JP2011146621A - Active magnetic shielding device - Google Patents

Active magnetic shielding device Download PDF

Info

Publication number
JP2011146621A
JP2011146621A JP2010007886A JP2010007886A JP2011146621A JP 2011146621 A JP2011146621 A JP 2011146621A JP 2010007886 A JP2010007886 A JP 2010007886A JP 2010007886 A JP2010007886 A JP 2010007886A JP 2011146621 A JP2011146621 A JP 2011146621A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
drive signal
compensation coil
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010007886A
Other languages
Japanese (ja)
Inventor
Satoshi Takahashi
智 高橋
Masahiko Nakajima
雅彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010007886A priority Critical patent/JP2011146621A/en
Publication of JP2011146621A publication Critical patent/JP2011146621A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active magnetic shielding device capable of solving the problem, wherein when a compensation coil is large, a heavy drive current is required to pass to the compensation coil at all times, and low power consumption of the active magnetic shielding device in conventional methods, or low power consumption for the large active magnetic shielding device cannot be attained. <P>SOLUTION: The active magnetic shielding device 1 includes magnetic materials 101, 102; magnetic field compensation coil 201, 202 arranged contacting magnetic materials 101, 102; a magnetic sensor 300 for measuring an environmental magnetic field; and a drive signal control section 400 for controlling the drive signal Ib which drives magnetic field compensation coil 201, 202, based on a measuring signal Vb from the magnetic sensor 300. When variation in the measuring signal Vb lies within a prescribed range, the drive signal Ib is turned off by the drive signal control section 400, after an interval required for magnetizing the magnetic materials 101, 102. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、環境磁場を打ち消す補償磁場発生用の補償コイルが配置されたアクティブ磁気シールド装置に関する。   The present invention relates to an active magnetic shield device in which a compensation coil for generating a compensation magnetic field that cancels an environmental magnetic field is arranged.

地磁気に比べて微小な心臓磁場や脳磁場などを測定するための超電導量子干渉素子(SQUID;Superconducting Quantum interference Device)装置、磁気共鳴画像診断(MRI;Magnetic Resonance Imaging)装置、核磁気共鳴(NMR;Nuclear Magnetic Resonance Scanner)装置などは、建物周囲の環境磁場(磁気ノイズ)の影響を極力遮蔽する必要がある。そのため、SQUIDなどの装置は、環境磁場から遮蔽するための透磁率の高い電磁鋼板・パーマロイ等の磁性材料板で囲まれたパッシブ(受動)磁気シールド室の中に設置する必要がある。   A superconducting quantum interference device (SQUID), magnetic resonance imaging (MRI) device, nuclear magnetic resonance (NMR) device for measuring a heart magnetic field, a brain magnetic field, and the like that are smaller than the geomagnetism. A device such as a Nuclear Magnetic Resonance Scanner device needs to shield the influence of an environmental magnetic field (magnetic noise) around the building as much as possible. Therefore, it is necessary to install a device such as SQUID in a passive magnetic shield room surrounded by a magnetic material plate such as a high magnetic permeability magnetic steel plate or permalloy for shielding from an environmental magnetic field.

しかしながら、このようなパッシブ磁気シールド室では、建物のそばを自動車や電車などが通過することなどによる外部からの強い環境磁場が急峻に発生した場合に、対処できないという問題がある。   However, such a passive magnetic shield room has a problem that a strong environmental magnetic field from the outside due to a car or a train passing near the building cannot be coped with.

この問題を解決するために、例えば特許文献1には、環境磁場の変動に応じて同振幅・逆位相の補償磁場を、補償コイルにより発生させて環境磁場の変動を打ち消すアクティブ(能動)磁気シールドの方法が記載されている。   In order to solve this problem, for example, Patent Document 1 discloses an active magnetic shield in which a compensation magnetic field having the same amplitude and antiphase is generated by a compensation coil in accordance with a change in the environmental magnetic field to cancel the change in the environmental magnetic field. The method is described.

