JP2011146309A - Positive electrode active material of nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using positive electrode active material - Google Patents

Positive electrode active material of nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using positive electrode active material Download PDF

Info

Publication number
JP2011146309A
JP2011146309A JP2010007477A JP2010007477A JP2011146309A JP 2011146309 A JP2011146309 A JP 2011146309A JP 2010007477 A JP2010007477 A JP 2010007477A JP 2010007477 A JP2010007477 A JP 2010007477A JP 2011146309 A JP2011146309 A JP 2011146309A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
mixture
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010007477A
Other languages
Japanese (ja)
Other versions
JP5512296B2 (en
Inventor
Tomoko Iwanaga
朋子 岩永
Ryuichi Kuzuo
竜一 葛尾
Shinji Arimoto
真司 有元
Yutaka Kawadate
裕 川建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Panasonic Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Panasonic Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010007477A priority Critical patent/JP5512296B2/en
Publication of JP2011146309A publication Critical patent/JP2011146309A/en
Application granted granted Critical
Publication of JP5512296B2 publication Critical patent/JP5512296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a positive electrolyte secondary battery of a nonaqueous electrolyte secondary battery capable of improving industrial mass productivity without spoiling battery performance. <P>SOLUTION: In a process of calcining a mixture obtained by mixing a nickel complex compound having an average particle diameter of 8-20 μm, and a lithium compound and having bulk density of 1.0-2.2 g/ml by filling up in a calcination container, when thickness at the time of inserting the mixture into the calcination container is set up to be t (mm), a time for retaining temperature of the mixture at a temperature range of 550-650°C is set up to be the minimum retention time or more calculated from formula of time (minute) equal to 0.026t<SP>2</SP>-2.7. Upon performing calcination in an acid atmosphere where oxygen concentration is 60 vol.% or more, the positive electrode active material made from lithium-nickel complex oxide can be attained by washing the attained calcined object with water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムニッケル複合酸化物により構成され、非水系電解質二次電池の正極に適用される正極活物質およびその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池に関する。   The present invention relates to a positive electrode active material composed of a lithium nickel composite oxide and applied to a positive electrode of a non-aqueous electrolyte secondary battery, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery using the positive electrode active material.

近年、電子技術の進歩に伴い、電子機器の小型化、軽量化が急速に進んでいる。特に、最近の携帯電話やノートパソコンなどのポータブル電子機器の普及と高機能化により、これらに使用されるポータブル用電源として、高いエネルギー密度を有し、小型で、かつ軽量な電池の開発が強く望まれている。   In recent years, with the advancement of electronic technology, electronic devices are rapidly becoming smaller and lighter. In particular, as portable electronic devices such as mobile phones and notebook PCs have become popular and highly functional, the development of small, lightweight batteries with high energy density has become strong as portable power sources used in these devices. It is desired.

非水系電解質二次電池であるリチウムイオン二次電池は、小型で高いエネルギーを有することから、ポータブル電子機器の電源としてすでに利用されている。また、かかる用途に限られず、リチウムイオン二次電池について、ハイブリッド自動車や電気自動車などの大型電源としての利用を目指した研究開発も進められている。   A lithium ion secondary battery, which is a non-aqueous electrolyte secondary battery, is already used as a power source for portable electronic devices because of its small size and high energy. In addition to such applications, research and development aimed at using lithium-ion secondary batteries as large-scale power sources such as hybrid vehicles and electric vehicles are being promoted.

リチウムイオン二次電池の正極活物質には、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)が使用されているが、リチウムコバルト複合酸化物の原料には、希産で高価なコバルト化合物が用いられるため、正極活物質のコストアップの原因となっている。 A lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, is used as the positive electrode active material of the lithium ion secondary battery, but a rare and expensive cobalt is used as a raw material for the lithium cobalt composite oxide. Since a compound is used, it causes a cost increase of the positive electrode active material.

正極活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を実現することは、現在普及しているポータブル電子機器の低コスト化や将来の大型電源へのリチウムイオン二次電池の搭載を可能とすることから、工業的に大きな意義を有しているといえる。   Lowering the cost of the positive electrode active material and realizing the manufacture of cheaper lithium ion secondary batteries can be achieved by reducing the cost of portable electronic devices that are currently in widespread use and installing lithium ion secondary batteries in future large-scale power supplies Therefore, it can be said that it has significant industrial significance.

リチウムイオン二次電池用の正極活物質として適用できる他の正極材料として、リチウムニッケル複合酸化物(LiNiO2)がある。リチウムニッケル複合酸化物は、現在主流のリチウムコバルト複合酸化物と比べて、高容量であって、原料であるニッケルがコバルトと比べて安価で、かつ、安定して入手可能であるといった利点を有していることから、次世代の正極材料として期待され、リチウムニッケル複合酸化物について、活発に研究および開発が続けられている。 Another positive electrode material that can be applied as a positive electrode active material for a lithium ion secondary battery is lithium nickel composite oxide (LiNiO 2 ). Lithium-nickel composite oxides have the advantages that they have a higher capacity than the current mainstream lithium-cobalt composite oxides, and that nickel as a raw material is cheaper and more stable than cobalt. Therefore, it is expected to be a next-generation positive electrode material, and research and development of lithium-nickel composite oxides are being continued actively.

しかしながら、リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物に比べて、低い温度から分解が始まるため、合成の際の焼成温度が上げられず、結果的に焼成時間が長くなり、工業的に量産する際の生産性に劣るという問題点を有している。   However, since the lithium nickel composite oxide begins to decompose at a lower temperature than the lithium cobalt composite oxide, the firing temperature at the time of synthesis cannot be increased, resulting in a longer firing time and industrial mass production. It has a problem that it is inferior in productivity.

リチウムニッケル複合酸化物の製造方法については、特許文献1〜4に示されるように、リチウム化合物とニッケル複合化合物とを混合して熱処理する方法が採られている。これらの文献では、電池特性の向上などを目的に、合成時間、合成温度、合成雰囲気などを規定することが開示されている。しかしながら、工業的な量産過程において、電池性能を損なうことなく、できるだけ短時間で合成を完了させて、生産性を向上させるための条件については検討がなされておらず、これらの技術に基づいて、工業的に量産する際の生産性を飛躍的に高めることは困難である。   About the manufacturing method of lithium nickel complex oxide, as shown in patent documents 1-4, the method of mixing and heat-treating a lithium compound and a nickel complex compound is taken. These documents disclose that the synthesis time, synthesis temperature, synthesis atmosphere, and the like are defined for the purpose of improving battery characteristics. However, in the industrial mass production process, synthesis is completed in as short a time as possible without impairing battery performance, and conditions for improving productivity have not been studied. Based on these technologies, It is difficult to dramatically increase the productivity when mass-producing industrially.

特開平07−114915号公報Japanese Patent Application Laid-Open No. 07-114915 特開平11−111290号公報JP-A-11-111290 特開2000−133249号公報JP 2000-133249 A 特開2007−119266号公報JP 2007-119266 A

本発明は、このような問題点に着目してなされたものであり、高い電池性能をもたらす非水系電解質二次電池用正極活物質を、電池性能を損なうことなく、工業的な量産過程において高い生産性をもって提供することにある。   The present invention has been made paying attention to such problems, and a positive electrode active material for a non-aqueous electrolyte secondary battery that provides high battery performance is high in an industrial mass production process without impairing battery performance. It is to provide with productivity.

また、本発明は、工業的な量産過程において、高い初期放電容量を有する非水系電解質二次電池および該電池の正極材料としての正極活物質を提供することを目的とする。   Another object of the present invention is to provide a non-aqueous electrolyte secondary battery having a high initial discharge capacity and a positive electrode active material as a positive electrode material of the battery in an industrial mass production process.

本発明者は、上記課題を解決するために、正極活物質の合成に関する研究を進めた結果、正極活物質として用いるリチウムニッケル複合酸化物の焼成において、加熱時に保持される特定の温度領域が、正極活物質の特性に大きな影響を及ぼしており、この温度領域において、リチウム化合物とニッケル複合化合物との混合物の厚さに応じた酸素拡散時間を確保することで、電池性能を損なわずに、工業的な量産過程において、正極活物質の生産性を大幅に向上できるとの知見を得て、本発明を完成したものである。   In order to solve the above problems, the present inventor has conducted research on the synthesis of a positive electrode active material. As a result, in the firing of the lithium nickel composite oxide used as the positive electrode active material, a specific temperature region maintained during heating is It has a great influence on the characteristics of the positive electrode active material, and in this temperature range, by ensuring the oxygen diffusion time according to the thickness of the mixture of lithium compound and nickel composite compound, the battery performance is not impaired. The present invention has been completed with the knowledge that the productivity of the positive electrode active material can be greatly improved in a typical mass production process.

すなわち、本発明の非水系電解質二次電池用の正極活物質の製造方法は、リチウムニッケル複合酸化物から構成される非水系電解質二次電池用の正極活物質の製造方法に係り、特に、平均粒径が8〜20μmであるニッケル複合化合物と、リチウム化合物とを混合して得られる、嵩密度が1.0〜2.2g/mlである混合物を、焼成容器に充填して焼成する工程において、該混合物を焼成容器に入れたときの厚さをt(mm)としたときに、該混合物の温度が550℃以上650℃以下の温度領域に保持される時間を、式:時間(分)=0.026t2−2.7により求められる最小保持時間以上として、酸素濃度が60容量%以上の酸化性雰囲気中で該混合物の焼成を行い、得られた焼成物を水洗することを特徴とする。 That is, the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery composed of a lithium nickel composite oxide. In a step of filling a firing container with a mixture having a bulk density of 1.0 to 2.2 g / ml obtained by mixing a nickel composite compound having a particle size of 8 to 20 μm and a lithium compound and firing the mixture. The time when the temperature of the mixture is maintained in the temperature range of 550 ° C. or more and 650 ° C. or less when the thickness when the mixture is put in the baking container is t (mm) is expressed by the formula: time (minute) = 0.026t 2 -2.7 The minimum holding time or more required by 2.7, wherein the mixture is fired in an oxidizing atmosphere having an oxygen concentration of 60% by volume or more, and the obtained fired product is washed with water. To do.

前記酸素濃度が80容量%以上の雰囲気中で、前記混合物を前記温度領域に保持することが好ましい。   It is preferable to keep the mixture in the temperature region in an atmosphere having an oxygen concentration of 80% by volume or more.

前記焼成工程において、前記混合物の到達する最高温度が650℃以上800℃以下であり、かつ該最高温度での保持時間が4時間以上であることが好ましい。   In the firing step, it is preferable that the maximum temperature reached by the mixture is 650 ° C. or higher and 800 ° C. or lower and the holding time at the maximum temperature is 4 hours or longer.

また、前記焼成工程において、前記混合物の加熱開始から冷却完了までの時間が24時間以下であることが好ましい。   Moreover, in the said baking process, it is preferable that the time from the heating start of the said mixture to completion of cooling is 24 hours or less.

前記リチウム化合物としては、水酸化リチウムまたは水酸化リチウム水和物を用いることが好ましく、また、前記ニッケル複合化合物としては、ニッケル複合酸化物またはニッケル複合水酸化物を用いることが、それぞれ好ましい。   It is preferable to use lithium hydroxide or lithium hydroxide hydrate as the lithium compound, and it is preferable to use nickel composite oxide or nickel composite hydroxide as the nickel composite compound.

