JP2011147464A - Metal material, blood clot formation-inhibiting material and platelet deposition-inhibiting material - Google Patents

Metal material, blood clot formation-inhibiting material and platelet deposition-inhibiting material Download PDF

Info

Publication number
JP2011147464A
JP2011147464A JP2008107373A JP2008107373A JP2011147464A JP 2011147464 A JP2011147464 A JP 2011147464A JP 2008107373 A JP2008107373 A JP 2008107373A JP 2008107373 A JP2008107373 A JP 2008107373A JP 2011147464 A JP2011147464 A JP 2011147464A
Authority
JP
Japan
Prior art keywords
alloy
titanium
metal material
electrolytic treatment
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008107373A
Other languages
Japanese (ja)
Inventor
Takayuki Yoneyama
隆之 米山
Takao Hanawa
隆夫 塙
Takayuki Komiya
隆行 込宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Tokyo Medical and Dental University NUC
Original Assignee
Nihon University
Tokyo Medical and Dental University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Tokyo Medical and Dental University NUC filed Critical Nihon University
Priority to JP2008107373A priority Critical patent/JP2011147464A/en
Priority to PCT/JP2009/001666 priority patent/WO2009128230A1/en
Publication of JP2011147464A publication Critical patent/JP2011147464A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal material of which surface has been subjected to a treatment providing platelet deposition-and blood clot formation-inhibiting functions. <P>SOLUTION: An oxide film present on the surface of titanium or titanium alloy as a result of an electrolytic treatment is further oxidized and the formation of a fibrin network is inhibited in a platelet deposition test using a solution, wherein the platelet count has been adjusted to 1.0×10<SP>5</SP>cells/μL and to which 1.96×10<SP>-2</SP>mol/L of calcium chloride had been added to suppress the coagulation rate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、表面に血小板付着抑制機能及び血栓形成抑制機能を発揮する処置が施された金属材料に関する。   The present invention relates to a metal material whose surface is treated to exert a platelet adhesion inhibiting function and a thrombus formation inhibiting function.

チタン合金のうち、例えば、Ti−6Al−4V合金およびTi−6Al−7Nb合金は良好な機械的特性、耐食性を備えているため、ボーンプレート、人工関節のステム、人工歯根、義歯床などに利用されている。また、Ti−Ni合金は循環器系では管腔拡張用ステントやガイドワイヤー、歯科では歯列矯正用ワイヤーや根管治療用具などとして利用されている。   Among titanium alloys, for example, Ti-6Al-4V alloy and Ti-6Al-7Nb alloy have good mechanical properties and corrosion resistance, so they can be used for bone plates, artificial joint stems, artificial roots, denture bases, etc. Has been. Ti-Ni alloys are used as lumen expansion stents and guide wires in the circulatory system, and orthodontic wires and root canal treatment tools in dentistry.

上記Ti−6Al−4V合金、Ti−6Al−7Nb合金およびTi−Ni合金に含まれるバナジウム(V)およびニッケル(Ni)は細胞毒性、発ガン性、アレルギー性が懸念される成分である。   Vanadium (V) and nickel (Ni) contained in the Ti-6Al-4V alloy, Ti-6Al-7Nb alloy and Ti-Ni alloy are components that are concerned about cytotoxicity, carcinogenicity, and allergenicity.

特許文献1には、10〜40vol%のグリセリンと0.1〜80vol%の乳酸と水(残部)とで構成する電解質溶液中でチタン−ニッケル合金を電解処理することで、表面にニッケルの割合が内部に比べて少なくなり良好な耐食性を示す改質層を形成する方法が開示されている。   Patent Document 1 discloses a ratio of nickel on the surface by electrolytic treatment of a titanium-nickel alloy in an electrolyte solution composed of 10 to 40 vol% glycerin, 0.1 to 80 vol% lactic acid and water (remainder). Discloses a method for forming a modified layer that has less corrosion than the inside and exhibits good corrosion resistance.

特許文献2には、血管の内部に挿入した後に拡径することで、血管の収縮を阻止するメッシュ状の筒体(ステント)の材料としてチタン−ニッケル合金を用いることが開示されている。また特許文献3および4では、表面処理によってチタン−ニッケル合金の表面酸化皮膜中のニッケル濃度を低下させることが開示されている。   Patent Document 2 discloses that a titanium-nickel alloy is used as a material for a mesh-like cylinder (stent) that prevents contraction of a blood vessel by expanding the diameter after insertion into the blood vessel. Patent Documents 3 and 4 disclose that the nickel concentration in the surface oxide film of the titanium-nickel alloy is reduced by surface treatment.

