JP2011145518A - Zoom lens and imaging device having the same - Google Patents

Zoom lens and imaging device having the same Download PDF

Info

Publication number
JP2011145518A
JP2011145518A JP2010006810A JP2010006810A JP2011145518A JP 2011145518 A JP2011145518 A JP 2011145518A JP 2010006810 A JP2010006810 A JP 2010006810A JP 2010006810 A JP2010006810 A JP 2010006810A JP 2011145518 A JP2011145518 A JP 2011145518A
Authority
JP
Japan
Prior art keywords
lens
refractive power
lens group
zoom
zoom lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010006810A
Other languages
Japanese (ja)
Other versions
JP5473621B2 (en
JP2011145518A5 (en
Inventor
Takashi Okada
隆志 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010006810A priority Critical patent/JP5473621B2/en
Publication of JP2011145518A publication Critical patent/JP2011145518A/en
Publication of JP2011145518A5 publication Critical patent/JP2011145518A5/ja
Application granted granted Critical
Publication of JP5473621B2 publication Critical patent/JP5473621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a zoom lens which has a wide image angle and high optical performance in the entire zoom areas. <P>SOLUTION: The zoom lens includes, in order from an object side to an image side: a first lens group having negative refractive power; a second lens group having positive refractive power; a third lens group having negative refractive power; and a fourth lens group having positive refractive power, and zooms by moving at least one of the lens groups along the optical axis. At least one of the lens groups, having positive refractive power, includes at least one diffraction optical part, the average refractive index NDP_ave at d-line of a positive lens material among the lens groups having positive refractive power having the diffraction optical part; the focal distance fD of the lens groups having positive refractive power having the diffraction optical part; the focal distances fw, ft at the wide angle end and telescopic end of the zoom lens; and the focal distances f1, f3 of the first lens group and the third lens group are respectively set appropriately. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ズームレンズ及びそれを有する撮像装置に関し、デジタルカメラ、ビデオカメラ、TVカメラ、銀塩フィルム用カメラ等の撮影系に好適なものである。   The present invention relates to a zoom lens and an image pickup apparatus having the same, and is suitable for a photographing system such as a digital camera, a video camera, a TV camera, and a silver salt film camera.

近年、デジタルカメラやビデオカメラ等の撮像装置に用いられている撮像素子は高画素化が進んでいる。このような撮像素子を備える撮像装置で用いる撮影レンズには、白色光源において像の色のにじみがないように色収差も良好に補正されたズーム範囲全般にわたり、高解像力なズームレンズであることが要求されている。また、撮影領域拡大のため、広角側における撮影画角が広画角であるズームレンズであることが望まれている。   In recent years, the number of pixels of an image sensor used in an image pickup apparatus such as a digital camera or a video camera has been increased. A photographic lens used in an image pickup apparatus having such an image pickup device is required to be a zoom lens having a high resolution over the entire zoom range in which chromatic aberration is well corrected so that there is no blurring of an image color in a white light source. Has been. In addition, in order to expand the photographing area, it is desired that the zoom lens has a wide field angle on the wide angle side.

広画角のズームレンズとして、物体側に負の屈折力のレンズ群が位置するネガティブリード型のズームレンズが知られている。ネガティブリード型のズームレンズは、全系の焦点距離を短くしても、バックフォーカスを長くすることが容易である等の特長がある。このため一眼レフカメラに多用されている。   As a wide-angle zoom lens, a negative lead type zoom lens in which a lens unit having a negative refractive power is positioned on the object side is known. The negative lead type zoom lens has a feature that it is easy to increase the back focus even if the focal length of the entire system is shortened. For this reason, it is frequently used in single-lens reflex cameras.

一眼レフカメラ用のネガティブリード型のズームレンズとして、物体側から順に負、正、負、正の屈折力の4つのレンズ群より構成し各レンズ群を移動させてズーミングを行ったズームレンズが知られている(特許文献1)。特許文献1には、高次の倍率色収差および回折光によるフレアを抑えたズームレンズが開示されている。このズームレンズはサジタル像面湾曲の曲がりが良好に補正されている。   As a negative lead type zoom lens for single-lens reflex cameras, there is a zoom lens that consists of four lens groups of negative, positive, negative, and positive refractive power in order from the object side, and zoomed by moving each lens group. (Patent Document 1). Patent Document 1 discloses a zoom lens in which high-order lateral chromatic aberration and flare caused by diffracted light are suppressed. In this zoom lens, the bending of the sagittal field curvature is well corrected.

また、物体側から像側へ順に負、正、負、正、正の屈折力の少なくとも5つのレンズ群を有し、各レンズ群を移動させてズーミングを行い、色収差の補正のために回折光学素子を用いたズームレンズが知られている(特許文献2)。特許文献2には、各レンズ群の構成および回折光学素子の配置を最適とすることにより、ズーム領域全域に渡って倍率色収差を良好に補正したズームレンズが開示されている。このズームレンズは望遠端の低像高の非点収差が良好に補正されている。   In addition, there are at least five lens groups of negative, positive, negative, positive, and positive refractive power in order from the object side to the image side. Each lens group is moved to perform zooming, and diffractive optics is used to correct chromatic aberration. A zoom lens using an element is known (Patent Document 2). Patent Document 2 discloses a zoom lens in which the chromatic aberration of magnification is favorably corrected over the entire zoom region by optimizing the configuration of each lens group and the arrangement of the diffractive optical elements. In this zoom lens, astigmatism at a low image height at the telephoto end is well corrected.

特開2002−244044号公報Japanese Patent Laid-Open No. 2002-244044 特開2002−156582号公報JP 2002-156582 A

近年、デジタル一眼レフカメラ用のズームレンズには、撮影画角が広画角で撮影される像が高画質であることが強く求められている。一般に、ネガティブリード型のズームレンズは、広画角化には有利である。   In recent years, zoom lenses for digital single-lens reflex cameras are strongly demanded to have high image quality for images taken with a wide angle of view. In general, a negative lead type zoom lens is advantageous for widening the angle of view.

しかしながらネガティブリード型のズームレンズでは、光学系のパワー配置が入射瞳を挟んで非対称になりやすい。このため、広角側において画面周辺部での光学性能の劣化、すなわち収差で言い換えると像面弯曲、非点隔差そして歪曲等の諸収差の発生が多くなる。又、倍率色収差の補正上、正レンズに低屈折率低分散な材料が使われることが多い。この結果、ペッツバール和が正の方向に大きくなり望遠側において低像高の非点収差の補正が困難となる。   However, in a negative lead type zoom lens, the power arrangement of the optical system tends to be asymmetric with respect to the entrance pupil. For this reason, on the wide-angle side, the deterioration of the optical performance at the periphery of the screen, that is, the occurrence of various aberrations such as field curvature, astigmatism and distortion increases in other words. Further, in order to correct lateral chromatic aberration, a material having a low refractive index and low dispersion is often used for the positive lens. As a result, the Petzval sum increases in the positive direction, making it difficult to correct astigmatism with a low image height on the telephoto side.

広画角化を図りつつ色収差を低減し、かつ色収差以外の諸収差を良好に補正し、ズーム全域で良好なる光学性能を得るには、ズームレンズを構成する各レンズ群を適切に設定することが重要になってくる。特に各レンズ群の屈折力を適切に設定し、またレンズ群中に回折光学素子を適切なる状態で配置することが重要になってくる。   To reduce chromatic aberration while widening the angle of view, correct various aberrations other than chromatic aberration, and obtain good optical performance over the entire zoom range, set each lens group constituting the zoom lens appropriately. Becomes important. In particular, it is important to appropriately set the refractive power of each lens group and to arrange the diffractive optical element in an appropriate state in the lens group.

例えば物体側より像側へ順に、負、正、負、正の屈折力のレンズ群より成るズームレンズでは、第1、第3レンズ群の屈折力や回折光学素子を含むレンズ群の屈折力等を適切に設定することが重要になってくる。これらの構成が不適切であると、広角端において倍率色収差が多く発生し、又ズーム範囲全般にわたり高い光学性能を得るのが困難になってくる。   For example, in a zoom lens including lens units having negative, positive, negative, and positive refractive power in order from the object side to the image side, the refractive power of the first and third lens groups, the refractive power of the lens group including the diffractive optical element, and the like It is important to set up properly. If these configurations are inappropriate, a large amount of lateral chromatic aberration occurs at the wide-angle end, and it becomes difficult to obtain high optical performance over the entire zoom range.

本発明は広画角で、全ズーム領域で高い光学性能を有したズームレンズの提供を目的とする。   An object of the present invention is to provide a zoom lens having a wide angle of view and high optical performance in the entire zoom range.

本発明のズームレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有し、少なくとも1つのレンズ群を光軸に沿って移動させることによりズーミングを行うズームレンズであって、
前記正の屈折力のレンズ群のうち少なくとも1つのレンズ群は回折光学部を少なくとも1つ有し、前記回折光学部を有する正の屈折力のレンズ群内の正レンズの材料のd線における平均屈折率をNDP_ave、前記回折光学部を有する正の屈折力のレンズ群の焦点距離をfD、前記ズームレンズの広角端および望遠端における焦点距離を各々fw、ft、前記第1レンズ群と第3レンズ群の焦点距離をf1、f3とするとき、
0.4<│NDP_ave/fD×√(fw・ft)│<1.0
1.8<f3/f1<4.0
なる条件を満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a positive lens having a positive refractive power. A zoom lens having a fourth lens group and performing zooming by moving at least one lens group along the optical axis,
At least one of the positive refractive power lens groups has at least one diffractive optical portion, and the average of the materials of the positive lenses in the positive refractive power lens group having the diffractive optical portion at the d-line. The refractive index is NDP_ave, the focal length of the positive refractive power lens group having the diffractive optical unit is fD, the focal lengths at the wide-angle end and the telephoto end of the zoom lens are fw and ft, respectively, and the first lens group and the third lens group When the focal length of the lens group is f1 and f3,
0.4 <| NDP_ave / fD × √ (fw · ft) | <1.0
1.8 <f3 / f1 <4.0
It is characterized by satisfying the following conditions.

