必要吐出流量としての必要ポンプ回転速度Npaを算出する必要吐出流量算出手段としての必要ポンプ回転速度算出手段95と、油圧クラッチCL,CRが係合解除状態になるときに電動モータ72の駆動停止期間Sを算出する停止期間算出手段96と、油圧クラッチCL,CRが係合解除状態になるときに前記潤滑部に供給される潤滑油の給油流量である係合解除時給油流量Qを算出する係合解除時給油流量算出手段97と、吐出油の吐出流量が必要吐出流量となるように電動モータ72の回転速度(したがって、油圧ポンプ73のポンプ回転速度Np)を制御するモータ駆動手段としてのポンプ制御手段101と、設定面積Faおよび係合解除時給油流量Qに基づいて調圧弁74のスプール74b(図3参照)の位置を設定する調圧部材制御手段102と、各油圧切換弁75L,75Rを駆動する油圧制御弁制御手段としての油圧切換弁制御手段103とを、その機能として備える。
ここで、調圧部材制御手段102および油圧切換弁制御手段103は、油圧ポンプ73から吐出された吐出油から分流した作動油および潤滑油の供給を制御可能な潤滑油分配制御手段を構成する。
The ECU 90 is configured to determine whether the hydraulic clutches CL and CR are to be engaged or disengaged, and the rotational speed differences ΔNL and ΔNR between the friction engagement portions 52 and 62. That is, the first rotational speeds NL and NR which are also the rotational speeds of the first friction engagement elements 52a and 62a (see FIG. 2) and the rotational speeds of the torque actuated portions 51 and 61 (second friction engagement elements 52b and 62b (see FIG. 2) 2), and the flow rate of the pressure regulating valve 74 based on the rotational speed differences ΔNL and ΔNR. Setting area calculation means 93 for calculating the setting area Fa of the area, instruction oil pressure calculation means 94 for calculating the instruction oil pressure pc based on the vehicle speed V and the steering angle θ, the rotational speed differences ΔNL and ΔNR or the setting area Fa and the instruction oil pressure p When the required pump rotation speed calculation means 95 as the required discharge flow rate calculation means for calculating the required pump rotation speed Npa as the required discharge flow rate of the discharged oil and the hydraulic clutches CL and CR are disengaged. Stop period calculation means 96 for calculating the drive stop period S of the electric motor 72, and when the engagement is released, which is the oil supply flow rate of the lubricant supplied to the lubrication unit when the hydraulic clutches CL and CR are in the disengaged state. The disengagement oil supply flow rate calculation means 97 for calculating the oil supply flow rate Q and the rotational speed of the electric motor 72 (and hence the pump rotational speed Np of the hydraulic pump 73) are controlled so that the discharge flow rate of the discharged oil becomes the required discharge flow rate. Of the spool 74b (see FIG. 3) of the pressure regulating valve 74 based on the pump control means 101 serving as the motor driving means, the set area Fa, and the oil supply flow rate Q when disengaged. A pressure regulating member control unit 102 for setting the location, the hydraulic switching valves 75L, and a hydraulic switching valve controlling means 103 as the hydraulic control valve control means for driving the 75R, it comprises as its functions.
Here, the pressure adjusting member control means 102 and the hydraulic pressure switching valve control means 103 constitute a lubricating oil distribution control means capable of controlling the supply of hydraulic oil and lubricating oil separated from the discharge oil discharged from the hydraulic pump 73.

クラッチ作動決定手段91は、車速検出手段81および操舵角検出手段82によりそれぞれ検出される検出結果である車速Vおよび操舵角θに基づいて、各油圧クラッチCL,CRを係合状態にするか、係合解除状態にするかを決定する。
したがって、車速検出手段81および操舵角検出手段82は、各油圧クラッチCL,CRを係合状態にするか係合解除状態とするかの油圧クラッチ作動条件を検出するクラッチ作動条件検出手段83を構成する。
Based on the vehicle speed V and the steering angle θ, which are detection results respectively detected by the vehicle speed detecting means 81 and the steering angle detecting means 82, the clutch operation determining means 91 puts the hydraulic clutches CL and CR into an engaged state, Decide whether to disengage.
Accordingly, the vehicle speed detecting means 81 and the steering angle detecting means 82 constitute a clutch operating condition detecting means 83 for detecting a hydraulic clutch operating condition for setting each hydraulic clutch CL, CR to the engaged state or the disengaged state. To do.

この実施形態では、各油圧クラッチCL,CRにおいて、前記第2回転速度は、非回転部材であるハウジング41,42の回転速度であることから0(ゼロ)であるため、第1回転速度NL,NRが回転速度差ΔNL,ΔNRとなる。なお、回転速度差ΔNL,ΔNRは、第1,第2回転速度の差の絶対値である。
このため、回転速度差算出手段92は、回転速度検出手段84,85により検出された第1回転速度NL,NRを回転速度差ΔNL,ΔNRとして算出する。
In this embodiment, in each of the hydraulic clutches CL and CR, since the second rotational speed is 0 (zero) because it is the rotational speed of the housings 41 and 42 that are non-rotating members, the first rotational speed NL, NR becomes the rotational speed difference ΔNL, ΔNR. The rotational speed differences ΔNL and ΔNR are absolute values of the difference between the first and second rotational speeds.
Therefore, the rotation speed difference calculation unit 92 calculates the first rotation speeds NL and NR detected by the rotation speed detection units 84 and 85 as the rotation speed differences ΔNL and ΔNR.

指示油圧算出手段94は、車速Vおよび操舵角θに対応する指示油圧pcが設定された指示油圧マップを検索することにより、指示油圧pcを算出する。
指示油圧pcは、各摩擦係合部52,62において第1,第2摩擦係合要素52a,52b,62a,62b同士が係合を開始してから滑りを生じることなく一体に回転するまでの範囲で、第1摩擦係合要素52a,62aが第2摩擦係合要素52b,62bに作用させるトルクであるクラッチトルクに比例し、したがって係合力に比例することから、指示油圧pcが大きくなるほどクラッチトルクおよび係合力が大きくなる。
The command oil pressure calculation means 94 calculates the command oil pressure pc by searching a command oil pressure map in which the command oil pressure pc corresponding to the vehicle speed V and the steering angle θ is set.
The command hydraulic pressure pc is from the first and second friction engagement elements 52a, 52b, 62a, and 62b to each other in the friction engagement portions 52 and 62 until they rotate together without slipping. In this range, the first friction engagement elements 52a and 62a are proportional to the clutch torque that is the torque applied to the second friction engagement elements 52b and 62b, and are therefore proportional to the engagement force. Torque and engagement force increase.

設定面積算出手段93は、回転速度差ΔNL,ΔNRに対応する設定面積Faが設定された流路面積マップを検索することにより、設定面積Faを算出する。設定面積Faは、指示油圧pcが同じ場合、回転速度差ΔNL,ΔNRが大きくなるほど大きくなる(図5参照)。   The set area calculating means 93 calculates the set area Fa by searching a flow path area map in which the set area Fa corresponding to the rotational speed differences ΔNL and ΔNR is set. When the command hydraulic pressure pc is the same, the set area Fa increases as the rotational speed differences ΔNL and ΔNR increase (see FIG. 5).

油圧ポンプ73が定容量型ポンプであることから、必要吐出流量とポンプ回転速度Npとは1対1の対応関係を有する。このため、この実施形態では、必要吐出流量算出手段と等価である必要ポンプ回転速度算出手段95は、指示油圧pcと回転速度差ΔNL,ΔNR(または該回転速度差ΔNL,ΔNRにより設定される設定面積Fa)とに対応する必要吐出流量と等価な必要ポンプ回転速度Npaが設定されたポンプ制御マップを検索することにより、該必要吐出流量を得るための必要ポンプ回転速度Npaを算出する。   Since the hydraulic pump 73 is a constant displacement pump, the required discharge flow rate and the pump rotation speed Np have a one-to-one correspondence. For this reason, in this embodiment, the necessary pump rotation speed calculation means 95 equivalent to the required discharge flow rate calculation means is set by the command oil pressure pc and the rotation speed differences ΔNL, ΔNR (or the rotation speed differences ΔNL, ΔNR). The necessary pump rotation speed Npa for obtaining the required discharge flow rate is calculated by searching a pump control map in which the required pump rotation speed Npa equivalent to the required discharge flow rate corresponding to the area Fa) is set.