例えば非特許文献1には、チタン−ニッケル合金やオーステナイト型ステンレス鋼には金属アレルギーの原因物質としてニッケルが問題視されていることが記載され、更に当該問題を解決する手段として、加熱(1200℃)した熱処理炉内で窒素ガスと接触(2時間)させることで、1重量%程度の窒素を合金に吸収させることが提案されている。この非特許文献1ではニッケルの代わりに窒素で力学的強度と耐食性が向上すると記載されている。   For example, Non-Patent Document 1 describes that nickel is regarded as a problem as a causative substance of metal allergy in titanium-nickel alloys and austenitic stainless steel, and further, heating (1200 ° C.) as a means for solving the problem. It is proposed that about 1 wt% of nitrogen is absorbed by the alloy by contacting with nitrogen gas (2 hours) in the heat treatment furnace. In this non-patent document 1, it is described that mechanical strength and corrosion resistance are improved by nitrogen instead of nickel.

WO2007/018189WO2007 / 018189 特表2001−516260号公報Special table 2001-516260 gazette 米国 2004/0117001公開公報US 2004/0117001 Publication WO 2004/108983パンフレットWO 2004/108983 pamphlet 研究論文「安価でアレルギー性の低い歯科部材の共同開発を開始」平成15年12月4日:独立行政法人物質・材料研究機構Research paper "Started joint development of inexpensive and low allergenic dental materials" December 4, 2003: National Institute for Materials Science

Ti−6Al−4V合金、Ti−6Al−7Nb合金またはTi−Ni合金などのチタン合金は、血管内ステント、ステントグラフト、人工心臓、人工弁、循環器系のインプラント材としての利用が考えられているが、金属と血液との接触によって惹起される血栓形成は重篤な塞栓症などの原因になり、臨床的な予後を直接左右する大きな課題である。
上記した特許文献1〜4及び非特許文献1では、血小板付着及び血栓形成と金属表面に関する解明は何らなされていない。
Titanium alloys such as Ti-6Al-4V alloy, Ti-6Al-7Nb alloy or Ti-Ni alloy are considered to be used as implant materials for intravascular stents, stent grafts, artificial hearts, artificial valves, and circulatory systems. However, thrombus formation caused by contact between metal and blood causes serious embolism and is a major issue that directly affects clinical prognosis.
In the above-mentioned Patent Documents 1 to 4 and Non-Patent Document 1, there is no elucidation regarding platelet adhesion, thrombus formation, and metal surface.

上記の課題を解決するため、本発明に係る金属材料は、チタンまたはチタン合金に電解処理を施すことによって血小板数を1.0×10cells/μLに調整しこれに凝固速度を制御するために塩化カルシウムを1.96×10−2mol/L添加した血漿に5分間浸漬する血小板付着試験によりフィブリンネットワークの形成が認められない特性を有する。 In order to solve the above-mentioned problems, the metal material according to the present invention adjusts the platelet count to 1.0 × 10 5 cells / μL by subjecting titanium or a titanium alloy to electrolytic treatment, thereby controlling the coagulation rate. In the platelet adhesion test in which calcium chloride is added to plasma supplemented with 1.96 × 10 −2 mol / L for 5 minutes, no fibrin network is formed.

表面に存在する酸化被膜が更に酸化され、表面の水酸基(OH)が減少することがフィブリンネットワークの形成が阻害され、血小板付着抑制機能及び血栓形成抑制機能が発揮される一因であると推察される。 It is presumed that the oxide film present on the surface is further oxidized and the hydroxyl groups (OH ) on the surface are reduced, which inhibits the formation of fibrin network and contributes to the function of inhibiting platelet adhesion and thrombus formation. Is done.

チタン合金としては、チタン−アルミニウム−バナジウム合金(Ti−6Al−4V)、チタン−アルミニウム−ニオブ合金(Ti−6Al−7Nb)またはチタン−ニッケル合金(Ti−Ni)についての効果が実証されている。   Titanium-aluminum-vanadium alloy (Ti-6Al-4V), titanium-aluminum-niobium alloy (Ti-6Al-7Nb) or titanium-nickel alloy (Ti-Ni) has been demonstrated as a titanium alloy. .

前記電解処理には10vol%〜40vol%のグリセリンと0.1vol%〜80vol%の乳酸と水(残部)とからなる処理液を用いるのが好ましい。
電解処理液を構成する物質の割合については上記範囲以外の割合を検証したが、効果的であったのは上記の範囲であった。
For the electrolytic treatment, it is preferable to use a treatment liquid composed of 10 vol% to 40 vol% glycerin, 0.1 vol% to 80 vol% lactic acid and water (remainder).
Regarding the proportion of the substance constituting the electrolytic treatment solution, the proportion other than the above range was verified, but the above range was effective.

この電解処理によって金属表面に水酸基(OH)が減少した改質層が形成される。この改質層では、バナジウム(V)、ニオブ(Nb)およびニッケル(Ni)の量が極端に少なくなっている。
また改質層は2.0nm以上の厚みで作製することができた。電解処理条件を変化させれば改質層の厚さを増やすことができると考えられる。
By this electrolytic treatment, a modified layer with reduced hydroxyl groups (OH ) is formed on the metal surface. In this modified layer, the amount of vanadium (V), niobium (Nb), and nickel (Ni) is extremely reduced.
The modified layer could be produced with a thickness of 2.0 nm or more. It is considered that the thickness of the modified layer can be increased by changing the electrolytic treatment conditions.