本発明によれば、広画角で、全ズーム領域において高い光学性能を有したズームレンズが得られる。   According to the present invention, a zoom lens having a wide angle of view and high optical performance in the entire zoom region can be obtained.

本発明の数値実施例1の光学断面図Optical sectional view of Numerical Example 1 of the present invention 本発明の数値実施例1の広角端、中間のズーム位置、望遠端における諸収差図Various aberration diagrams of the first numerical embodiment of the present invention at the wide-angle end, the intermediate zoom position, and the telephoto end 本発明の数値実施例2の光学断面図Optical sectional view of Numerical Example 2 of the present invention 本発明の数値実施例2の広角端、中間のズーム位置、望遠端における諸収差図Various aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end of Numerical Example 2 of the present invention 本発明の数値実施例3の光学断面図Optical sectional view of Numerical Example 3 of the present invention 本発明の数値実施例3の広角端、中間のズーム位置、望遠端における諸収差図Various aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end of Numerical Example 3 of the present invention 本発明の数値実施例4の光学断面図Optical sectional view of Numerical Example 4 of the present invention 本発明の数値実施例4の広角端、中間のズーム位置、望遠端における諸収差図Various aberration diagrams of Numerical Embodiment 4 at the wide-angle end, an intermediate zoom position, and a telephoto end 本発明の撮像装置の実施例の要部概略図Schematic diagram of main parts of an embodiment of an imaging apparatus of the present invention

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。本発明のズームレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有している。そしてズーミングに際しては少なくとも1つのレンズ群を光軸に沿って移動する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a positive lens having a positive refractive power. A fourth lens group is included. In zooming, at least one lens group is moved along the optical axis.

図1は本発明の実施例1のズームレンズの広角端(短焦点距離端)におけるレンズ断面図である。図2(A)、(B)、(C)はそれぞれ実施例1のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における物体距離無限遠に合焦したときの収差図である。実施例1はズーム比2.06、Fナンバー2.91のズームレンズである。   FIG. 1 is a lens cross-sectional view at the wide-angle end (short focal length end) of the zoom lens according to Embodiment 1 of the present invention. 2A, 2B, and 2C are aberrations when the zoom lens of Example 1 is focused at infinity at the wide-angle end, the intermediate zoom position, and the telephoto end (long focal length end), respectively. FIG. Example 1 is a zoom lens having a zoom ratio of 2.06 and an F number of 2.91.

図3は本発明の実施例2のズームレンズの広角端におけるレンズ断面図である。図4(A)、(B)、(C)はそれぞれ実施例2のズームレンズの広角端、中間のズーム位置、望遠端における物体距離無限遠に合焦したときの収差図である。実施例2はズーム比2.06、Fナンバー2.91のズームレンズである。   FIG. 3 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 2 of the present invention. FIGS. 4A, 4B, and 4C are aberration diagrams when the zoom lens of Example 2 is focused on the infinite object distance at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. The second embodiment is a zoom lens having a zoom ratio of 2.06 and an F number of 2.91.

図5は本発明の実施例3のズームレンズの広角端におけるレンズ断面図である。図6(A)、(B)、(C)はそれぞれ実施例3のズームレンズの広角端、中間のズーム位置、望遠端における物体距離無限遠に合焦したときの収差図である。実施例3はズーム比2.06、Fナンバー2.91のズームレンズである。   FIG. 5 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 3 of the present invention. FIGS. 6A, 6B, and 6C are aberration diagrams when the zoom lens of Example 3 is focused on the infinite object distance at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. Example 3 is a zoom lens having a zoom ratio of 2.06 and an F number of 2.91.

図7は本発明の実施例4のズームレンズの広角端におけるレンズ断面図である。図8(A)、(B)、(C)はそれぞれ実施例4のズームレンズの広角端、中間のズーム位置、望遠端における物体距離無限遠に合焦したときの収差図である。実施例4はズーム比2.06、Fナンバー2.91のズームレンズである。図9は、本発明のズームレンズを備える一眼レフカメラ(撮像装置)の要部概略図である。   FIG. 7 is a lens cross-sectional view at the wide-angle end of the zoom lens according to a fourth exemplary embodiment of the present invention. FIGS. 8A, 8B, and 8C are aberration diagrams when the zoom lens of Example 4 is focused on the infinite object distance at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. Example 4 is a zoom lens having a zoom ratio of 2.06 and an F number of 2.91. FIG. 9 is a schematic diagram of a main part of a single-lens reflex camera (imaging device) including the zoom lens of the present invention.

各実施例のズームレンズはビデオカメラやデジタルカメラそして銀塩フィルムカメラ等の撮像装置に用いられる撮影レンズ系(光学系)である。レンズ断面図において、左方が物体側(前方)で、右方が像側(後方)である。尚、各実施例のズームレンズをプロジェクターに用いても良く、このときは左方がスクリーン側、右方が被投射画像側となる。レンズ断面図において、iは物体側からのレンズ群の順番を示し、Liは第iレンズ群である。SPは開口絞り(開放Fナンバー絞り)である。SSPは開口径が一定のフレアーカット絞りである。   The zoom lens of each embodiment is a photographing lens system (optical system) used in an imaging apparatus such as a video camera, a digital camera, or a silver salt film camera. In the lens cross-sectional view, the left side is the object side (front), and the right side is the image side (rear). The zoom lens of each embodiment may be used for a projector. In this case, the left side is the screen side and the right side is the projected image side. In the lens cross-sectional view, i indicates the order of the lens groups from the object side, and Li is the i-th lens group. SP is an aperture stop (open F number aperture). SSP is a flare cut stop with a constant aperture diameter.

IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に、銀塩フィルム用カメラのときはフィルム面に相当する。収差図において、d,gは各々d線,g線である。ΔM、ΔSはd線でのメリディオナル像面、サジタル像面である。倍率色収差はg線によって表している。FnoはFナンバー、ωは半画角である。尚、以下の各実施例において広角端と望遠端は変倍用レンズ群(例えば第2レンズ群)が機構上光軸上を移動可能な範囲の両端に位置したときのズーム位置をいう。   IP is an image plane, and when used as a photographing optical system for a video camera or a digital still camera, on the imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor, Corresponds to the film surface. In the aberration diagrams, d and g are d-line and g-line, respectively. ΔM and ΔS are a meridional image plane and a sagittal image plane at d-line. Lateral chromatic aberration is represented by the g-line. Fno is the F number, and ω is the half angle of view. In the following embodiments, the wide-angle end and the telephoto end refer to zoom positions when the zooming lens group (for example, the second lens group) is positioned at both ends of a range in which the mechanism can move on the optical axis.

各実施例では、物体側から像側へ順に、負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、負の屈折力の第3レンズ群L3、正の屈折力の第4レンズ群L4を有している。尚、第1レンズ群L1の物体側又は第4レンズ群L4の像側の少なくとも一方にコンバーターレンズやアフォーカルレンズ群等のレンズ群が位置していても良い。広角端から望遠端へのズーミングに際して各レンズ群L1〜L4の間隔が変化するように各レンズ群L1〜L4が矢印の如く光軸上を移動する。   In each embodiment, in order from the object side to the image side, the first lens unit L1 having a negative refractive power, the second lens unit L2 having a positive refractive power, the third lens unit L3 having a negative refractive power, and a positive refractive power. The fourth lens unit L4. A lens group such as a converter lens or an afocal lens group may be located on at least one of the object side of the first lens group L1 or the image side of the fourth lens group L4. When zooming from the wide-angle end to the telephoto end, the lens units L1 to L4 move on the optical axis as indicated by arrows so that the intervals between the lens units L1 to L4 change.

具体的には、広角端に比べて望遠端での各レンズ群の間隔変化は次のとおりである。第1レンズ群L1と第2レンズ群L2との空気間隔が小さく、第2レンズ群L2と第3レンズ群L3との空気間隔が大きく、該第3レンズ群L3と第4レンズ群L4との空気間隔が小さくなる。広角端から望遠端へのズーミングに際して第1レンズ群L1は像側に凸状の軌跡で移動する。第2〜第4レンズ群L2〜L4は物体側へ移動する。開口絞りSPとフレアーカット絞りSSPはズーミングに際して第3レンズ群L3と一体的に移動している。   Specifically, the change in the distance between the lens units at the telephoto end compared to the wide-angle end is as follows. The air gap between the first lens group L1 and the second lens group L2 is small, the air gap between the second lens group L2 and the third lens group L3 is large, and the third lens group L3 and the fourth lens group L4 The air gap is reduced. During zooming from the wide-angle end to the telephoto end, the first lens unit L1 moves along a locus convex toward the image side. The second to fourth lens units L2 to L4 move to the object side. The aperture stop SP and the flare cut stop SSP move together with the third lens unit L3 during zooming.

各実施例では、以上のような構成とすることにより、広角端ではレンズ系全体がレトロフォーカス型の屈折力配置となっている。これにより、広角端での広画角化を有利にしている。また、ズーミングに際して第1レンズ群L1を非線形に移動させることで変倍に伴う像面変動を補正している。無限遠物体から近距離物体へのフォーカスは、第2レンズ群L2の全部又は一部のレンズ群を像側へ移動させて行っている。   In each embodiment, with the above-described configuration, the entire lens system has a retrofocus type refractive power arrangement at the wide-angle end. Thereby, it is advantageous to widen the angle of view at the wide angle end. In addition, the image plane variation accompanying zooming is corrected by moving the first lens unit L1 nonlinearly during zooming. Focusing from an infinitely distant object to a close object is performed by moving all or part of the second lens unit L2 toward the image side.