本発明の非水系電解質二次電池用の正極活物質の製造方法は、リチウムニッケル複合酸化物により構成される正極活物質の製造に広く適用されるが、特に、一般式:LixNi(1-y-z)Coyz2(式中、Mは、Al、Tiの中から選ばれた少なくとも1種の元素を表し、x、y、zはそれぞれ、0.90≦x≦1.10、0.05≦y≦0.35、0.005≦z≦0.15を満たす)で表される組成のリチウムニッケル複合酸化物を得る際に好適に適用される。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is widely applied to the production of a positive electrode active material composed of a lithium nickel composite oxide. In particular, the general formula: Li x Ni (1 -yz) Co y M z O 2 (wherein M represents at least one element selected from Al and Ti, and x, y, and z are 0.90 ≦ x ≦ 1.10. , 0.05 ≦ y ≦ 0.35, 0.005 ≦ z ≦ 0.15) is suitably applied when obtaining a lithium nickel composite oxide having a composition represented by:

本発明の非水系電解質二次電池用の正極活物質の製造方法により、高い電池性能を維持できる特性を備えながら、工業的な量産工程において高い生産性をもって製造される正極活物質が提供される。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention provides a positive electrode active material that is produced with high productivity in an industrial mass production process while having characteristics capable of maintaining high battery performance. .

さらに、本発明の正極活物質を正極材料として用いることにより、たとえば、2032型コイン電池からなる非水系電解質二次電池の場合には、1回目の放電容量が198mAh/g以上となるというように、高い初期放電容量を有する非水系電解質二次電池が工業的な量産工程において高い生産性をもって提供される。   Furthermore, by using the positive electrode active material of the present invention as a positive electrode material, for example, in the case of a non-aqueous electrolyte secondary battery comprising a 2032 type coin battery, the first discharge capacity is 198 mAh / g or more. A non-aqueous electrolyte secondary battery having a high initial discharge capacity is provided with high productivity in an industrial mass production process.

本発明により、非水系電解質二次電池およびその正極材料として用いられる正極活物質の工業的な量産工程において、高い電池性能と高い生産性とを同時に達成できるものであり、本発明の工業的価値は極めて大きい。   According to the present invention, in an industrial mass production process of a non-aqueous electrolyte secondary battery and a positive electrode active material used as the positive electrode material, high battery performance and high productivity can be achieved simultaneously. Industrial value of the present invention Is extremely large.

図1は、電池評価に用いたコイン電池を示す斜視図および断面図である。FIG. 1 is a perspective view and a cross-sectional view showing a coin battery used for battery evaluation. 図2は、混合物の厚さと550〜650℃の保持時間に対する1回目の放電容量の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the thickness of the mixture and the first discharge capacity with respect to the holding time of 550 to 650 ° C.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(1)非水系電解質二次電池用の正極活物質およびその製造方法
リチウムイオン電池用の正極材料であるリチウムニッケル複合酸化物を工業的に生産する場合、一般的に、セラミック製の焼成容器に充填した原料混合物を、ローラーハースキルンやプッシャー炉などの炉の中に連続的に送り込み、所定の時間、所定の温度で焼成して、合成反応を起こさせている。
(1) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof When producing lithium nickel composite oxide, which is a positive electrode material for a lithium ion battery, industrially, generally in a ceramic firing container The filled raw material mixture is continuously fed into a furnace such as a roller hearth kiln or a pusher furnace, and baked at a predetermined temperature for a predetermined time to cause a synthesis reaction.

工業的な生産過程における焼成容器としては、一般的に、内寸が100mm(L)×100mm(W)×20mm(H)〜500mm(L)×500mm(W)×100mm(H)の範囲にある容器が使用され、原料であるリチウム化合物とニッケル複合化合物との混合物を、その厚さが5〜100mmの範囲となるように充填している。   As a baking container in an industrial production process, the inner dimension is generally in a range of 100 mm (L) × 100 mm (W) × 20 mm (H) to 500 mm (L) × 500 mm (W) × 100 mm (H). A certain container is used, and a mixture of a lithium compound and a nickel composite compound as raw materials is filled so as to have a thickness in the range of 5 to 100 mm.

この場合、生産性を向上させるための手段としては、搬送速度を速めて炉の中を通過させる時間を短縮したり、焼成容器の中に入れる混合物の量を多くしたりして、単位時間あたりの合成量を増加させることが考えられる。   In this case, as means for improving the productivity, the transport speed is increased to shorten the time for passing through the furnace, or the amount of the mixture put into the baking container is increased, so that the unit time per unit time is increased. It is conceivable to increase the amount of synthesis.

このうち、搬送速度を速める方法は、あまりに速めてしまうと合成反応の時間が足りず、正極材料として使用可能な結晶成長が行われなくなり、電池性能を劣化させてしまうという問題がある。   Among these methods, the method of increasing the conveyance speed has a problem that if the speed is increased too much, the time for the synthesis reaction is insufficient, and crystal growth that can be used as the positive electrode material is not performed, and the battery performance is deteriorated.

一方、焼成容器に充填する混合物の量をあまりに多くすると、混合物の厚さが大きくなりすぎて、容器の底部にまで反応に必要な酸素の拡散が不十分となり、下記式(1)に示すような反応が進行せず、リチウムニッケル複合酸化物の合成不足が発生し、放電容量の低下などの問題が発生する。   On the other hand, if the amount of the mixture filled in the firing container is too large, the thickness of the mixture becomes too large, and the diffusion of oxygen necessary for the reaction to the bottom of the container becomes insufficient, as shown in the following formula (1). Reaction does not proceed, the synthesis of the lithium nickel composite oxide is insufficient, and problems such as a decrease in discharge capacity occur.

2NiO+2LiOH+1/2O2 → 2LiNiO2+H2O (1) 2NiO + 2LiOH + 1 / 2O 2 → 2LiNiO 2 + H 2 O (1)

したがって、電池性能を良好にするためには、正極活物質として用いるリチウムニッケル複合酸化物を合成するにあたって、ニッケル複合酸化物とリチウム化合物との反応に必要な酸素を混合物内に十分拡散させることが必要となる。   Therefore, in order to improve the battery performance, in synthesizing the lithium nickel composite oxide used as the positive electrode active material, oxygen necessary for the reaction between the nickel composite oxide and the lithium compound should be sufficiently diffused in the mixture. Necessary.

ここで、本発明者らは、ニッケル複合酸化物とリチウム化合物の反応においては、焼成工程におけるすべての温度範囲で酸素を混合物内に十分に拡散させる必要はなく、かかる反応には最も重要な温度領域があって、この温度領域において酸素を混合物内に十分に拡散させれば、電池性能が良好なリチウムニッケル複合酸化物が得られるとの知見を得たのである。   Here, in the reaction of the nickel composite oxide and the lithium compound, the inventors do not need to sufficiently diffuse oxygen into the mixture in the entire temperature range in the firing step, and the most important temperature for such a reaction. It was found that if there is a region and oxygen is sufficiently diffused into the mixture in this temperature region, a lithium nickel composite oxide with good battery performance can be obtained.

すなわち、焼成容器に充填した混合物を焼成してリチウムニッケル複合酸化物を得る場合に、上記の温度領域において混合物の厚さに応じた酸素拡散時間を確保しさえすれば、焼成容器の中に入れる混合物の量を多く(混合物の厚さを大きく)しても、電池性能を悪化させることなく、さらには、高放電容量の電池とすることができる、リチウムニッケル複合酸化物が得られることになる。   That is, when the mixture filled in the firing container is fired to obtain the lithium nickel composite oxide, it is put into the firing container as long as the oxygen diffusion time according to the thickness of the mixture is secured in the above temperature range. Even if the amount of the mixture is increased (thickness of the mixture is increased), a lithium nickel composite oxide can be obtained that does not deteriorate the battery performance and can be made a battery with a high discharge capacity. .

より具体的には、本発明の非水系電解質二次電池用の正極活物質の製造方法は、リチウムニッケル複合酸化物から構成される正極活物質の製造方法であって、平均粒径が8〜20μmであるニッケル複合化合物と、リチウム化合物とを混合して得られた、嵩密度が1.0〜2.2g/mlである混合物を、焼成容器に充填して焼成する工程において、該混合物を焼成容器に入れたときの厚さをt(mm)としたときに、該混合物の温度が550℃以上650℃以下の温度範囲に保持される時間を、式:時間(分)=0.026t2−2.7により求められる最小保持時間以上として、酸素濃度が60容量%以上の酸化性雰囲気中で該混合物の焼成を行い、得られた焼成物を水洗することを特徴としている。 More specifically, the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a method for producing a positive electrode active material composed of a lithium nickel composite oxide, and has an average particle size of 8 to In a step of filling a firing container with a bulk density of 1.0 to 2.2 g / ml obtained by mixing a nickel composite compound having a thickness of 20 μm and a lithium compound, and firing the mixture, The time when the temperature of the mixture is maintained in the temperature range of 550 ° C. or more and 650 ° C. or less when the thickness when put in the baking container is t (mm) is expressed by the formula: time (minutes) = 0.026 t. as above minimum age required by 2 -2.7, oxygen concentration and fired in the mixture in an oxidizing atmosphere for more than 60 volume%, it is characterized by washing the obtained fired product.

本発明者らは、混合物の温度が550℃以上650°以下である温度領域において、混合物に酸素を十分に供給することに重要な意義があるとの知見を得ている。すなわち、リチウム化合物の種類にもよるが、550以上650℃以下の温度領域において、リチウム化合物とニッケル複合化合物との間での固相固相反応、もしくは液相固相反応が最も顕著に進んでおり、該温度領域において、混合物全体に反応に必要な酸素が十分に行きわたることで、高い電池性能をもたらすリチウムニッケル複合酸化物を得ることが可能となる。   The present inventors have obtained knowledge that it is important to sufficiently supply oxygen to a mixture in a temperature range where the temperature of the mixture is 550 ° C. or more and 650 ° or less. That is, although depending on the type of lithium compound, the solid-phase solid-phase reaction or the liquid-phase solid-phase reaction between the lithium compound and the nickel composite compound progressed most significantly in the temperature range of 550 to 650 ° C. In this temperature range, the oxygen necessary for the reaction is sufficiently distributed throughout the mixture, whereby a lithium nickel composite oxide that provides high battery performance can be obtained.

たとえば、原料として水酸化リチウムとニッケル複合酸化物とを用いた場合、これらの反応は、450℃付近から開始する。また、水酸化リチウムの融点は、480℃付近にあり、水酸化リチウムが溶融しながら、ニッケル複合酸化物と反応することとなる。該温度領域において、焼成容器の底部にまで十分な酸素拡散が行われない場合、未反応の溶融した水酸化リチウムがセラミック容器と反応してしまい、実質的にニッケル複合酸化物と化合する水酸化リチウムの量が不足し、生成したリチウムニッケル複合酸化物中に、電池反応を阻害する結晶が混入して、電池性能の低下を招くこととなる。   For example, when lithium hydroxide and nickel composite oxide are used as raw materials, these reactions start from around 450 ° C. The melting point of lithium hydroxide is around 480 ° C., and the lithium hydroxide reacts with the nickel composite oxide while melting. In this temperature region, if sufficient oxygen diffusion is not performed to the bottom of the firing vessel, the unreacted molten lithium hydroxide reacts with the ceramic vessel, so that it is substantially combined with the nickel composite oxide. The amount of lithium is insufficient, and crystals that inhibit the battery reaction are mixed in the produced lithium nickel composite oxide, leading to a decrease in battery performance.

しかしながら、反応開始温度付近では、反応速度が遅く、該反応は原料混合物の昇温に伴って進行するため、反応開始温度付近で保持しても効率が悪い。したがって、反応開始温度より高く、水酸化リチウムが溶融して十分な反応速度が得られる温度領域、すなわち、混合物が550℃以上となる温度において、酸素を十分に供給し顕著に反応を進行させることが重要である。   However, the reaction rate is slow near the reaction start temperature, and the reaction proceeds as the temperature of the raw material mixture rises. Therefore, even if the reaction mixture is held near the reaction start temperature, the efficiency is poor. Therefore, in a temperature range that is higher than the reaction start temperature and at which a sufficient reaction rate is obtained by melting lithium hydroxide, that is, a temperature at which the mixture becomes 550 ° C. or higher, oxygen is sufficiently supplied and the reaction proceeds significantly. is important.