本発明に係る金属材料のうちチタン合金は、表面の改質層中のバナジウム(V)、ニオブ(Nb)およびニッケル(Ni)の量が極端に少なくなっているため、生体適合性が向上している。特に改質層表面の水酸基(OH)が減少しているため、タンパク質と結合する官能基が少ないことが一因となり、フィブリンネットワークの形成が抑制され、血小板付着抑制機能及び血栓形成抑制機能を発揮する。
またチタンについても改質層表面の水酸基(OH)が減少しているため、血小板付着抑制機能及び血栓形成抑制機能を発揮する。
Among the metal materials according to the present invention, the titanium alloy has improved biocompatibility because the amount of vanadium (V), niobium (Nb) and nickel (Ni) in the modified layer on the surface is extremely small. ing. In particular, the number of hydroxyl groups (OH ) on the surface of the modified layer is reduced, which contributes to the fact that there are few functional groups that bind to proteins, which suppresses the formation of fibrin networks, and suppresses platelet adhesion and thrombus formation. Demonstrate.
Titanium also exhibits a platelet adhesion inhibiting function and a thrombus formation inhibiting function because the hydroxyl group (OH ) on the surface of the modified layer is decreased.

以下に本発明の実施例を添付図面を参照しつつ説明する。図1は血小板粘着試験の概略構成を示す図である。
健康な提供者から採取したヒト全血に、0.38%になるようにクエン酸ナトリウム溶液を加えて血液凝固を抑制し、遠心分離(293K、110G、0.9ks)して血球成分を分離し、上清に多数の血小板を含む画分を得た。この画分を多血小板血漿(PRP)とした。残った血球成分を貧血小板血漿(PPP)とした。血球係数機(PCE-170、ERMAINC、japan)で両者の血小板数を計測した後、両者を適量混合することによって血小板数を、1.0×10cell/μLに調整し、塩化カルシウムを1.96×10−2mol/Lになるように加え、凝固速度を制御した。血小板数を調整した溶液中に試料を浸漬して310Kで0.3ksインキュベートし、PBS(−)で3回洗浄後、2%グルタルアルデヒドに7.2ks室温で浸漬して固定した。グルタルアルデヒドを除き、PBS(−)で3回リンスした後、30、50、70、90,100%エタノールの順に浸漬して脱水し、277Kで一晩保管した。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic configuration of a platelet adhesion test.
Sodium citrate solution is added to human whole blood collected from healthy donors to a concentration of 0.38% to suppress blood coagulation, and centrifugation (293K, 110G, 0.9ks) separates blood cell components. Thus, a fraction containing a large number of platelets in the supernatant was obtained. This fraction was designated as platelet rich plasma (PRP). The remaining blood cell component was defined as poor platelet plasma (PPP). After measuring the platelet count of both using a hemocytometer (PCE-170, ERMAINC, Japan), the platelet count is adjusted to 1.0 × 10 5 cells / μL by mixing the appropriate amount of both, and calcium chloride is adjusted to 1 .96 × 10 −2 mol / L, and the coagulation rate was controlled. The sample was immersed in a solution with adjusted platelet count, incubated at 310 K for 0.3 ks, washed 3 times with PBS (−), and then immersed in 2% glutaraldehyde at 7.2 ks at room temperature for fixation. After removing glutaraldehyde and rinsing with PBS (−) three times, it was dehydrated by immersion in the order of 30, 50, 70, 90, and 100% ethanol, and stored overnight at 277K.

血小板数を調整した溶液中に浸漬する試料は以下の通りである。
表面を機械研磨による鏡面仕上げ(MP)及び電解処理した、チタン(Ti)、チタン−アルミニウム−バナジウム合金(Ti−6Al−4V)、チタン−アルミニウム−ニオブ合金(Ti−6Al−7Nb)及びチタン−ニッケル合金(Ti−Ni)。
Samples immersed in the solution with adjusted platelet count are as follows.
Titanium (Ti), titanium-aluminum-vanadium alloy (Ti-6Al-4V), titanium-aluminum-niobium alloy (Ti-6Al-7Nb), and titanium-, whose surfaces were mirror-finished by mechanical polishing (MP) and electrolytically treated Nickel alloy (Ti-Ni).

チタン(Ti)はJIS2種(ニラコ)、チタン−アルミニウム−バナジウム合金(Ti−6Al−4V)およびチタン−アルミニウム−ニオブ合金(Ti−6Al−7Nb)(いずれも大同特殊鋼)、チタン−ニッケル合金(Ti−Ni)はNT-E4(古河電気工業、Ti-50.85mol%Ni)を用いた。また試験片は円板状(直径8mm、厚さ1.5mm)に切出した後、耐水研磨紙、ダイヤモンドペースト、コロイダルシリカを用いて試験面を研磨し、裏面は耐水研磨紙によって研磨した。この後アセトン、超純水で超音波洗浄(10分間)を行った。   Titanium (Ti) is JIS class 2 (Niraco), titanium-aluminum-vanadium alloy (Ti-6Al-4V) and titanium-aluminum-niobium alloy (Ti-6Al-7Nb) (both Daido special steel), titanium-nickel alloy NT-E4 (Furukawa Electric, Ti-50.85 mol% Ni) was used as (Ti-Ni). The test piece was cut into a disk shape (diameter 8 mm, thickness 1.5 mm), and then the test surface was polished with water-resistant abrasive paper, diamond paste, and colloidal silica, and the back surface was polished with water-resistant abrasive paper. This was followed by ultrasonic cleaning (10 minutes) with acetone and ultrapure water.