各実施例のズームレンズは、物体側から像側へ順に、負、正、負、正の屈折力のレンズ群L1〜L4で構成されている。このように構成されるズームレンズにおいて、第3レンズ群L3と第4レンズ群L4の変倍分担を大きくすると、これらの各レンズ群の屈折力が強くなる。その結果、開口絞りSPに近い負の屈折力の第3レンズ群L3の屈折力が強くなることに起因して広角端においてサジタルフレア成分が多く発生する。この結果、サジタル像面は像高が高くなるにしたがってオーバー側に曲がりを生じる。これを補正するためには、第3レンズ群L3の屈折力を弱める必要がある。しかしながら、過剰に第3レンズ群L3の屈折力を弱くすると、所望のズーム比が得られなくなるか、第1レンズ群L1の屈折力が強くなり、歪曲収差が多く発生してくる。そこで各実施例においては、第1レンズ群L1と第3レンズ群L3の屈折力を最適にすることでサジタル像面湾曲の曲がりを補正している。   The zoom lens according to each embodiment includes lens groups L1 to L4 having negative, positive, negative, and positive refractive powers in order from the object side to the image side. In the zoom lens configured as described above, when the variable magnification sharing of the third lens unit L3 and the fourth lens unit L4 is increased, the refractive power of each of these lens units is increased. As a result, a large sagittal flare component is generated at the wide angle end due to the strong refractive power of the third lens unit L3 having a negative refractive power close to the aperture stop SP. As a result, the sagittal image plane bends to the over side as the image height increases. In order to correct this, it is necessary to weaken the refractive power of the third lens unit L3. However, if the refractive power of the third lens unit L3 is excessively weakened, a desired zoom ratio cannot be obtained, or the refractive power of the first lens unit L1 is increased, resulting in a large amount of distortion. Therefore, in each embodiment, the sagittal curvature of field is corrected by optimizing the refractive powers of the first lens unit L1 and the third lens unit L3.

各実施例とズームタイプを同じくするズームレンズでは、多くの場合、サジタル像面湾曲の曲がりが生じる場合には、低い像高における像面位置をアンダーにすることで高い像高における像面位置とのバランスをとっていた。しかし、サジタル像面湾曲の曲がりが補正された場合には、低い像高における像面位置をよりオーバー側へ補正する必要がある。   In a zoom lens having the same zoom type as each embodiment, in many cases, when sagittal curvature of curvature occurs, an image plane position at a high image height is reduced by setting the image plane position at a low image height under. Was balanced. However, when the curvature of the sagittal field curvature is corrected, it is necessary to correct the image plane position at a low image height to the over side.

この結果、ペッツバール像面が変化し、望遠端において非点収差が多く発生する。この収差を補正するためにはペッツバール和を補正する(小さくする)必要がある。ペッツバール和を補正するために負レンズの材料の屈折率を下げると、諸収差の発生が大きくなる。このため、正レンズの材料の屈折率を上げることが考えられる。しかし、一般に正レンズの材料の屈折率が高くなると、アッベ数が小さくなり、色収差が多く発生してくる。つまり、広角端においてサジタル像面湾曲の曲がりと、望遠端において低い像高における非点収差、色収差とは相互に相関関係にあり、従来よりこれらを同時に補正することが困難であった。   As a result, the Petzval image plane changes and a lot of astigmatism occurs at the telephoto end. In order to correct this aberration, it is necessary to correct (reduce) the Petzval sum. When the refractive index of the negative lens material is lowered to correct the Petzval sum, the occurrence of various aberrations increases. For this reason, it is conceivable to increase the refractive index of the positive lens material. However, in general, when the refractive index of the positive lens material increases, the Abbe number decreases and a large amount of chromatic aberration occurs. In other words, the sagittal curvature of field curvature at the wide-angle end and the astigmatism and chromatic aberration at a low image height at the telephoto end are correlated with each other, and it has been difficult to correct these simultaneously.

この問題を解決するために各実施例ではレンズ面に回折光学部(回折光学面)を形成した回折光学素子を使用する。回折光学素子を使用することで色消しの自由度を正レンズの材料の高屈折率化に使用する。これにより、広角端においてサジタル像面湾曲と望遠端において非点収差を同時に補正するとこが容易になる。回折光学素子を使用するレンズ群としては、正レンズの材料の屈折率を大きくしたいので、正レンズの材料が低屈折率低分散となる、第2レンズ群L2、あるいは第4レンズ群L4が好ましい。   In order to solve this problem, each embodiment uses a diffractive optical element in which a diffractive optical part (diffractive optical surface) is formed on a lens surface. By using a diffractive optical element, the achromatic degree of freedom is used to increase the refractive index of the material of the positive lens. This facilitates simultaneous correction of sagittal field curvature at the wide angle end and astigmatism at the telephoto end. The lens group using the diffractive optical element is preferably the second lens group L2 or the fourth lens group L4 in which the positive lens material has a low refractive index and low dispersion because the refractive index of the positive lens material is desired to be increased. .

更に、軸上色収差、及び倍率色収差のズーミングに伴う変動を考えると、広角端において大きく発生する倍率色収差の補正に有利な第4レンズ群L4に回折光学素子を使用すると補正効果が大きい。各実施例では第4レンズ群L4に回折光学素子を使用している。尚、回折光学素子は第2レンズ群L2に使用しても同様の効果を得ることができる。   Further, in consideration of axial chromatic aberration and fluctuations due to zooming of the lateral chromatic aberration, the use of a diffractive optical element in the fourth lens unit L4, which is advantageous for correcting lateral chromatic aberration that occurs greatly at the wide-angle end, has a large correction effect. In each embodiment, a diffractive optical element is used for the fourth lens unit L4. The same effect can be obtained even when the diffractive optical element is used in the second lens unit L2.

各実施例のズームレンズは、正の屈折力の複数のレンズ群のうち少なくとも1つのレンズ群は回折光学部を少なくとも1つ有している。そして回折光学部を有する正の屈折力のレンズ群内の正レンズの材料のd線における平均屈折率をNDP_aveとする。回折光学部を有する正の屈折力のレンズ群の焦点距離をfDとする。ズームレンズの広角端および望遠端における焦点距離を各々fw、ftとする。第1レンズ群と第3レンズ群の焦点距離をf1、f3とする。このとき、
0.4<│NDP_ave/fD×√(fw・ft)│<1.0 ・・・(1)
1.8<f3/f1<4.0 ・・・(2)
なる条件を満足することを特徴としている。
In the zoom lens of each embodiment, at least one lens group among the plurality of lens groups having positive refractive power has at least one diffractive optical part. The average refractive index at the d-line of the material of the positive lens in the lens unit having positive refractive power having the diffractive optical part is defined as NDP_ave. Let fD be the focal length of a positive refractive power lens unit having a diffractive optical section. The focal lengths at the wide-angle end and the telephoto end of the zoom lens are fw and ft, respectively. The focal lengths of the first lens group and the third lens group are assumed to be f1 and f3. At this time,
0.4 <| NDP_ave / fD × √ (fw · ft) | <1.0 (1)
1.8 <f3 / f1 <4.0 (2)
It is characterized by satisfying the following conditions.

各実施例において回折光学部とは基材(例えばレンズ)の面上に形成した単層又は複数層の回折格子をいう。そして基材と基材面上に設けた回折光学部より回折光学素子を形成している。   In each embodiment, the diffractive optical part refers to a single-layer or multiple-layer diffraction grating formed on the surface of a substrate (for example, a lens). And the diffractive optical element is formed from the base material and the diffractive optical part provided on the base material surface.

次に前述の各条件式の技術的意味について説明する。条件式(1)はペッツバール和を良好に補正するための条件を規定したものである。回折光学素子を有するレンズ群の各レンズの材料の屈折率を上げることで、色収差の補正と望遠端における低い像高における非点収差を同時に補正することが容易となる。正の屈折力の強いレンズ群において、正レンズの材料の平均屈折率を上げることにより、これらの諸収差の補正効果が大きくなる。この条件式(1)の上限を上回るとペッツバール和の補正が過剰になり、非点収差が逆に多く発生してしまう。また、正レンズの材料のアッベ数が小さくなるので、回折光学素子の屈折力が強くなり、製造が困難になる。条件式(1)の下限を下回るとペッツバール像面が十分補正されず、望遠端において非点収差を補正するのが困難になる。   Next, the technical meaning of each conditional expression described above will be described. Conditional expression (1) defines conditions for correcting the Petzval sum well. By increasing the refractive index of the material of each lens of the lens group having the diffractive optical element, it becomes easy to simultaneously correct chromatic aberration and astigmatism at a low image height at the telephoto end. By increasing the average refractive index of the positive lens material in a lens group having a strong positive refractive power, the effect of correcting these various aberrations increases. If the upper limit of the conditional expression (1) is exceeded, the Petzval sum will be excessively corrected, and a large amount of astigmatism will occur. Further, since the Abbe number of the material of the positive lens becomes small, the refractive power of the diffractive optical element becomes strong, and the manufacture becomes difficult. If the lower limit of conditional expression (1) is not reached, the Petzval image surface is not sufficiently corrected, and it becomes difficult to correct astigmatism at the telephoto end.

