JP2011145217A - Hot-line detector - Google Patents

Hot-line detector Download PDF

Info

Publication number
JP2011145217A
JP2011145217A JP2010007209A JP2010007209A JP2011145217A JP 2011145217 A JP2011145217 A JP 2011145217A JP 2010007209 A JP2010007209 A JP 2010007209A JP 2010007209 A JP2010007209 A JP 2010007209A JP 2011145217 A JP2011145217 A JP 2011145217A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
light
receiving element
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010007209A
Other languages
Japanese (ja)
Inventor
Shunsuke Matsushima
俊輔 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010007209A priority Critical patent/JP2011145217A/en
Publication of JP2011145217A publication Critical patent/JP2011145217A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-line detector in which the effect on an optical signal is suppressed. <P>SOLUTION: A hot-line detector has an optical connection part 1 which contains: a first optical waveguide 11 connecting two optical lines formed from an optical fiber 5; and a second optical waveguide 12 having a core diameter smaller than the first optical waveguide 11, and formed to cross the first optical waveguide 11, for taking out a part of the signal light transmitted through the first optical waveguide 11. It also has a photodetecting part 2 which detects the signal light taken out by the second optical waveguide 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光ファイバにより形成した光線路が活線状態(光が光線路を正常に伝送されている状態)にあるか否かを検出する活線検出装置に関するものである。   The present invention relates to a live line detection device that detects whether or not an optical line formed by an optical fiber is in a live line state (a state in which light is normally transmitted through the optical line).

従来より、光ファイバにより形成した光線路が活線状態にあるか否かを検出する活線検出器が提供されている(例えば特許文献1参照)。この活線検出器は、光ファイバに曲げ変形を加えることによって光信号を変調する変調機構と、それぞれ受光素子を具備し、変調機構の両側に配置された第1,第2の検出機構とを備えており、変調機構により光ファイバに曲げ変形を加えた状態では、光ファイバ中を伝搬する光信号の一部が曲げ部分から外部に漏洩するため、この漏洩光を上記受光素子で受光することにより光信号の有無を検出することができる。そして、上記受光素子により漏洩光を受光できた場合には光線路が活線状態にあると判断し、受光できなかった場合には活線状態にないと判断するのである。   2. Description of the Related Art Conventionally, there has been provided a live line detector that detects whether or not an optical line formed by an optical fiber is in a live line state (see, for example, Patent Document 1). This hot-line detector includes a modulation mechanism that modulates an optical signal by applying bending deformation to an optical fiber, and first and second detection mechanisms that are each provided with a light receiving element and are arranged on both sides of the modulation mechanism. When the optical fiber is bent and deformed by the modulation mechanism, a part of the optical signal propagating in the optical fiber leaks outside from the bent portion, so that the light receiving element receives this leaked light. Thus, the presence or absence of an optical signal can be detected. Then, when the leak light can be received by the light receiving element, it is determined that the optical line is in a live line state, and when it is not received, it is determined that the light line is not in a live line state.

特開平10−246818号公報(段落[0016]、及び、第1図)Japanese Patent Laid-Open No. 10-246818 (paragraph [0016] and FIG. 1)

上述の特許文献1に示した活線検出器では、光ファイバの曲げ部分から漏洩する光信号によって光線路が活線状態にあるか否かを判別するのであるが、この場合光ファイバが過度に曲げられると曲げ部分から漏洩する光の量が多くなるため、光信号への影響が大きくなる可能性があった。   In the live line detector shown in the above-mentioned Patent Document 1, it is determined whether or not the optical line is in the live line state based on the optical signal leaking from the bent portion of the optical fiber. When bent, the amount of light leaking from the bent portion increases, which may increase the effect on the optical signal.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、光信号への影響を抑えた活線検出装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a hot-wire detection apparatus that suppresses the influence on an optical signal.