特開2002−232182号公報(図1)Japanese Patent Laying-Open No. 2002-232182 (FIG. 1)

しかしながら、従来の方法では、補償コイルが大型の場合、常に大量の駆動電流を流す必要があり、アクティブ磁気シールド装置の低消費電力化できないという課題がある。   However, in the conventional method, when the compensation coil is large, it is necessary to always flow a large amount of drive current, and there is a problem that the power consumption of the active magnetic shield device cannot be reduced.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]本適用例に記載のアクティブ磁気シールド装置において、磁性材料と、前記磁性材料と接するように配置された磁場補償コイルと、環境磁場を計測する磁気センサーと、前記磁気センサーからの計測信号に基づいて前記磁場補償コイルを駆動する駆動信号を制御する駆動信号制御部とを含み、前記駆動信号制御部は、前記計測信号の変動が所定の範囲以内ならば前記磁性材料が磁化されるのに必要な時間以降は前記駆動信号をオフにする、ことを特徴とするアクティブ磁気シールド装置。   Application Example 1 In the active magnetic shield device according to this application example, a magnetic material, a magnetic field compensation coil disposed so as to be in contact with the magnetic material, a magnetic sensor that measures an environmental magnetic field, and a magnetic sensor A drive signal control unit that controls a drive signal that drives the magnetic field compensation coil based on a measurement signal, and the drive signal control unit magnetizes the magnetic material if the variation of the measurement signal is within a predetermined range. The active magnetic shield device is characterized in that the drive signal is turned off after a time required for the operation.

この構成によれば、駆動信号制御部が地磁気のような安定した環境磁場をキャンセルするための駆動信号を磁場補償コイルに所定時間印加することにより磁性材料が磁化され、以降は駆動信号をオフにしても、磁化された磁性材料により環境磁場をキャンセルし続けることができるので、消費電力を低減することができる。   According to this configuration, the drive signal control unit applies a drive signal for canceling a stable environmental magnetic field such as geomagnetism to the magnetic field compensation coil for a predetermined time so that the magnetic material is magnetized, and thereafter the drive signal is turned off. However, since the environmental magnetic field can be continuously canceled by the magnetized magnetic material, power consumption can be reduced.

[適用例2]上記に記載のアクティブ磁気シールド装置において、前記磁性材料は、硬磁性材料である、ことを特徴とするアクティブ磁気シールド装置。   Application Example 2 In the active magnetic shield device described above, the magnetic material is a hard magnetic material.

この構成によれば、硬磁性材料は保持力が大きいので、駆動信号制御部が地磁気のような安定した環境磁場をキャンセルするための駆動信号を磁場補償コイルに所定時間印加することにより磁性材料が磁化され、以降は駆動信号をオフにしても、磁化された磁性材料により環境磁場を安定してキャンセルし続けることができるので、消費電力を低減することができる。   According to this configuration, since the hard magnetic material has a high holding force, the drive signal control unit applies a drive signal for canceling a stable environmental magnetic field such as geomagnetism to the magnetic field compensation coil for a predetermined time. Even if the drive signal is turned off after that, the ambient magnetic field can be stably canceled by the magnetized magnetic material, so that power consumption can be reduced.

[適用例3]上記に記載のアクティブ磁気シールド装置において、前記アクティブ磁気シールド装置は、前記磁気材料と前記磁場補償コイルとを備える第1の面及び第2の面を含み、前記第1の面と前記第2の面とは並行に配置され、前記第1の面に含まれる前記磁場補償コイルと前記第2の面に含まれる前記磁場補償コイルとは、電気的に直列に接続されている、ことを特徴とするアクティブ磁気シールド装置。   Application Example 3 In the active magnetic shield device described above, the active magnetic shield device includes a first surface and a second surface including the magnetic material and the magnetic field compensation coil, and the first surface. And the second surface are arranged in parallel, and the magnetic field compensation coil included in the first surface and the magnetic field compensation coil included in the second surface are electrically connected in series. An active magnetic shield device characterized by that.