条件式(2)は第1レンズ群L1と第3レンズ群L3の屈折力の比を規定したものである。この条件式(2)を満足することにより、サジタルフレアを抑えて像面湾曲の曲がりを良好に補正することが容易になる。これらの屈折力の関係が条件式(2)の上限を上回ると、第3レンズ群L3の屈折力が小さくなり、所望のズーム比を得るのが困難になる。また、第1レンズ群L1の屈折力が強くなりすぎて、歪曲収差が多く発生してくる。条件式(2)の下限を下回ると、第3レンズ群L3の屈折力が強くなりすぎて、広角端においてサジタル像面湾曲の曲がりが大きくなるか、第1レンズ群L1の屈折力が小さくなりすぎて、前玉有効径が増大してしまう。   Conditional expression (2) defines the ratio of the refractive powers of the first lens unit L1 and the third lens unit L3. By satisfying this conditional expression (2), it becomes easy to satisfactorily correct the curvature of field curvature while suppressing sagittal flare. If the relationship between these refractive powers exceeds the upper limit of the conditional expression (2), the refractive power of the third lens unit L3 becomes small, and it becomes difficult to obtain a desired zoom ratio. Further, the refractive power of the first lens unit L1 becomes too strong, and a lot of distortion is generated. If the lower limit of conditional expression (2) is not reached, the refractive power of the third lens unit L3 becomes too strong, and the curvature of the sagittal field curvature at the wide-angle end increases, or the refractive power of the first lens unit L1 decreases. Too much, the effective diameter of the front lens will increase.

各実施例において更に好ましくは条件式(1)、(2)の数値範囲を次の如く設定するのが良い。   In each embodiment, the numerical ranges of conditional expressions (1) and (2) are more preferably set as follows.

0.5<│NDP_ave/fD×√(fw・ft)│<0.9・・・(1a)
2.0<f3/f1<3.7 ・・・(2a)
以上のように各実施例によれば、ズームレンズの最適なパワー配置と、回折光学部による硝材変更の効果を像面湾曲補正に使用することにより、ズーム領域全域に渡って結像性能の高いズームレンズを得ることができる。
0.5 <| NDP_ave / fD × √ (fw · ft) | <0.9 (1a)
2.0 <f3 / f1 <3.7 (2a)
As described above, according to each embodiment, the optimal power arrangement of the zoom lens and the effect of changing the glass material by the diffractive optical unit are used for field curvature correction, so that the imaging performance is high over the entire zoom region. A zoom lens can be obtained.

各実施例において更に好ましくは次の諸条件のうち1以上を満足するのが良い。回折光学部の空気中における焦点距離をfDOEとする。光路中に開口絞りを有し、広角端において開口絞りから回折光学部までの距離をdDOE、ズームレンズのレンズ全長(第1レンズ面から像面までの距離)をLwとする。このとき、
40<fDOE/√(fw・ft)<300 ・・・(3)
0.2<dDOE/Lw ・・・(4)
−1.3<f1/√(fw・ft)<−0.8 ・・・(5)
−3.9<f3/√(fw・ft)<−2.0 ・・・(6)
1.52<NDP_ave<1.78 ・・・(7)
なる条件式のうち1以上を満足するのが良い。
In each embodiment, it is more preferable to satisfy one or more of the following conditions. Let fDOE be the focal length of the diffractive optical section in the air. An aperture stop is provided in the optical path, and the distance from the aperture stop to the diffractive optical unit at the wide angle end is dDOE, and the total lens length (the distance from the first lens surface to the image plane) of the zoom lens is Lw. At this time,
40 <fDOE / √ (fw · ft) <300 (3)
0.2 <dDOE / Lw (4)
−1.3 <f1 / √ (fw · ft) <− 0.8 (5)
−3.9 <f3 / √ (fw · ft) <− 2.0 (6)
1.52 <NDP_ave <1.78 (7)
It is preferable to satisfy one or more of the following conditional expressions.

次に各実施例の技術的意味について説明する。条件式(3)は回折光学部の屈折力を規定した条件式である。回折光学部の屈折力が条件式(3)の上限を上回ると、回折光学部の格子ピッチが小さくなるため、製造が困難になる。また、条件式(3)の下限を下回ると回折光学素子を含むレンズ群内の正レンズの材料の屈折率を高くすることが難しくなり、ペッツバール像面が十分補正されないため、望遠端において非点収差を良好に補正するのが困難になる。   Next, the technical meaning of each embodiment will be described. Conditional expression (3) defines the refractive power of the diffractive optical part. If the refractive power of the diffractive optical part exceeds the upper limit of the conditional expression (3), the grating pitch of the diffractive optical part becomes small, which makes manufacturing difficult. If the lower limit of conditional expression (3) is not reached, it is difficult to increase the refractive index of the material of the positive lens in the lens group including the diffractive optical element, and the Petzval image plane is not sufficiently corrected. It becomes difficult to correct aberrations satisfactorily.

条件式(4)は光路中に配置する回折光学部の位置を適切に規定したものである。一般にネガティブリード型のズームレンズでは、広角端において倍率色収差が大きく発生する。したがって、開口絞りSPから光軸方向に離れた位置に配置される正の屈折力のレンズ群内の正レンズの材料は低屈折率低分散となりやすい。これによれば、色収差の補正効果が大きくなる。この条件式(4)の下限を下回ると、ペッツバール像面が十分補正されず、望遠端において非点収差が多く発生してくる。   Conditional expression (4) appropriately defines the position of the diffractive optical part disposed in the optical path. In general, in a negative lead type zoom lens, lateral chromatic aberration is greatly generated at the wide-angle end. Therefore, the material of the positive lens in the lens unit having a positive refractive power arranged at a position away from the aperture stop SP in the optical axis direction tends to have a low refractive index and low dispersion. This increases the effect of correcting chromatic aberration. If the lower limit of the conditional expression (4) is not reached, the Petzval image plane is not sufficiently corrected, and a lot of astigmatism occurs at the telephoto end.

条件式(5)、(6)は焦点距離f1、f3を規定したものである。このうち、条件式(5)は第1レンズ群L1の負の屈折力を規定したものである。この条件式(5)の上限を上回ると第1レンズ群L1の負の屈折力が強くなり、歪曲収差が多く発生してくる。また条件式(5)の下限を下回ると、第1レンズ群L1の負の屈折力が小さくなり、前玉有効径が増大してくる。   Conditional expressions (5) and (6) define the focal lengths f1 and f3. Among these, the conditional expression (5) defines the negative refractive power of the first lens unit L1. If the upper limit of conditional expression (5) is exceeded, the negative refractive power of the first lens unit L1 will become strong and a lot of distortion will occur. If the lower limit of conditional expression (5) is not reached, the negative refractive power of the first lens unit L1 becomes small, and the front lens effective diameter increases.

条件式(6)は第3レンズ群L3の負の屈折力を規定したものである。この条件式(6)の下限を下回ると第3レンズ群L3の負の屈折力が小さくなり、所望のズーム比を得るのが困難になる。また条件式(6)の上限を上回ると、第3レンズ群L3の屈折力が強くなりすぎて、広角端においてサジタル像面湾曲の曲がりが大きくなる。   Conditional expression (6) defines the negative refractive power of the third lens unit L3. If the lower limit of conditional expression (6) is not reached, the negative refractive power of the third lens unit L3 becomes small, making it difficult to obtain a desired zoom ratio. If the upper limit of conditional expression (6) is exceeded, the refractive power of the third lens unit L3 becomes too strong, and the curvature of the sagittal field curvature becomes large at the wide angle end.

条件式(7)は回折光学素子を有する正の屈折力のレンズ群内の正レンズの材料の平均屈折率NDp_aveを規定したものである。この条件式(7)の上限を上回ると、ペッツバール和の補正が過剰になり、非点収差が逆に多く発生してくる。また、正レンズの材料のアッベ数が小さくなるので、回折光学部の屈折力が強くなり、製造が困難になる。条件式(7)の下限を下回るとペッツバール像面が十分補正されず、望遠端において非点収差を良好に補正するのが困難になる。なお、好ましくは条件式(3)乃至条件式(7)の数値範囲を次の如く設定するのが良い。   Conditional expression (7) defines the average refractive index NDp_ave of the positive lens material in the positive refractive power lens group having the diffractive optical element. If the upper limit of the conditional expression (7) is exceeded, Petzval sum correction becomes excessive, and astigmatism increases in many cases. Further, since the Abbe number of the material of the positive lens becomes small, the refractive power of the diffractive optical part becomes strong, and the manufacture becomes difficult. If the lower limit of conditional expression (7) is not reached, the Petzval image plane will not be sufficiently corrected, and it will be difficult to satisfactorily correct astigmatism at the telephoto end. Preferably, the numerical ranges of conditional expressions (3) to (7) are set as follows.

50<fDOE/√(fw・ft)<250 ・・・(3a)
0.25<dDOE/Lw ・・・(4a)
−1.1<f1/√(fw・ft)<−0.85 ・・・(5a)
−3.6<f3/√(fw・ft)<−2.0 ・・・(6a)
1.52<NDP_ave<1.70 ・・・(7a)
次に各実施例のレンズ構成の特徴について説明する。
50 <fDOE / √ (fw · ft) <250 (3a)
0.25 <dDOE / Lw (4a)
−1.1 <f1 / √ (fw · ft) <− 0.85 (5a)
−3.6 <f3 / √ (fw · ft) <− 2.0 (6a)
1.52 <NDP_ave <1.70 (7a)
Next, the features of the lens configuration of each example will be described.

[実施例1]
実施例1では第4レンズ群L4の最も像面に近い接合レンズL4Gの接合面に回転対称なブレーズド回折格子(回折光学部)B.Oを形成している。これにより、第4レンズ群L4の正レンズの材料の平均屈折率を1.63515と高くしている。この効果により、第1レンズ群L1と第3レンズ群L3の屈折力の比を最適にして、サジタル像面湾曲の曲がりを補正した上で、ペッツバール像面を最適に補正し、望遠端において非点収差も同時に良好に補正している。
[Example 1]
In Example 1, a blazed diffraction grating (diffractive optical unit) B.B which is rotationally symmetric with respect to the cemented surface of the cemented lens L4G closest to the image plane of the fourth lens unit L4. O is formed. Thereby, the average refractive index of the positive lens material of the fourth lens unit L4 is increased to 1.63515. As a result, the ratio of refractive power of the first lens unit L1 and the third lens unit L3 is optimized to correct the curvature of the sagittal field curvature, and the Petzval image surface is optimally corrected. The point aberration is also corrected well at the same time.