電解処理液としては、35.7vol%のグリセリンと7.1vol%の乳酸と57.2vol%の水を用いた。尚、各成分としては10vol%〜40vol%のグリセリンと0.1vol%〜80vol%の乳酸を用いることができる。   As the electrolytic treatment solution, 35.7 vol% glycerin, 7.1 vol% lactic acid and 57.2 vol% water were used. In addition, 10 vol%-40 vol% glycerin and 0.1 vol%-80 vol% lactic acid can be used as each component.

電解処理条件は、上記の電解処理液70ml中で、試験片を陽極、チタン(JIS2種)を対極とし、陽極−対極間距離35mm、電解電圧50Vで1.8ks処理を行った。   The electrolytic treatment conditions were as follows: in 70 ml of the above-described electrolytic treatment solution, the test piece was an anode, titanium (JIS type 2) was the counter electrode, and the anode-counter electrode distance was 35 mm, and the electrolytic voltage was 50 V, and the treatment was performed for 1.8 ks.

図2はチタンに対する血小板付着試験の経時的変化を示す表面のSEM写真であり、(a)は機械研磨(MP)のみを行った試料、(b)は本発明の電解処理を行った試料を示す。
(a)に示すように、血小板付着試験直後の研磨のみを施した試料の表面には、約4μmの収縮した形状の血小板が多数粘着し、各血小板はフィブリンネットワークによって網状に覆われていた。
一方、(b)に示すように本発明の電解処理を行った試料の表面には、血小板の付着数が少なく、フィブリンネットワークの形成は認められなかった。
FIG. 2 is a SEM photograph of the surface showing the time course of the platelet adhesion test for titanium, (a) is a sample subjected only to mechanical polishing (MP), (b) is a sample subjected to the electrolytic treatment of the present invention. Show.
As shown in (a), a large number of contracted platelets of about 4 μm adhered to the surface of the sample subjected to polishing just after the platelet adhesion test, and each platelet was covered with a fibrin network.
On the other hand, as shown in (b), the number of platelets adhered was small on the surface of the sample subjected to the electrolytic treatment of the present invention, and the formation of a fibrin network was not recognized.

このように、血小板の付着数が極端に減少したのは、電解処理を施すことによって表面に存在する酸化被膜が更に酸化され、血漿中のタンパク質を吸着する表面の水酸基(OH)が減少したことが一因であると推察される。 In this way, the number of platelet adhesions was extremely reduced because the oxide film on the surface was further oxidized by electrolytic treatment, and the hydroxyl groups (OH ) on the surface that adsorbed proteins in plasma were reduced. This is presumed to be a factor.

図3(a)(b)、図4(a)(b)、図5(a)(b)はそれぞれ上記と同様の血小板付着試験をチタン−ニッケル合金(Ti-50.85mol%Ni)、チタン−アルミニウム−バナジウム合金(Ti−6Al−4V)、チタン−アルミニウム−ニオブ合金(Ti−6Al−7Nb)に行った結果を示すものであり、前記同様、本発明の電解処理を行った試料の表面には、血小板の付着数は極端に減少し、フィブリンネットワークの形成は認められなかった。   3 (a) (b), FIG. 4 (a) (b), FIG. 5 (a) and FIG. 5 (b) show the same platelet adhesion test as above, respectively, with a titanium-nickel alloy (Ti-50.85 mol% Ni), It shows the results obtained for titanium-aluminum-vanadium alloy (Ti-6Al-4V) and titanium-aluminum-niobium alloy (Ti-6Al-7Nb). Similarly to the above, the sample subjected to the electrolytic treatment of the present invention On the surface, the number of platelets was extremely reduced, and no fibrin network was formed.

更なる試験として、Ti−6Al−4V合金及びTi−6Al−7Nb合金について、上記の条件で電解処理した試料の、(1)XPSによる表面分析、(2)アノード分極による耐食性試験、(3)AESによる表面分析を行った。以下に各結果を述べる。   As further tests, for Ti-6Al-4V alloy and Ti-6Al-7Nb alloy, (1) Surface analysis by XPS, (2) Corrosion resistance test by anodic polarization, (3) Surface analysis by AES was performed. Each result is described below.