一方、混合物の温度が650℃に到達した時点で、まだ未反応の水酸化リチウムとニッケル複合酸化物が存在し、かつ酸素が不足している場合には、下記式(2)の副反応が発生し、生成するリチウムニッケル複合酸化物結晶中に、電池反応時にLiイオンの移動を妨げる異相が生じるため、電池性能の劣化を招くことになる。   On the other hand, when the temperature of the mixture reaches 650 ° C., when unreacted lithium hydroxide and nickel composite oxide still exist and oxygen is insufficient, the side reaction of the following formula (2) is performed. Since a heterogeneous phase that prevents the movement of Li ions during the battery reaction occurs in the generated lithium nickel composite oxide crystal, the battery performance is deteriorated.

8NiO+2LiOH+1/2O2 → Li2Ni810+H2O (2) 8NiO + 2LiOH + 1 / 2O 2 → Li 2 Ni 8 O 10 + H 2 O (2)

ここで、焼成容器内に前記混合物を充填して焼成を行う場合、該混合物の厚さが大きくなるほど、焼成容器の上部開口側すなわち混合物の上面から、焼成容器の底部すなわち混合物の底の部分まで、酸素が拡散することが困難となり、一定の酸素分圧のもとでは混合物の厚さに応じた酸素拡散のための時間を確保することが必要である。本発明者は、検討の結果、混合物の厚さt(mm)と、酸素拡散に最低限必要とされる保持時間が所定の関係にあるとの知見を実験的に得たのである。すなわち、かかる最低限必要とされる保持時間(分)は、式:時間(分)=0.026t2−2.7により導かれる。 Here, when baking is performed by filling the mixture in the baking container, as the thickness of the mixture increases, from the upper opening side of the baking container, that is, the upper surface of the mixture, to the bottom part of the baking container, that is, the bottom part of the mixture It becomes difficult for oxygen to diffuse, and it is necessary to secure time for oxygen diffusion according to the thickness of the mixture under a constant oxygen partial pressure. As a result of the study, the present inventor has experimentally obtained the knowledge that the thickness t (mm) of the mixture and the retention time required for oxygen diffusion are in a predetermined relationship. That is, the minimum required holding time (minutes) is derived from the formula: time (minutes) = 0.026 t 2 −2.7.

混合物を550℃以上650℃以下の温度領域に保持する時間が、かかる最小保持時間を下回ると、2032型コイン電池からなる非水系電解質二次電池の正極材料として用いた場合に、該非水系電解質二次電池の1回目の放電容量が198mAh/g以上とならない。かかる温度領域における保持時間をさらに長くすると、得られる電池の1回目の放電容量はさらに向上するが、当該保持時間は、要求される電池性能やエネルギーコストなどから最小保持時間以上の時間で選択することができる。なお、混合物が上記温度領域にあることは、熱電対などを用いた実測により確認することができる。   If the time for holding the mixture in the temperature range of 550 ° C. or more and 650 ° C. or less is less than the minimum holding time, when the mixture is used as a positive electrode material for a non-aqueous electrolyte secondary battery comprising a 2032 type coin battery, the non-aqueous electrolyte 2 is used. The first discharge capacity of the secondary battery does not exceed 198 mAh / g. If the holding time in such a temperature range is further increased, the first discharge capacity of the obtained battery is further improved. However, the holding time is selected as a time longer than the minimum holding time from the required battery performance and energy cost. be able to. Note that the presence of the mixture in the temperature range can be confirmed by actual measurement using a thermocouple or the like.

このように、上記式から導かれる時間を下回らない最小保持時間で550℃以上650℃以下の温度領域を通過させることで、最も生産性が高く、かつ電池性能を損なわない正極活物質を効率よく生産することが可能となる。   Thus, by passing through a temperature range of 550 ° C. or more and 650 ° C. or less with a minimum holding time not less than the time derived from the above formula, the positive electrode active material that is most productive and does not impair battery performance can be efficiently obtained. It becomes possible to produce.

かかる最小保持時間は、具体的には、混合物の厚さtが40mmの場合に約40分、45mmの場合に約50分、50mmの場合に約62分、55mmの場合に約76分、60mmの場合に約91分、65mmの場合に約107分、70mmの場合に約125分である。   Specifically, the minimum holding time is about 40 minutes when the thickness t of the mixture is 40 mm, about 50 minutes when 45 mm, about 62 minutes when 50 mm, about 76 minutes and 60 mm when 55 mm. In the case of 65 mm, it takes about 107 minutes, and in the case of 70 mm, it takes about 125 minutes.

なお、上記式は、上述の通常用いられる焼成容器および通常の充填量の範囲の全体にわたって適用することが可能である。   It should be noted that the above formula can be applied over the above-described normally used firing container and the entire range of the normal filling amount.

ところで、550℃以上650℃以下の温度領域においては、該温度領域の範囲にある一定の温度で保持した場合でも、たとえば、一定速度で昇温させる場合のように、その範囲内で温度を変化させた場合でも、いずれも同一の効果を得ることができる。   By the way, in the temperature range of 550 ° C. or more and 650 ° C. or less, even when the temperature is kept at a certain temperature within the range of the temperature, the temperature is changed within that range, for example, when the temperature is raised at a constant speed. Even in such a case, the same effect can be obtained.

また、この反応は基本的に酸素を必要とする反応であるから、焼成炉内の酸素濃度は高い方が好ましいことはいうまでもない。焼成工程はその全体にわたり酸素を含む雰囲気(大気、酸素ガスなど)で行われるが、本発明では、焼成炉内の酸素濃度が60容量%以上となるようにする。焼成工程における酸素濃度が60容量%未満では、リチウム化合物とニッケル複合化合物との反応が、酸素の拡散律速から酸素の濃度律速となり、反応が十分に進行しないためである。   In addition, since this reaction basically requires oxygen, it is needless to say that a higher oxygen concentration in the firing furnace is preferable. The firing process is performed in an atmosphere (oxygen, oxygen gas, etc.) containing oxygen throughout, but in the present invention, the oxygen concentration in the firing furnace is set to 60% by volume or more. This is because when the oxygen concentration in the firing step is less than 60% by volume, the reaction between the lithium compound and the nickel composite compound is changed from the oxygen diffusion rate-determining method to the oxygen concentration-limiting method, and the reaction does not proceed sufficiently.

本発明では、少なくとも、特に反応が顕著に進む550℃以上650℃以下の温度領域における焼成炉内の酸素濃度を80容量%以上とすることが好ましい。この際の焼成炉内の酸素濃度が80容量%未満である場合には、上記式から導かれる時間を上回って、該温度領域での保持時間を確保した場合であっても、焼成容器の底の部分まで酸素が十分に拡散しない可能性がある。このため、不十分な拡散に起因して、焼成物に異相が生じて、電池性能の悪化を招くことを確実に防止するためには、該酸素濃度を80容量%とすることが好ましい。   In the present invention, it is preferable that the oxygen concentration in the firing furnace is at least 80% by volume at least in a temperature range of 550 ° C. or more and 650 ° C. or less where the reaction is particularly remarkable. In this case, when the oxygen concentration in the firing furnace is less than 80% by volume, the bottom of the firing container is exceeded even when the holding time in the temperature region is secured beyond the time derived from the above formula. There is a possibility that oxygen does not diffuse sufficiently to the part. For this reason, in order to prevent reliably that a heterogeneous phase arises in a baked product and causes deterioration of battery performance due to insufficient diffusion, the oxygen concentration is preferably 80% by volume.

上記温度領域において、上記式で導かれる以上の時間で反応させれば、基本的な反応は完了してリチウムニッケル複合酸化物が得られる。しかしながら、リチウムニッケル複合酸化物の合成において、十分な結晶性と高い電池性能を発揮させるためには、焼成における混合物の最高到達温度を650℃以上800℃以下とすることが好ましく、該最高温度に混合物を保持する時間は4時間以上であることが好ましい。最高到達温度が650℃未満の場合、もしくは、当該温度以上でも保持時間が4時間未満の場合では、得られたリチウムニッケル複合酸化物の結晶性が十分とならない場合があり、一方、800℃を超えると生成したリチウムニッケル複合酸化物が分解を開始し、層状構造が乱れて電池性能を悪化させてしまう場合がある。なお、最高温度での保持時間は、全体の焼成時間を考慮すると、8時間以下とすることが好ましい。また、最高温度への混合物の保持は、熱電対などを用いた実測により確認することができる。   If the reaction is carried out in the above temperature range for a time longer than that derived from the above formula, the basic reaction is completed and a lithium nickel composite oxide is obtained. However, in order to exhibit sufficient crystallinity and high battery performance in the synthesis of the lithium nickel composite oxide, it is preferable that the maximum temperature of the mixture in the firing is 650 ° C. or more and 800 ° C. or less, and the maximum temperature is reached. The time for holding the mixture is preferably 4 hours or more. If the maximum temperature reached is less than 650 ° C, or if the retention time is less than 4 hours even if the temperature is higher than the temperature, the resulting lithium nickel composite oxide may not have sufficient crystallinity. When it exceeds, the produced lithium nickel composite oxide starts to decompose, and the layered structure may be disturbed to deteriorate the battery performance. The holding time at the maximum temperature is preferably 8 hours or less in consideration of the entire baking time. Moreover, the retention of the mixture at the maximum temperature can be confirmed by actual measurement using a thermocouple or the like.

ある程度以上長い時間をかけて合成すれば、十分な結晶性を維持し、かつ電池性能を損なわずに合成することが可能であるが、工業的な生産性を考慮した場合、無駄に焼成時間を長くすることは好ましくない。したがって、混合物の入った焼成容器が焼成用の炉に入ってから出てくるまで、すなわち、加熱開始から最高温度への到達およびその保持を経由して冷却が完了する(焼成物の温度が150℃以下となる)までの工程全体の時間(焼成時間)は、24時間以下とすることが好ましい。一方、温度を急激に上昇させると、焼成容器内の混合物の温度が不均一となり、反応も均一にならない場合があるため、前記加熱開始から冷却完了までの時間(焼成時間)は、12時間以上とすることが好ましい。   If synthesis is performed over a certain period of time, it is possible to maintain sufficient crystallinity and synthesize without impairing the battery performance. It is not preferable to make it longer. Therefore, cooling is completed until the baking container containing the mixture enters the furnace for baking and comes out, that is, reaches the maximum temperature from the start of heating and holds it (the temperature of the baking product is 150 ° C.). It is preferable that the time (firing time) of the whole process until it becomes (C or less) be 24 hours or less. On the other hand, if the temperature is rapidly increased, the temperature of the mixture in the baking container becomes non-uniform and the reaction may not be uniform. Therefore, the time from the start of heating to the completion of cooling (baking time) is 12 hours or more. It is preferable that

本発明の製造方法においては、前記混合物の原料となるニッケル複合酸化物の平均粒径を8〜20μmの範囲内とする。平均粒径が8μm未満では、得られる正極活物質物の粒径も小さくなり、容積あたりの充填量が少なく、電池の容量が低下する。また、焼成中に焼結が生じやすく、粗大な正極活物質が生成されて電池特性が低下する。一方、平均粒径が20μmを超えても、正極活物質間の接点が少なく、正極の抵抗が上昇して、電池容量が低下する。また、ニッケル複合化合物とリチウム化合物を混合して得られる混合物の嵩密度を1.0〜2.2g/mlの範囲内とする。嵩密度が1.0g/ml未満では、焼成容器へ一定量充填する際に必要な焼成容器の必要容量が大きくなりすぎて、生産性を著しく低下させる。一方、嵩密度が2.2g/mlを超えると、混合物が密に詰まることで酸素拡散が遅くなり、焼成に必要な時間が延びて生産性を低下させる。   In the manufacturing method of this invention, the average particle diameter of the nickel composite oxide used as the raw material of the said mixture shall be in the range of 8-20 micrometers. When the average particle size is less than 8 μm, the particle size of the obtained positive electrode active material is also small, the filling amount per volume is small, and the capacity of the battery is reduced. Further, sintering is likely to occur during firing, and a coarse positive electrode active material is generated, resulting in deterioration of battery characteristics. On the other hand, even if the average particle diameter exceeds 20 μm, there are few contacts between the positive electrode active materials, the resistance of the positive electrode is increased, and the battery capacity is decreased. In addition, the bulk density of the mixture obtained by mixing the nickel composite compound and the lithium compound is set in the range of 1.0 to 2.2 g / ml. When the bulk density is less than 1.0 g / ml, the necessary capacity of the firing container necessary for filling a certain amount into the firing container becomes too large, and the productivity is remarkably lowered. On the other hand, when the bulk density exceeds 2.2 g / ml, the mixture is densely packed, so that the oxygen diffusion is slowed down, and the time required for firing is extended to reduce the productivity.