[実施例2]
実施例2のレンズ構成は実施例1と同様である。実施例2では第4レンズ群L4の最も像面に近い接合レンズL4Gの接合面に回転対称なブレーズド回折格子(回折光学部)B.Oを形成している。これにより、第4レンズ群L4の正レンズの材料の平均屈折率1.53531と高くしている。この効果により、第1レンズ群L1と第3レンズ群L3の屈折力の比を最適にして、サジタル像面湾曲の曲がりを補正した上で、ペッツバール像面を最適に補正し、望遠端において非点収差も同時に良好に補正している。
[Example 2]
The lens configuration of Example 2 is the same as that of Example 1. In Example 2, a blazed diffraction grating (diffraction optical unit) B.B which is rotationally symmetric with respect to the cemented surface of the cemented lens L4G closest to the image plane of the fourth lens unit L4. O is formed. This increases the average refractive index of the positive lens material of the fourth lens unit L4 to 1.53531. As a result, the ratio of refractive power of the first lens unit L1 and the third lens unit L3 is optimized to correct the curvature of the sagittal field curvature, and the Petzval image surface is optimally corrected. The point aberration is also corrected well at the same time.

[実施例3]
実施例3のレンズ構成は、実施例1と比べて第4レンズ群L4のレンズ構成が異なり、その他は同じである。第4レンズ群L4の最も像面に近い接合レンズL4Gの接合面に回転対称なブレーズド回折格子(回折光学部)B.Oを形成している。これにより、第4レンズ群L4の正レンズの材料の平均屈折率1.59092と高くしている。この効果により、第1レンズ群L1と第3レンズ群L3の屈折力の比を最適にして、サジタル像面湾曲の曲がりを補正した上で、ペッツバール像面を最適に補正し、望遠端において非点収差も同時に良好に補正している。
[Example 3]
The lens configuration of the third embodiment is the same as that of the first embodiment except for the lens configuration of the fourth lens unit L4. B. A blazed diffraction grating (diffractive optical part) that is rotationally symmetric to the cemented surface of the cemented lens L4G closest to the image plane of the fourth lens unit L4. O is formed. This increases the average refractive index of the positive lens material of the fourth lens unit L4 to 1.59092. As a result, the ratio of refractive power of the first lens unit L1 and the third lens unit L3 is optimized to correct the curvature of the sagittal field curvature, and the Petzval image surface is optimally corrected. The point aberration is also corrected well at the same time.

[実施例4]
実施例4のレンズ構成は、実施例1と比べて第4レンズ群L4のレンズ構成が異なり、その他は同じである。第4レンズ群L4の最も像面に近い接合レンズL4Gの接合面に回転対称なブレーズド回折格子(回折光学部)B.Oを形成している。これにより、第4レンズ群L4の正レンズの平均屈折率1.53896と高くしている。この効果により、第1レンズ群L1と第3レンズ群L3の屈折力の比を最適にして、サジタル像面湾曲の曲がりを補正した上で、ペッツバール像面を最適に補正し、望遠端において非点収差も同時に良好に補正している。
[Example 4]
The lens configuration of the fourth embodiment is the same as that of the first embodiment except for the lens configuration of the fourth lens unit L4. B. A blazed diffraction grating (diffractive optical part) that is rotationally symmetric to the cemented surface of the cemented lens L4G closest to the image plane of the fourth lens unit L4. O is formed. This increases the average refractive index of the positive lens of the fourth lens unit L4 to 1.53896. As a result, the ratio of refractive power of the first lens unit L1 and the third lens unit L3 is optimized to correct the curvature of the sagittal field curvature, and the Petzval image surface is optimally corrected. The point aberration is also corrected well at the same time.

次に本発明の数値実施例を示す。数値実施例においてiは物体側からの面の順番を示す。riはレンズ面の曲率半径、diはレンズ厚及び空気間隔、ndiとνdiはそれぞれレンズのd線に対する屈折率、アッベ数である。また、非球面形状はRを近軸曲率半径とし、非球面係数K、A4、A6、A8、A10、A12を用いて次式で与えられるものとする。   Next, numerical examples of the present invention will be shown. In the numerical examples, i indicates the order of the surfaces from the object side. ri is the radius of curvature of the lens surface, di is the lens thickness and air spacing, and ndi and νdi are the refractive index and Abbe number for the d-line of the lens, respectively. The aspherical shape is given by the following equation using R as a paraxial radius of curvature and using aspherical coefficients K, A4, A6, A8, A10, and A12.

X=(H/R)/[1+{1−(1+K)(H/R)1/2
+A4H+A6H+A8H+A10H10+A12H12
「e−X」は「×10−X」を意味している。また、回折面(回折光学部)の位相形状φ(h,m)は、光軸に対して垂直方向の高さをh、回折光の回折次数をm、設計波長をλ0、位相係数をCi(i=1,2,3…)としたとき、
φ(h,m)={2π/(mλ0)}(C2・h+C4・h+C6・h
であらわされるものとする。各実施例において、回折光の回折次数mは1であり、設計波長λ0はd線の波長(587.56nm)である。回折光学部のパワー(焦点距離fDOEの逆数)φDは
φD=1/fDOE=−2・C2
となる。また、前述の各条件式と各実施形態との関係を表−1に示す。
X = (H 2 / R) / [1+ {1- (1 + K) (H / R) 2} 1/2]
+ A4H 4 + A6H 6 + A8H 8 + A10H 10 + A12H 12
“E-X” means “× 10 −X ”. Further, the phase shape φ (h, m) of the diffractive surface (diffractive optical part) is such that the height in the direction perpendicular to the optical axis is h, the diffraction order of the diffracted light is m, the design wavelength is λ 0, and the phase coefficient is Ci. (I = 1,2,3 ...)
φ (h, m) = {2π / (mλ0)} (C2 · h 2 + C4 · h 4 + C6 · h 6 )
It shall be represented by In each embodiment, the diffraction order m of the diffracted light is 1, and the design wavelength λ0 is the wavelength of the d-line (587.56 nm). The power of the diffractive optical part (the reciprocal of the focal length fDOE) φD is φD = 1 / fDOE = −2 · C2
It becomes. Table 1 shows the relationship between each conditional expression described above and each embodiment.

(数値実施例1)
面データ
面番号 r d nd νd 有効径
1* 219.522 2.30 1.77250 49.6 49.45
2 20.713 10.16 35.44
3 314.794 1.80 1.80610 40.9 34.61
4 34.749 0.16 1.51640 52.2 31.16
5* 53.243 6.23 31.11
6 -79.552 1.60 1.83400 37.2 30.70
7 267.676 0.15 30.65
8 52.707 4.50 1.80518 25.4 30.80
9 -257.033 (可変) 30.39
10 48.891 1.30 1.80518 25.4 24.98
11 24.529 6.20 1.56732 42.8 25.14
12 -79.728 0.15 25.56
13 143.990 2.55 1.80400 46.6 25.93
14 132.175 3.53 26.02
15 45.385 3.80 1.58313 59.4 27.12
16* -88.867 (可変) 27.05
17(絞り) ∞ 1.90 22.91
18 -278.038 1.40 1.88300 40.8 22.37
19 241.463 1.86 22.12
20 -50.981 1.10 1.76200 40.1 22.06
21 32.175 4.50 1.78470 26.3 22.48
22 -173.216 1.00 22.66
23 ∞ (可変) 22.73
24 65.410 1.20 1.84666 23.8 22.79
25 32.394 0.20 22.50
26 25.324 6.00 1.59240 68.3 23.86
27 -55.308 0.20 24.23
28 -869.003 1.20 1.83481 42.7 24.37
29(回折) 16.136 6.95 1.67790 55.3 24.82
30* -74.785 24.94

非球面データ
第1面
K = 5.84190e+001 A 4= 1.75507e-005 A 6=-2.90049e-008
A 8= 3.95614e-011 A10=-2.97382e-014 A12= 7.31017e-018

第5面
K = 4.83052e+000 A 4= 2.09635e-005 A 6=-1.20311e-008
A 8=-7.80772e-011 A10= 2.89323e-013 A12=-4.88915e-016

第16面
K =-3.45315e+000 A 4=-2.22271e-008 A 6=-7.78824e-010
A 8=-1.02146e-012 A10= 9.05549e-014 A12=-2.31917e-016

第29面(回折面)
C 2=-1.38871e-004 C 4= 3.05998e-007 C 6=-3.36691e-009

第30面
K =-9.68073e+000 A 4= 4.21267e-006 A 6= 3.96878e-008
A 8=-1.12252e-010 A10= 2.35038e-013 A12= 1.53617e-015