請求項1の発明は、光ファイバにより形成した光線路が活線状態にあるか否かを検出する活線検出装置であって、2つの光線路間を接続する第1の光導波路を有するとともに、コア径が第1の光導波路よりも小さく且つ第1の光導波路と交差するように形成され、第1の光導波路を通って伝送される信号光の一部を取り出す第2の光導波路を有する光接続部と、第2の光導波路によって取り出された信号光を検出する光検出部とを備えることを特徴とする。   The invention of claim 1 is a hot-wire detection device that detects whether or not an optical line formed by an optical fiber is in a live-line state, and has a first optical waveguide that connects two optical lines. A second optical waveguide having a core diameter smaller than that of the first optical waveguide and intersecting the first optical waveguide, and extracting a part of the signal light transmitted through the first optical waveguide. And an optical detection unit that detects the signal light extracted by the second optical waveguide.

請求項2の発明は、請求項1の発明において、光ファイバは石英ガラスからなるコアを有し、第1及び第2の光導波路は、紫外線硬化樹脂に紫外線を照射することによって形成した自己形成光導波路であることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the optical fiber has a core made of quartz glass, and the first and second optical waveguides are formed by irradiating the ultraviolet curable resin with ultraviolet rays. It is an optical waveguide.

請求項3の発明は、請求項1又は2の発明において、光検出部は、第2の光導波路によって取り出された信号光を受光する受光素子と、該受光素子と第2の光導波路との間に配置されて信号光を受光素子に導く光ファイバとを備えたことを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the light detection unit includes a light receiving element that receives the signal light extracted by the second optical waveguide, and the light receiving element and the second optical waveguide. And an optical fiber disposed between them to guide the signal light to the light receiving element.

請求項1の発明によれば、コア径が第1の光導波路よりも小さく且つ第1の光導波路と交差するように第2の光導波路を形成しているので、信号伝送に利用しない高次モードの信号光が第2の光導波路側に取り出されることになり、その結果光信号への影響を抑えることができるという効果がある。また、第2の光導波路を介して漏光を伝送しているので、光検出部で検出する漏光のロスを抑えることができるという効果もある。   According to the first aspect of the present invention, the second optical waveguide is formed so that the core diameter is smaller than that of the first optical waveguide and intersects the first optical waveguide. The mode signal light is extracted to the second optical waveguide side, and as a result, the effect on the optical signal can be suppressed. In addition, since light leakage is transmitted through the second optical waveguide, there is an effect that the loss of light leakage detected by the light detection unit can be suppressed.

請求項2の発明によれば、光ファイバのコアを石英ガラスで形成しているので、紫外線透過に優れた光ファイバを実現でき、また紫外線硬化樹脂に紫外線を照射するだけで第1及び第2の光導波路を簡単に形成することができるという効果がある。   According to the second aspect of the present invention, since the core of the optical fiber is formed of quartz glass, an optical fiber excellent in ultraviolet transmission can be realized, and the first and second optical fibers can be simply irradiated with ultraviolet rays. The optical waveguide can be easily formed.

請求項3の発明によれば、第2の光導波路と受光素子の間に光ファイバを配置しており、この光ファイバの長さを調節することによって受光素子の配置を任意に設定することができるという効果がある。   According to the invention of claim 3, the optical fiber is arranged between the second optical waveguide and the light receiving element, and the arrangement of the light receiving element can be arbitrarily set by adjusting the length of the optical fiber. There is an effect that can be done.

本実施形態の活線検出装置の概略構成図である。It is a schematic block diagram of the hot-wire detection apparatus of this embodiment. 同上の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example same as the above.

本発明に係る活線検出装置の実施形態を図面に基づいて説明する。本発明に係る活線検出装置は、光ファイバにより形成した光線路が活線状態(光が光線路を正常に伝送されている状態)にあるか否かを検出するために用いられる。   An embodiment of a hot-wire detection apparatus according to the present invention will be described with reference to the drawings. The hot-wire detection apparatus according to the present invention is used to detect whether or not an optical line formed by an optical fiber is in a hot-wire state (a state where light is normally transmitted through the optical line).

図1は本実施形態の活線検出装置の概略構成図であり、本活線検出装置は、光接続部1及び光検出部2を主な構成要素とするものである。   FIG. 1 is a schematic configuration diagram of a live line detection apparatus according to the present embodiment. The live line detection apparatus includes an optical connection unit 1 and a photo detection unit 2 as main components.