混合物の原料として用いるリチウム化合物は、特に限定されるものではないが、水酸化リチウムまたは炭酸リチウムが好ましく、融点が480℃付近にある水酸化リチウムまたは水酸化リチウム水和物が、ニッケル複合酸化物との反応を考慮すると特に好ましい。水酸化リチウムが溶融し、ニッケル複合酸化物と固液反応することでより、均一に反応が進むからである。   The lithium compound used as a raw material of the mixture is not particularly limited, but lithium hydroxide or lithium carbonate is preferable, and lithium hydroxide or lithium hydroxide hydrate having a melting point near 480 ° C. is a nickel composite oxide. In view of the reaction with This is because lithium hydroxide melts and reacts with the nickel composite oxide in a solid-liquid reaction, so that the reaction proceeds more uniformly.

また、混合物の原料として用いるニッケル複合化合物も、特に限定されるものではないが、反応中に水以外の副反応物を生成しないという観点から、ニッケル複合水酸化物またはニッケル複合酸化物が好ましい。   Further, the nickel composite compound used as a raw material of the mixture is not particularly limited, but nickel composite hydroxide or nickel composite oxide is preferable from the viewpoint that no side reaction product other than water is generated during the reaction.

本発明の製造方法においては、焼成によって得られたリチウムニッケル複合酸化物を水洗することで、リチウムニッケル複合酸化物粒子表面の余剰のリチウムが除去され、高容量で安全性が高い非水系電解質二次電池用正極活物質となる。ここで、水洗方法としては、公知の技術が用いられる。   In the production method of the present invention, the lithium nickel composite oxide obtained by firing is washed with water, so that excess lithium on the surface of the lithium nickel composite oxide particles is removed, and the high capacity and high safety of the non-aqueous electrolyte 2 is obtained. It becomes a positive electrode active material for a secondary battery. Here, a known technique is used as the water washing method.

たとえば、水洗する際のスラリー濃度として、好ましくは、質量比で水1に対してリチウムニッケル複合酸化物を0.5〜2投入し、リチウムニッケル複合酸化物粒子表面の余剰のリチウムが十分に除去される間、撹拌した後、固液分離して乾燥すればよい。スラリー濃度が質量比で2を超えると、粘度も非常に高いため攪拌が困難となるばかりか、液中のアルカリが高いので平衡の関係から付着物の溶解速度が遅くなったり、剥離が起きても粉末からの分離が難しくなったりすることがある。一方、スラリー濃度が質量比で0.5未満では、希薄過ぎるためリチウムの溶出量が多く、正極活物質の結晶格子中からのリチウムの脱離も起きるようになり、結晶が崩れやすくなるばかりか、高pHの水溶液が大気中の炭酸ガスを吸収して炭酸リチウムを再析出する。   For example, as a slurry concentration at the time of washing with water, it is preferable that 0.5 to 2 of lithium nickel composite oxide is added to water 1 by mass ratio, and excess lithium on the surface of lithium nickel composite oxide particles is sufficiently removed. While stirring, after stirring, solid-liquid separation may be performed and dried. When the slurry concentration exceeds 2 by mass, the viscosity is very high and stirring becomes difficult, and because the alkali in the liquid is high, the dissolution rate of the deposit is slowed or peeled off due to equilibrium. May be difficult to separate from the powder. On the other hand, if the slurry concentration is less than 0.5 by mass ratio, the amount of lithium elution is large because it is too dilute, and lithium is desorbed from the crystal lattice of the positive electrode active material, so that the crystal is easily broken. The aqueous solution having a high pH absorbs carbon dioxide in the atmosphere and reprecipitates lithium carbonate.

上記水洗に使用する水は、特に限定されるものではないが、電気伝導率測定で10μS/cm未満の水が好ましく、1μS/cm以下の水がより好ましい。すなわち、電気伝導率測定で10μS/cm未満の水を使用することにより、正極活物質への不純物の付着による電池性能の低下を防止することが可能となる。   Although the water used for the said water washing is not specifically limited, The water of less than 10 microsiemens / cm is preferable by electrical conductivity measurement, and the water of 1 microsiemens / cm or less is more preferable. That is, by using water of less than 10 μS / cm in electrical conductivity measurement, it is possible to prevent a decrease in battery performance due to adhesion of impurities to the positive electrode active material.

上記スラリーの固液分離時の粒子表面に残存する付着水は少ないことが好ましい。付着水が多いと、液中に溶解したリチウムが再析出し、乾燥後のリチウムニッケル複合酸化物粉末の表面に存在するリチウム量が増加する。固液分離には、通常に用いられる遠心機、フィルタープレスなどが用いられる。   It is preferable that the amount of adhering water remaining on the particle surface during the solid-liquid separation of the slurry is small. When there is much adhering water, the lithium melt | dissolved in the liquid will reprecipitate and the amount of lithium which exists on the surface of the lithium nickel composite oxide powder after drying will increase. For solid-liquid separation, a commonly used centrifuge, filter press, or the like is used.

乾燥の温度は、特に限定されるものではないが、好ましくは80〜550℃、さらに好ましくは120〜350℃である。80℃以上とするのは、水洗後の正極活物質を素早く乾燥し、粒子表面と粒子内部とでリチウム濃度の勾配が起こることを防ぐためである。一方、正極活物質の表面付近では化学量論比にきわめて近いか、もしくは若干リチウムが脱離して充電状態に近い状態になっていることが予想されるので、550℃を超える温度では、充電状態に近い粉末の結晶構造が崩れる契機になり、電気特性の低下を招くおそれがある。さらに、生産性および熱エネルギーコストをも考慮すると、120〜350℃がより好ましい。このとき、乾燥方法としては、濾過後の粉末を、炭素および硫黄を含む化合物成分を含有しないガス雰囲気下、または真空雰囲気下に制御できる乾燥機を用いて、所定の温度で行なうことが好ましい。   Although the temperature of drying is not specifically limited, Preferably it is 80-550 degreeC, More preferably, it is 120-350 degreeC. The reason why the temperature is set to 80 ° C. or higher is to quickly dry the positive electrode active material after washing with water and prevent a gradient of lithium concentration from occurring between the particle surface and the inside of the particle. On the other hand, near the surface of the positive electrode active material, it is expected that it is very close to the stoichiometric ratio, or is slightly desorbed from lithium and close to the charged state. As a result, the crystal structure of the powder that is close to is broken, and the electrical characteristics may be deteriorated. Furthermore, considering productivity and thermal energy cost, 120 to 350 ° C. is more preferable. At this time, as a drying method, it is preferable to perform the filtered powder at a predetermined temperature using a dryer that can be controlled in a gas atmosphere not containing a compound component containing carbon and sulfur or in a vacuum atmosphere.

本発明は、さまざまなリチウムニッケル複合酸化物から構成される、非水系電解質二次電池用の正極活物質の工業的な製造に適用することが可能であるが、特に、その組成が、一般式:LixNi(1-y-z)Coyz2(式中、Mは、Al、Tiの中から選ばれる少なくとも1種の元素を表し、x、y、zはそれぞれ、0.90≦x≦1.10、0.05≦y≦0.35、0.005≦z≦0.15を満たす)で表されるリチウムニッケル複合酸化物に好適に適用される。 The present invention can be applied to industrial production of a positive electrode active material for a non-aqueous electrolyte secondary battery composed of various lithium-nickel composite oxides. : Li x Ni (1-yz) Co y M z O 2 (wherein M represents at least one element selected from Al and Ti, and x, y, and z are each 0.90 ≦ x ≦ 1.10, 0.05 ≦ y ≦ 0.35, and 0.005 ≦ z ≦ 0.15).

上記リチウムニッケル複合酸化物の原料となる、ニッケル複合水酸化物またはニッケル複合酸化物は、公知の方法に基づいて得ることができる。たとえば、ニッケルとコバルトおよび添加元素Mを共沈させることによりニッケル複合水酸化物を得ることができる。さらに、ニッケル複合水酸化物を酸化焙焼することにより、コバルトおよび添加元素Mが酸化ニッケルに固溶しているニッケル複合酸化物が得られる。ただし、ニッケル酸化物とその他の添加元素の酸化物を粉砕混合するなどのその他の手段によっても得ることは可能である。   The nickel composite hydroxide or nickel composite oxide, which is a raw material for the lithium nickel composite oxide, can be obtained based on a known method. For example, a nickel composite hydroxide can be obtained by coprecipitation of nickel, cobalt, and additive element M. Furthermore, by oxidizing and baking the nickel composite hydroxide, a nickel composite oxide in which cobalt and the additive element M are dissolved in nickel oxide can be obtained. However, it can be obtained by other means such as pulverizing and mixing nickel oxide and oxides of other additive elements.

本発明が提供する非水系電解質二次電池用の正極活物質は、上記製造方法で得られるものであり、非水系電解質二次電池に用いられた場合には、高容量で安全性の高い電池となる。   The positive electrode active material for a non-aqueous electrolyte secondary battery provided by the present invention is obtained by the above-described manufacturing method. When used in a non-aqueous electrolyte secondary battery, the battery has a high capacity and high safety. It becomes.

特に、本発明の非水系電解質二次電池用の正極活物質は、これを正極材料として用いた場合の非水系電解質二次電池の1回目の放電容量が198mAh/g以上と、従来よりも極めて高容量の非水系電解質二次電池を工業的に生産することを可能とするものである。   In particular, the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has a discharge capacity of 198 mAh / g or more at the first discharge of the non-aqueous electrolyte secondary battery when this is used as a positive electrode material. This makes it possible to industrially produce a high-capacity nonaqueous electrolyte secondary battery.

なお、1回目の放電容量の測定には、たとえば、2032型コイン電池を用いることができる。この2032型コイン電池としては、活物質粉末90質量%にアセチレンブラック5質量%およびポリ沸化ビニリデン(PVDF)5質量%を混合し、得られた混合物にN−メチル−2−ピロリドン(NMP)を加えペースト化し、得られたペーストを20μm厚のアルミニウム箔に乾燥後の活物質質量が0.05g/cm2となるように塗布し、120℃で真空乾燥を行った後、直径1cmの円板状に打ち抜いて得た正極と、リチウム金属からなる負極と、1mol/LのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)との等量混合溶液からなる電解液と、ポリエチレンからなり、該電解液を染み込ませたセパレータとを用い、露点が−80℃に管理されたアルゴン雰囲気のグローブボックス中でこれらを組み立てて作製したものを用いる。 For example, a 2032 type coin battery can be used for the first measurement of the discharge capacity. As this 2032 type coin battery, 90% by mass of active material powder was mixed with 5% by mass of acetylene black and 5% by mass of polyvinylidene fluoride (PVDF), and the resulting mixture was mixed with N-methyl-2-pyrrolidone (NMP). The paste obtained was applied to a 20 μm thick aluminum foil so that the mass of the active material after drying was 0.05 g / cm 2 , vacuum-dried at 120 ° C., and then a 1 cm diameter circle A positive electrode obtained by punching into a plate, a negative electrode made of lithium metal, and an electrolytic solution comprising an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1 mol / L LiClO 4 as a supporting salt; , A glove box in an argon atmosphere using a separator made of polyethylene and impregnated with the electrolytic solution, the dew point of which is controlled at -80 ° C In use a disk produced by assembling them.

測定に際しては、作製した二次電池を24時間程度放置し、開回路電圧(OCV)を安定させた後に、正極に対する電流密度を0.5mA/cm2とし、カットオフ電圧4.3〜3.0Vで充放電試験を行う。 In the measurement, the fabricated secondary battery was left for about 24 hours to stabilize the open circuit voltage (OCV), the current density with respect to the positive electrode was set to 0.5 mA / cm 2 , and the cutoff voltage was 4.3 to 3. A charge / discharge test is performed at 0V.

本発明の非水系電解質二次電池は、上述した本発明の正極活物質を正極材料として適用する点に特徴を有する。以下、本発明の非水電解質二次電池について説明する。   The non-aqueous electrolyte secondary battery of the present invention is characterized in that the above-described positive electrode active material of the present invention is applied as a positive electrode material. Hereinafter, the nonaqueous electrolyte secondary battery of the present invention will be described.

本発明の非水電解質二次電池は、上記リチウムニッケル複合酸化物からなる正極活物質、特に、上記製造方法により得られたリチウムニッケル複合酸化物を正極活物質として用いて、正極を作製し、これを組み込んでなる高容量で安全性の高い非水電解質二次電池である。   The nonaqueous electrolyte secondary battery of the present invention is a positive electrode active material comprising the above lithium nickel composite oxide, in particular, using the lithium nickel composite oxide obtained by the above production method as a positive electrode active material, producing a positive electrode, This is a non-aqueous electrolyte secondary battery with high capacity and high safety.

ここで、本発明の非水電解質二次電池に用いる正極の作製方法について説明するが、これに特に限定されるものではない。たとえば、正極活物質粒子と結着剤とを含む正極合剤を、帯状の正極芯材(正極集電体)に担持させた正極が作製される。なお、正極合剤には、他に、導電材などの添加剤を任意成分として含ませることもできる。正極合剤の芯材への担持は、正極合剤を液状成分に分散させてペーストを調製し、ペーストを芯材に塗工し、乾燥させることにより行なわれる。   Here, although the manufacturing method of the positive electrode used for the nonaqueous electrolyte secondary battery of this invention is demonstrated, it does not specifically limit to this. For example, a positive electrode in which a positive electrode mixture containing positive electrode active material particles and a binder is supported on a belt-like positive electrode core material (positive electrode current collector) is produced. In addition, the positive electrode mixture can also contain an additive such as a conductive material as an optional component. The positive electrode mixture is supported on the core material by dispersing the positive electrode mixture in a liquid component to prepare a paste, coating the paste on the core material, and drying the paste.

前記正極合剤の結着剤としては、熱可塑性樹脂または熱硬化性樹脂のいずれを用いてもよいが、熱可塑性樹脂が好ましい。前記熱可塑性樹脂としては、たとえば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−アクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体などが挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、これらは、Na+イオンなどによる架橋体であってもよい。 As the binder of the positive electrode mixture, either a thermoplastic resin or a thermosetting resin may be used, but a thermoplastic resin is preferable. Examples of the thermoplastic resin include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene- Perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoro Ethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTF) ), Vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene -A methyl acrylate copolymer, an ethylene-methyl methacrylate copolymer, etc. are mentioned. These may be used alone or in combination of two or more. These may be cross-linked products of Na + ions and the like.

前記正極合剤の導電材としては、電池内で化学的に安定な電子伝導性材料であればいずれでもよい。たとえば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類、アルミニウムなどの金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリフェニレン誘導体などの有機導電性材料、フッ化カーボンなどを用いることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。   The conductive material of the positive electrode mixture may be any electron conductive material that is chemically stable in the battery. For example, graphite such as natural graphite (such as flake graphite), artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and conductive such as carbon fiber and metal fiber Use conductive fibers, metal powders such as aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, organic conductive materials such as polyphenylene derivatives, carbon fluoride, etc. Can do. These may be used alone or in combination of two or more.

前記正極合剤の導電材の添加量としては、特に限定されるものではなく、正極合剤に含まれる正極活物質粒子に対して、0.5〜50質量%が好ましく、0.5〜30質量%がより好ましく、0.5〜15質量%がさらに好ましい。   The addition amount of the conductive material of the positive electrode mixture is not particularly limited, and is preferably 0.5 to 50% by mass with respect to the positive electrode active material particles contained in the positive electrode mixture, and 0.5 to 30%. % By mass is more preferable, and 0.5 to 15% by mass is more preferable.

前記正極芯材(正極集電体)としては、電池内で化学的に安定な電子伝導体であればいずれでもよい。たとえば、アルミニウム、ステンレス鋼、ニッケル、チタン、炭素、導電性樹脂などからなる箔またはシートを用いることができ、この中でアルミニウム箔、アルミニウム合金箔がより好ましい。ここで、箔またはシートの表面には、カーボンまたはチタンの層を付与したり、酸化物層を形成したりすることもできる。また、箔またはシートの表面に凹凸を付与することもでき、ネット、パンチングシート、ラス体、多孔質体、発泡体、繊維群成形体などを用いることもできる。   The positive electrode core material (positive electrode current collector) may be any electron conductor that is chemically stable in the battery. For example, a foil or sheet made of aluminum, stainless steel, nickel, titanium, carbon, conductive resin, or the like can be used, and among these, aluminum foil and aluminum alloy foil are more preferable. Here, a carbon or titanium layer or an oxide layer can be formed on the surface of the foil or sheet. Further, irregularities can be imparted to the surface of the foil or sheet, and a net, a punching sheet, a lath body, a porous body, a foamed body, a fiber group molded body, and the like can also be used.

前記正極芯材の厚さは、特に限定されるものではなく、たとえば、厚さが1〜500μmのものを用いることができる。   The thickness of the positive electrode core material is not particularly limited, and for example, a thickness of 1 to 500 μm can be used.

次に、本発明の非水電解質二次電池に用いる正極以外の構成要素について説明する。ただし、本発明の非水電解質二次電池は、上記正極活物質を用いる点に特徴を有するものであり、その他の構成要素は特に限定されるものではない。   Next, components other than the positive electrode used in the nonaqueous electrolyte secondary battery of the present invention will be described. However, the nonaqueous electrolyte secondary battery of the present invention is characterized in that the positive electrode active material is used, and other components are not particularly limited.

まず、負極としては、リチウムを充放電することができるものが用いられ、たとえば、負極活物質と結着剤を含み、任意成分として導電材や増粘剤を含む負極合剤を負極芯材に担持させたものを用いることができる。このような負極は、正極と同様の方法で作製することができる。   First, as the negative electrode, those capable of charging and discharging lithium are used. For example, a negative electrode mixture containing a negative electrode active material and a binder and a conductive material and a thickener as optional components is used as a negative electrode core material. What was carried can be used. Such a negative electrode can be produced in the same manner as the positive electrode.

前記負極活物質としては、リチウムを電気化学的に充放電し得る材料であればよい。たとえば、黒鉛類、難黒鉛化性炭素材料、リチウム合金などを用いることができる。前記リチウム合金は、ケイ素、スズ、アルミニウム、亜鉛およびマグネシウムよりなる群から選ばれる少なくとも1種の元素を含む合金が好ましい。   The negative electrode active material may be any material that can electrochemically charge and discharge lithium. For example, graphites, non-graphitizable carbon materials, lithium alloys and the like can be used. The lithium alloy is preferably an alloy containing at least one element selected from the group consisting of silicon, tin, aluminum, zinc and magnesium.

前記負極活物質の平均粒径は、特に限定されるものではなく、たとえば、平均粒径が1〜30μmのものが用いられる。   The average particle diameter of the negative electrode active material is not particularly limited, and, for example, one having an average particle diameter of 1 to 30 μm is used.

前記負極合剤の結着剤としては、熱可塑性樹脂または熱硬化性樹脂のいずれを用いてもよいが、熱可塑性樹脂が好ましい。前記熱可塑性樹脂としては、たとえば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−アクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体などが挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、これらは、Na+イオンなどによる架橋体であってもよい。 As the binder of the negative electrode mixture, either a thermoplastic resin or a thermosetting resin may be used, but a thermoplastic resin is preferable. Examples of the thermoplastic resin include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene- Perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoro Ethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTF) ), Vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene -A methyl acrylate copolymer, an ethylene-methyl methacrylate copolymer, etc. are mentioned. These may be used alone or in combination of two or more. These may be cross-linked products of Na + ions and the like.

前記負極合剤の導電材としては、電池内で化学的に安定な電子伝導性材料であればいずれでもよい。たとえば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅、ニッケルなどの金属粉末類、ポリフェニレン誘導体などの有機導電性材料などを用いることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。   The conductive material of the negative electrode mixture may be any electron conductive material that is chemically stable in the battery. For example, graphite such as natural graphite (such as flake graphite), artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and conductive such as carbon fiber and metal fiber For example, conductive fibers, metal powders such as copper and nickel, and organic conductive materials such as polyphenylene derivatives can be used. These may be used alone or in combination of two or more.

前記導電材の添加量としては、特に限定されるものではなく、負極合剤に含まれる負極活物質粒子に対して、1〜30質量%が好ましく、1〜10質量%がより好ましい。   The addition amount of the conductive material is not particularly limited, and is preferably 1 to 30% by mass and more preferably 1 to 10% by mass with respect to the negative electrode active material particles contained in the negative electrode mixture.

前記負極芯材(負極集電体)としては、電池内で化学的に安定な電子伝導体であればいずれでもよい。たとえば、ステンレス鋼、ニッケル、銅、チタン、炭素、導電性樹脂などからなる箔またはシートを用いることができ、銅および銅合金が好ましい。箔またはシートの表面には、カーボン、チタン、ニッケルなどの層を付与したり、酸化物層を形成したりすることもできる。また、箔またはシートの表面に凹凸を付与することもでき、ネット、パンチングシート、ラス体、多孔質体、発泡体、繊維群成形体などを用いることもできる。   The negative electrode core material (negative electrode current collector) may be any electronic conductor that is chemically stable in the battery. For example, a foil or sheet made of stainless steel, nickel, copper, titanium, carbon, conductive resin, or the like can be used, and copper and a copper alloy are preferable. On the surface of the foil or sheet, a layer of carbon, titanium, nickel or the like can be provided, or an oxide layer can be formed. Further, irregularities can be imparted to the surface of the foil or sheet, and a net, a punching sheet, a lath body, a porous body, a foamed body, a fiber group molded body, and the like can also be used.

前記負極芯材の厚さは、特に限定されるものではなく、たとえば、厚さが1〜500μmのものが用いられる。   The thickness of the said negative electrode core material is not specifically limited, For example, the thickness of 1-500 micrometers is used.

次に、非水電解液としては、リチウム塩を溶解した非水溶媒が好ましい。また、非水溶媒としては、たとえば、エチレンカーボネ−ト(EC)、プロピレンカ−ボネ−ト(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)などの鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類、γ−ブチロラクトン、γ−バレロラクトンなどのラクトン類、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)などの鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、ジメチルスルホキシド、N−メチル−2−ピロリドンなどを用いることができる。これらは単独で用いてもよいが、二種以上を混合して用いることが好ましい。なかでも、環状カーボネートと鎖状カーボネートとの混合溶媒、または環状カーボネートと鎖状カーボネートと脂肪族カルボン酸エステルとの混合溶媒が好ましい。   Next, as the non-aqueous electrolyte, a non-aqueous solvent in which a lithium salt is dissolved is preferable. Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC). ), Chain carbonates such as diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate, ethyl propionate, Lactones such as γ-butyrolactone and γ-valerolactone, chain ethers such as 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), tetrahydrofuran, 2 -Methyltetrahydrofuran etc. Cyclic ethers, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, dimethyl sulfoxide, N-methyl-2- Pyrrolidone or the like can be used. These may be used alone, but it is preferable to use a mixture of two or more. Among these, a mixed solvent of a cyclic carbonate and a chain carbonate, or a mixed solvent of a cyclic carbonate, a chain carbonate, and an aliphatic carboxylic acid ester is preferable.

前記リチウム塩としては、たとえば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiAsF6、LiN(CF3SO22、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウム、リチウムイミド塩などを挙げることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、少なくともLiPF6を用いることが好ましい。 Examples of the lithium salt include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6 , LiN. (CF 3 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl, LiBr, LiI, lithium chloroborane, lithium tetraphenylborate, lithium imide salt and the like can be mentioned. These may be used alone or in combination of two or more. It is preferable to use at least LiPF 6 .

前記非水溶媒中のリチウム塩濃度としては、特に限定されるものではなく、0.2〜2mol/Lが好ましく、0.5〜1.5mol/Lがより好ましい。   The lithium salt concentration in the non-aqueous solvent is not particularly limited, but is preferably 0.2 to 2 mol / L, and more preferably 0.5 to 1.5 mol / L.

前記非水電解液には、電池の充放電特性を改良する目的で、種々の添加剤を添加することができる。添加剤としては、たとえば、トリエチルフォスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ピリジン、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、クラウンエーテル類、第四級アンモニウム塩、エチレングリコールジアルキルエーテルなどを挙げることができる。   Various additives can be added to the non-aqueous electrolyte in order to improve the charge / discharge characteristics of the battery. Examples of additives include triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, pyridine, hexaphosphoric triamide, nitrobenzene derivatives, crown ethers, quaternary ammonium salts, ethylene glycol dialkyl ether, and the like. be able to.

また、正極と負極との間には、セパレータが介在される。セパレータとしては、大きなイオン透過度と所定の機械的強度を持ち、かつ絶縁性である微多孔性薄膜が好ましい。この微多孔性薄膜としては、一定温度以上で孔を閉塞し、抵抗を上昇させる機能を持つものが好ましい。また、微多孔性薄膜の材質としては、耐有機溶剤性に優れ、疎水性を有するポリプロピレン、ポリエチレンなどのポリオレフィンが好ましく用いられる。また、ガラス繊維などから作製されたシート、不織布、織布なども用いられる。   A separator is interposed between the positive electrode and the negative electrode. As the separator, a microporous thin film having a high ion permeability, a predetermined mechanical strength, and an insulating property is preferable. The microporous thin film preferably has a function of closing the pores at a certain temperature or higher and increasing the resistance. As a material for the microporous thin film, polyolefin such as polypropylene and polyethylene having excellent resistance to organic solvents and hydrophobicity is preferably used. In addition, a sheet made of glass fiber or the like, a nonwoven fabric, a woven fabric, or the like is also used.

前記セパレータの孔径は、たとえば、0.01〜1μmである。また、セパレータの厚さは、一般的には、10〜300μmである。また、セパレータの空孔率は、一般的には、30〜80%である。   The pore diameter of the separator is, for example, 0.01 to 1 μm. Moreover, generally the thickness of a separator is 10-300 micrometers. Moreover, the porosity of the separator is generally 30 to 80%.

さらに、非水電解液およびこれを保持するポリマー材料からなるポリマー電解質を、セパレータとして正極または負極と一体化させて用いることもできる。このポリマー材料としては、非水電解液を保持することができるものであればよいが、特にフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体が好ましい。   Furthermore, a non-aqueous electrolyte and a polymer electrolyte made of a polymer material that holds the non-aqueous electrolyte can be used as a separator integrated with a positive electrode or a negative electrode. The polymer material is not particularly limited as long as it can hold the nonaqueous electrolytic solution, but a copolymer of vinylidene fluoride and hexafluoropropylene is particularly preferable.

以上、説明してきた正極、負極、セパレータおよび非水系電解液で構成され、本発明に係る非水系電解質二次電池の形状は、円筒型、積層型など、種々のものとすることができる。   The positive electrode, negative electrode, separator, and non-aqueous electrolyte solution that have been described above can be used, and the non-aqueous electrolyte secondary battery according to the present invention can have various shapes such as a cylindrical type and a laminated type.

いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、この電極体に前記非水系電解液を含浸させる。正極集電体と外部に通ずる正極端子との間、並びに負極集電体と外部に通ずる負極端子との間を、集電用リードなどを用いて接続する。以上の構成のものを電池ケースに密閉して電池を完成させることができる。   In any case, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the electrode body is impregnated with the non-aqueous electrolyte solution. A current collector lead or the like is used to connect between the positive electrode current collector and the positive electrode terminal communicating with the outside, and between the negative electrode current collector and the negative electrode terminal communicating with the outside. The battery having the above structure can be sealed in a battery case to complete the battery.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

(実施例1)
正極活物質を合成するため、市販の水酸化リチウム一水和物(LiOH・H2O)と、ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶してなり、平均粒径が15μmである金属複合水酸化物(Ni0.82Co0.15Al0.032)とを、リチウムとリチウム以外の金属とのモル比が1.02:1.00となるように秤量した後、十分に混合した。なお、得られた混合粉末の嵩密度は1.1g/mlであった。
Example 1
In order to synthesize the positive electrode active material, a commercial lithium hydroxide monohydrate (LiOH.H 2 O) and a solid solution of nickel, cobalt, and aluminum at a molar ratio of 82: 15: 3 were obtained. After weighing a metal composite hydroxide (Ni 0.82 Co 0.15 Al 0.03 O 2 ) having a thickness of 15 μm so that the molar ratio of lithium to a metal other than lithium is 1.02: 1.00, Mixed. In addition, the bulk density of the obtained mixed powder was 1.1 g / ml.

この混合粉末を、内寸が301mm(L)×301mm(W)×102mm(H)の焼成容器に厚さが40mmとなるように装入し、これを連続式の焼成炉であるローラーハースキルンを用いて、酸素濃度85容量%の雰囲気中で、雰囲気の温度を500℃から780℃まで、一定速度で7.5時間かけて昇温し、780℃で7時間保持する、温度パターンで焼成を行った。この際、混合物に熱電対を挿入して実測した混合物自体の550℃以上650℃以下の温度領域における保持時間は110分であり、また、実測された焼結物の最高到達温度は780℃で、その保持時間は7時間であった。また、混合物が焼成炉に入ってから出るまでに要した時間(焼成開始から冷却完了までの時間)は、20時間であった。なお、焼成炉から出たときの焼成物の温度は110〜140℃であった。   This mixed powder is charged into a firing container having an internal size of 301 mm (L) × 301 mm (W) × 102 mm (H) so that the thickness is 40 mm, and this is a roller firing kiln which is a continuous firing furnace. In an atmosphere having an oxygen concentration of 85% by volume, the temperature of the atmosphere is increased from 500 ° C. to 780 ° C. at a constant rate for 7.5 hours and held at 780 ° C. for 7 hours. Went. At this time, the retention time in the temperature range of 550 ° C. or more and 650 ° C. or less of the mixture itself measured by inserting a thermocouple into the mixture is 110 minutes, and the maximum reached temperature of the measured sintered product is 780 ° C. The retention time was 7 hours. Further, the time required for the mixture to enter and exit from the baking furnace (time from the start of baking to the completion of cooling) was 20 hours. In addition, the temperature of the baked product when leaving the baking furnace was 110 to 140 ° C.

得られた焼成物を、質量比で水1に対し1.5となるように、純水に投入してスラリーとし、30分間の撹拌後、濾過、乾燥して正極活物質を得た。   The obtained fired product was put into pure water so as to have a mass ratio of 1.5 with respect to water 1 to make a slurry, stirred for 30 minutes, filtered and dried to obtain a positive electrode active material.

次に、得られた正極活物質として用い、図1に示すような二次電池を、以下の方法で作製した。   Next, using the obtained positive electrode active material, a secondary battery as shown in FIG. 1 was produced by the following method.

まず、活物質粉末90質量%にアセチレンブラック5質量%およびポリ沸化ビニリデン(PVDF)5質量%を混合し、得られた混合物にN−メチル−2−ピロリドン(NMP)を加えペースト化した。これを20μm厚のアルミニウム箔に乾燥後の活物質質量が0.05g/cm2となるように塗布し、120℃で真空乾燥を行った後、直径1cmの円板状に打ち抜いて正極とした。 First, 5% by mass of acetylene black and 5% by mass of polyvinylidene fluoride (PVDF) were mixed with 90% by mass of the active material powder, and N-methyl-2-pyrrolidone (NMP) was added to the resulting mixture to make a paste. This was applied to a 20 μm thick aluminum foil so that the mass of the active material after drying was 0.05 g / cm 2 , vacuum-dried at 120 ° C., and then punched into a disk shape having a diameter of 1 cm to obtain a positive electrode. .

また、負極としてリチウム金属を適用し、電解液には1mol/LのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)との等量混合溶液を用いた。そして、ポリエチレンからなるセパレータに電解液を染み込ませ、露点が−80℃に管理されたアルゴン雰囲気のグローブボックス中で、図1に示すような2032型のコイン電池を作製した。 Further, lithium metal was applied as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1 mol / L LiClO 4 as a supporting salt was used as the electrolyte. Then, a 2032 type coin battery as shown in FIG. 1 was produced in a glove box in an argon atmosphere in which a separator made of polyethylene was impregnated with an electrolytic solution and the dew point was controlled at −80 ° C.

作製した二次電池は24時間程度放置し、開回路電圧(OCV)が安定した後、正極に対する電流密度を0.5mA/cm2とし、カットオフ電圧4.3〜3.0Vで充放電試験を行い、1回目の放電容量を測定した。 The produced secondary battery is left for about 24 hours, and after the open circuit voltage (OCV) is stabilized, the current density with respect to the positive electrode is 0.5 mA / cm 2 and the charge / discharge test is performed at a cutoff voltage of 4.3 to 3.0 V. The first discharge capacity was measured.

混合物の550℃以上650℃以下の温度領域での保持時間(T1)および1回目の放電容量を、式:時間(分)=0.026t2−2.7により求められる最小保持時間(T2)と併せて、表1に示す。 The holding time (T1) in the temperature range of 550 ° C. or more and 650 ° C. or less and the first discharge capacity of the mixture are determined by the formula: time (min) = 0.026 t 2 −2.7 Minimum holding time (T2) Table 1 also shows.

(実施例2)
焼成容器に装入した混合物の厚さを45mmとした以外は、実施例1と同様にして正極活物質を得るとともに、得られた電池の評価を行った。混合物の550℃以上650℃以下の温度領域での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Example 2)
A positive electrode active material was obtained in the same manner as in Example 1 except that the thickness of the mixture charged in the firing container was changed to 45 mm, and the obtained battery was evaluated. Table 1 shows the holding time (T1) and the first discharge capacity in the temperature range of 550 ° C. or more and 650 ° C. or less, together with the minimum holding time (T2).

(実施例3)
焼成容器に装入した混合物の厚さを50mmとした以外は、実施例1と同様にして正極活物質を得るとともに、得られた電池の評価を行った。混合物の550℃以上650℃以下の温度領域での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Example 3)
A positive electrode active material was obtained in the same manner as in Example 1 except that the thickness of the mixture charged in the firing container was 50 mm, and the obtained battery was evaluated. Table 1 shows the holding time (T1) and the first discharge capacity in the temperature range of 550 ° C. or more and 650 ° C. or less, together with the minimum holding time (T2).

(実施例4)
焼成容器に装入した混合物の厚さを55mmとした以外は、実施例1と同様にして正極活物質を得るとともに、得られた電池の評価を行った。混合物の550℃以上650℃以下での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
Example 4
A positive electrode active material was obtained in the same manner as in Example 1 except that the thickness of the mixture charged in the baking container was changed to 55 mm, and the obtained battery was evaluated. Table 1 shows the holding time (T1) of the mixture at 550 ° C. or more and 650 ° C. or less and the first discharge capacity together with the minimum holding time (T2).

(実施例5)
焼成容器に装入した混合物の厚さを60mmとした以外は、実施例1と同様にして正極活物質を得るとともに、得られた電池の評価を行った。混合物の550℃以上650℃以下での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Example 5)
A positive electrode active material was obtained in the same manner as in Example 1 except that the thickness of the mixture charged in the firing container was changed to 60 mm, and the obtained battery was evaluated. Table 1 shows the holding time (T1) of the mixture at 550 ° C. or more and 650 ° C. or less and the first discharge capacity together with the minimum holding time (T2).

(実施例6)
焼成容器に装入した混合物の厚さを40mmとしたこと、雰囲気の温度を600℃から780℃まで一定速度で9時間かけて昇温して、780℃で4時間保持する、温度パターンで焼成した以外は、実施例1と同様にして正極活物質を得るとともに、得られた電池の評価を行った。実測した混合物の550℃以上650℃以下の温度範囲における保持時間は60分であり、実測された混合物の最高到達温度およびその保持時間は780℃で4時間であった。また、混合物が焼成炉に入ってから出るまでに要した時間は18.5時間であった。混合物の550℃以上650℃以下の温度領域での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Example 6)
The thickness of the mixture charged in the baking container was 40 mm, the temperature of the atmosphere was increased from 600 ° C. to 780 ° C. over 9 hours at a constant rate, and held at 780 ° C. for 4 hours. Except for the above, a positive electrode active material was obtained in the same manner as in Example 1, and the obtained battery was evaluated. The retention time of the actually measured mixture in the temperature range of 550 ° C. to 650 ° C. was 60 minutes, and the maximum reached temperature and the retention time of the actually measured mixture were 4 hours at 780 ° C. The time required for the mixture to enter and exit from the firing furnace was 18.5 hours. Table 1 shows the holding time (T1) and the first discharge capacity in the temperature range of 550 ° C. or more and 650 ° C. or less, together with the minimum holding time (T2).

(実施例7)
焼成容器に装入した混合物の厚さを45mmとしたこと以外は、実施例6と同様にして正極活物質を得るとともに、得られた電池の評価を行った。混合物の550℃以上650℃以下での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Example 7)
A positive electrode active material was obtained in the same manner as in Example 6 except that the thickness of the mixture charged in the firing container was 45 mm, and the obtained battery was evaluated. Table 1 shows the holding time (T1) of the mixture at 550 ° C. or more and 650 ° C. or less and the first discharge capacity together with the minimum holding time (T2).

(比較例1)
焼成容器に装入した混合物の厚さを50mmとしたこと以外は、実施例6と同様にして正極活物質を得るとともに、得られた電池の評価を行った。混合物の550℃以上650℃以下での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Comparative Example 1)
A positive electrode active material was obtained in the same manner as in Example 6 except that the thickness of the mixture charged in the firing container was set to 50 mm, and the obtained battery was evaluated. Table 1 shows the holding time (T1) of the mixture at 550 ° C. or more and 650 ° C. or less and the first discharge capacity together with the minimum holding time (T2).

(比較例2)
焼成容器に装入した混合物の厚さを55mmとしたこと以外は、実施例6と同様にして正極活物質を得るとともに、得られた電池の評価を行った。混合物の550℃以上650℃以下での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Comparative Example 2)
A positive electrode active material was obtained in the same manner as in Example 6 except that the thickness of the mixture charged in the baking container was 55 mm, and the obtained battery was evaluated. Table 1 shows the holding time (T1) of the mixture at 550 ° C. or more and 650 ° C. or less and the first discharge capacity together with the minimum holding time (T2).

(比較例3)
焼成容器に装入した混合物の厚さを60mmとしたこと以外は、実施例6と同様にして正極活物質を得るとともに、得られた電池の評価を行った。混合物の550℃以上650℃以下での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Comparative Example 3)
A positive electrode active material was obtained in the same manner as in Example 6 except that the thickness of the mixture charged in the baking container was 60 mm, and the obtained battery was evaluated. Table 1 shows the holding time (T1) of the mixture at 550 ° C. or more and 650 ° C. or less and the first discharge capacity together with the minimum holding time (T2).

(実施例8)
焼成容器に装入した混合物の厚さを40mmとしたこと、雰囲気を600℃から780℃まで一定速度で4時間かけて昇温して、780℃で10時間保持する、温度パターンで焼成したこと以外は、実施例1と同様にして正極活物質を得るとともに、得られた電池の評価を行った。実測した混合物の550℃以上650℃以下の温度領域における保持時間は60分であり、実測された混合物の最高到達温度およびその保持時間は、780℃で10時間であった。また、混合物が焼成炉に入ってから出るまでに要した時間は19.5時間であった。混合物の550℃以上650℃以下の温度領域での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Example 8)
The thickness of the mixture charged in the firing container was 40 mm, the atmosphere was heated from 600 ° C. to 780 ° C. at a constant rate over 4 hours, and kept at 780 ° C. for 10 hours. Except for the above, the positive electrode active material was obtained in the same manner as in Example 1, and the obtained battery was evaluated. The retention time in the temperature range of 550 ° C. to 650 ° C. of the actually measured mixture was 60 minutes, and the maximum reached temperature and the retention time of the actually measured mixture were 10 hours at 780 ° C. The time required for the mixture to enter and exit from the firing furnace was 19.5 hours. Table 1 shows the holding time (T1) and the first discharge capacity in the temperature range of 550 ° C. or more and 650 ° C. or less, together with the minimum holding time (T2).

(比較例4)
焼成容器に装入した混合物の厚さを45mmとした以外は、実施例8と同様にして正極活物質を得るとともに、得られた電池の評価を行った。混合物の550℃以上650℃以下での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Comparative Example 4)
A positive electrode active material was obtained in the same manner as in Example 8 except that the thickness of the mixture charged in the baking container was changed to 45 mm, and the obtained battery was evaluated. Table 1 shows the holding time (T1) of the mixture at 550 ° C. or more and 650 ° C. or less and the first discharge capacity together with the minimum holding time (T2).

(比較例5)
焼成容器に装入した混合物の厚さを50mmとした以外は、実施例8と同様にして正極活物質を得るとともに、得られた電池の評価を行った。混合物の550℃以上650℃以下での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Comparative Example 5)
A positive electrode active material was obtained in the same manner as in Example 8 except that the thickness of the mixture charged in the firing container was changed to 50 mm, and the obtained battery was evaluated. Table 1 shows the holding time (T1) of the mixture at 550 ° C. or more and 650 ° C. or less and the first discharge capacity together with the minimum holding time (T2).

(比較例6)
焼成容器に装入した混合物の厚さを55mmとした以外は、実施例8と同様にして正極活物質を得るとともに、得られた電池の評価を行った。混合物の550℃以上650℃以下での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Comparative Example 6)
A positive electrode active material was obtained in the same manner as in Example 8, except that the thickness of the mixture charged in the firing container was 55 mm, and the obtained battery was evaluated. Table 1 shows the holding time (T1) of the mixture at 550 ° C. or more and 650 ° C. or less and the first discharge capacity together with the minimum holding time (T2).

(比較例7)
焼成容器に装入した混合物の厚さを60mmとした以外は、実施例8と同様にして正極活物質を得るとともに、得られた電池の評価を行った。混合物の550℃以上650℃以下での保持時間(T1)および1回目の放電容量を、最小保持時間(T2)と併せて、表1に示す。
(Comparative Example 7)
A positive electrode active material was obtained in the same manner as in Example 8 except that the thickness of the mixture charged in the firing container was changed to 60 mm, and the obtained battery was evaluated. Table 1 shows the holding time (T1) of the mixture at 550 ° C. or more and 650 ° C. or less and the first discharge capacity together with the minimum holding time (T2).

Figure 2011146309
(評価)
1)550℃〜650℃の保持時間が同じであれば混合物の厚さが小さいほど、混合物の厚さが同じであれば550℃〜650℃の保持時間が長いほど、電池の1回目の放電容量は高い傾向がある。
Figure 2011146309
(Evaluation)
1) When the holding time of 550 ° C. to 650 ° C. is the same, the smaller the thickness of the mixture, and the same the thickness of the mixture, the longer the holding time of 550 ° C. to 650 ° C., the first discharge of the battery Capacity tends to be high.

2)作製された各実施例ならびに比較例に係る二次電池を評価したところ、これら実施例の電池の1回目の放電容量は、比較例に比較して概ね良好であり、いずれも198mAh/g以上の高い放電容量を示している。   2) When the fabricated secondary batteries according to the examples and comparative examples were evaluated, the first discharge capacity of the batteries of these examples was generally better than the comparative examples, both of which were 198 mAh / g. The above high discharge capacity is shown.

(実施例9)
焼成容器に装入した混合物の厚さ(t)を40〜60mmで変化させるとともに、500℃から780℃までの昇温速度を調整することで、550℃以上650℃以下の温度領域における保持時間を変化させたこと以外は、実施例1と同様にして、正極活物質を得るとともに、得られた電池の評価を行った。1回目の放電容量が198mAh/g以上のものを良好(○)、198mAh/g未満のものを不良(×)と評価して、横軸に混合物の厚さ(mm)、縦軸に550℃以上650℃以下の温度領域での保持時間(分)を取り、得られたそれぞれの結果を図2に示す。図2から198mAh/g以上の容量を有するような混合物の厚さt(mm)と550℃以上650℃以下の温度領域での保持時間T1(分)の関係を見積もると、最小保持時間(T2;分)=0.026t2−2.7となった。
Example 9
While changing the thickness (t) of the mixture charged in the baking container at 40 to 60 mm and adjusting the temperature increase rate from 500 ° C. to 780 ° C., the holding time in the temperature range of 550 ° C. to 650 ° C. A positive electrode active material was obtained and the obtained battery was evaluated in the same manner as in Example 1 except that was changed. When the first discharge capacity is 198 mAh / g or more, it is evaluated as good (◯), and when the discharge capacity is less than 198 mAh / g, it is evaluated as poor (x). The holding time (minute) in the temperature range of 650 ° C. or lower is taken, and the obtained results are shown in FIG. When the relationship between the thickness t (mm) of the mixture having a capacity of 198 mAh / g or more and the holding time T1 (min) in the temperature range of 550 ° C. to 650 ° C. is estimated from FIG. 2, the minimum holding time (T2 ; Min) = 0.026 t 2 -2.7.

なお、保持時間を0.030t2(分)以上とすると、1回目の放電容量が200mAh/gを上回る傾向が、保持時間を0.040t2(分)以上とすると、1回目の放電容量が202mAh/gを上回る傾向が見られた。 If the holding time is 0.030 t 2 (min) or more, the first discharge capacity tends to exceed 200 mAh / g. If the holding time is 0.040 t 2 (min) or more, the first discharge capacity is A tendency to exceed 202 mAh / g was observed.

量産性に優れていながら、常に198mAh/g以上という高い初期放電容量を有しているという本発明の非水系電解質二次電池のメリットを活かすためには、常に高容量を要求される小型携帯電子機器の電源としての用途が好適である。   In order to take advantage of the non-aqueous electrolyte secondary battery of the present invention that always has a high initial discharge capacity of 198 mAh / g or more while being excellent in mass productivity, small portable electronic devices that always require high capacity Use as a power source for equipment is preferred.

また、電気自動車用の電源としてリチウムイオン二次電池が普及するためには電池の低コスト化が不可欠であるが、量産性に優れるという本発明の正極活物質を用いることで低コスト化が可能となり、その工業的価値は極めて大きいといえる。なお、電気自動車用の電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジンなどの燃焼機関と併用する、いわゆるハイブリッド車の電源として用いることをも含む。   In addition, in order for lithium-ion secondary batteries to become popular as power sources for electric vehicles, it is essential to reduce the cost of the batteries, but it is possible to reduce the cost by using the positive electrode active material of the present invention that is excellent in mass productivity. Therefore, it can be said that its industrial value is extremely large. The power source for electric vehicles includes not only a purely electric vehicle driven by electric energy but also a so-called hybrid vehicle power source used in combination with a combustion engine such as a gasoline engine or a diesel engine.

1 正極
2 負極
3 セパレータ
4 ガスケット
5 正極缶
6 負極缶
B コイン電池
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Gasket 5 Positive electrode can 6 Negative electrode can B Coin battery

Claims (10)

リチウムニッケル複合酸化物から構成される非水系電解質二次電池用の正極活物質の製造方法であって、平均粒径が8〜20μmであるニッケル複合化合物と、リチウム化合物とを混合して得られる、嵩密度が1.0〜2.2g/mlである混合物を、焼成容器に充填して焼成する工程において、該混合物を焼成容器に入れたときの厚さをt(mm)としたときに、該混合物の温度が550℃以上650℃以下の温度領域に保持される時間を、式:時間(分)=0.026t2−2.7により求められる最小保持時間以上として、酸素濃度が60容量%以上の酸化性雰囲気中で該混合物の焼成を行い、得られた焼成物を水洗することを特徴とする、非水系電解質二次電池用正極活物質の製造方法。 A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium nickel composite oxide, obtained by mixing a nickel composite compound having an average particle size of 8 to 20 μm and a lithium compound In the step of filling a mixture with a bulk density of 1.0 to 2.2 g / ml into a firing container and firing, the thickness when the mixture is placed in the firing container is t (mm). The time during which the temperature of the mixture is maintained in the temperature range of 550 ° C. or higher and 650 ° C. or lower is set to be equal to or longer than the minimum holding time determined by the formula: time (minutes) = 0.026 t 2 −2.7, and the oxygen concentration is 60 A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the mixture is fired in an oxidizing atmosphere having a capacity of at least% and the resulting fired product is washed with water. 前記酸素濃度が80容量%以上の雰囲気中で、前記混合物を前記温度領域に保持する、請求項1に記載の非水系電解質二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the mixture is maintained in the temperature region in an atmosphere having an oxygen concentration of 80% by volume or more. 前記焼成工程において、前記混合物の到達する最高温度が650℃以上800℃以下であり、かつ該最高温度での保持時間が4時間以上である、請求項1または2に記載の非水系電解質二次電池用正極活物質の製造方法。   3. The non-aqueous electrolyte secondary according to claim 1, wherein in the firing step, the maximum temperature reached by the mixture is 650 ° C. or more and 800 ° C. or less, and the holding time at the maximum temperature is 4 hours or more. A method for producing a positive electrode active material for a battery. 前記焼成工程において、前記混合物の加熱開始から冷却完了までの時間が24時間以下である、請求項1〜3のいずれかに記載の非水系電解質二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein in the firing step, the time from the start of heating of the mixture to the completion of cooling is 24 hours or less. 前記リチウム化合物が、水酸化リチウムまたは水酸化リチウム水和物である、請求項1〜4のいずれかに記載の非水系電解質二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium compound is lithium hydroxide or lithium hydroxide hydrate. 前記ニッケル複合化合物が、ニッケル複合酸化物またはニッケル複合水酸化物である、請求項1〜5のいずれかに記載の非水系電解質二次電池用正極活物質の製造方法。   The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries in any one of Claims 1-5 whose said nickel complex compound is nickel complex oxide or nickel complex hydroxide. 前記リチウムニッケル複合酸化物の組成が、一般式:LixNi(1-y-z)Coyz2(式中、Mは、Al、Tiの中から選ばれた少なくとも1種の元素を表し、x、y、zはそれぞれ、0.90≦x≦1.10、0.05≦y≦0.35、0.005≦z≦0.15を満たす)で表される、請求項1〜6のいずれかに記載の非水系電解質二次電池用正極活物質の製造方法。 The composition of the lithium nickel composite oxide has a general formula: Li x Ni (1-yz) Co y M z O 2 (wherein M represents at least one element selected from Al and Ti). , X, y, and z satisfy 0.90 ≦ x ≦ 1.10, 0.05 ≦ y ≦ 0.35, and 0.005 ≦ z ≦ 0.15, respectively. 6. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of 6 above. 請求項1〜7のいずれかに記載の製造方法により得られた非水系電解質二次電池用正極活物質。   A positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the production method according to claim 1. 2032型コイン電池からなる非水系電解質二次電池の正極材料として用いた場合に、該非水系電解質二次電池の1回目の放電容量が198mAh/g以上となる、請求項8に記載の非水系電解質二次電池用正極活物質。   The non-aqueous electrolyte according to claim 8, wherein when used as a positive electrode material of a non-aqueous electrolyte secondary battery comprising a 2032 type coin battery, the first discharge capacity of the non-aqueous electrolyte secondary battery is 198 mAh / g or more. Positive electrode active material for secondary battery. 請求項8または9に記載の非水系電解質二次電池用正極活物質を正極材料として用いていることを特徴とする非水系電解質二次電池。   A non-aqueous electrolyte secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 8 as a positive electrode material.
JP2010007477A 2010-01-15 2010-01-15 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material Active JP5512296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010007477A JP5512296B2 (en) 2010-01-15 2010-01-15 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010007477A JP5512296B2 (en) 2010-01-15 2010-01-15 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material

Publications (2)

Publication Number Publication Date
JP2011146309A true JP2011146309A (en) 2011-07-28
JP5512296B2 JP5512296B2 (en) 2014-06-04

Family

ID=44460976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010007477A Active JP5512296B2 (en) 2010-01-15 2010-01-15 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material

Country Status (1)

Country Link
JP (1) JP5512296B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092898A (en) * 2016-11-25 2018-06-14 住友金属鉱山株式会社 Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
WO2019087558A1 (en) * 2017-10-30 2019-05-09 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and method for evaluating lithium metal composite oxide powder
CN109987649A (en) * 2013-01-28 2019-07-09 住友金属矿山株式会社 Nickel complex hydroxide particle, active material for anode of secondary cell and their manufacturing method and secondary cell
JP2019172510A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Molded body, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
WO2019194150A1 (en) 2018-04-02 2019-10-10 住友金属鉱山株式会社 Positive electrode active substance for lithium ion secondary battery and method for producing same
WO2020145116A1 (en) 2019-01-10 2020-07-16 住友金属鉱山株式会社 Method for producing positive electrode active material for lithium ion secondary battery, and molded article
JP2020173934A (en) * 2019-04-09 2020-10-22 株式会社田中化学研究所 Lithium composite oxide
WO2021153400A1 (en) 2020-01-30 2021-08-05 パナソニックIpマネジメント株式会社 Method for producing lithium transition metal complex oxide
CN113711394A (en) * 2019-05-20 2021-11-26 株式会社吴羽 Positive electrode mixture for lithium ion secondary battery, method for producing same, and method for producing lithium ion secondary battery
US11569504B2 (en) 2017-11-21 2023-01-31 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary batteries and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6673538B2 (en) * 2017-11-21 2020-03-25 日立金属株式会社 Method for producing positive electrode active material for lithium ion secondary battery and heat treatment apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072446A (en) * 1998-08-21 2000-03-07 Sumitomo Metal Mining Co Ltd PRODUCTION OF LiNiO2-BASED LAMINAR MULTIPLE OXIDE
JP2000123829A (en) * 1998-10-20 2000-04-28 Sumitomo Chem Co Ltd Manufacture of lithium ion secondary battery active material
JP2000173599A (en) * 1998-12-10 2000-06-23 Matsushita Electric Ind Co Ltd Manufacture of active material for lithium secondary battery positive electrode and lithium secondary battery
JP2007257985A (en) * 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method and nonaqueous electrolyte secondary battery using it
JP2008198363A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2009525578A (en) * 2006-03-30 2009-07-09 インダスタトリー− ユニヴァーシティ コーポレイション ファウンデーション ハンヤン ユニヴァーシティ Positive electrode active material for lithium battery, method for producing positive electrode active material, and lithium battery including positive electrode active material
JP2010024085A (en) * 2008-07-18 2010-02-04 Sumitomo Metal Mining Co Ltd Method for producing lithium nickel composite oxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072446A (en) * 1998-08-21 2000-03-07 Sumitomo Metal Mining Co Ltd PRODUCTION OF LiNiO2-BASED LAMINAR MULTIPLE OXIDE
JP2000123829A (en) * 1998-10-20 2000-04-28 Sumitomo Chem Co Ltd Manufacture of lithium ion secondary battery active material
JP2000173599A (en) * 1998-12-10 2000-06-23 Matsushita Electric Ind Co Ltd Manufacture of active material for lithium secondary battery positive electrode and lithium secondary battery
JP2007257985A (en) * 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method and nonaqueous electrolyte secondary battery using it
JP2009525578A (en) * 2006-03-30 2009-07-09 インダスタトリー− ユニヴァーシティ コーポレイション ファウンデーション ハンヤン ユニヴァーシティ Positive electrode active material for lithium battery, method for producing positive electrode active material, and lithium battery including positive electrode active material
JP2008198363A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2010024085A (en) * 2008-07-18 2010-02-04 Sumitomo Metal Mining Co Ltd Method for producing lithium nickel composite oxide

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109987649A (en) * 2013-01-28 2019-07-09 住友金属矿山株式会社 Nickel complex hydroxide particle, active material for anode of secondary cell and their manufacturing method and secondary cell
CN109987649B (en) * 2013-01-28 2023-10-31 住友金属矿山株式会社 Nickel composite hydroxide particles, positive electrode active material for secondary battery, method for producing same, and secondary battery
JP2018092898A (en) * 2016-11-25 2018-06-14 住友金属鉱山株式会社 Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
JPWO2019087558A1 (en) * 2017-10-30 2020-11-26 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, method for evaluating lithium metal composite oxide powder
WO2019087558A1 (en) * 2017-10-30 2019-05-09 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and method for evaluating lithium metal composite oxide powder
CN111279530A (en) * 2017-10-30 2020-06-12 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing positive electrode active material for nonaqueous electrolyte secondary battery, and method for evaluating lithium metal composite oxide powder
JP7143855B2 (en) 2017-10-30 2022-09-29 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, evaluation method for lithium metal composite oxide powder
US11569504B2 (en) 2017-11-21 2023-01-31 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary batteries and method for producing same
JP2019172510A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Molded body, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
CN111936425A (en) * 2018-04-02 2020-11-13 住友金属矿山株式会社 Positive electrode active material for lithium ion secondary battery and method for producing same
KR20200138256A (en) 2018-04-02 2020-12-09 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof
JPWO2019194150A1 (en) * 2018-04-02 2021-04-15 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries and its manufacturing method
WO2019194150A1 (en) 2018-04-02 2019-10-10 住友金属鉱山株式会社 Positive electrode active substance for lithium ion secondary battery and method for producing same
JP7276324B2 (en) 2018-04-02 2023-05-18 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and method for producing the same
KR102658626B1 (en) * 2018-04-02 2024-04-19 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for lithium ion secondary battery and method for producing the same
WO2020145116A1 (en) 2019-01-10 2020-07-16 住友金属鉱山株式会社 Method for producing positive electrode active material for lithium ion secondary battery, and molded article
JP2020173934A (en) * 2019-04-09 2020-10-22 株式会社田中化学研究所 Lithium composite oxide
JP7308649B2 (en) 2019-04-09 2023-07-14 株式会社田中化学研究所 lithium composite oxide
CN113711394A (en) * 2019-05-20 2021-11-26 株式会社吴羽 Positive electrode mixture for lithium ion secondary battery, method for producing same, and method for producing lithium ion secondary battery
WO2021153400A1 (en) 2020-01-30 2021-08-05 パナソニックIpマネジメント株式会社 Method for producing lithium transition metal complex oxide

Also Published As

Publication number Publication date
JP5512296B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
US11251428B2 (en) Positive electrode active material manufacturing method with control of washing slurry liquid electrical conductivity
JP5512296B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5008328B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5100024B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
KR101728570B1 (en) Positive electrode active material, method for producing same, and nonaqueous electrolyte secondary battery using same
CN109987649B (en) Nickel composite hydroxide particles, positive electrode active material for secondary battery, method for producing same, and secondary battery
KR102202822B1 (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
JP5638542B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2017117700A (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP7336648B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP7056659B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery
WO2019102766A1 (en) Positive electrode active material for lithium ion secondary batteries and method for producing same
JP2018092898A (en) Method of producing positive electrode active material for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5512296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250