各種データ
焦点距離 16.48 24.00 33.95
Fナンバー 2.91 2.91 2.91
画角 52.70 42.04 32.51

d 9 26.22 10.49 0.99
d16 0.93 6.58 11.78
d23 11.50 6.20 0.19
(Numerical example 1)
Surface data surface number rd nd νd Effective diameter
1 * 219.522 2.30 1.77250 49.6 49.45
2 20.713 10.16 35.44
3 314.794 1.80 1.80610 40.9 34.61
4 34.749 0.16 1.51640 52.2 31.16
5 * 53.243 6.23 31.11
6 -79.552 1.60 1.83400 37.2 30.70
7 267.676 0.15 30.65
8 52.707 4.50 1.80518 25.4 30.80
9 -257.033 (variable) 30.39
10 48.891 1.30 1.80518 25.4 24.98
11 24.529 6.20 1.56732 42.8 25.14
12 -79.728 0.15 25.56
13 143.990 2.55 1.80 400 46.6 25.93
14 132.175 3.53 26.02
15 45.385 3.80 1.58313 59.4 27.12
16 * -88.867 (variable) 27.05
17 (Aperture) ∞ 1.90 22.91
18 -278.038 1.40 1.88300 40.8 22.37
19 241.463 1.86 22.12
20 -50.981 1.10 1.76200 40.1 22.06
21 32.175 4.50 1.78470 26.3 22.48
22 -173.216 1.00 22.66
23 ∞ (variable) 22.73
24 65.410 1.20 1.84666 23.8 22.79
25 32.394 0.20 22.50
26 25.324 6.00 1.59240 68.3 23.86
27 -55.308 0.20 24.23
28 -869.003 1.20 1.83481 42.7 24.37
29 (Diffraction) 16.136 6.95 1.67790 55.3 24.82
30 * -74.785 24.94

Aspheric data 1st surface
K = 5.84190e + 001 A 4 = 1.75507e-005 A 6 = -2.90049e-008
A 8 = 3.95614e-011 A10 = -2.97382e-014 A12 = 7.31017e-018

5th page
K = 4.83052e + 000 A 4 = 2.09635e-005 A 6 = -1.20311e-008
A 8 = -7.80772e-011 A10 = 2.89323e-013 A12 = -4.88915e-016

16th page
K = -3.45315e + 000 A 4 = -2.22271e-008 A 6 = -7.78824e-010
A 8 = -1.02146e-012 A10 = 9.05549e-014 A12 = -2.31917e-016

29th surface (diffractive surface)
C 2 = -1.38871e-004 C 4 = 3.05998e-007 C 6 = -3.36691e-009

30th page
K = -9.68073e + 000 A 4 = 4.21267e-006 A 6 = 3.96878e-008
A 8 = -1.12252e-010 A10 = 2.35038e-013 A12 = 1.53617e-015

Various data focal length 16.48 24.00 33.95
F number 2.91 2.91 2.91
Angle of view 52.70 42.04 32.51

d 9 26.22 10.49 0.99
d16 0.93 6.58 11.78
d23 11.50 6.20 0.19

(数値実施例2)
面データ
面番号 r d nd νd 有効径
1* 246.712 2.30 1.77250 49.6 49.16
2 21.684 9.73 35.84
3 426.521 1.80 1.80400 46.6 35.01
4 36.953 0.16 1.51640 52.2 31.52
5* 42.521 7.02 30.99
6 -71.206 1.60 1.77250 49.6 30.59
7 495.944 0.15 30.62
8 54.279 4.50 1.72825 28.5 30.75
9 -187.617 (可変) 30.39
10 56.510 1.30 1.80518 25.4 26.42
11 24.529 6.20 1.56732 42.8 26.72
12 -275.767 0.15 27.31
13 112.755 2.55 1.80400 46.6 27.89
14 360.386 3.90 28.12
15 59.137 4.20 1.62299 58.2 29.66
16 -71.678 (可変) 29.64
17(絞り) ∞ 1.90 24.89
18 -129.986 1.40 1.88300 40.8 24.47
19 -671.169 1.86 24.32
20 -49.506 1.10 1.90366 31.3 24.23
21 89.850 4.50 1.92286 18.9 24.73
22* -92.175 0.83 25.12
23 ∞ (可変) 25.10
24 60.482 1.20 1.84666 23.9 25.09
25 42.383 0.20 24.75
26 21.130 6.50 1.48749 70.2 25.13
27 -65.057 0.20 24.70
28 1089.271 1.20 1.83400 37.2 23.54
29(回折) 15.973 6.95 1.58313 59.4 22.63
30* -99.255 23.14

非球面データ
第1面
K = 6.80273e+001 A 4= 1.77449e-005 A 6=-2.98598e-008
A 8= 4.20411e-011 A10=-3.43840e-014 A12= 1.09582e-017

第5面
K = 3.00620e+000 A 4= 2.06840e-005 A 6=-1.20085e-008
A 8=-1.03876e-010 A10= 2.92622e-013 A12=-4.71360e-016

第22面
K = 1.91671e+001 A 4= 2.12751e-006 A 6=-5.59247e-009
A 8= 5.08730e-011 A10=-8.56586e-015 A12=-2.26945e-016

第29面(回折面)
C 2=-9.63435e-005 C 4= 1.49958e-007 C 6=-2.75452e-009

第30面
K =-2.62398e+001 A 4= 1.42365e-005 A 6= 6.57748e-008
A 8=-3.67087e-011 A10= 1.56014e-013 A12= 4.90435e-015

各種データ
焦点距離 16.48 24.01 33.95
Fナンバー 2.91 2.91 2.91
画角 52.70 42.03 32.51

d 9 27.59 11.98 2.37
d16 0.93 7.56 13.14
d23 12.70 6.86 0.16
(Numerical example 2)
Surface data surface number rd nd νd Effective diameter
1 * 246.712 2.30 1.77250 49.6 49.16
2 21.684 9.73 35.84
3 426.521 1.80 1.80400 46.6 35.01
4 36.953 0.16 1.51640 52.2 31.52
5 * 42.521 7.02 30.99
6 -71.206 1.60 1.77250 49.6 30.59
7 495.944 0.15 30.62
8 54.279 4.50 1.72825 28.5 30.75
9 -187.617 (variable) 30.39
10 56.510 1.30 1.80518 25.4 26.42
11 24.529 6.20 1.56732 42.8 26.72
12 -275.767 0.15 27.31
13 112.755 2.55 1.80 400 46.6 27.89
14 360.386 3.90 28.12
15 59.137 4.20 1.62299 58.2 29.66
16 -71.678 (variable) 29.64
17 (Aperture) ∞ 1.90 24.89
18 -129.986 1.40 1.88300 40.8 24.47
19 -671.169 1.86 24.32
20 -49.506 1.10 1.90366 31.3 24.23
21 89.850 4.50 1.92286 18.9 24.73
22 * -92.175 0.83 25.12
23 ∞ (variable) 25.10
24 60.482 1.20 1.84666 23.9 25.09
25 42.383 0.20 24.75
26 21.130 6.50 1.48749 70.2 25.13
27 -65.057 0.20 24.70
28 1089.271 1.20 1.83400 37.2 23.54
29 (Diffraction) 15.973 6.95 1.58313 59.4 22.63
30 * -99.255 23.14

Aspheric data 1st surface
K = 6.80273e + 001 A 4 = 1.77449e-005 A 6 = -2.98598e-008
A 8 = 4.20411e-011 A10 = -3.43840e-014 A12 = 1.09582e-017

5th page
K = 3.00620e + 000 A 4 = 2.06840e-005 A 6 = -1.20085e-008
A 8 = -1.03876e-010 A10 = 2.92622e-013 A12 = -4.71360e-016

22nd page
K = 1.91671e + 001 A 4 = 2.12751e-006 A 6 = -5.59247e-009
A 8 = 5.08730e-011 A10 = -8.56586e-015 A12 = -2.26945e-016

29th surface (diffractive surface)
C 2 = -9.63435e-005 C 4 = 1.49958e-007 C 6 = -2.75452e-009

30th page
K = -2.62398e + 001 A 4 = 1.42365e-005 A 6 = 6.57748e-008
A 8 = -3.67087e-011 A10 = 1.56014e-013 A12 = 4.90435e-015

Various data focal length 16.48 24.01 33.95
F number 2.91 2.91 2.91
Angle of view 52.70 42.03 32.51

d 9 27.59 11.98 2.37
d16 0.93 7.56 13.14
d23 12.70 6.86 0.16

(数値実施例3)
面データ
面番号 r d nd νd 有効径
1* 241.841 2.30 1.77250 49.6 50.01
2 21.342 10.33 35.89
3 -2931.562 1.80 1.80400 46.6 35.24
4 34.274 0.16 1.51640 52.2 31.59
5* 45.178 4.95 31.52
6 -245.096 1.60 1.83481 42.7 31.34
7 219.105 0.15 31.08
8 43.900 4.50 1.80518 25.4 30.94
9 253.686 (可変) 30.16
10 64.989 1.30 1.80518 25.4 24.45
11 24.529 5.70 1.56732 42.8 24.90
12 -210.325 0.15 25.57
13 69.821 2.55 1.80400 46.6 26.42
14 503.543 6.39 26.54
15 78.309 3.80 1.62299 58.2 27.94
16* -83.475 (可変) 27.91
17(絞り) ∞ 1.90 24.42
18 -198.029 1.40 1.88300 40.8 24.01
19 161.330 1.86 23.82
20 -50.660 1.10 1.76200 40.1 23.82
21 34.993 5.00 1.84666 23.8 24.74
22 -179.538 0.73 25.08
23 ∞ (可変) 25.26
24* 24.119 8.50 1.56384 60.7 25.83
25 -19.665 1.20 1.83400 37.2 25.80
26 -30.224 0.20 25.84
27 -231.106 1.20 1.83400 37.2 24.41
28(回折) 15.884 6.95 1.61800 63.4 23.76
29* -656.593 24.15

非球面データ
第1面
K = 7.06891e+001 A 4= 1.65970e-005 A 6=-2.75627e-008
A 8= 3.69994e-011 A10=-3.06736e-014 A12= 1.02856e-017

第5面
K = 5.11918e+000 A 4= 1.56334e-005 A 6=-3.87222e-008
A 8=-6.42607e-011 A10= 2.33257e-013 A12=-8.23021e-016

第16面
K = 3.98267e+000 A 4=-4.95014e-007 A 6= 8.39354e-010
A 8=-2.02552e-012 A10= 1.09063e-013 A12=-3.37969e-016