光接続部1は、図1に示すように、光ファイバ5により形成した2つの光線路間を接続する第1の光導波路11と、第1の光導波路11を通って伝送される信号光の一部(図1中の漏光P3)を取り出す第2の光導波路12とを有しており、第2の光導波路12は、コア径が第1の光導波路11よりも小さく且つ第1の光導波路11と直交するように設けられている。ここに、第1及び第2の光導波路11,12は自己形成光導波路(感光性媒質中に光を照射することにより自発的に形成される導波構造)であって、例えば本実施形態では、紫外線硬化樹脂に紫外線を照射することで第1及び第2の光導波路11,12を形成している。   As shown in FIG. 1, the optical connection unit 1 includes a first optical waveguide 11 that connects two optical lines formed by the optical fiber 5, and signal light transmitted through the first optical waveguide 11. A second optical waveguide 12 for extracting a part (leakage light P3 in FIG. 1). The second optical waveguide 12 has a core diameter smaller than that of the first optical waveguide 11 and the first optical waveguide. It is provided so as to be orthogonal to the waveguide 11. Here, the first and second optical waveguides 11 and 12 are self-forming optical waveguides (waveguide structures formed spontaneously by irradiating light in a photosensitive medium). The first and second optical waveguides 11 and 12 are formed by irradiating the ultraviolet curable resin with ultraviolet rays.

なお、第1の光導波路11のコア径は、光線路を形成する光ファイバ5のコア51のコア径と略同寸法に設定され、また第2の光導波路12のコア径は、後述の光検出部2を構成する光ファイバ3のコア31のコア径と略同寸法に設定される。また、第1の光導波路11と第2の光導波路12のコア径の比率は、例えば光線路を伝送する信号光の特性や後述の受光素子4の感度などに基づいて適宜設定される。   Note that the core diameter of the first optical waveguide 11 is set to be approximately the same as the core diameter of the core 51 of the optical fiber 5 forming the optical line, and the core diameter of the second optical waveguide 12 is the optical diameter described later. The diameter is set to be approximately the same as the core diameter of the core 31 of the optical fiber 3 constituting the detection unit 2. The ratio of the core diameters of the first optical waveguide 11 and the second optical waveguide 12 is appropriately set based on, for example, characteristics of signal light transmitted through the optical line, sensitivity of the light receiving element 4 described later, and the like.

光検出部2は、図1に示すように、第2の光導波路12によって取り出された信号光(図1中の漏光P3)を受光する受光素子4(例えばフォトダイオードなど)と、この受光素子4と第2の光導波路12の間に配置されて上記信号光を受光素子4に導く光ファイバ3とを有しており、本実施形態では上下方向に形成された第2の光導波路12の両端にそれぞれ光検出部2が設けられている。なお、上記の受光素子4は、受光量に応じた信号を出力するようになっている。   As shown in FIG. 1, the light detection unit 2 includes a light receiving element 4 (for example, a photodiode) that receives signal light (leakage light P3 in FIG. 1) extracted by the second optical waveguide 12, and the light receiving element. 4 and an optical fiber 3 that guides the signal light to the light receiving element 4 and is arranged between the second optical waveguide 12 and the second optical waveguide 12. In this embodiment, the second optical waveguide 12 is formed in the vertical direction. Photodetectors 2 are provided at both ends, respectively. The light receiving element 4 is configured to output a signal corresponding to the amount of received light.

また、本実施形態の活線検出装置は、コンパレータを用いた判別回路(図示せず)を備えており、この判別回路では、受光素子4から入力される上記信号が所定の基準値を超えると所定の駆動信号を出力するようになっている。そして、この駆動信号により発光ダイオード(図示せず)を点灯させ、光線路が活線状態にあることを表示するようになっている。   Further, the hot-line detection device of the present embodiment includes a determination circuit (not shown) using a comparator. In this determination circuit, when the signal input from the light receiving element 4 exceeds a predetermined reference value. A predetermined drive signal is output. Then, a light emitting diode (not shown) is turned on by this drive signal to indicate that the optical line is in a live line state.

ここにおいて、本実施形態の光ファイバ3,5は、伝搬損失、伝送帯域幅及び機械的強度などの耐環境性などを考慮するとともに、自己形成光導波路の形成に用いる光が紫外線であることを考慮して石英ガラスからなるコア31,51を用いている。   Here, the optical fibers 3 and 5 of this embodiment take into consideration environment resistance such as propagation loss, transmission bandwidth and mechanical strength, and that the light used for forming the self-forming optical waveguide is ultraviolet light. Considering, cores 31 and 51 made of quartz glass are used.

次に、光接続部1の成形方法について説明する。まず、紫外線硬化樹脂を入れた成形型(図示せず)の上下方向両側に漏光検出用の光ファイバ3,3を配置するとともに、成形型の左右方向両側に光線路を形成する光ファイバ5,5を配置する。そして、4本の光ファイバ3,5の開口端側から紫外線を照射して、第1及び第2の光導波路11,12を形成した後、硬化していない紫外線硬化樹脂を成形型から除去する。最後に、成形型に樹脂13を充填して硬化させると、図1に示す光接続部1が成形できるのである。なお、第1及び第2の光導波路11,12を覆う樹脂13は、伝搬損失が小さくなるように紫外線硬化樹脂よりも屈折率が小さいものを選択する必要がある。   Next, a method for forming the optical connecting portion 1 will be described. First, optical fibers 3 and 3 for detecting light leakage are arranged on both sides in the vertical direction of a mold (not shown) containing an ultraviolet curable resin, and optical fibers 5 are formed on both sides in the horizontal direction of the mold. 5 is arranged. And after irradiating an ultraviolet-ray from the opening end side of the four optical fibers 3 and 5 and forming the 1st and 2nd optical waveguides 11 and 12, the uncured ultraviolet curable resin is removed from a shaping | molding die. . Finally, when the mold 13 is filled with the resin 13 and cured, the optical connecting portion 1 shown in FIG. 1 can be molded. The resin 13 covering the first and second optical waveguides 11 and 12 needs to be selected so as to have a refractive index smaller than that of the ultraviolet curable resin so as to reduce the propagation loss.

続けて、活線検出装置の動作について説明する。図1中の左側の光線路(光ファイバ5)により伝送すべき信号光P1及び信号光P1の高次モード成分P2は、第1の光導波路11を通って図1中の右側の光線路(光ファイバ5)に伝送されるのであるが、その際、第1の光導波路11を通過する信号光P1の高次モード成分P2の一部が、漏光P3として第2の光導波路12側に取り出される。第2の光導波路12に取り出された漏光P3は、光ファイバ3を通って受光素子4に入光し、受光素子4では漏光P3の光量に応じた信号を出力する。そして、この信号が判別回路に入力されると、判別回路ではこの信号が基準値を超えることから所定の駆動信号を出力し、この駆動信号によって発光ダイオードを点灯させ、光線路が活線状態にあることを表示するのである。   Next, the operation of the live line detection device will be described. The signal light P1 to be transmitted through the left optical line (optical fiber 5) in FIG. 1 and the higher-order mode component P2 of the signal light P1 pass through the first optical waveguide 11, and the right optical line (in FIG. At this time, a part of the higher-order mode component P2 of the signal light P1 passing through the first optical waveguide 11 is extracted to the second optical waveguide 12 side as leakage light P3. It is. The leaked light P3 taken out to the second optical waveguide 12 enters the light receiving element 4 through the optical fiber 3, and the light receiving element 4 outputs a signal corresponding to the amount of the leaked light P3. When this signal is input to the discrimination circuit, the discrimination circuit outputs a predetermined drive signal because this signal exceeds the reference value, and the light emitting diode is turned on by this drive signal, and the optical line is in a live line state. It is displayed.

一方、受光素子4から出力された上記信号が基準値以下である場合には、判別回路は上記駆動信号を出力しないので発光ダイオードは点灯せず、光線路が活線状態にないことを表示するのである。   On the other hand, when the signal output from the light receiving element 4 is below the reference value, the discriminating circuit does not output the drive signal, so the light emitting diode is not lit and the optical line is not in a live state. It is.

而して、本実施形態によれば、コア径が第1の光導波路11よりも小さく且つ第1の光導波路11と交差するように第2の光導波路12を形成しているので、信号伝送に利用しない高次モードの信号光(漏光P3)が第2の光導波路12側に取り出されることになり、その結果光信号への影響を抑えることができる。また、第2の光導波路12を介して漏光P3を伝送しているので、光検出部2で検出する漏光P3のロスを抑えることができる。   Thus, according to the present embodiment, the second optical waveguide 12 is formed so that the core diameter is smaller than that of the first optical waveguide 11 and intersects the first optical waveguide 11. High-order mode signal light (leakage light P3) that is not used for the light is extracted to the second optical waveguide 12 side, and as a result, the influence on the optical signal can be suppressed. Further, since the leakage light P3 is transmitted through the second optical waveguide 12, the loss of the leakage light P3 detected by the light detection unit 2 can be suppressed.

さらに、光ファイバ3,5のコア31,51を石英ガラスで形成しているので、紫外線透過に優れた光ファイバ3,5を実現でき、また紫外線硬化樹脂に紫外線を照射するだけで第1及び第2の光導波路11,12を簡単に形成することができる。また、第2の光導波路12と受光素子4の間に光ファイバ3を配置しており、この光ファイバ3の長さを調節することによって受光素子4の配置を任意に設定することができる。   Furthermore, since the cores 31 and 51 of the optical fibers 3 and 5 are made of quartz glass, the optical fibers 3 and 5 excellent in ultraviolet transmission can be realized, and the first and The second optical waveguides 11 and 12 can be easily formed. Further, the optical fiber 3 is arranged between the second optical waveguide 12 and the light receiving element 4, and the arrangement of the light receiving element 4 can be arbitrarily set by adjusting the length of the optical fiber 3.

本実施形態では、第2の光導波路12の両端に光検出部(光ファイバ3及び受光素子4)2を設けた場合を例に説明したが、光検出部2は、図2に示すように第2の光導波路12の一端に設けられていればよく、他端には漏光P3を光検出部2側に反射させる反射鏡6を配置すればよい。また、本実施形態では光ファイバ3と受光素子4とで光検出部2を構成しているが、受光素子4のみで光検出部2を構成してもよく、この場合受光素子4を第2の光導波路12に直接接続すればよい。   In this embodiment, the case where the light detection units (the optical fiber 3 and the light receiving element 4) 2 are provided at both ends of the second optical waveguide 12 has been described as an example, but the light detection unit 2 is configured as shown in FIG. What is necessary is just to be provided in the end of the 2nd optical waveguide 12, and what is necessary is just to arrange | position the reflective mirror 6 which reflects the light leakage P3 to the photon detection part 2 side at the other end. In the present embodiment, the optical detection unit 2 is configured by the optical fiber 3 and the light receiving element 4, but the optical detection unit 2 may be configured by only the light receiving element 4. What is necessary is just to connect to the optical waveguide 12 directly.

1 光接続部
2 光検出部
5 光ファイバ
11 第1の光導波路
12 第2の光導波路
DESCRIPTION OF SYMBOLS 1 Optical connection part 2 Optical detection part 5 Optical fiber 11 1st optical waveguide 12 2nd optical waveguide

Claims (3)