そして、クラッチ作動決定手段91による決定に基づいて摩擦係合部52,62が係合状態になるとき、調圧部材制御手段102は、流路面積が回転速度差ΔNL,ΔNRに基づいて算出された設定面積Faに設定されるように、調圧弁74を制御し、ポンプ制御手段101は、流路面積を設定面積Faとしている調圧弁74により作動油が指示油圧pcに調圧される必要ポンプ回転速度Npaとなるように、電動モータ72にバッテリから供給される電流量の制御により電動モータ72の駆動を制御することで、油圧ポンプ73のポンプ回転速度Npを、例えばフィードバック制御により制御して、吐出流量が必要吐出流量となるように油圧ポンプ73を制御する。   When the friction engagement portions 52 and 62 are engaged based on the determination by the clutch operation determining means 91, the pressure adjusting member control means 102 calculates the flow passage area based on the rotational speed differences ΔNL and ΔNR. The pressure control valve 74 is controlled so that the set area Fa is set, and the pump control means 101 is a pump that requires the hydraulic oil to be adjusted to the indicated hydraulic pressure pc by the pressure control valve 74 having the flow path area as the set area Fa. By controlling the drive of the electric motor 72 by controlling the amount of current supplied from the battery to the electric motor 72 so that the rotation speed Npa is obtained, the pump rotation speed Np of the hydraulic pump 73 is controlled by, for example, feedback control. The hydraulic pump 73 is controlled so that the discharge flow rate becomes the required discharge flow rate.

油圧切換弁制御手段103は、操舵角θに基づいて、各油圧切換弁75L,75Rを、油室55,65が第1,第2下流側作動油用油路L12,L13を介して上流側作動油用油路L11に連通して、調圧弁74により指示油圧pcに調圧された作動油が油室55,65に供給されるように、または、油室55,65が第1,第2下流側作動油用油路L12,L13を介して低油圧源であるドレン76に連通して、油室55,65内の作動油がドレン76に排出されるように、制御する。   Based on the steering angle θ, the hydraulic pressure switching valve control means 103 moves the hydraulic pressure switching valves 75L, 75R upstream of the oil chambers 55, 65 via the first and second downstream hydraulic oil passages L12, L13. The hydraulic oil communicated with the hydraulic oil passage L11 and the hydraulic oil regulated to the indicated hydraulic pressure pc by the pressure regulating valve 74 is supplied to the oil chambers 55 and 65, or the oil chambers 55 and 65 are the first and first hydraulic chambers. 2. Control is performed so that the hydraulic oil in the oil chambers 55 and 65 is discharged to the drain 76 by communicating with the drain 76 that is a low hydraulic pressure source via the oil passages L12 and L13 for the downstream hydraulic oil.

そして、各油圧切換弁75L,75Rは、油圧切換弁制御手段103により制御されて、第1,第2下流側作動油用油路L12,L13を、上流側作動油用油路L11およびドレン76間で切り換え連通させることにより、各油圧クラッチCL,CRの係合状態および係合解除状態を切換制御する。具体的には、第1,第2下流側作動油用油路L12,L13と上流側作動油用油路L11とが連通するとき、油室55,65内に供給された指示油圧pcの作動油がピストン53,63に作用して油圧クラッチCL,CRが係合状態になり、第1,第2下流側作動油用油路L12,L13とドレン76とが連通するとき、油室55,65内の作動油が前記係合解除油圧になって油圧クラッチCL,CRが係合解除状態になる。   The hydraulic pressure switching valves 75L and 75R are controlled by the hydraulic pressure switching valve control means 103 so that the first and second downstream hydraulic oil passages L12 and L13 are connected to the upstream hydraulic fluid passage L11 and the drain 76. By switching between them, the engaged state and the disengaged state of each of the hydraulic clutches CL and CR are switched. Specifically, when the first and second downstream hydraulic oil passages L12 and L13 communicate with the upstream hydraulic fluid passage L11, the operation of the command hydraulic pressure pc supplied into the oil chambers 55 and 65 is performed. When oil acts on the pistons 53 and 63 to engage the hydraulic clutches CL and CR, and the first and second downstream hydraulic oil passages L12 and L13 communicate with the drain 76, the oil chamber 55, The hydraulic oil in 65 becomes the disengagement hydraulic pressure, and the hydraulic clutches CL and CR are disengaged.

また、油圧切換弁75L,75Rが上流側作動油用油路L11を閉じるとき、調圧弁74により、吐出油を、作動油としてピストン53,63に供給することなく、潤滑油として配分機構Bに供給することができる。それゆえ、調圧弁74および各油圧切換弁75L,75Rは、各油圧クラッチCL,CRが係合状態になるとき、吐出油を作動油と潤滑油と分けて、ピストン53,63(したがって、油室55,65)および配分機構Bの潤滑部にそれぞれ供給する一方、各油圧クラッチCL,CRが係合解除状態になるとき、ピストン53,63(したがって、油室55,65)に作動油を供給することなく、吐出油を潤滑油として潤滑部に供給するための分配部材を構成する。
そして、潤滑油用油路L20からクラッチ室21内に供給された潤滑油は、各油圧クラッチCL,CRの摩擦係合部52,62、クラッチハウジング20内に内蔵されたギヤ機構Gbなどの前記潤滑部に供給されて、該潤滑部を潤滑し、同時に、発熱部でもある摩擦係合部52,62を冷却する。
Further, when the hydraulic pressure changeover valves 75L and 75R close the upstream hydraulic oil passage L11, the pressure regulating valve 74 does not supply the discharged oil as hydraulic oil to the pistons 53 and 63, but as lubricating oil to the distribution mechanism B. Can be supplied. Therefore, when the hydraulic clutches CL and CR are engaged, the pressure regulating valve 74 and the hydraulic switching valves 75L and 75R divide the discharged oil into the working oil and the lubricating oil, and the pistons 53 and 63 (therefore, the oil Chamber 55 and 65) and the lubrication part of distribution mechanism B, respectively, and when each hydraulic clutch CL and CR is disengaged, hydraulic oil is supplied to pistons 53 and 63 (and therefore oil chambers 55 and 65). A distribution member for supplying the discharged oil as the lubricating oil to the lubricating portion without supplying is configured.
The lubricating oil supplied into the clutch chamber 21 from the lubricating oil passage L20 is the friction engagement portions 52 and 62 of the hydraulic clutches CL and CR, the gear mechanism Gb incorporated in the clutch housing 20, and the like. The lubricant is supplied to the lubrication part to lubricate the lubrication part, and at the same time, the friction engagement parts 52 and 62 which are also heat generation parts are cooled.

図5を参照すると、この実施形態では、両摩擦係合部52,62が係合状態になるとき、給油流量は、回転速度差ΔNL,ΔNRと指示油圧pcとの積が大きくなるほど多くなる。
一方、流路面積が回転速度差ΔNL,ΔNRとは無関係に一定値である比較例では、給油流量が指示油圧pcのみに依存するため、前記一定値によっては、図5に二点鎖線で示されるように、指示油圧pcが比較的高く、かつ回転速度差ΔNL,ΔNRが小さいときには、給油流量が過剰となって、電動モータ72での電力消費が増加し、また指示油圧pcが比較的低く、かつ回転速度差ΔNL,ΔNRが大きいときには、給油流量が不足して摩擦係合部52,62での冷却効果が十分に得られない。
Referring to FIG. 5, in this embodiment, when both the friction engagement portions 52 and 62 are engaged, the oil supply flow rate increases as the product of the rotational speed differences ΔNL and ΔNR and the command hydraulic pressure pc increases.
On the other hand, in the comparative example in which the flow path area is a constant value regardless of the rotational speed difference ΔNL, ΔNR, the oil supply flow rate depends only on the command oil pressure pc. As shown, when the command oil pressure pc is relatively high and the rotational speed differences ΔNL and ΔNR are small, the oil supply flow rate becomes excessive, power consumption in the electric motor 72 increases, and the command oil pressure pc is relatively low. When the rotational speed differences ΔNL and ΔNR are large, the oil supply flow rate is insufficient and the cooling effect at the friction engagement portions 52 and 62 cannot be sufficiently obtained.

また、クラッチ作動決定手段91による決定に基づいて両摩擦係合部52,62が係合解除状態になるときは、ピストン53,63に指示油圧pcを作用させる必要がないため、ポンプ制御手段101は、電動モータ72(したがって、油圧ポンプ73)が停止される駆動停止期間Sが形成されるように、電動モータ72および油圧ポンプ73を間欠駆動し、調圧部材制御手段102および油圧切換弁制御手段103は、吐出油が潤滑油として潤滑部に供給されるように調圧弁74および油圧切換弁75L,75Rをそれぞれ制御する。   Further, when both the friction engagement portions 52 and 62 are in the disengaged state based on the determination by the clutch operation determining means 91, it is not necessary to apply the command hydraulic pressure pc to the pistons 53 and 63. The electric motor 72 and the hydraulic pump 73 are intermittently driven so that the drive stop period S in which the electric motor 72 (and hence the hydraulic pump 73) is stopped is formed, and the pressure regulating member control means 102 and the hydraulic switching valve control are controlled. The means 103 controls the pressure regulating valve 74 and the hydraulic pressure switching valves 75L and 75R so that the discharged oil is supplied to the lubricating portion as lubricating oil.

具体的には、間欠駆動時に、ポンプ制御手段101は、停止期間算出手段96および係合解除時給油流量算出手段97によりそれぞれ算出された駆動停止期間Sおよび係合解除時給油流量Qに基づく潤滑油が潤滑油用油路L20を介して油圧クラッチCL,CRを含む配分機構B(図2参照)の前記潤滑部に供給されるよう電動モータ72を作動させる。このとき、調圧部材制御手段102は、調圧弁74の流路面積を一定の面積としており、油圧切換弁制御手段103は、第1,第2下流側作動油用油路L12,L13の連通を遮断して、上流側作動油用油路L11を油圧切換弁75L,75Rにより閉塞された状態にする。   Specifically, during intermittent driving, the pump control means 101 performs lubrication based on the drive stop period S and the engagement release oil flow rate Q calculated by the stop period calculation means 96 and the engagement release oil flow rate calculation means 97, respectively. The electric motor 72 is operated so that the oil is supplied to the lubricating portion of the distribution mechanism B (see FIG. 2) including the hydraulic clutches CL and CR via the lubricating oil passage L20. At this time, the pressure regulating member control means 102 sets the flow passage area of the pressure regulating valve 74 to a constant area, and the hydraulic pressure switching valve control means 103 communicates the first and second downstream hydraulic oil paths L12 and L13. And the upstream hydraulic oil passage L11 is closed by the hydraulic switching valves 75L and 75R.

したがって、間欠駆動時における油圧ポンプ73の作動時には、吐出油がピストン53,63を作動させて摩擦係合部52,62を係合状態にすることはない。このように前記分配部材が油圧切換弁75L,75Rを備えることで、作動油用油路L10を油圧切換弁75L,75Rにより油室55,65から遮断できることから、間欠駆動時の係合解除時給油流量Qの変更幅を大きくできるので、係合解除時給油流量Qの制御の自由度を大きくすることができる。   Therefore, when the hydraulic pump 73 is operated during intermittent driving, the discharged oil does not operate the pistons 53 and 63 to bring the friction engagement portions 52 and 62 into the engaged state. Since the distribution member is provided with the hydraulic switching valves 75L and 75R as described above, the hydraulic oil passage L10 can be shut off from the oil chambers 55 and 65 by the hydraulic switching valves 75L and 75R. Since the change width of the oil supply flow rate Q can be increased, the degree of freedom in controlling the oil supply flow rate Q when disengaged can be increased.

停止期間算出手段96は、次式で示されるように、基本期間Saと、駆動停止期間Sに車速Vおよび油温Tによる補正を施すための補正期間Sbとを算出し、基本期間Saを補正期間Sbで補正することにより、駆動停止期間Sを算出する。このとき、停止期間算出手段96は、車速Vおよび油温Tに対応する補正期間Sbが設定されたマップを検索することにより、補正期間Sbを算出する。
S=Sa+Sb
ここで、S :駆動停止期間
Sa:基本期間
Sb:補正期間
The stop period calculation means 96 calculates a basic period Sa and a correction period Sb for correcting the drive stop period S by the vehicle speed V and the oil temperature T as shown in the following equation, and corrects the basic period Sa. The drive stop period S is calculated by correcting the period Sb. At this time, the stop period calculation means 96 calculates the correction period Sb by searching a map in which the correction period Sb corresponding to the vehicle speed V and the oil temperature T is set.
S = Sa + Sb
Where S: drive stop period
Sa: Basic period
Sb: Correction period

また、係合解除時給油流量算出手段97は、基本流量Qaと、係合解除時給油流量Qに車速Vおよび油温Tによる補正を施すための補正流量Qbとを算出し、基本流量Qaを補正流量Qbで補正することにより係合解除時給油流量Qを算出する。係合解除時給油流量算出手段97は、車速Vおよび油温Tに対応する補正流量Qbが設定されたマップを検索することにより、補正流量Qbを算出する。
Q=Qa+Qb
ここで、Q :係合解除時給油流量
Qa:基本流量
Qb:補正流量
Further, the disengagement oil supply flow rate calculation means 97 calculates a basic flow rate Qa and a correction flow rate Qb for correcting the engagement disengagement oil supply flow rate Q by the vehicle speed V and the oil temperature T, and calculates the basic flow rate Qa. The oil supply flow rate Q at the time of disengagement is calculated by correcting with the correction flow rate Qb. The disengagement refueling flow rate calculating means 97 calculates the corrected flow rate Qb by searching a map in which the corrected flow rate Qb corresponding to the vehicle speed V and the oil temperature T is set.
Q = Qa + Qb
Where Q: lubrication flow rate when disengaged
Qa: Basic flow rate
Qb: Corrected flow rate

基本期間Saおよび基本流量Qaは、油圧クラッチCのクラッチ室21からの潤滑油の漏れ量、および各油圧クラッチCL,CRが係合状態になるときのクラッチ室21での潤滑油の油面レベルを決定する許容油量に基づいて設定され、この実施形態では、例えば一定値である。   The basic period Sa and the basic flow rate Qa are the amount of leakage of lubricating oil from the clutch chamber 21 of the hydraulic clutch C, and the oil level of the lubricating oil in the clutch chamber 21 when the hydraulic clutches CL and CR are engaged. In this embodiment, for example, it is a constant value.

また、補正期間Sbは、油温検出手段87により検出された油温Tに応じて、油温Tが高いほど短く設定され、補正流量Qbは、油温Tが高いほど多く設定される。これは、油温Tが高いほど、潤滑油の粘度が小さくなるため、摩擦係合部52,62やギヤ機構Gbのギヤ17〜19、ピニオン13〜15(図2参照)などの前記潤滑部に付着した潤滑油が該潤滑部から流れ去り易くなること、またクラッチハウジング20の微小間隙を通じてのクラッチ室21からの潤滑油の漏れ量が多くなることによる。   Further, the correction period Sb is set shorter as the oil temperature T is higher, and the correction flow rate Qb is set higher as the oil temperature T is higher, according to the oil temperature T detected by the oil temperature detecting means 87. This is because the higher the oil temperature T, the lower the viscosity of the lubricating oil. Therefore, the lubricating portions such as the friction engagement portions 52 and 62, the gears 17 to 19 of the gear mechanism Gb, and the pinions 13 to 15 (see FIG. 2). This is because the lubricating oil adhering to the oil easily flows away from the lubricating portion, and the amount of lubricating oil leaking from the clutch chamber 21 through the minute gap of the clutch housing 20 increases.

補正期間Sbは、車速検出手段81により検出された車速Vに応じて、車速Vが高いほど短く設定され、補正流量Qbは、車速Vが高いほど多く設定される。これは、車速Vが高いほど、遠心力により、摩擦係合部52,62やギヤ機構Gbのギヤ17〜19、ピニオン13〜15(図2参照)から流出する潤滑油の量が多くなって、潤滑油が不足し易い作動環境になることによる。   The correction period Sb is set shorter as the vehicle speed V is higher in accordance with the vehicle speed V detected by the vehicle speed detection means 81, and the correction flow rate Qb is set higher as the vehicle speed V is higher. This is because as the vehicle speed V increases, the amount of lubricating oil flowing out from the friction engagement portions 52 and 62, the gears 17 to 19 of the gear mechanism Gb, and the pinions 13 to 15 (see FIG. 2) increases due to centrifugal force. This is because the operating environment tends to be short of lubricating oil.

したがって、ポンプ制御手段101により電動モータ72および油圧ポンプ73が間欠駆動される間欠駆動時に、駆動停止期間Sは、車速Vが高いほど、また吐出油の油温Tが高いほど、短く設定され、係合解除時給油流量Qは、車速Vが高いほど、また油温Tが高いほど多く設定される。そのために、ポンプ制御手段101は、車速Vおよび油温Tに基づいて、車速Vおよび油温Tのそれぞれが高いほど潤滑油の係合解除時給油流量Qが多くなるようにポンプ回転速度Npを増加させて、吐出油の油圧を高くする。   Therefore, during the intermittent drive in which the electric motor 72 and the hydraulic pump 73 are intermittently driven by the pump control means 101, the drive stop period S is set shorter as the vehicle speed V is higher and the oil temperature T of the discharged oil is higher. The higher the vehicle speed V and the higher the oil temperature T, the larger the oil release flow rate Q at the time of disengagement. For this purpose, the pump control means 101 determines the pump rotation speed Np based on the vehicle speed V and the oil temperature T so that the higher the vehicle speed V and the oil temperature T, the greater the oil supply flow rate Q at the time of engagement of the lubricant. Increase the oil pressure of the discharged oil.

以下、図1を参照して、駆動力配分装置Aの動作について説明する。なお、車両の旋回時の説明では、右旋回時の場合の説明が括弧内に記載されている。
操舵角θに基づいて、車両が直進走行時など旋回走行時でないときには、クラッチ作動決定手段91の決定により、各油圧クラッチCL,CRが係合解除状態になるので、ギヤ機構Gbにおいてキャリア部材11および第3サンギヤ19の拘束が解除される。このため、左右の出力軸9L,9R、左右のドライブ軸10L,10R、キャリア8およびキャリア部材11は全て一体となって回転して、パワーユニットPからのトルクは差動機構Dから左右の前輪WL,WRに均等に伝達される。
Hereinafter, the operation of the driving force distribution device A will be described with reference to FIG. In the description when turning the vehicle, the description when turning right is described in parentheses.
Based on the steering angle θ, when the vehicle is not traveling straight, such as when traveling straight, the hydraulic clutches CL and CR are disengaged by the determination of the clutch operation determining means 91, so that the carrier member 11 in the gear mechanism Gb. And the restraint of the third sun gear 19 is released. For this reason, the left and right output shafts 9L and 9R, the left and right drive shafts 10L and 10R, the carrier 8 and the carrier member 11 all rotate together, and the torque from the power unit P is transferred from the differential mechanism D to the left and right front wheels WL. , WR are evenly transmitted.

車速Vおよび操舵角θに基づいて、クラッチ作動決定手段91の決定により、各油圧クラッチCL,CRが係合状態になる場合、ECU90が車両の中低車速域での左(右)旋回時であると判定したときには、ECU90からの指令で左油圧クラッチCL(右油圧クラッチCR)を係合することで、キャリア部材11(第3回転体48)がクラッチハウジング20に結合されてキャリア部材11(第3回転体48)の回転が停止される。このとき、左出力軸9L(右出力軸9R)に対してピニオン部材16(キャリア部材11)が増速されて、右前輪WR(左前輪WL)は左前輪WL(右前輪WR)に対して増速される。これにより、旋回内輪である左前輪WL(右前輪WR)のトルクの一部が旋回外輪である右前輪WR(左前輪WL)に伝達されて、車両の左旋回(右旋回)がアシストされて旋回性能を高めることができる。   Based on the vehicle speed V and the steering angle θ, when the hydraulic clutches CL and CR are engaged according to the determination of the clutch operation determining means 91, the ECU 90 is turning left (right) in the middle and low vehicle speed range. When it is determined that there is, the carrier member 11 (third rotating body 48) is coupled to the clutch housing 20 by engaging the left hydraulic clutch CL (right hydraulic clutch CR) in accordance with a command from the ECU 90, and the carrier member 11 ( The rotation of the third rotating body 48) is stopped. At this time, the pinion member 16 (carrier member 11) is accelerated with respect to the left output shaft 9L (right output shaft 9R), and the right front wheel WR (left front wheel WL) is compared with the left front wheel WL (right front wheel WR). Increased speed. As a result, part of the torque of the left front wheel WL (right front wheel WR), which is the inner turning wheel, is transmitted to the right front wheel WR (left front wheel WL), which is the outer turning wheel, and the left turn (right turn) of the vehicle is assisted. Turning performance can be improved.

また、キャリア部材11(第3回転体48)を左油圧クラッチCL(右油圧クラッチCR)により停止させる代わりに、作動油の油圧を調整して左油圧クラッチCL(右油圧クラッチCR)の係合力を適宜調整してキャリア部材11(第3回転体48)を減速することにより、その減速に応じて右前輪WR(左前輪WL)を左前輪WL(右前輪WR)に対して増速し、左前輪WL(右前輪WR)から右前輪WR(左前輪WL)に任意のトルクを伝達できる。   Also, instead of stopping the carrier member 11 (third rotating body 48) by the left hydraulic clutch CL (right hydraulic clutch CR), the hydraulic pressure of the hydraulic oil is adjusted to engage the left hydraulic clutch CL (right hydraulic clutch CR). Is adjusted as appropriate to decelerate the carrier member 11 (third rotating body 48), and the right front wheel WR (left front wheel WL) is accelerated relative to the left front wheel WL (right front wheel WR) in accordance with the deceleration, Arbitrary torque can be transmitted from the left front wheel WL (right front wheel WR) to the right front wheel WR (left front wheel WL).

次に、前述のように構成された実施形態の作用および効果について説明する。
油圧クラッチ作動装置Hの作動油供給装置Kは、摩擦係合部52,62の係合力を制御すべく設定された指示油圧pcに作動油を調圧する調圧弁74を備え、調圧弁74は、吐出油を、油圧応動ピストン53,63に供給される作動油と摩擦係合部52,62に供給される潤滑油とに分けると共に、潤滑油の給油流量を規定する流路面積を変更可能であり、調圧部材制御手段102は、摩擦係合部52,62が係合状態になるとき、流路面積が第1摩擦係合要素52a,62aの第1回転速度NL,NRと第2摩擦係合要素52b,62bの回転速度との差である回転速度差ΔNL,ΔNRに基づいて可変に設定される設定面積Faになるように調圧弁74を制御し、ポンプ制御手段101は、摩擦係合部52,62が係合状態になるとき、流路面積を設定面積Faとしている調圧弁74により作動油が指示油圧pcに調圧されるように油圧ポンプ73を制御する。
この構造により、ピストン53,63により油圧クラッチCL,CRの摩擦係合部52,62が係合状態になるとき、油圧クラッチCL,CRに作動油と潤滑油とを供給する油圧ポンプ73が、摩擦係合部52,62に供給される潤滑油の給油流量を規定する流路面積を設定面積Faとしている調圧弁74により作動油が指示油圧pcに調圧されるように制御されるので、ピストン53,63は指示油圧pcに対応した係合力(したがって、クラッチトルク)を摩擦係合部52,62に作用させることができる。しかも、作動油を指示油圧pcに調圧する調圧弁74は、前記流路面積を第1,第2摩擦係合要素52a,52b,62a,62bの回転速度差ΔNL,ΔNRに応じて変化する設定面積Faにすることにより、給油流量を指示油圧pc以外に回転速度差ΔNL,ΔNRに応じて変更できるので、給油流量が指示油圧pcのみに依存して決定される場合に比べて、給油流量の制御の融通性を高めることができる。
この結果、係合力(または、クラッチトルク)および回転速度差ΔNL,ΔNRに応じて変化する摩擦係合部52,62での発熱量に応じた給油流量の潤滑油の供給が可能になるため、潤滑油による摩擦係合部52,62の冷却効果や潤滑性を向上させることができ、さらには、回転速度差ΔNL,ΔNRが考慮されない場合に比べて潤滑油の過不足を改善できるので、油圧ポンプ73を駆動するためのエネルギ消費や動力損失の低減、または過剰な潤滑油との接触による油圧クラッチの動力損失の低減が可能になる。
Next, operations and effects of the embodiment configured as described above will be described.
The hydraulic oil supply device K of the hydraulic clutch actuator H includes a pressure regulating valve 74 that regulates the hydraulic oil to an indicated hydraulic pressure pc set to control the engagement force of the friction engagement portions 52 and 62. The discharge oil is divided into hydraulic oil supplied to the hydraulic responsive pistons 53 and 63 and lubricating oil supplied to the friction engagement portions 52 and 62, and the flow passage area defining the lubricating oil supply flow rate can be changed. Yes, the pressure regulating member control means 102 has a flow passage area of the first frictional engagement elements 52a, 62a and the second rotational speeds NL, NR and the second friction when the frictional engagement portions 52, 62 are engaged. The pressure control valve 74 is controlled so that the set area Fa is variably set based on the rotational speed differences ΔNL and ΔNR which are the differences from the rotational speeds of the engagement elements 52b and 62b. When the joint portions 52 and 62 are in the engaged state, The hydraulic pump 73 is controlled so that the hydraulic oil is regulated to the command hydraulic pressure pc by the pressure regulating valve 74 whose road area is the set area Fa.
With this structure, when the frictional engagement portions 52 and 62 of the hydraulic clutches CL and CR are engaged by the pistons 53 and 63, the hydraulic pump 73 that supplies hydraulic oil and lubricating oil to the hydraulic clutches CL and CR, The hydraulic oil is controlled to be regulated to the command hydraulic pressure pc by the pressure regulating valve 74 having a flow area that defines the flow rate of the lubricating oil supplied to the friction engagement portions 52 and 62 as a set area Fa. The pistons 53 and 63 can apply an engagement force (and therefore a clutch torque) corresponding to the command hydraulic pressure pc to the friction engagement portions 52 and 62. In addition, the pressure regulating valve 74 that regulates the hydraulic oil to the command hydraulic pressure pc is set so that the flow passage area changes according to the rotational speed differences ΔNL and ΔNR of the first and second friction engagement elements 52a, 52b, 62a, and 62b. By setting the area Fa, the oil supply flow rate can be changed according to the rotational speed differences ΔNL and ΔNR in addition to the command oil pressure pc, so that the oil supply flow rate can be changed compared to the case where the oil supply flow rate is determined only by the command oil pressure pc. Control flexibility can be increased.
As a result, it becomes possible to supply the lubricating oil at the oil supply flow rate according to the heat generation amount at the friction engagement portions 52 and 62 that change according to the engagement force (or clutch torque) and the rotational speed differences ΔNL and ΔNR. The cooling effect and lubricity of the frictional engagement portions 52 and 62 by the lubricating oil can be improved, and further, the excess and deficiency of the lubricating oil can be improved as compared with the case where the rotational speed differences ΔNL and ΔNR are not considered. Energy consumption and power loss for driving the pump 73 can be reduced, or power loss of the hydraulic clutch due to contact with excess lubricating oil can be reduced.

制御装置Uの必要ポンプ回転速度算出手段95は、流路面積を設定面積Faとしている調圧部材により作動油が指示油圧pcに調圧される必要吐出流量と等価の必要ポンプ回転速度Npaを、回転速度差ΔNL,ΔNRと指示油圧pcとに基づいて算出し、ポンプ制御手段101は、摩擦係合部52,62が係合状態になるとき、ポンプ回転速度Npが、必要ポンプ回転速度Npaとなるように、すなわち吐出流量が必要吐出流量となるように、油圧ポンプ73を制御することにより、指示油圧pcを得るために油圧ポンプ73が吐出する必要吐出流量が、回転速度差ΔNL,ΔNRを考慮して決定されるので、吐出流量が必要吐出流量となるように油圧ポンプ73を制御することで、回転速度差ΔNL,ΔNRに応じた給油流量の潤滑油を摩擦係合部52,62に供給できる。   The required pump rotation speed calculation means 95 of the control device U calculates a required pump rotation speed Npa equivalent to the required discharge flow rate at which the hydraulic oil is adjusted to the indicated hydraulic pressure pc by the pressure adjusting member whose flow path area is the set area Fa. Calculated based on the rotational speed differences ΔNL, ΔNR and the command hydraulic pressure pc, the pump control means 101 determines that the pump rotational speed Np is equal to the required pump rotational speed Npa when the friction engagement portions 52, 62 are engaged. In other words, by controlling the hydraulic pump 73 so that the discharge flow rate becomes the required discharge flow rate, the required discharge flow rate discharged by the hydraulic pump 73 in order to obtain the indicated hydraulic pressure pc becomes the rotational speed difference ΔNL, ΔNR. Therefore, the hydraulic pump 73 is controlled so that the discharge flow rate becomes the required discharge flow rate, so that the lubricating oil having the oil supply flow rate according to the rotational speed differences ΔNL and ΔNR is rubbed. It can be supplied to the engaging portion 52, 62.

作動油供給装置Kは、油圧ポンプ73を駆動する電動モータ72を備え、ポンプ制御手段101は、油圧ポンプ73を制御すべく電動モータ72を制御することにより、摩擦係合部52,62に対する潤滑油の給油流量に回転速度差ΔNL,ΔNRが考慮されない場合に比べて、電動モータ72での電力消費を低減でき、バッテリの消耗を抑制できる。   The hydraulic oil supply device K includes an electric motor 72 that drives the hydraulic pump 73, and the pump control unit 101 lubricates the friction engagement portions 52 and 62 by controlling the electric motor 72 to control the hydraulic pump 73. Compared to the case where the rotational speed differences ΔNL and ΔNR are not considered in the oil supply flow rate, the power consumption in the electric motor 72 can be reduced, and the battery consumption can be suppressed.

指示油圧pcは、係合力が大きくなるほど高くなり、設定面積Faは、回転速度差ΔNL,ΔNRが大きくなるほど大きくなることにより、指示油圧pcが低く(したがって、係合力またはクラッチトルクが小さく)ても、回転速度差ΔNL,ΔNRが大きくなって発熱量が多くなるときには、回転速度差ΔNL,ΔNRに比例して設定面積Faが大きくなる分、多くの給油流量の潤滑油が摩擦係合部52,62に供給されるので、摩擦係合部52,62の冷却効果を高めることができる。また、指示油圧pcが高く(したがって、係合力またはクラッチトルクが大きく)、回転速度差ΔNL,ΔNRが小さくなるときには、回転速度差ΔNL,ΔNRに比例して設定面積Faが小さくなる分、少ない給油流量の潤滑油が摩擦係合部52,62に供給されるため、油圧ポンプ73の負荷が高くなる指示油圧pcが高いときに過剰な潤滑油の供給を防止できるので、電動モータ72を小型化できる。   The command hydraulic pressure pc increases as the engagement force increases, and the set area Fa increases as the rotational speed difference ΔNL, ΔNR increases, so that the command hydraulic pressure pc is low (and therefore the engagement force or clutch torque is small). When the rotational speed difference ΔNL, ΔNR increases and the heat generation amount increases, the set area Fa increases in proportion to the rotational speed difference ΔNL, ΔNR, so that a large amount of lubricating oil flows into the friction engagement portion 52, Since it is supplied to 62, the cooling effect of the friction engagement parts 52, 62 can be enhanced. Further, when the command oil pressure pc is high (therefore, the engagement force or the clutch torque is large) and the rotational speed differences ΔNL and ΔNR are small, less oil is supplied because the set area Fa is smaller in proportion to the rotational speed differences ΔNL and ΔNR. Since the lubricating oil of a flow rate is supplied to the friction engagement portions 52 and 62, the supply of excessive lubricating oil can be prevented when the command hydraulic pressure pc at which the load of the hydraulic pump 73 is high is high, and thus the electric motor 72 is downsized. it can.

指示油圧pcは、係合力が大きくなるほど高くなり、給油流量は、回転速度差ΔNL,ΔNRと指示油圧pcとの積が大きくなるほど多くなることにより、回転速度差ΔNL,ΔNRと指示油圧pcとの積に比例した給油流量の潤滑油を摩擦係合部52,62に供給できることから、指示油圧pcが低くても、回転速度差ΔNL,ΔNRが大きくなって発熱量が多くなるときには、回転速度差ΔNL,ΔNRが大きい分、多い給油流量の潤滑油を摩擦係合部52,62に供給できるので、摩擦係合部52,62の冷却効果を高めることができる。また、指示油圧pcが高く、回転速度差ΔNL,ΔNRが小さくなるときには、回転速度差ΔNL,ΔNRが小さい分、少ない給油流量の潤滑油が摩擦係合部52,62に供給されるため、油圧ポンプ73の負荷が高くなる指示油圧pcが高いときに過剰な潤滑油の供給を防止できるので、電動モータ72を小型化できる。   The command oil pressure pc increases as the engagement force increases, and the oil supply flow rate increases as the product of the rotation speed differences ΔNL, ΔNR and the command oil pressure pc increases, so that the difference between the rotation speed differences ΔNL, ΔNR and the command oil pressure pc. Since the lubricating oil with a flow rate proportional to the product can be supplied to the friction engagement portions 52 and 62, even if the indicated hydraulic pressure pc is low, the rotational speed difference ΔNL, ΔNR increases and the calorific value increases. Since ΔNL and ΔNR are large, lubricating oil having a large oil supply flow rate can be supplied to the friction engagement portions 52 and 62, so that the cooling effect of the friction engagement portions 52 and 62 can be enhanced. Further, when the command hydraulic pressure pc is high and the rotational speed differences ΔNL and ΔNR are small, since the rotational speed differences ΔNL and ΔNR are small, a small amount of lubricating oil is supplied to the friction engagement portions 52 and 62. Since the excessive supply of lubricating oil can be prevented when the indicated hydraulic pressure pc at which the load on the pump 73 is high is high, the electric motor 72 can be downsized.

作動油供給装置Kは、吐出油を、作動油と、伝動機構における潤滑部に供給される潤滑油とに分ける分配部材を構成する調圧弁74および油圧切換弁75L,75Rを備え、制御装置Uは、油圧クラッチCL,CRの摩擦係合部52,62が係合状態になるとき、油圧ポンプ73を駆動すると共に吐出油が作動油と潤滑油とに分けられるように調圧弁74および油圧切換弁75L,75Rを制御し、摩擦係合部52,62が係合解除状態になるとき、駆動停止期間Sが形成されるように油圧ポンプ73を間欠駆動すると共に、吐出油が潤滑油として配分機構Bの前記潤滑部に供給されるように調圧弁74および油圧切換弁75L,75Rを制御する。
この構造により、ピストン53,63により摩擦係合部52,62が係合状態になるとき、油圧ポンプ73は、前記分配部材である調圧弁74および油圧切換弁75L,75Rを介して、摩擦係合部52,62を係合させるピストン53,63に作動油を供給すると共に油圧クラッチCL,CRを含む配分機構Bの前記潤滑部に潤滑油を供給する一方、摩擦係合部52,62が係合解除状態になるときには、間欠駆動される油圧ポンプ73の吐出油が、調圧弁74を介して潤滑油として前記潤滑部に供給される。この結果、摩擦係合部52,62が係合解除状態になるときの配分機構Bでの潤滑油の不足を解消できる。しかも、油圧ポンプ73は、駆動停止期間S中停止されるので、摩擦係合部52,62が係合解除状態になるときにも油圧ポンプ73が連続的に駆動される場合に比べて、電動モータ72による電力消費を低減することができる。
The hydraulic oil supply device K includes a pressure regulating valve 74 and hydraulic switching valves 75L and 75R that constitute a distribution member that divides discharged oil into hydraulic oil and lubricating oil supplied to the lubricating portion of the transmission mechanism, and includes a control device U. When the friction engagement portions 52 and 62 of the hydraulic clutches CL and CR are engaged, the hydraulic pump 73 is driven and the pressure regulating valve 74 and the hydraulic pressure switching are performed so that the discharged oil is divided into hydraulic oil and lubricating oil. When the valves 75L and 75R are controlled to disengage the friction engagement portions 52 and 62, the hydraulic pump 73 is intermittently driven so that the drive stop period S is formed, and the discharged oil is distributed as the lubricating oil. The pressure regulating valve 74 and the hydraulic pressure switching valves 75L and 75R are controlled so as to be supplied to the lubricating portion of the mechanism B.
With this structure, when the friction engagement portions 52 and 62 are engaged with each other by the pistons 53 and 63, the hydraulic pump 73 causes the friction engagement via the pressure regulating valve 74 and the hydraulic switching valves 75L and 75R, which are the distribution members. While supplying hydraulic oil to the pistons 53 and 63 with which the joint portions 52 and 62 are engaged, the lubricating oil is supplied to the lubricating portion of the distribution mechanism B including the hydraulic clutches CL and CR, while the friction engaging portions 52 and 62 are provided. When the disengaged state is established, the oil discharged from the hydraulic pump 73 that is intermittently driven is supplied to the lubricating portion as lubricating oil via the pressure regulating valve 74. As a result, the shortage of lubricating oil in the distribution mechanism B when the friction engagement portions 52 and 62 are in the disengaged state can be solved. In addition, since the hydraulic pump 73 is stopped during the drive stop period S, the hydraulic pump 73 is more electrically driven than when the hydraulic pump 73 is continuously driven even when the friction engagement portions 52 and 62 are in the disengaged state. Power consumption by the motor 72 can be reduced.

駆動停止期間Sは、吐出油の油温Tが高いほど短いことにより、吐出油の油温Tが高いために潤滑油の粘度が小さくなって前記潤滑部に付着した潤滑油が該潤滑部から流出し易くなるものの、油温Tが高いほど駆動停止期間Sが短くなることにより、前記潤滑部への潤滑油の供給頻度を高めることができるので、潤滑油不足の発生が抑制され、前記潤滑部の潤滑性を向上できる。   Since the drive stop period S is shorter as the oil temperature T of the discharged oil is higher, the oil temperature T of the discharged oil is higher, so that the viscosity of the lubricating oil becomes smaller and the lubricating oil adhering to the lubricating portion is removed from the lubricating portion. Although it tends to flow out, the higher the oil temperature T, the shorter the drive stop period S, so that the frequency of supply of the lubricating oil to the lubrication part can be increased. The lubricity of the part can be improved.

油圧ポンプ73の間欠駆動時における潤滑油の給油流量である係合解除時給油流量Qは、吐出油の油温Tが高いほど多いことにより、吐出油の油温Tが高いために潤滑油の粘度が小さくなって前記潤滑部に付着した潤滑油が該潤滑部から流出し易くなるものの、油温Tが高いほど前記潤滑部への潤滑油の給油流量が多くなるので、潤滑油不足の発生が抑制され、前記潤滑部の潤滑性を向上できる。   The disengagement oil supply flow rate Q, which is the oil supply flow rate of the lubricating oil when the hydraulic pump 73 is intermittently driven, increases as the oil temperature T of the discharged oil increases, and therefore the oil temperature T of the discharged oil increases. Although the viscosity decreases and the lubricating oil adhering to the lubricating part tends to flow out of the lubricating part, the higher the oil temperature T, the greater the lubricating oil supply flow rate to the lubricating part. Is suppressed, and the lubricity of the lubrication part can be improved.

前記潤滑部は、車速Vが高いほど高い回転速度で回転する回転部としての摩擦係合部52,62やギヤ機構Gbであり、駆動停止期間Sは、車速Vが高いほど短いことにより、車速Vが高いために前記回転部に付着した潤滑油が遠心力により潤滑部から流出し易くなるものの、車速Vが高いほど駆動停止期間Sが短くなることにより、前記回転部への潤滑油の供給頻度を高めることができるので、潤滑油不足の発生が抑制され、前記回転部の潤滑性を向上できる。   The lubrication part is the friction engagement parts 52 and 62 and the gear mechanism Gb as rotating parts that rotate at a higher rotational speed as the vehicle speed V is higher, and the drive stop period S is shorter as the vehicle speed V is higher. Although the lubricating oil adhering to the rotating part is likely to flow out of the lubricating part due to centrifugal force because V is high, the drive stop period S is shortened as the vehicle speed V is increased, so that the lubricating oil is supplied to the rotating part. Since the frequency can be increased, the occurrence of insufficient lubricating oil is suppressed, and the lubricity of the rotating part can be improved.

係合解除時給油流量Qは、車速Vが高いほど多いことにより、車速Vが高いために前記回転部に付着した潤滑油が遠心力により前記回転部から流出し易くなるものの、車速Vが高いほど前記回転部への潤滑油の給油流量が多くなるので、潤滑油不足の発生が抑制され、前記回転部の潤滑性を向上できる。   The higher the vehicle speed V, the higher the oil flow rate Q at the time of disengagement. Since the vehicle speed V is high, the lubricating oil adhering to the rotating part tends to flow out of the rotating part by centrifugal force, but the vehicle speed V is high. As the oil supply flow rate of the lubricating oil to the rotating part increases, the occurrence of insufficient lubricating oil is suppressed, and the lubricity of the rotating part can be improved.

以下、前述した実施形態の一部の構成を変更した実施形態について、変更した構成に関して説明する。
駆動源は、電動モータ72以外の、駆動モータ、例えば液圧式モータであってもよく、また、燃焼機関などの原動機であってもよい。そして、駆動源が燃焼機関である場合、摩擦係合部52,62が係合解除状態になるときに油圧ポンプ73が間欠駆動されることで、燃焼機関の動力損失が低減するので、燃費性能を向上させることができる。
油圧式クラッチ作動装置を備える動力伝達装置は、駆動力配分装置A以外の車両に使用される動力伝達装置であってもよく、また動力伝達装置の搭載対象は、車両以外の機械または装置、例えば作業用機械であってもよい。
油圧クラッチCは、トルクの伝達および遮断を行う構造の1つの油圧クラッチを備えるものであってもよい。
パワーユニットPは、電動モータ72または油圧モータにより構成されてもよい。
調圧弁は、潤滑油用油路L20に設けられる代わりに作動油用油路L10に設けられてもよく、また潤滑油用油路L20および作動油用油路L10に設けられてもよい。
調圧弁は、スプール弁以外の弁、例えばニードル弁により構成されてもよい。
油圧回路70が第1,第2油圧切換弁75L,75Rを備えることなく、調圧弁74で調圧された作動油が弁を介することなく油室55,65に導かれてもよい。
状態検出手段80として作動油の油圧を検出する油圧検出手段が備えられ、該油圧検出手段により検出された油圧が指示油圧pcになるように油圧ポンプ73が制御されてもよい。
油圧ポンプ73は、可変容量型ポンプであってもよく、この場合、ポンプ制御手段は、該油圧ポンプ73の容量を変更する可変部材および駆動源(例えば、電動モータ)の少なくとも一方を制御する。そして、定容量型および可変容量型のいずれの油圧ポンプ73が使用される場合にも、吐出流量を検出するために、吐出油路L2に流量検出手段が状態検出手段80として備えられ、該流量検出手段により検出された吐出流量が必要吐出流量となるように、油圧ポンプ73が制御されてもよい。
また、トルク被作用部が回転部材であり、第2摩擦係合要素が該トルク被作用部にスプライン嵌合により一体回転可能に設けられてもよく、したがって、トルク被作用部の回転速度は、0(ゼロ)以外の値であってもよい。この場合、制御装置Uは、回転速度差ΔNL,ΔNRを算出するために、状態検出手段80の1つとして前記第2回転速度を検出する回転速度検出手段を備える。
第1,第2摩擦係合要素のそれぞれは、1つの部材から構成されてもよい。
駆動停止期間Sの補正期間Sbまたは係合解除時給油流量Qの補正流量Qbは、車速Vおよび油温Tの一方に基づいて算出されてもよい。
Hereinafter, an embodiment in which a part of the configuration of the above-described embodiment is changed will be described with respect to the changed configuration.
The drive source may be a drive motor other than the electric motor 72, for example, a hydraulic motor, or a prime mover such as a combustion engine. When the drive source is a combustion engine, the hydraulic pump 73 is intermittently driven when the friction engagement portions 52 and 62 are disengaged, thereby reducing the power loss of the combustion engine. Can be improved.
The power transmission device including the hydraulic clutch actuating device may be a power transmission device used in a vehicle other than the driving force distribution device A, and the power transmission device is mounted on a machine or device other than the vehicle, for example, It may be a working machine.
The hydraulic clutch C may include one hydraulic clutch having a structure for transmitting and interrupting torque.
The power unit P may be configured by an electric motor 72 or a hydraulic motor.
The pressure regulating valve may be provided in the hydraulic oil passage L10 instead of being provided in the lubricating oil passage L20, or may be provided in the lubricating oil passage L20 and the hydraulic oil passage L10.
The pressure regulating valve may be constituted by a valve other than the spool valve, for example, a needle valve.
The hydraulic circuit 70 does not include the first and second hydraulic pressure switching valves 75L and 75R, and the hydraulic oil regulated by the pressure regulating valve 74 may be guided to the oil chambers 55 and 65 without passing through the valve.
The state detection unit 80 may include a hydraulic pressure detection unit that detects the hydraulic pressure of the hydraulic oil, and the hydraulic pump 73 may be controlled so that the hydraulic pressure detected by the hydraulic pressure detection unit becomes the command hydraulic pressure pc.
The hydraulic pump 73 may be a variable displacement pump. In this case, the pump control means controls at least one of a variable member that changes the displacement of the hydraulic pump 73 and a drive source (for example, an electric motor). When either the constant displacement type or variable displacement type hydraulic pump 73 is used, in order to detect the discharge flow rate, a flow rate detection means is provided as a state detection means 80 in the discharge oil passage L2, and the flow rate is determined. The hydraulic pump 73 may be controlled so that the discharge flow rate detected by the detection means becomes the required discharge flow rate.
The torque actuated part may be a rotating member, and the second friction engagement element may be provided so as to be integrally rotatable by spline fitting to the torque actuated part. It may be a value other than 0 (zero). In this case, the control device U includes a rotation speed detection unit that detects the second rotation speed as one of the state detection units 80 in order to calculate the rotation speed differences ΔNL and ΔNR.
Each of the first and second friction engagement elements may be composed of one member.
The correction period Sb of the drive stop period S or the correction flow rate Qb of the disengagement oil supply flow rate Q may be calculated based on one of the vehicle speed V and the oil temperature T.

52,62 摩擦係合部
53,63 ピストン(油圧応動部材)
72 電動モータ
73 油圧ポンプ
74 調圧弁(調圧部材)
75L,75R 油圧切換弁
101 ポンプ制御手段
A 駆動力配分装置
B 配分機構
H 油圧クラッチ作動装置
C,CL,CR 油圧クラッチ
K 作動油供給装置
U 制御装置
ΔNL,ΔNR 回転速度差
Fa 設定面積
pc 指示油圧
52, 62 Friction engagement part 53, 63 Piston (hydraulic response member)
72 Electric motor 73 Hydraulic pump 74 Pressure regulating valve (pressure regulating member)
75L, 75R Hydraulic switching valve 101 Pump control means A Driving force distribution device B Distribution mechanism H Hydraulic clutch actuators C, CL, CR Hydraulic clutch K Hydraulic oil supply device U Controllers ΔNL, ΔNR Rotational speed difference Fa Setting area pc Instruction hydraulic pressure

Claims (5)