第24面
K =-6.29012e-001 A 4= 1.54969e-006 A 6=-4.82485e-009
A 8= 7.16935e-012 A10=-3.50818e-014 A12= 1.17335e-016

第28面(回折面)
C 2=-1.19327e-004

第29面
K =-2.94321e+002 A 4= 1.78191e-005 A 6= 4.89413e-008
A 8=-2.04329e-010 A10= 5.36861e-013 A12=-5.64474e-016

各種データ
焦点距離 16.48 24.00 33.95
Fナンバー 2.91 2.91 2.91
画角 52.70 42.03 32.51

d 9 23.85 10.19 2.31
d16 0.93 6.65 11.76
d23 12.35 6.26 0.13
(Numerical Example 3)
Surface data surface number rd nd νd Effective diameter
1 * 241.841 2.30 1.77250 49.6 50.01
2 21.342 10.33 35.89
3 -2931.562 1.80 1.80400 46.6 35.24
4 34.274 0.16 1.51640 52.2 31.59
5 * 45.178 4.95 31.52
6 -245.096 1.60 1.83481 42.7 31.34
7 219.105 0.15 31.08
8 43.900 4.50 1.80518 25.4 30.94
9 253.686 (variable) 30.16
10 64.989 1.30 1.80518 25.4 24.45
11 24.529 5.70 1.56732 42.8 24.90
12 -210.325 0.15 25.57
13 69.821 2.55 1.80 400 46.6 26.42
14 503.543 6.39 26.54
15 78.309 3.80 1.62299 58.2 27.94
16 * -83.475 (variable) 27.91
17 (Aperture) ∞ 1.90 24.42
18 -198.029 1.40 1.88300 40.8 24.01
19 161.330 1.86 23.82
20 -50.660 1.10 1.76200 40.1 23.82
21 34.993 5.00 1.84666 23.8 24.74
22 -179.538 0.73 25.08
23 ∞ (variable) 25.26
24 * 24.119 8.50 1.56384 60.7 25.83
25 -19.665 1.20 1.83400 37.2 25.80
26 -30.224 0.20 25.84
27 -231.106 1.20 1.83400 37.2 24.41
28 (Diffraction) 15.884 6.95 1.61800 63.4 23.76
29 * -656.593 24.15

Aspheric data 1st surface
K = 7.06891e + 001 A 4 = 1.65970e-005 A 6 = -2.75627e-008
A 8 = 3.69994e-011 A10 = -3.06736e-014 A12 = 1.02856e-017

5th page
K = 5.11918e + 000 A 4 = 1.56334e-005 A 6 = -3.87222e-008
A 8 = -6.42607e-011 A10 = 2.33257e-013 A12 = -8.23021e-016

16th page
K = 3.98267e + 000 A 4 = -4.95014e-007 A 6 = 8.39354e-010
A 8 = -2.02552e-012 A10 = 1.09063e-013 A12 = -3.37969e-016

24th page
K = -6.29012e-001 A 4 = 1.54969e-006 A 6 = -4.82485e-009
A 8 = 7.16935e-012 A10 = -3.50818e-014 A12 = 1.17335e-016

28th surface (diffractive surface)
C 2 = -1.19327e-004

29th page
K = -2.94321e + 002 A 4 = 1.78191e-005 A 6 = 4.89413e-008
A 8 = -2.04329e-010 A10 = 5.36861e-013 A12 = -5.64474e-016

Various data focal length 16.48 24.00 33.95
F number 2.91 2.91 2.91
Angle of view 52.70 42.03 32.51

d 9 23.85 10.19 2.31
d16 0.93 6.65 11.76
d23 12.35 6.26 0.13

(数値実施例4)
面データ
面番号 r d nd νd 有効径
1* 641.627 2.30 1.58313 59.4 57.11
2 22.265 13.37 39.86
3 -3092.678 1.80 1.88300 40.8 37.97
4 35.147 0.16 1.51640 52.2 33.23
5* 46.818 7.09 32.69
6 -77.036 1.60 1.74400 44.8 32.50
7 1024.935 0.15 32.52
8 48.936 4.50 1.80518 25.4 32.61
9 -2422.950 (可変) 32.13
10 57.004 1.30 1.80518 25.4 24.78
11 24.529 6.20 1.56732 42.8 25.01
12 -114.293 0.15 25.56
13 114.535 2.55 1.80400 46.6 26.04
14 229.658 4.35 26.17
15 56.732 3.80 1.62299 58.2 27.30
16* -74.786 (可変) 27.24
17(絞り) ∞ 1.90 24.28
18 -105.464 1.40 1.88300 40.8 23.84
19 196.553 1.86 23.66
20 -45.002 1.10 1.76200 40.1 23.66
21 25.847 5.50 1.78470 26.3 24.90
22 -98.042 1.23 25.19
23 ∞ (可変) 25.48
24 37.158 8.50 1.51633 64.1 25.87
25 -20.449 1.20 1.84666 23.9 25.60
26 -30.551 0.20 26.04
27 413.247 1.20 1.83400 37.2 24.20
28(回折) 26.725 6.95 1.51742 52.4 23.13
29 -360.016 0.20 24.31
30 193.101 2.90 1.58313 59.4 24.63
31* -1001.484 25.20

非球面データ
第1面
K = 6.72936e+001 A 4= 1.76336e-005 A 6=-2.35027e-008
A 8= 3.32002e-011 A10=-2.73401e-014 A12= 1.11503e-017

第5面
K = 3.83163e+000 A 4= 2.20481e-005 A 6=-5.42322e-009
A 8=-9.28023e-011 A10= 3.52776e-013 A12=-5.43046e-016

第16面
K = 6.78966e-001 A 4= 1.60837e-007 A 6=-1.54811e-009
A 8= 4.84837e-012 A10= 6.44025e-014 A12=-3.00848e-016

第28面(回折面)
C 2=-3.09599e-004

第31面
K =-1.73994e+001 A 4= 1.08574e-005 A 6= 3.13078e-008
A 8=-1.24047e-010 A10= 5.43286e-013 A12=-8.12756e-016

各種データ
焦点距離 16.48 23.98 33.95
Fナンバー 2.91 2.91 2.91
画角 52.70 42.05 32.51

d 9 27.53 10.67 0.21
d16 0.93 4.90 7.10
d23 7.96 4.37 0.36
(Numerical example 4)
Surface data surface number rd nd νd Effective diameter
1 * 641.627 2.30 1.58313 59.4 57.11
2 22.265 13.37 39.86
3 -3092.678 1.80 1.88300 40.8 37.97
4 35.147 0.16 1.51640 52.2 33.23
5 * 46.818 7.09 32.69
6 -77.036 1.60 1.74400 44.8 32.50
7 1024.935 0.15 32.52
8 48.936 4.50 1.80518 25.4 32.61
9 -2422.950 (variable) 32.13
10 57.004 1.30 1.80518 25.4 24.78
11 24.529 6.20 1.56732 42.8 25.01
12 -114.293 0.15 25.56
13 114.535 2.55 1.80 400 46.6 26.04
14 229.658 4.35 26.17
15 56.732 3.80 1.62299 58.2 27.30
16 * -74.786 (variable) 27.24
17 (Aperture) ∞ 1.90 24.28
18 -105.464 1.40 1.88300 40.8 23.84
19 196.553 1.86 23.66
20 -45.002 1.10 1.76200 40.1 23.66
21 25.847 5.50 1.78470 26.3 24.90
22 -98.042 1.23 25.19
23 ∞ (variable) 25.48
24 37.158 8.50 1.51633 64.1 25.87
25 -20.449 1.20 1.84666 23.9 25.60
26 -30.551 0.20 26.04
27 413.247 1.20 1.83400 37.2 24.20
28 (Diffraction) 26.725 6.95 1.51742 52.4 23.13
29 -360.016 0.20 24.31
30 193.101 2.90 1.58313 59.4 24.63
31 * -1001.484 25.20

Aspheric data 1st surface
K = 6.72936e + 001 A 4 = 1.76336e-005 A 6 = -2.35027e-008
A 8 = 3.32002e-011 A10 = -2.73401e-014 A12 = 1.11503e-017

5th page
K = 3.83163e + 000 A 4 = 2.20481e-005 A 6 = -5.42322e-009
A 8 = -9.28023e-011 A10 = 3.52776e-013 A12 = -5.43046e-016

16th page
K = 6.78966e-001 A 4 = 1.60837e-007 A 6 = -1.54811e-009
A 8 = 4.84837e-012 A10 = 6.44025e-014 A12 = -3.00848e-016

28th surface (diffractive surface)
C 2 = -3.09599e-004

No. 31
K = -1.73994e + 001 A 4 = 1.08574e-005 A 6 = 3.13078e-008
A 8 = -1.24047e-010 A10 = 5.43286e-013 A12 = -8.12756e-016

Various data focal length 16.48 23.98 33.95
F number 2.91 2.91 2.91
Angle of view 52.70 42.05 32.51

d 9 27.53 10.67 0.21
d16 0.93 4.90 7.10
d23 7.96 4.37 0.36

次に、本発明のズームレンズ(光学系)を用いた一眼レフカメラシステムの実施形態を図9を用いて説明する。図9において、10は一眼レフカメラ本体、11は本発明によるズームレンズを搭載した交換レンズである。12は交換レンズ11を通して形成される被写体像を記録(受光)するフィルムや固体撮像素子などの記録手段、13は交換レンズ11からの被写体像を観察するファインダー光学系である。14は交換レンズ11からの被写体像を記録手段12とファインダー光学系13に切り替えて伝送するための回動するクイックリターンミラーである。ファインダーで被写体像を観察する場合は、クイックリターンミラー14を介してピント板15に結像した被写体像をペンタプリズム16で正立像としたのち、接眼光学系17で拡大して観察する。撮影時には、クイックリターンミラー14が矢印方向に回動して被写体像は記録手段12に結像して記録される。18はサブミラー、19は焦点検出装置である。   Next, an embodiment of a single-lens reflex camera system using the zoom lens (optical system) of the present invention will be described with reference to FIG. In FIG. 9, 10 is a single-lens reflex camera body, and 11 is an interchangeable lens equipped with a zoom lens according to the present invention. Reference numeral 12 denotes a recording unit such as a film or a solid-state imaging device that records (receives) a subject image formed through the interchangeable lens 11, and 13 denotes a finder optical system that observes the subject image from the interchangeable lens 11. Reference numeral 14 denotes a rotating quick return mirror for switching and transmitting the subject image from the interchangeable lens 11 to the recording means 12 and the finder optical system 13. When observing the subject image with the finder, the subject image formed on the focusing plate 15 via the quick return mirror 14 is made into an erect image with the pentaprism 16 and then magnified and observed with the eyepiece optical system 17. At the time of shooting, the quick return mirror 14 rotates in the direction of the arrow, and the subject image is formed and recorded on the recording means 12. Reference numeral 18 denotes a submirror, and 19 denotes a focus detection device.