この構成によれば、第1の面と第2の面とによりヘルムホルツコイルを構成することができるので、勾配磁場の少ない磁場環境を実現できる。   According to this configuration, since the Helmholtz coil can be configured by the first surface and the second surface, a magnetic field environment with a small gradient magnetic field can be realized.

第1実施形態に係るアクティブ磁気シールド装置の構成を示す概略図。Schematic which shows the structure of the active magnetic shielding apparatus which concerns on 1st Embodiment. 第1実施形態に係るアクティブ磁気シールド装置の動作を示すタイミング図。The timing diagram which shows operation | movement of the active magnetic shielding apparatus which concerns on 1st Embodiment.

以下、アクティブ磁気シールド装置の実施形態について図面に従って説明する。   Hereinafter, embodiments of an active magnetic shield device will be described with reference to the drawings.

(第1実施形態)
<アクティブ磁気シールド装置の構成>
先ず、第1実施形態に係るアクティブ磁気シールド装置1の構成について、図1を参照して説明する。図1は、第1実施形態に係るアクティブ磁気シールド装置の構成を示す概略図である。
(First embodiment)
<Configuration of active magnetic shield device>
First, the configuration of the active magnetic shield device 1 according to the first embodiment will be described with reference to FIG. FIG. 1 is a schematic diagram showing the configuration of the active magnetic shield device according to the first embodiment.

図1に示すように、アクティブ磁気シールド装置1は、磁性材料101,102と、磁場補償コイル201,202と、磁気センサー300と、駆動信号制御部400と、から構成されている。   As shown in FIG. 1, the active magnetic shield device 1 includes magnetic materials 101 and 102, magnetic field compensation coils 201 and 202, a magnetic sensor 300, and a drive signal control unit 400.

磁性材料101,102は、たとえばフェライト磁石などの硬磁性材料を板状に加工したものである。磁場補償コイル201は、磁性材料101に接するように配置され、同様に磁場補償コイル202は、磁性材料102に接するように配置されている。なお、図1では磁場補償コイル201,202は円状を例示しているが、磁性材料101,102の形状に合わせて四角などの多角状にしてもよい。   The magnetic materials 101 and 102 are obtained by processing a hard magnetic material such as a ferrite magnet into a plate shape. The magnetic field compensation coil 201 is disposed so as to be in contact with the magnetic material 101, and similarly, the magnetic field compensation coil 202 is disposed so as to be in contact with the magnetic material 102. In FIG. 1, the magnetic field compensation coils 201 and 202 have a circular shape, but may be a polygonal shape such as a square in accordance with the shape of the magnetic materials 101 and 102.

磁気センサー300は、フラックス・ゲートセンサーや磁気インピーダンス素子、ホール素子、磁気抵抗効果素子などで構成され、環境磁場を電圧値などに変換して計測信号Vbを出力する。駆動信号制御部400は、計測信号Vbに基づき磁場補償コイル201,202を駆動するための電流量を制御し駆動信号Ibとして出力する。   The magnetic sensor 300 is composed of a flux gate sensor, a magnetic impedance element, a Hall element, a magnetoresistive effect element, and the like, and converts an environmental magnetic field into a voltage value and outputs a measurement signal Vb. The drive signal control unit 400 controls the amount of current for driving the magnetic field compensation coils 201 and 202 based on the measurement signal Vb and outputs it as a drive signal Ib.

磁性材料101及び磁場補償コイル201は、第1の面210を構成し、磁性材料102及び磁場補償コイル202は、第2の面220を構成する。第1の面210と、第2の面220とは、それぞれX軸上に面の中心が来るように向き合って並行に配置されている。また、磁場補償コイル201と磁場補償コイル202とは、駆動信号制御部400の駆動信号Ibが直列に流れるように接続されている。磁場補償コイル201と磁場補償コイル202とをこのように配置することにより、X軸上にヘルムホルツコイルが構成される。磁気センサー300は、X軸上において、磁場補償コイル201と磁場補償コイル202との中央に配置されている。   The magnetic material 101 and the magnetic field compensation coil 201 constitute a first surface 210, and the magnetic material 102 and the magnetic field compensation coil 202 constitute a second surface 220. The first surface 210 and the second surface 220 are arranged in parallel so as to face each other so that the center of the surface comes on the X axis. The magnetic field compensation coil 201 and the magnetic field compensation coil 202 are connected so that the drive signal Ib of the drive signal control unit 400 flows in series. By arranging the magnetic field compensation coil 201 and the magnetic field compensation coil 202 in this manner, a Helmholtz coil is configured on the X axis. The magnetic sensor 300 is disposed at the center of the magnetic field compensation coil 201 and the magnetic field compensation coil 202 on the X axis.

<アクティブ磁気シールド装置の動作>
次に、第1実施形態に係るアクティブ磁気シールド装置1の動作について、図2を参照して説明する。図2は、第1実施形態に係るアクティブ磁気シールド装置の動作を示すタイミング図である。
<Operation of active magnetic shield device>
Next, the operation of the active magnetic shield device 1 according to the first embodiment will be described with reference to FIG. FIG. 2 is a timing chart showing the operation of the active magnetic shield device according to the first embodiment.

図2は、計測信号Vbと、制御信号Ibと、磁性材料101,102が保磁する磁束密度FBと、の変化を時間軸に沿って示している。なお、磁気センサー300は、図1のX軸において、正の向きに磁束密度が発生している場合には正の電圧値の計測信号Vbを出力し、負の向きに磁束密度が発生している場合には負の電圧値の計測信号Vbを出力するものとする。また、駆動信号制御部400は、計測信号Vbが正の電圧値の場合は負の方向に磁束密度が発生するように磁場補償コイル201,202を駆動する制御信号Ibを制御し、計測信号Vbが負の電圧値の場合は正の方向に磁束密度が発生するように磁場補償コイル201,202を駆動する制御信号Ibを制御する。   FIG. 2 shows changes in the measurement signal Vb, the control signal Ib, and the magnetic flux density FB magnetized by the magnetic materials 101 and 102 along the time axis. The magnetic sensor 300 outputs a measurement signal Vb having a positive voltage value when the magnetic flux density is generated in the positive direction on the X axis in FIG. 1, and the magnetic flux density is generated in the negative direction. If it is, the measurement signal Vb having a negative voltage value is output. Further, the drive signal control unit 400 controls the control signal Ib that drives the magnetic field compensation coils 201 and 202 so that the magnetic flux density is generated in the negative direction when the measurement signal Vb is a positive voltage value, and the measurement signal Vb. When is a negative voltage value, the control signal Ib for driving the magnetic field compensation coils 201 and 202 is controlled so that the magnetic flux density is generated in the positive direction.

図2において、時点t0では、環境磁場である地磁気の影響でX軸の負の方向に磁束密度が発生している例を示し、計測信号Vbは負の電圧値v1を出力している。   FIG. 2 shows an example in which the magnetic flux density is generated in the negative direction of the X axis due to the influence of geomagnetism, which is an environmental magnetic field, at time t0, and the measurement signal Vb outputs a negative voltage value v1.

時点t1において、駆動信号制御部400は、計測信号Vbが0Vになるように駆動信号Ibの電流値を正の電流値i1に制御する。これに伴い、計測信号Vbは0Vに遷移し、一方磁束密度FBの値は徐々に正の磁束密度b1に上昇し、時点t2で飽和する。   At time t1, the drive signal control unit 400 controls the current value of the drive signal Ib to a positive current value i1 so that the measurement signal Vb becomes 0V. Along with this, the measurement signal Vb transits to 0 V, while the value of the magnetic flux density FB gradually rises to the positive magnetic flux density b1, and saturates at time t2.

時点t2において、駆動信号制御部400は、計測信号Vbの変動が所定の範囲(例えば−0.01Vから+0.01Vの範囲)以内になったので、駆動信号Ibをオフにするが、磁性材料101,102にはX軸の正の方向に磁束密度b1が保磁されているので、時点t2以降も計測信号Vbは0Vを保っている。   At time t2, the drive signal control unit 400 turns off the drive signal Ib because the fluctuation of the measurement signal Vb is within a predetermined range (for example, a range of −0.01 V to +0.01 V). Since the magnetic flux density b1 is coerced in the positive direction of the X axis in 101 and 102, the measurement signal Vb remains 0 V after time t2.

時点t3において、環境磁場に外部の影響によりX軸の正の方向の外乱磁場が発生し、計測信号Vbの電圧値が正の電圧値v2に跳ね上がったので、駆動信号制御部400は、計測信号Vbが0Vになるように駆動信号Ibの電流値を負の電流値i2に制御する。これに伴い、計測信号Vbは0Vに遷移したので駆動信号Ibの電流値も0Aに遷移する。   At time t3, a disturbance magnetic field in the positive direction of the X axis is generated due to an external influence on the environmental magnetic field, and the voltage value of the measurement signal Vb jumps to the positive voltage value v2, so that the drive signal control unit 400 The current value of the drive signal Ib is controlled to a negative current value i2 so that Vb becomes 0V. Accordingly, since the measurement signal Vb transits to 0V, the current value of the drive signal Ib also transits to 0A.

時点t4では、環境磁場に外部の影響によりX軸の負の方向の外乱磁場が発生し、計測信号Vbの電圧値が負の電圧値v3に下がったので、駆動信号制御部400は、計測信号Vbが0Vになるように駆動信号Ibの電流値を正の電流値i3に制御する。これに伴い、計測信号Vbは0Vに遷移したので駆動信号Ibの電流値も0Aに遷移する。   At time t4, a disturbance magnetic field in the negative direction of the X-axis is generated due to the external influence on the environmental magnetic field, and the voltage value of the measurement signal Vb has dropped to the negative voltage value v3. The current value of the drive signal Ib is controlled to a positive current value i3 so that Vb becomes 0V. Accordingly, since the measurement signal Vb transits to 0V, the current value of the drive signal Ib also transits to 0A.

以上に述べた本実施形態によれば、以下の効果が得られる。   According to the present embodiment described above, the following effects can be obtained.

本実施形態では、駆動信号制御部400が地磁気のような安定した環境磁場をキャンセルするための駆動信号Ibを磁場補償コイル201,202に所定時間(図2では時点t1からt2の期間)印加することにより磁性材料101,102が磁束密度b1に磁化され、以降は駆動信号Ibをオフにしても磁化された磁性材料101,102により環境磁場をキャンセルし続けることができるので、消費電力を低減することができる。   In this embodiment, the drive signal control unit 400 applies a drive signal Ib for canceling a stable environmental magnetic field such as geomagnetism to the magnetic field compensation coils 201 and 202 for a predetermined time (period from time t1 to time t2 in FIG. 2). As a result, the magnetic materials 101 and 102 are magnetized to the magnetic flux density b1, and the environmental magnetic field can be continuously canceled by the magnetized magnetic materials 101 and 102 even after the drive signal Ib is turned off, thereby reducing power consumption. be able to.

以上、アクティブ磁気シールド装置の実施形態を説明したが、こうした実施の形態に何ら限定されるものではなく、趣旨を逸脱しない範囲内において様々な形態で実施し得ることができる。以下、変形例を挙げて説明する。   As mentioned above, although embodiment of the active magnetic shield apparatus was described, it is not limited to such embodiment at all, It can implement in various forms within the range which does not deviate from the meaning. Hereinafter, a modification will be described.

(変形例1)
アクティブ磁気シールド装置の変形例について説明する。前述の実施形態では、X軸に第1の面210と第2の面220とで構成されるヘルムホルツコイルを配置したが、Y軸、Z軸にもヘルムホルツコイルを構成し、さらに、X,Y,Z軸の3軸用の磁気センサー300で構成すれば、X,Y,Z軸すべての方向に対して地磁気や外乱磁場をキャンセルできる。
(Modification 1)
A modification of the active magnetic shield device will be described. In the above-described embodiment, the Helmholtz coil composed of the first surface 210 and the second surface 220 is arranged on the X axis. However, the Helmholtz coil is also constructed on the Y axis and the Z axis. , The Z-axis three-axis magnetic sensor 300 can cancel geomagnetism and disturbance magnetic fields in all directions of the X, Y, and Z axes.

1…アクティブ磁気シールド装置、101,102…磁性材料、201,202…磁場補償コイル、210…第1の面、220…第2の面、300…磁気センサー、400…駆動信号制御部。   DESCRIPTION OF SYMBOLS 1 ... Active magnetic shield apparatus, 101, 102 ... Magnetic material, 201, 202 ... Magnetic field compensation coil, 210 ... 1st surface, 220 ... 2nd surface, 300 ... Magnetic sensor, 400 ... Drive signal control part.

Claims (3)

磁性材料と、
前記磁性材料と接するように配置された磁場補償コイルと、
環境磁場を計測する磁気センサーと、
前記磁気センサーからの計測信号に基づいて前記磁場補償コイルを駆動する駆動信号を制御する駆動信号制御部と、
を含み、
前記駆動信号制御部は、前記計測信号の変動が所定の範囲以内ならば前記磁性材料が磁化されるのに必要な時間以降は前記駆動信号をオフにする、
ことを特徴とするアクティブ磁気シールド装置。
Magnetic materials,
A magnetic field compensation coil disposed in contact with the magnetic material;
A magnetic sensor that measures the environmental magnetic field;
A drive signal controller for controlling a drive signal for driving the magnetic field compensation coil based on a measurement signal from the magnetic sensor;
Including
The drive signal control unit turns off the drive signal after a time necessary for the magnetic material to be magnetized if the variation of the measurement signal is within a predetermined range.
An active magnetic shield device.
請求項1に記載のアクティブ磁気シールド装置において、前記磁性材料は、硬磁性材料である、ことを特徴とするアクティブ磁気シールド装置。   2. The active magnetic shield device according to claim 1, wherein the magnetic material is a hard magnetic material. 請求項1または2に記載のアクティブ磁気シールド装置において、前記磁気材料と前記磁場補償コイルとを備える第1の面及び第2の面を含み、前記第1の面と前記第2の面とは並行に配置され、前記第1の面に含まれる前記磁場補償コイルと前記第2の面に含まれる前記磁場補償コイルとは、電気的に直列に接続されている、ことを特徴とするアクティブ磁気シールド装置。   3. The active magnetic shield device according to claim 1, comprising a first surface and a second surface including the magnetic material and the magnetic field compensation coil, wherein the first surface and the second surface are The active magnetism is characterized in that the magnetic field compensation coil included in the first surface and the magnetic field compensation coil included in the second surface are arranged in parallel, and are electrically connected in series. Shield device.
JP2010007886A 2010-01-18 2010-01-18 Active magnetic shielding device Withdrawn JP2011146621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010007886A JP2011146621A (en) 2010-01-18 2010-01-18 Active magnetic shielding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010007886A JP2011146621A (en) 2010-01-18 2010-01-18 Active magnetic shielding device

Publications (1)

Publication Number Publication Date
JP2011146621A true JP2011146621A (en) 2011-07-28

Family

ID=44461192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010007886A Withdrawn JP2011146621A (en) 2010-01-18 2010-01-18 Active magnetic shielding device

Country Status (1)

Country Link
JP (1) JP2011146621A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105828594A (en) * 2016-06-03 2016-08-03 哈尔滨工业大学 Active shielding device with local magnetic-field compensation capacity
JP2021194302A (en) * 2020-06-16 2021-12-27 浜松ホトニクス株式会社 Magnetoencephalograph
JP2021194304A (en) * 2020-06-16 2021-12-27 浜松ホトニクス株式会社 Brain measurement apparatus and brain measurement method
JP2021194303A (en) * 2020-06-16 2021-12-27 浜松ホトニクス株式会社 Brain measurement apparatus and brain measurement method
WO2023079550A1 (en) * 2021-11-04 2023-05-11 Safefields Technologies Ltd. System and method for active cancellation of magnetic fields

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105828594A (en) * 2016-06-03 2016-08-03 哈尔滨工业大学 Active shielding device with local magnetic-field compensation capacity
JP2021194302A (en) * 2020-06-16 2021-12-27 浜松ホトニクス株式会社 Magnetoencephalograph
JP2021194304A (en) * 2020-06-16 2021-12-27 浜松ホトニクス株式会社 Brain measurement apparatus and brain measurement method
JP2021194303A (en) * 2020-06-16 2021-12-27 浜松ホトニクス株式会社 Brain measurement apparatus and brain measurement method
JP7370009B2 (en) 2020-06-16 2023-10-27 浜松ホトニクス株式会社 Brain measurement device and brain measurement method
JP7370008B2 (en) 2020-06-16 2023-10-27 浜松ホトニクス株式会社 Brain measurement device and brain measurement method
US11957472B2 (en) 2020-06-16 2024-04-16 Hamamatsu Photonics K.K. Brain measurement apparatus and brain measurement method
WO2023079550A1 (en) * 2021-11-04 2023-05-11 Safefields Technologies Ltd. System and method for active cancellation of magnetic fields

Similar Documents

Publication Publication Date Title
US9857436B2 (en) High sensitive micro sized magnetometer
EP3524991B1 (en) Bipolar chopping for i/f noise and offset reduction in magnetic field sensors
CN104603628B (en) Magnetoresistive transducer, gradient former
Yu et al. Differential-type GMI magnetic sensor based on longitudinal excitation
US9752877B2 (en) Electronic device having electronic compass with demagnetizing coil and annular flux concentrating yokes
JP2011146621A (en) Active magnetic shielding device
JP2015102513A (en) Metallic foreign matter detection device, and eddy current flaw detector
TWI586985B (en) Vorrichtung und verfahren zum messen von magnetfeldern
CN106405448A (en) Systems and methods for low power magnetic field generation for atomic sensors using electro-permanent magnets
JPWO2013176271A1 (en) Current sensor
JP2001281308A (en) Magnetic sensor and position detector
JP6132085B2 (en) Magnetic detector
US20100271018A1 (en) Sensors for minute magnetic fields
Delevoye et al. Microfluxgate sensors for high frequency and low power applications
JP6421380B2 (en) Magnetic field sensor
US8866473B2 (en) Magnetic field sensor device, corresponding production method, and magnetic field measuring method
Angelopoulos et al. Design and development of a high-sensitivity, portable, and low-cost fluxgate magnetometer
Heimfarth et al. Miniature planar fluxgate magnetic sensors using a single layer of coils
Tian et al. Magnetic Flux Vertical Motion Modulation for 1/${f} $ Noise Suppression in Magnetoresistance Field Sensors Using MEMS Device
Angelopoulos et al. Design and development of a new magnetometer calibration device
Jeng et al. Enhancement in sensitivity using multiple harmonics for miniature fluxgates
JP2011159668A (en) Active magnetic shield device
Hrakova et al. Inkjet-printed Mn-Zn ferrite nanoparticle core for fluxgate
Tipek et al. Excitation and temperature stability of PCB fluxgate sensor
JP2021081450A (en) Magnetic field compensation device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402