(1)XPSによる表面分析
Ti−6Al−4V合金のXPSスペクトルを図6(a)に示した。電解処理を施していない試料では、Ti 2p XPSスペクトルスペクトルのピークは金属状態を表すTi0のピークと、表面酸化皮膜由来のTi2+、Ti3+、Ti4+のピークが検出された。一方、電解処理を施した試料では、Ti4+のピークのみが検出された。
またAl 2p XPSスペクトルについて、無処理の試料では、金属状態のAl0のピークおよび表面酸化皮膜のAl3+のピークが検出されたのに対して、本発明の電解処理(GLW4)を施した試料からは、Al3+のピークのみが検出された。
V 2p XPSスペクトルは無処理の試料からは金属状態のV0のピークおよび表面酸化皮膜のV2+のピークが検出されたが、本発明の電解処理を施すことでVに由来するピークは検出されなくなった。
(1) Surface analysis by XPS The XPS spectrum of the Ti-6Al-4V alloy is shown in FIG. In the sample not subjected to the electrolytic treatment, the peak of Ti 2p XPS spectrum spectrum was a peak of Ti 0 representing a metal state, and peaks of Ti 2+ , Ti 3+ and Ti 4+ derived from the surface oxide film. On the other hand, only the Ti 4+ peak was detected in the sample subjected to the electrolytic treatment.
Further, regarding the Al 2p XPS spectrum, in the untreated sample, the Al 0 peak in the metal state and the Al 3+ peak in the surface oxide film were detected, but the electrolytic treatment (GLW4) of the present invention was applied. Only Al 3+ peaks were detected from the sample.
In the V 2p XPS spectrum, the V 0 peak in the metallic state and the V 2+ peak in the surface oxide film were detected from the untreated sample, but the peak derived from V was detected by the electrolytic treatment of the present invention. No longer.

Ti−6Al−7Nb合金のXPSスペクトルを図6(b)に示した。Ti 2p XPSスペクトルについて、無処理の試料表面から、Tiのピークは金属状態のTi0、表面酸化皮膜のTi2+、Ti3+、Ti4+のピークが検出された。一方、本発明の電解処理(GLW4)を施した試料からは、Ti4+のピークのみ検出された。
Al 2p XPSスペクトルについて、無処理の試料では、金属状態のAl0のピークおよび表面酸化皮膜のAl3+のピークが検出されたのに対して、本発明の電解処理を施した試料からは、Al3+のピークのみ検出された。
Nb 3d XPSスペクトルは無処理の合金表面からは金属状態のNb0のピーク、表面酸化皮膜のNb2+、Nb4+、Nb5+のピークが検出されたが、本発明の電解処理(GLW4)を施すことでNbに由来するピークは検出されなくなった。
The XPS spectrum of the Ti-6Al-7Nb alloy is shown in FIG. 6 (b). With respect to the Ti 2p XPS spectrum, from the untreated sample surface, Ti peaks were detected as Ti 0 in the metallic state, and Ti 2+ , Ti 3+ and Ti 4+ peaks in the surface oxide film. On the other hand, only the Ti 4+ peak was detected from the sample subjected to the electrolytic treatment (GLW4) of the present invention.
Regarding the Al 2p XPS spectrum, the Al 0 peak in the metal state and the Al 3+ peak in the surface oxide film were detected in the untreated sample, whereas from the sample subjected to the electrolytic treatment of the present invention, Only Al 3+ peaks were detected.
In the Nb 3d XPS spectrum, Nb 0 peaks in the metal state and Nb 2+ , Nb 4+ , and Nb 5+ peaks in the surface oxide film were detected from the untreated alloy surface, but the electrolytic treatment (GLW4) of the present invention was detected. ), No peaks derived from Nb were detected.

表面酸化皮膜の元素の相対濃度については、いずれの合金においてもTiの相対濃度が増加し、Alは減少した。電解処理によって形成した表面酸化皮膜はXPSの検出深さ限界(6nm)以上であった。   Regarding the relative concentration of elements in the surface oxide film, the relative concentration of Ti increased and Al decreased in any alloy. The surface oxide film formed by the electrolytic treatment was not less than the XPS detection depth limit (6 nm).

(2)アノード分極試験
試料を27.8mm露出させ、対極に白金電極、参照極に飽和カロメル電極(SCE)を用いて、ポテンショスタット(HZ3000、北斗電工)によって測定した。
Ti−6Al−4V及びTi−6Al−7Nb合金は310Kの0.9%NaCl水溶液と310Kの1.0%乳酸の2通りの溶液中で試験を行った。測定は腐食電位を600S測定した後、腐食電位からアノード側へ20 mV min-1の掃引速度で、試料に2Vまでアノード分極を行った。
(2) Anode polarization test The sample was exposed to 27.8 mm 2 and measured with a potentiostat (HZ3000, Hokuto Denko) using a platinum electrode as a counter electrode and a saturated calomel electrode (SCE) as a reference electrode.
The Ti-6Al-4V and Ti-6Al-7Nb alloys were tested in two solutions: 310K 0.9% NaCl aqueous solution and 310K 1.0% lactic acid. In the measurement, after the corrosion potential was measured at 600 S, the sample was subjected to anodic polarization up to 2 V at a sweep rate of 20 mV min −1 from the corrosion potential to the anode side.

Ti−6Al−4VおよびTi−6Al−7Nb合金の0.9%NaCl水溶液、または1.0% 乳酸中のアノード分極曲線を図7に示す。図7(a)に示すように0.9%NaCl水溶液中で、電解処理を施したTi−6Al−4V合金は、無処理のものと比較して腐食電位が高く、不動態保持電流密度が著しく減少した。   The anodic polarization curves of 0.9% NaCl aqueous solution of Ti-6Al-4V and Ti-6Al-7Nb alloy or 1.0% lactic acid are shown in FIG. As shown in FIG. 7 (a), the Ti-6Al-4V alloy that has been subjected to electrolytic treatment in a 0.9% NaCl aqueous solution has a higher corrosion potential and a passive holding current density than that of the untreated one. Remarkably reduced.

電解処理の有無にかかわらず、2Vまでのアノード分極試験では孔食の発生は観測されなかったが、無処理の分極曲線においては、1V以降で電流密度の急激な上昇を示した箇所が見られた。また、1V以降で電位の増加に伴って電流密度の増加が見られた。1.0%乳酸中では0.9% NaCl水溶液と比較して腐食し易い環境であると考えられるが、分極挙動は同様の傾向であった。   Regardless of the presence or absence of electrolytic treatment, no pitting corrosion was observed in the anodic polarization test up to 2V, but in the untreated polarization curve, there was a point where the current density increased rapidly after 1V. It was. Further, an increase in current density was observed with an increase in potential after 1V. In 1.0% lactic acid, it is considered that the environment is more easily corroded than 0.9% NaCl aqueous solution, but the polarization behavior was similar.

図7(b)から、Ti−6Al−7Nb合金においても同様に、いずれの試験溶液において本発明の電解処理(GLW)を施した試料は、無処理のものと比較して腐食電位が上昇し、不動態保持電流密度が著しく減少した。無処理の試料について、0.9% NaCl水溶液での試験において1V以降で電流密度の急激な上昇が検出された。   From FIG. 7B, similarly in the Ti-6Al-7Nb alloy, the sample subjected to the electrolytic treatment (GLW) of the present invention in any of the test solutions has an increased corrosion potential as compared with the untreated sample. The passive holding current density was significantly reduced. For the untreated sample, a rapid increase in current density was detected after 1 V in a test with a 0.9% NaCl aqueous solution.

電解処理を施したTi−6Al−4V及びTi−6Al−7Nb合金のアノード分極曲線は、いずれの試験溶液中にあっても、腐食電位をさらに上昇、不動態保持電流密度を低下させ、元々良好な耐食性を備える合金の耐食性がさらに向上することを示した。腐食電位の増加と不動態保持電流密度の減少は、表面酸化皮膜が厚く成長しただけでなく、処理によって形成された酸化皮膜が緻密であったために表面酸化皮膜の抵抗値が著しく増加したと考えられる。   The anodic polarization curves of the electrolytically treated Ti-6Al-4V and Ti-6Al-7Nb alloys, which are in any test solution, further increase the corrosion potential, lower the passive holding current density, and are originally good. It was shown that the corrosion resistance of alloys with excellent corrosion resistance is further improved. The increase in the corrosion potential and the decrease in the passive holding current density were considered not only because the surface oxide film grew thick, but also because the oxide film formed by the treatment was dense, the resistance value of the surface oxide film increased significantly. It is done.

XPSの結果から、合金表面のTiはすべてTi4+として存在することがわかった。Ti4+は水または水溶液環境中で熱力学的に安定な状態である。また、Alについても同様に、熱力学的に安定な状態である酸化物Al23として存在する。合金表面が安定なTiO2およびAl23に覆われていることがアノード分極試験において、腐食電位の上昇と不動態保持電流密度の減少を示した要因の一つであると考えられる。 From the XPS results, it was found that all Ti on the alloy surface was present as Ti 4+ . Ti 4+ is a thermodynamically stable state in a water or aqueous solution environment. Similarly, Al exists as an oxide Al 2 O 3 which is in a thermodynamically stable state. It is considered that the fact that the alloy surface is covered with stable TiO 2 and Al 2 O 3 is one of the factors showing an increase in corrosion potential and a decrease in passive holding current density in the anodic polarization test.

またXPSの結果から、本発明の電解処理を施すことによって、Ti−6Al−4V及びTi−6Al−7Nb合金表面からV又はNbがそれぞれ検出されなくなった。酸化の自由エネルギーはAl<Ti<V、Nbであり、Ti及びAlがV、Nbと比較して酸化し易い傾向にある。電解処理を施すことで表面酸化皮膜がさらに酸化することによってTiおよびAlから構成される、およそ150nmの表面酸化皮膜が形成されたため、検出深度の約6nmのXPSでは、V及びNbが検出されなくなったと考えられる。   From the XPS results, V or Nb was not detected from the surfaces of the Ti-6Al-4V and Ti-6Al-7Nb alloys by applying the electrolytic treatment of the present invention. The free energy of oxidation is Al <Ti <V, Nb, and Ti and Al tend to oxidize more easily than V and Nb. Since the surface oxide film composed of Ti and Al is formed by further oxidizing the surface oxide film by performing the electrolytic treatment, V and Nb are not detected in the XPS having a detection depth of about 6 nm. It is thought.

酸化の自由エネルギーの傾向からTi−6Al−4V及びTi−6Al−7Nb合金表面の参加が進行すると、表面酸化皮膜中にはAlの酸化物の濃度が増加すると推測されるが、いずれの合金においても表面酸化皮膜のTiの濃度が増加しているのに対してAlの濃度はわずかではあるが減少していた。このことは本願における電解処理がTiを優先的に酸化させることを示唆した。   As the participation of Ti-6Al-4V and Ti-6Al-7Nb alloy progresses from the tendency of free energy of oxidation, it is estimated that the concentration of Al oxide in the surface oxide film increases. In contrast, the Ti concentration in the surface oxide film increased, whereas the Al concentration decreased slightly. This suggested that the electrolytic treatment in the present application preferentially oxidizes Ti.

Ti−6Al−4V合金とTi−6Al−7Nb合金に対する電解処理の効果は、いずれの合金に対しても表面酸化皮膜の酸化が進行し、表面の組成に関しても類似していることが明らかになった。電解処理後の両合金のアノード分極曲線を比較すると、Ti−6Al−4V合金では1V以上で電流密度がやや増加する傾向が見られたのに対してTi−6Al−7Nb合金ではこのような傾向はなかった。   The effect of the electrolytic treatment on the Ti-6Al-4V alloy and the Ti-6Al-7Nb alloy shows that the oxidation of the surface oxide film proceeds and the surface composition is similar for both alloys. It was. Comparing the anodic polarization curves of both alloys after electrolytic treatment, Ti-6Al-4V alloy showed a slight increase in current density at 1 V or higher, whereas Ti-6Al-7Nb alloy showed such a tendency. There was no.

血小板付着試験の概略構成を示す図Diagram showing schematic configuration of platelet adhesion test チタンに対する血小板付着試験の結果を示す表面のSEM写真であり、(a)は機械研磨(MP)のみを行った試料、(b)は本発明の電解処理を行った試料を示す。It is the surface SEM photograph which shows the result of the platelet adhesion test with respect to titanium, (a) shows the sample which performed only mechanical polishing (MP), (b) shows the sample which performed the electrolytic treatment of this invention. チタン−ニッケル合金(Ti-50.85mol%Ni)に対する血小板付着試験の結果を示す表面のSEM写真であり、(a)は機械研磨(MP)のみを行った試料、(b)は本発明の電解処理を行った試料を示す。It is the surface SEM photograph which shows the result of the platelet adhesion test with respect to titanium-nickel alloy (Ti-50.85mol% Ni), (a) is the sample which performed only mechanical polishing (MP), (b) is the present invention. The sample which performed the electrolytic treatment is shown. チタン−アルミニウム−バナジウム合金(Ti−6Al−4V)に対する血小板付着試験の結果を示す表面のSEM写真であり、(a)は機械研磨(MP)のみを行った試料、(b)は本発明の電解処理を行った試料を示す。It is the surface SEM photograph which shows the result of the platelet adhesion test with respect to titanium-aluminum-vanadium alloy (Ti-6Al-4V), (a) is the sample which performed only mechanical polishing (MP), (b) is the present invention. The sample which performed the electrolytic treatment is shown. チタン−アルミニウム−ニオブ合金(Ti−6Al−7Nb)に対する血小板付着試験の結果を示す表面のSEM写真であり、(a)は機械研磨(MP)のみを行った試料、(b)は本発明の電解処理を行った試料を示す。It is the surface SEM photograph which shows the result of the platelet adhesion test with respect to titanium-aluminum-niobium alloy (Ti-6Al-7Nb), (a) is the sample which performed only mechanical polishing (MP), (b) is the present invention. The sample which performed the electrolytic treatment is shown. (a)はTi−6Al−4V合金のXPSスペクトル(b)はTi−6Al−7Nb合金のXPSスペクトル(A) XPS spectrum of Ti-6Al-4V alloy (b) XPS spectrum of Ti-6Al-7Nb alloy (a)はTi−6Al−4V合金のアノード分極試験の結果を示すグラフ(b)はTi−6Al−7Nb合金のアノード分極試験の結果を示すグラフ(A) is a graph showing the results of the anodic polarization test of Ti-6Al-4V alloy (b) is a graph showing the results of the anodic polarization test of Ti-6Al-7Nb alloy

Claims (7)

チタンまたはチタン合金に電解処理を施すことによって、血小板数を1.0×10cells/μLに調整し、これに凝固速度を制御するために塩化カルシウムを1.96×10−2mol/L添加した血漿に5分間浸漬する血小板付着試験により、フィブリンネットワークの形成が認められないことを特徴とする金属材料。 By applying electrolytic treatment to titanium or a titanium alloy, the platelet count is adjusted to 1.0 × 10 5 cells / μL, and calcium chloride is added to this to control the coagulation rate, 1.96 × 10 −2 mol / L. A metal material characterized in that no fibrin network is formed by a platelet adhesion test immersed in added plasma for 5 minutes. 請求項1に記載の金属材料において、前記チタン合金はチタン−アルミニウム−バナジウム合金であることを特徴とする金属材料。 The metal material according to claim 1, wherein the titanium alloy is a titanium-aluminum-vanadium alloy. 請求項1に記載の金属材料において、前記チタン合金はチタン−アルミニウム−ニオブ合金であることを特徴とする金属材料。 2. The metal material according to claim 1, wherein the titanium alloy is a titanium-aluminum-niobium alloy. 請求項1に記載の金属材料において、前記チタン合金はチタン−ニッケル合金であることを特徴とする金属材料。 The metal material according to claim 1, wherein the titanium alloy is a titanium-nickel alloy. 請求項1乃至請求項4に記載の金属材料において、前記電解処理には10vol%〜40vol%のグリセリンと0.1vol%〜80vol%の乳酸と水(残部)とからなる処理液を用いることを特徴とする金属材料。 5. The metal material according to claim 1, wherein the electrolytic treatment is performed using a treatment liquid composed of 10 vol% to 40 vol% glycerin, 0.1 vol% to 80 vol% lactic acid, and water (remainder). Characteristic metal material. 請求項1乃至請求項5のいずれかに記載の金属材料を用いたことを特徴とする血栓形成抑制材料。 A thrombus formation-suppressing material using the metal material according to any one of claims 1 to 5. 請求項1乃至請求項5のいずれかに記載の金属材料を用いたことを特徴とする血小板付着抑制材料。 A platelet adhesion-suppressing material comprising the metal material according to any one of claims 1 to 5.
JP2008107373A 2008-04-17 2008-04-17 Metal material, blood clot formation-inhibiting material and platelet deposition-inhibiting material Pending JP2011147464A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008107373A JP2011147464A (en) 2008-04-17 2008-04-17 Metal material, blood clot formation-inhibiting material and platelet deposition-inhibiting material
PCT/JP2009/001666 WO2009128230A1 (en) 2008-04-17 2009-04-10 Metal material, blood clot formation inhibiting material and platelet deposition inhibiting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008107373A JP2011147464A (en) 2008-04-17 2008-04-17 Metal material, blood clot formation-inhibiting material and platelet deposition-inhibiting material

Publications (1)

Publication Number Publication Date
JP2011147464A true JP2011147464A (en) 2011-08-04

Family

ID=41198936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107373A Pending JP2011147464A (en) 2008-04-17 2008-04-17 Metal material, blood clot formation-inhibiting material and platelet deposition-inhibiting material

Country Status (2)

Country Link
JP (1) JP2011147464A (en)
WO (1) WO2009128230A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007018189A1 (en) * 2005-08-10 2009-02-19 国立大学法人 東京医科歯科大学 Titanium nickel alloy, surface modification method of titanium nickel alloy and biocompatible material

Also Published As

Publication number Publication date
WO2009128230A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
Alves et al. In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25 C and 37 C
Al-Mayouf et al. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media
Clarke et al. Influence of nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release
CN104962921B (en) A kind of preparation method of the Nitinol surface without nickel dam
JPH05186879A (en) Method for passivation of medical graft made of metal
Gosavi et al. Titanium: A Miracle Metal in Dentistry.
JP5692729B2 (en) Metal processing
JP4913370B2 (en) Medical material and method for producing the same
Hansen et al. The electrochemical behavior of the NiTi alloy in different simulated body fluids
Chelariu et al. Corrosion behavior of new quaternary ZrNbTiAl alloys in simulated physiological solution using electrochemical techniques and surface analysis methods
Porcayo-Calderon et al. Corrosion performance of Fe-Cr-Ni alloys in artificial saliva and mouthwash solution
US20160000533A1 (en) Method for applying an antibacterial protection to a dental implant, and dental implant obtained
Heakal et al. Integrity of metallic medical implants in physiological solutions
JP2013545883A (en) Metal processing
Díaz et al. Corrosion behavior of surface modifications on titanium dental implant. In situ bacteria monitoring by electrochemical techniques
JPWO2007018189A1 (en) Titanium nickel alloy, surface modification method of titanium nickel alloy and biocompatible material
Tanaka et al. In vitro short-term platelet adhesion on various metals
Pham et al. The effect of hydrofluoric acid treatment of titanium and titanium dioxide surface on primary human osteoblasts
JP2002102330A (en) Bioimplant material and method of manufacturing the same
Fukushima et al. Corrosion resistance and surface characterization of electrolyzed Ti-Ni alloy
Novikova Introduction to corrosion of bioimplants
WO2009128230A1 (en) Metal material, blood clot formation inhibiting material and platelet deposition inhibiting material
JP2010515513A (en) Metal implant
JP2017519538A (en) Method for surface treatment of bioerodible implants
Stoica et al. Ti6Al7Nb surface modification by anodization in electrolytes containing HF