光ファイバにより形成した光線路が活線状態にあるか否かを検出する活線検出装置であって、2つの光線路間を接続する第1の光導波路を有するとともに、コア径が第1の光導波路よりも小さく且つ第1の光導波路と交差するように形成され、第1の光導波路を通って伝送される信号光の一部を取り出す第2の光導波路を有する光接続部と、第2の光導波路によって取り出された信号光を検出する光検出部とを備えることを特徴とする活線検出装置。   A hot-line detection device that detects whether or not an optical line formed by an optical fiber is in a live-line state, having a first optical waveguide connecting between two optical lines, and having a first core diameter An optical connection portion having a second optical waveguide that is smaller than the optical waveguide and intersects the first optical waveguide and takes out part of the signal light transmitted through the first optical waveguide; And a light detector for detecting signal light extracted by the two optical waveguides. 前記光ファイバは石英ガラスからなるコアを有し、前記第1及び第2の光導波路は、紫外線硬化樹脂に紫外線を照射することによって形成した自己形成光導波路であることを特徴とする請求項1記載の活線検出装置。   2. The optical fiber has a core made of quartz glass, and the first and second optical waveguides are self-forming optical waveguides formed by irradiating ultraviolet curable resin with ultraviolet rays. The hot-wire detection apparatus as described. 前記光検出部は、前記第2の光導波路によって取り出された信号光を受光する受光素子と、該受光素子と前記第2の光導波路との間に配置されて前記信号光を前記受光素子に導く光ファイバとを備えたことを特徴とする請求項1又は2記載の活線検出装置。   The light detection unit is disposed between a light receiving element that receives the signal light extracted by the second optical waveguide, and the light receiving element and the second optical waveguide, and the signal light is transmitted to the light receiving element. The hot-wire detection apparatus according to claim 1, further comprising a guiding optical fiber.
JP2010007209A 2010-01-15 2010-01-15 Hot-line detector Withdrawn JP2011145217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010007209A JP2011145217A (en) 2010-01-15 2010-01-15 Hot-line detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010007209A JP2011145217A (en) 2010-01-15 2010-01-15 Hot-line detector

Publications (1)

Publication Number Publication Date
JP2011145217A true JP2011145217A (en) 2011-07-28

Family

ID=44460197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010007209A Withdrawn JP2011145217A (en) 2010-01-15 2010-01-15 Hot-line detector

Country Status (1)

Country Link
JP (1) JP2011145217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132775A (en) * 2014-01-15 2015-07-23 日本電信電話株式会社 Light-receiving device for communication monitor and leakage light acquisition method thereof
CN107577009A (en) * 2017-09-30 2018-01-12 华中科技大学 A kind of line model resolving device based on tunnelling ray waveguide
JP6998700B2 (en) 2016-09-05 2022-01-18 ゼネラル・エレクトリック・カンパニイ Electrical machining equipment and methods, as well as hybrid machining systems and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132775A (en) * 2014-01-15 2015-07-23 日本電信電話株式会社 Light-receiving device for communication monitor and leakage light acquisition method thereof
JP6998700B2 (en) 2016-09-05 2022-01-18 ゼネラル・エレクトリック・カンパニイ Electrical machining equipment and methods, as well as hybrid machining systems and methods
CN107577009A (en) * 2017-09-30 2018-01-12 华中科技大学 A kind of line model resolving device based on tunnelling ray waveguide

Similar Documents

Publication Publication Date Title
JP2009175612A (en) Optical connector
JP6723695B2 (en) Optical power monitor device and fiber laser device
JP2011145217A (en) Hot-line detector
EP2604991A1 (en) Liquid detector and liquid identifying system
JP2001255231A (en) Live-line detector for optical path
Missinne et al. Curing kinetics of step-index and graded-index single mode polymer self-written waveguides
CN102043191A (en) Soft pack layer sensing optical fiber
JP5944015B2 (en) Power combiner monitoring
JP2004170488A (en) Optical fiber connector
JP6643151B2 (en) Optical branching coupler and optical transceiver module
CN103885139A (en) Optical fiber component
Dainese et al. Novel optical fiber design for low-cost optical interconnects in consumer applications
JP2005347441A (en) Optical module and manufacturing method thereof
JP2011186172A (en) Optical fiber coupling method and device for local signals
JP2011145548A (en) Hot-line detector
JP2007171769A (en) Optical multiplexing waveguide
JP2006292740A (en) Device for high-order mode excitation and its manufacturing method
JP2016133592A (en) Multi-core optical fiber and optical connecting component
JP2010032273A (en) Hot line detection device
JP2019169780A (en) Optical communication system
KR100963206B1 (en) Apparatus for optical fiber connector
Mazzarese et al. Comparison of bend insensitive and standard multimode fiber
JP4728857B2 (en) Optical coupler
JP2011145546A (en) Hot-line detector
JP2011145547A (en) Hot-line detector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402