係合状態および係合解除状態になる第1摩擦係合要素および第2摩擦係合要素から構成される摩擦係合部と、前記摩擦係合部に加えられる係合力を制御する油圧応動部材とを備える油圧クラッチと、
油圧ポンプと、前記油圧ポンプが吐出する吐出油の吐出流量を制御すべく前記油圧ポンプを制御するポンプ制御手段を備える制御装置とを備え、前記吐出油の一部を前記油圧応動部材の作動油とする作動油供給装置と、
を備える油圧クラッチ作動装置において、
前記作動油供給装置は、前記係合力を制御すべく設定された指示油圧に前記作動油を調圧する調圧部材を備え、
前記調圧部材は、前記吐出油を前記作動油と前記摩擦係合部に供給される潤滑油とに分けると共に、前記潤滑油の給油流量を規定する流路面積を変更可能であり、
前記制御装置は、前記摩擦係合部が前記係合状態になるとき、前記流路面積が前記第1摩擦係合要素の回転速度と前記第2摩擦係合要素の回転速度との差である回転速度差に基づいて可変に設定される設定面積になるように前記調圧部材を制御し、
前記ポンプ制御手段は、前記摩擦係合部が前記係合状態になるとき、前記流路面積を前記設定面積としている前記調圧部材により前記作動油が前記指示油圧に調圧されるように前記油圧ポンプを制御することを特徴とする油圧クラッチ作動装置。
A friction engagement portion including a first friction engagement element and a second friction engagement element that are engaged and disengaged; and a hydraulically responsive member that controls an engagement force applied to the friction engagement portion. A hydraulic clutch comprising:
A hydraulic pump and a control device including pump control means for controlling the hydraulic pump so as to control a discharge flow rate of the discharge oil discharged from the hydraulic pump, and a part of the discharge oil is used as hydraulic oil of the hydraulic responsive member. A hydraulic oil supply device,
In the hydraulic clutch actuator comprising:
The hydraulic fluid supply device includes a pressure regulating member that regulates the hydraulic fluid to an indicated hydraulic pressure set to control the engagement force.
The pressure adjusting member divides the discharged oil into the hydraulic oil and the lubricating oil supplied to the friction engagement portion, and is capable of changing a flow path area that defines an oil supply flow rate of the lubricating oil,
In the control device, when the friction engagement portion is in the engagement state, the flow path area is a difference between a rotation speed of the first friction engagement element and a rotation speed of the second friction engagement element. Controlling the pressure regulating member so as to be a setting area that is variably set based on the rotational speed difference;
The pump control means is configured such that when the friction engagement portion is in the engaged state, the hydraulic oil is regulated to the command hydraulic pressure by the pressure regulating member having the flow passage area as the set area. A hydraulic clutch actuator characterized by controlling a hydraulic pump.
前記制御装置は、前記流路面積を前記設定面積としている前記調圧部材により前記作動油が前記指示油圧に調圧される必要吐出流量を、前記回転速度差と前記指示油圧とに基づいて算出し、
前記ポンプ制御手段は、前記摩擦係合部が前記係合状態になるとき、吐出流量が前記必要吐出流量となるように前記油圧ポンプを制御することを特徴とする請求項1記載の油圧クラッチ作動装置。
The control device calculates a required discharge flow rate at which the hydraulic oil is regulated to the command hydraulic pressure by the pressure regulating member having the flow path area as the set area based on the rotational speed difference and the command hydraulic pressure. And
2. The hydraulic clutch operation according to claim 1, wherein the pump control means controls the hydraulic pump so that a discharge flow rate becomes the required discharge flow rate when the friction engagement portion is in the engaged state. apparatus.
前記作動油供給装置は、前記油圧ポンプを駆動する電動モータを備え、
前記ポンプ制御手段は、前記油圧ポンプを制御すべく前記電動モータを制御することを特徴とする請求項1または2記載の油圧クラッチ作動装置。
The hydraulic oil supply device includes an electric motor that drives the hydraulic pump,
3. The hydraulic clutch actuator according to claim 1, wherein the pump control means controls the electric motor to control the hydraulic pump.
前記指示油圧は、前記係合力が大きくなるほど高くなり、
前記設定面積は、前記回転速度差が大きくなるほど大きくなることを特徴とする請求項1から3のいずれか1項記載の油圧クラッチ作動装置。
The command hydraulic pressure increases as the engagement force increases.
The hydraulic clutch operating device according to any one of claims 1 to 3, wherein the set area increases as the rotational speed difference increases.
前記指示油圧は、前記係合力が大きくなるほど高くなり、
前記給油流量は、前記回転速度差と前記指示油圧との積が大きくなるほど多くなることを特徴とする請求項1から3のいずれか1項記載の油圧クラッチ作動装置。
The command hydraulic pressure increases as the engagement force increases.
4. The hydraulic clutch operating device according to claim 1, wherein the oil supply flow rate increases as a product of the rotational speed difference and the command hydraulic pressure increases. 5.
JP2010009636A 2010-01-20 2010-01-20 Hydraulic clutch operating device Pending JP2011149458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010009636A JP2011149458A (en) 2010-01-20 2010-01-20 Hydraulic clutch operating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010009636A JP2011149458A (en) 2010-01-20 2010-01-20 Hydraulic clutch operating device

Publications (1)

Publication Number Publication Date
JP2011149458A true JP2011149458A (en) 2011-08-04

Family

ID=44536623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010009636A Pending JP2011149458A (en) 2010-01-20 2010-01-20 Hydraulic clutch operating device

Country Status (1)

Country Link
JP (1) JP2011149458A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147920A1 (en) * 2013-03-19 2014-09-25 ジヤトコ株式会社 Lubricant-flow-rate control device for automatic transmission, and lubricant-flow-rate control method
JP2014181755A (en) * 2013-03-19 2014-09-29 Jatco Ltd Lubrication flow quantity control device and lubrication flow quantity control method for automatic transmission
CN108980231A (en) * 2018-08-28 2018-12-11 安徽江淮汽车集团股份有限公司 A kind of hybrid electric vehicle power control system and hybrid electric vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147920A1 (en) * 2013-03-19 2014-09-25 ジヤトコ株式会社 Lubricant-flow-rate control device for automatic transmission, and lubricant-flow-rate control method
JP2014181755A (en) * 2013-03-19 2014-09-29 Jatco Ltd Lubrication flow quantity control device and lubrication flow quantity control method for automatic transmission
KR20150102104A (en) * 2013-03-19 2015-09-04 쟈트코 가부시키가이샤 Lubricant-flow-rate control device for automatic transmission, and lubricant-flow-rate control method
JP5948491B2 (en) * 2013-03-19 2016-07-06 ジヤトコ株式会社 Lubrication flow rate control device and lubrication flow rate control method for automatic transmission
KR101706492B1 (en) 2013-03-19 2017-02-13 쟈트코 가부시키가이샤 Lubricant-flow-rate control device for automatic transmission, and lubricant-flow-rate control method
CN105008768B (en) * 2013-03-19 2017-03-08 加特可株式会社 The lubrication flow control device of automatic transmission and lubrication flow control method
CN108980231A (en) * 2018-08-28 2018-12-11 安徽江淮汽车集团股份有限公司 A kind of hybrid electric vehicle power control system and hybrid electric vehicle
CN108980231B (en) * 2018-08-28 2019-08-06 安徽江淮汽车集团股份有限公司 A kind of hybrid electric vehicle power control system and hybrid electric vehicle

Similar Documents

Publication Publication Date Title
US9522642B2 (en) Oil supply device
US8042331B2 (en) On-demand hydraulic pump for a transmission and method of operation
RU2532039C1 (en) Hydraulic regulator for carrier drive system
JP5527170B2 (en) Vehicle clutch device
JP6089533B2 (en) Clutch control device for clutch device for hybrid vehicle
WO2011001841A1 (en) Hydraulic control device for automatic transmission
WO2008130059A1 (en) Hydraulic control device
KR20140003317A (en) Gearbox arrangement
JP2011149458A (en) Hydraulic clutch operating device
JP2011149459A (en) Power transmission device
JP2003139230A (en) Controller for oil pump
WO2020196348A1 (en) Vehicle drive device
US9845007B2 (en) Driving force distributing device
JP4935343B2 (en) Hydraulic control device for continuously variable transmission
JP5533494B2 (en) Vehicle clutch device
JP2015197146A (en) Hydraulic control device of driving device for vehicle
AU2016334652A1 (en) Bulldozer
WO2019208694A1 (en) Oil supply device and drive transmission device for vehicle
JP2015197148A (en) Hydraulic control device of driving device for vehicle
JP2004353768A (en) Hydraulic control device
JP4244592B2 (en) Hydraulic control device
JP2015075224A (en) Clutch lubrication device of clutch device for hybrid vehicle
JP2015197147A (en) Hydraulic control device of driving device for vehicle
JP2022155290A (en) Vehicle drive apparatus
JP4178801B2 (en) Hydraulic control device