このように本発明のズームレンズを一眼レフカメラ交換レンズ等の撮像装置に適用することにより、高い光学性能を有した撮像装置が実現できる。尚、本発明はクイックリターンミラーのないSLR(Single Lens Reflex)カメラにも同様に適用することができる。   Thus, by applying the zoom lens of the present invention to an imaging apparatus such as a single-lens reflex camera interchangeable lens, an imaging apparatus having high optical performance can be realized. The present invention can be similarly applied to an SLR (Single Lens Reflex) camera having no quick return mirror.

以上のように各実施例によれば固体撮像素子を用いた撮影系に好適な、コンパクトで、優れた光学性能を有するズームレンズ及びそれを有する撮像装置が得られる。   As described above, according to each embodiment, it is possible to obtain a compact zoom lens having excellent optical performance and an imaging apparatus having the same, which are suitable for an imaging system using a solid-state imaging device.

L1 第1レンズ群 L2 第2レンズ群 L3 第3レンズ群
L4 第4レンズ群 SP 絞り IP 像面 d d線 g g線
ΔM メリディオナル像面 ΔS サジタル像面
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group SP Aperture IP image surface dd line g g line ΔM meridional image surface ΔS sagittal image surface

Claims (6)

物体側から像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有し、少なくとも1つのレンズ群を光軸に沿って移動させることによりズーミングを行うズームレンズであって、
前記正の屈折力のレンズ群のうち少なくとも1つのレンズ群は回折光学部を少なくとも1つ有し、前記回折光学部を有する正の屈折力のレンズ群内の正レンズの材料のd線における平均屈折率をNDP_ave、前記回折光学部を有する正の屈折力のレンズ群の焦点距離をfD、前記ズームレンズの広角端および望遠端における焦点距離を各々fw、ft、前記第1レンズ群と第3レンズ群の焦点距離をf1、f3とするとき、
0.4<│NDP_ave/fD×√(fw・ft)│<1.0
1.8<f3/f1<4.0
なる条件を満足することを特徴とするズームレンズ。
In order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power are provided. A zoom lens that performs zooming by moving at least one lens group along the optical axis,
At least one of the positive refractive power lens groups has at least one diffractive optical portion, and the average of the materials of the positive lenses in the positive refractive power lens group having the diffractive optical portion at the d-line. The refractive index is NDP_ave, the focal length of the positive refractive power lens group having the diffractive optical unit is fD, the focal lengths at the wide-angle end and the telephoto end of the zoom lens are fw and ft, respectively, and the first lens group and the third lens group When the focal length of the lens group is f1 and f3,
0.4 <| NDP_ave / fD × √ (fw · ft) | <1.0
1.8 <f3 / f1 <4.0
A zoom lens characterized by satisfying the following conditions:
前記回折光学部の空気中における焦点距離をfDOEとするとき、
40<fDOE/√(fw・ft)<300
なる条件式を満足することを特徴とする請求項1に記載のズームレンズ。
When the focal length in the air of the diffractive optical unit is fDOE,
40 <fDOE / √ (fw · ft) <300
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
開口絞りを有し、広角端において前記開口絞りから前記回折光学部までの距離をdDOE、前記ズームレンズのレンズ全長をLwとするとき、
0.2<dDOE/Lw
なる条件式を満足することを特徴とする請求項1又は2に記載のズームレンズ。
When having an aperture stop, when the distance from the aperture stop to the diffractive optical unit at the wide angle end is dDOE, and the total lens length of the zoom lens is Lw,
0.2 <dDOE / Lw
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
前記第1レンズ群と第3レンズ群の焦点距離f1、f3は、
−1.3<f1/√(fw・ft)<−0.8
−3.9<f3/√(fw・ft)<−2.0
なる条件式を満足することを特徴とする請求項1乃至3のいずれか1項に記載のズームレンズ。
The focal lengths f1 and f3 of the first lens group and the third lens group are:
−1.3 <f1 / √ (fw · ft) <− 0.8
−3.9 <f3 / √ (fw · ft) <− 2.0
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
前記回折光学部を有する正の屈折力のレンズ群内の正レンズの材料のd線における平均屈折率NDp_aveは
1.52<NDP_ave<1.78
なる条件式を満足することを特徴とする請求項1乃至4のいずれか1項に記載のズームレンズ。
The average refractive index NDp_ave at the d-line of the positive lens material in the positive refractive power lens group having the diffractive optical part is 1.52 <NDP_ave <1.78.
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
請求項1乃至5のいずれか1項のズームレンズと該ズームレンズによって形成された像を受光する固体撮像素子を有していることを特徴とする撮像装置。   6. An image pickup apparatus comprising: the zoom lens according to claim 1; and a solid-state image pickup device that receives an image formed by the zoom lens.
JP2010006810A 2010-01-15 2010-01-15 Zoom lens and imaging apparatus having the same Expired - Fee Related JP5473621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010006810A JP5473621B2 (en) 2010-01-15 2010-01-15 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006810A JP5473621B2 (en) 2010-01-15 2010-01-15 Zoom lens and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2011145518A true JP2011145518A (en) 2011-07-28
JP2011145518A5 JP2011145518A5 (en) 2013-02-28
JP5473621B2 JP5473621B2 (en) 2014-04-16

Family

ID=44460423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006810A Expired - Fee Related JP5473621B2 (en) 2010-01-15 2010-01-15 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP5473621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9915811B2 (en) 2013-11-01 2018-03-13 Ricoh Imaging Company, Ltd. Zoom lens system having first, second, and fourth lens groups which move during zooming

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117828A (en) * 2002-09-26 2004-04-15 Minolta Co Ltd Image pickup device
JP2005338344A (en) * 2004-05-26 2005-12-08 Konica Minolta Photo Imaging Inc Imaging lens device
JP2006330349A (en) * 2005-05-26 2006-12-07 Konica Minolta Photo Imaging Inc Variable power optical system and imaging apparatus
JP2010160277A (en) * 2009-01-07 2010-07-22 Panasonic Corp Zoom lens system, imaging device, and camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117828A (en) * 2002-09-26 2004-04-15 Minolta Co Ltd Image pickup device
JP2005338344A (en) * 2004-05-26 2005-12-08 Konica Minolta Photo Imaging Inc Imaging lens device
JP2006330349A (en) * 2005-05-26 2006-12-07 Konica Minolta Photo Imaging Inc Variable power optical system and imaging apparatus
JP2010160277A (en) * 2009-01-07 2010-07-22 Panasonic Corp Zoom lens system, imaging device, and camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9915811B2 (en) 2013-11-01 2018-03-13 Ricoh Imaging Company, Ltd. Zoom lens system having first, second, and fourth lens groups which move during zooming
US10295808B2 (en) 2013-11-01 2019-05-21 Ricoh Imaging Company, Ltd. Zoom lens system having third lens group with air lens formed of adjacent negative and positive single lens elements

Also Published As

Publication number Publication date
JP5473621B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5197242B2 (en) Zoom lens and imaging apparatus having the same
US9684155B2 (en) Optical system and image pickup apparatus including the same
US9134512B2 (en) Zoom lens and image pickup apparatus having the same
JP6418894B2 (en) Optical system, imaging device, and optical apparatus
JP6173279B2 (en) Zoom lens and imaging apparatus having the same
JP5822659B2 (en) Zoom lens and imaging apparatus having the same
JP4695912B2 (en) Zoom lens and imaging apparatus having the same
JP2004198529A (en) Zoom lens and optical equipment having the same
US7545577B2 (en) Zoom lens and image pickup apparatus including the same
US11131829B2 (en) Zoom lens and image pickup apparatus
JP2006285019A (en) Zoom lens and imaging apparatus equipped with the same
JP2013190453A5 (en)
JP6818546B2 (en) Zoom lens and imaging device with it
US10031323B2 (en) Zoom lens and image pickup apparatus including the same
JP2005092056A (en) Zoom lens and image pickup device having same
JP4989235B2 (en) Zoom lens
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP5078498B2 (en) Zoom lens and imaging apparatus having the same
JP2009186570A (en) Zoom lens and imaging apparatus having the same
JP7086579B2 (en) Zoom lens and image pickup device
JP5058634B2 (en) Zoom lens and imaging apparatus having the same
JP6742977B2 (en) Zoom lens and imaging device having the same
JP6226610B2 (en) Zoom lens and imaging apparatus having the same
JP5473621B2 (en) Zoom lens and imaging apparatus having the same
JP2017116702A (en) Zoom lens and imaging apparatus including the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R151 Written notification of patent or utility model registration

Ref document number: 5473621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees