JP2011144409A - High-strength steel sheet superior in workability and method for manufacturing the same - Google Patents

High-strength steel sheet superior in workability and method for manufacturing the same Download PDF

Info

Publication number
JP2011144409A
JP2011144409A JP2010004736A JP2010004736A JP2011144409A JP 2011144409 A JP2011144409 A JP 2011144409A JP 2010004736 A JP2010004736 A JP 2010004736A JP 2010004736 A JP2010004736 A JP 2010004736A JP 2011144409 A JP2011144409 A JP 2011144409A
Authority
JP
Japan
Prior art keywords
mass
steel sheet
workability
strength
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010004736A
Other languages
Japanese (ja)
Other versions
JP5521562B2 (en
Inventor
Toshiki Nonaka
俊樹 野中
Shinichiro Watanabe
真一郎 渡辺
Koichi Goto
貢一 後藤
Nobuhiro Fujita
展弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010004736A priority Critical patent/JP5521562B2/en
Publication of JP2011144409A publication Critical patent/JP2011144409A/en
Application granted granted Critical
Publication of JP5521562B2 publication Critical patent/JP5521562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain a high-strength steel sheet superior in workability on an industrial scale, and to provide a method for manufacturing the same on the industrial scale. <P>SOLUTION: The high-strength steel sheet includes, by mass%, 0.07-0.20% C, 0.005-1.5% Si, 1.0-3.1% Mn, 0.001-0.06% P, 0.001-0.01% S, 0.0005-0.01% N, 0.005-1.2% Al and the balance Fe with unavoidable impurities; further has such mass% of C and Mn and a target strength value (TS) as to satisfy expression (A), wherein [TS target value] is a designed strength value of the steel sheet and the unit is MPa; [Mn] is mass% of Mn; and [C] is mass% of C; and has such a hardness distribution as to satisfy expression (B). The manufacturing method includes an annealing step in which in the first heating zone, such a temperature T1 as to satisfy expression (C) is kept for 30 seconds or longer, wherein T1 is temperature (°C); [Mn] is mass% of Mn; [Si] is mass% of Si; [Ti] is mass% of Ti; [Nb] is mass% of Nb; and [Mo] is mass% of Mo; and in a cooling zone after soaking treatment in the annealing step, a cooling rate V1 in such a period that the temperature of the steel sheet is in a range of 800-400°C and a cooling rate V2 is such a period that the temperature is lower than 400°C satisfy expression (D), wherein V1 is a cooling rate m/s in a former stage; and V2 is a cooling rate m/s in a latter stage. The high-strength steel sheet also has a metallographic structure containing ferrite and martensite. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、加工性に優れた高強度鋼板およびその製造方法に関する。   The present invention relates to a high-strength steel sheet excellent in workability and a method for producing the same.

近年、地球温暖化対策として、自動車の燃費向上が必要となってきている。このため車体の軽量化がより一層要求されている。軽量化のためには使用される鋼板の板厚を薄くしなければならないが、一方で、衝突安全性に関する規制の法制化や基準の引き上げが行われており、単純に鋼板板厚減では成り立たない。軽量化と衝突安全基準の両立のためには、高強度鋼板の活用が必須である。   In recent years, it has become necessary to improve automobile fuel efficiency as a measure against global warming. For this reason, the weight reduction of a vehicle body is requested | required further. In order to reduce weight, it is necessary to reduce the thickness of the steel sheet used, but on the other hand, legislation on regulations on collision safety and standards have been raised. Absent. In order to achieve both weight reduction and collision safety standards, it is essential to use high-strength steel sheets.

一般的に鋼板は、強度が高くなるほどプレス成形が困難となる。一方、使用する側では少しでも部品を軽量化するために、その形状を複雑にする傾向にあり、鋼板には一層の加工性の向上が要求される。これらの状況に対し、加工性の改善に対して、伸びや穴拡げ性の向上が言われてきた。   In general, as the strength of a steel plate increases, press forming becomes difficult. On the other hand, in order to reduce the weight of the components as much as possible, the shape tends to be complicated, and the steel sheet is required to further improve the workability. In response to these conditions, it has been said that improvement in workability and improvement in elongation and hole expansibility.

伸びの改善に対しては残留オーステナイトの加工誘起変態を利用した鋼板(以下TRIP鋼)などが発明されており、例えば、特許文献1や特許文献2に開示されている。
しかし、通常のTRIP鋼板は、多量のC添加が必要であり、ナゲット割れ等の溶接上の問題がある。
A steel plate (hereinafter referred to as TRIP steel) using work-induced transformation of retained austenite has been invented for improving elongation, and disclosed in, for example, Patent Document 1 and Patent Document 2.
However, a normal TRIP steel sheet requires a large amount of C addition, and has a welding problem such as nugget cracking.

また、鋼板の加工性を表す指標として、特許文献3のように穴拡げ性があるが、これだけでは現実的に自動車用部品の伸びフランジ成形の加工性を表すには不十分であることが分かっている。また、加工性を表すのに特許文献4や特許文献5では結晶粒の硬度に着目しているが、特許文献4はフェライトとマルテンサイトの硬度比に限定しており、一方で特許文献5はマルテンサイト粒内の位置による硬度比に限定しており、共に不十分である。   Further, as an index representing the workability of a steel sheet, there is hole expansibility as in Patent Document 3, but it is understood that this alone is not sufficient to actually represent the workability of stretch flange forming of automotive parts. ing. In addition, Patent Document 4 and Patent Document 5 focus on the hardness of crystal grains to express workability, but Patent Document 4 is limited to the hardness ratio of ferrite and martensite, while Patent Document 5 It is limited to the hardness ratio depending on the position in the martensite grains, and both are insufficient.

特開昭61−157625号公報JP-A 61-157625 特開平10−130776号公報JP-A-10-130776 特開2001−355043号公報JP 2001-355043 A 特開2007−302918号公報JP 2007-302918 A 特開2008−063804号公報JP 2008-063804 A

本発明は、前述のような従来技術の問題点を解決し、加工性に優れた高強度鋼板およびその製造方法を工業的規模で実現することを課題とする。   An object of the present invention is to solve the problems of the prior art as described above, and to realize a high-strength steel sheet excellent in workability and a manufacturing method thereof on an industrial scale.

まず、本発明の技術思想を説明する。
本発明者らは、加工性に優れた高強度鋼板を鋭意検討した結果、鋼板の硬度分布を特定し、これまで以上の加工性が確保できる高強度鋼板を工業的に製造できることを見出した。また、加工性に優れた鋼板を製造するための製造条件も見出した。
First, the technical idea of the present invention will be described.
As a result of intensive studies on high-strength steel sheets excellent in workability, the present inventors have found that the hardness distribution of the steel sheets is specified, and high-strength steel sheets that can ensure workability higher than before can be industrially produced. Moreover, the manufacturing conditions for manufacturing the steel plate excellent in workability were also discovered.

本発明の鋼板は、加工性を示す従来の指標である伸びや穴拡げ性ではなく、サイドベンド試験法にて評価した。この評価方法にて、自動車部品の加工性をより正しく表せることが出来る。さらに、遅れ破壊や二次加工脆性の問題が生じないように、不可避的に含まれる5%以下の残留オーステナイトを許容し、実質的に残留オーステナイトを含まないDP鋼とした。   The steel sheet of the present invention was evaluated by the side bend test method, not the elongation and hole expansibility, which are conventional indexes indicating workability. This evaluation method can more accurately represent the workability of automobile parts. Furthermore, in order not to cause the problem of delayed fracture and secondary work brittleness, DP steel that allows unavoidable 5% or less of retained austenite and does not substantially contain retained austenite was obtained.

本発明の高強度鋼板は、590Mpaから1500Mpaの引張強度が実現できるが、980Mpa以上の高強度鋼板にて著しい効果を奏する。
本発明は、以上のような技術思想に基づくものであり、特許請求の範囲に記載した以下の内容をその要旨とする。
The high-strength steel sheet of the present invention can realize a tensile strength of 590 Mpa to 1500 Mpa, but has a remarkable effect with a high-strength steel sheet of 980 Mpa or higher.
The present invention is based on the technical idea as described above, and includes the following contents described in the claims.

(1) 質量%で、C :0.07〜0.20%、Si:0.005〜1.5%、Mn:1.0〜3.1%、P :0.001〜0.06%、S :0.001〜0.01%、N :0.0005〜0.01%、Al:0.005〜1.2%を含有し、残部Feおよび不可避不純物からなり、さらに、C、Mnの質量%と、狙いの強度値(TS)とが、下記 (A) 式を満足し、
さらに、ナノインデンターにて100点以上の箇所で硬度測定を行い、硬度分布が、数1に示す下記(B)式を満足し、金属組織がフェライトとマルテンサイトを含有することを特徴とする加工性に優れた高強度鋼板。
0.0004×[TS狙い値]-0.11-0.12[Mn]<[C]<0.0005×[TS狙い値]-0.07-0.12×[Mn] ・・・(A)
ここに、[TS狙い値]は鋼板の強度設計値で単位はMPa、[Mn]はMnの質量%、[C]はCの質量%

Figure 2011144409
(1) By mass%, C: 0.07-0.20%, Si: 0.005-1.5%, Mn: 1.0-3.1%, P: 0.001-0.06%, S: 0.001-0.01%, N: 0.0005-0.01%, Al : Containing 0.005-1.2%, consisting of the balance Fe and inevitable impurities, and further, the mass% of C and Mn and the target strength value (TS) satisfy the following formula (A),
Furthermore, the hardness is measured at 100 or more points with a nanoindenter, the hardness distribution satisfies the following formula (B) shown in Formula 1, and the metal structure contains ferrite and martensite. High-strength steel sheet with excellent workability.
0.0004 × [TS target value] -0.11-0.12 [Mn] <[C] <0.0005 × [TS target value] -0.07-0.12 × [Mn] (A)
Here, [TS target value] is the strength design value of the steel sheet, the unit is MPa, [Mn] is the mass% of Mn, and [C] is the mass% of C.
Figure 2011144409

(2) さらに、B:0.0005〜0.002%、Mo:0.01〜0.5%、Cr:0.01〜0.5%、V:0.01〜0.1%、Ti:0.01〜0.1%、Nb:0.005〜0.1%、Ca :0.0005〜0.005%、REM:0.0005〜0.005%のうち1種または2種を含有することを特徴とする(1)に記載の加工性に優れた高強度鋼板。 (2) Further, B: 0.0005 to 0.002%, Mo: 0.01 to 0.5%, Cr: 0.01 to 0.5%, V: 0.01 to 0.1%, Ti: 0.01 to 0.1%, Nb: 0.005 to 0.1%, Ca: 0.0005 The high-strength steel sheet having excellent workability as set forth in (1), comprising one or two of ˜0.005% and REM: 0.0005 to 0.005%.

(3)(1)または(2)に記載の成分のスラブを、熱間圧延を施した後に捲取り、次いで通常の酸洗の後、冷間圧延を実施し、その後連続焼鈍工程で焼鈍を施し、次いで調質圧延を施す工程からなり、焼鈍工程での最初の加熱帯にて下記(C)を満足する温度T1を30秒以上とし、焼鈍工程での均熱後の冷却帯において鋼板温度が800〜400℃の範囲の冷却速度V1と400℃未満の冷却速度V2が下記(D)を満足するようにしたことを特徴とする加工性に優れた高強度鋼板の製造方法。
0.9≦T1/(750+10[Mn]+10[Si]+100[Ti]+500[Nb]+40[Mo])≦1.1・・・(C)
ここに、T1は温度℃、[Mn]はMn質量%、[Si]はSi質量%、[Ti]はTi質量%、[Nb]はNb質量%、[Mo]はMo質量%である。
0.5<V1/(3×V2)<3.5 ・・・(D)
ここに、V1は前段冷却速度m/s、V2は後段冷却速度m/sである。
(3) The slab having the components described in (1) or (2) is subjected to hot rolling and then subjected to cold pickling after normal pickling, and then annealed in a continuous annealing step. The temperature T1 satisfying the following (C) in the first heating zone in the annealing step is set to 30 seconds or more, and the steel plate temperature in the cooling zone after soaking in the annealing step. A method for producing a high-strength steel sheet excellent in workability, characterized in that a cooling rate V1 in the range of 800 to 400 ° C and a cooling rate V2 of less than 400 ° C satisfy the following (D).
0.9 ≦ T1 / (750 + 10 [Mn] +10 [Si] +100 [Ti] +500 [Nb] +40 [Mo]) ≦ 1.1 (C)
Here, T1 is temperature ° C, [Mn] is Mn mass%, [Si] is Si mass%, [Ti] is Ti mass%, [Nb] is Nb mass%, and [Mo] is Mo mass%.
0.5 <V1 / (3 × V2) <3.5 (D)
Here, V1 is the former cooling rate m / s, and V2 is the latter cooling rate m / s.

(4)(1)または(2)に記載の高強度鋼板が冷延鋼板であることを特徴とする、加工性に優れた高強度鋼板。
(5)鋼板に溶融亜鉛メッキの表面処理が施されたことを特徴とする(1)または(2)に記載の成形加工性に優れた高強度鋼板。
(4) A high-strength steel sheet excellent in workability, wherein the high-strength steel sheet according to (1) or (2) is a cold-rolled steel sheet.
(5) The high-strength steel sheet having excellent formability as described in (1) or (2), wherein the steel sheet is subjected to a hot dip galvanized surface treatment.

本発明によれば、C,Mn、のバランスを特定範囲とし、鋼板の硬度分布を制御することで、これまで以上に加工性が確保できる優れた高強度鋼板およびその製造方法を工業的規模で実現することができ、産業上有用な、著しい効果を奏する。   According to the present invention, an excellent high-strength steel sheet capable of ensuring workability more than ever and a manufacturing method thereof on an industrial scale by controlling the hardness distribution of the steel sheet by setting the balance of C and Mn to a specific range. It can be realized and has an industrially useful and remarkable effect.

加工性を確保できるC,Mn量と狙いTS範囲を示す図である。It is a figure which shows the amount of C and Mn which can ensure workability, and the target TS range. サイドベンド試験片を示す図である。It is a figure which shows a side bend test piece. 加工性を確保できる硬度分布を表す指標の範囲を示す図である。It is a figure which shows the range of the parameter | index showing the hardness distribution which can ensure workability. 加工性を確保できる成分と加熱温度を表す指標の範囲を示す図である。It is a figure which shows the range of the parameter | index showing the component which can ensure workability, and heating temperature. 加工性を確保できる冷却速度を表す指標の範囲を示す図である。It is a figure which shows the range of the parameter | index showing the cooling rate which can ensure workability.

以下に本発明の実施の形態を詳細に説明する。
まず、本発明の高強度鋼板の成分および金属組織の限定理由を説明する。
Cは、強度確保の観点から、またマルテンサイトを安定化する基本元素として、必須の成分である。Cが0.07%未満では強度が満足せず、またマルテンサイト相が形成されない。また、0.2%を超えると、強度が上がりすぎ、延性が不足するほか、溶接性の劣化を招くため工業材料として使用できない。
従って、本発明におけるCの範囲は、0.07〜0.2%とし、好ましくは、0.10〜0.16%である。
Hereinafter, embodiments of the present invention will be described in detail.
First, the reasons for limiting the components and metal structure of the high-strength steel sheet of the present invention will be described.
C is an essential component from the viewpoint of securing strength and as a basic element for stabilizing martensite. If C is less than 0.07%, the strength is not satisfactory, and a martensite phase is not formed. On the other hand, if it exceeds 0.2%, the strength is excessively increased, the ductility is insufficient, and the weldability is deteriorated, so that it cannot be used as an industrial material.
Therefore, the range of C in the present invention is 0.07 to 0.2%, preferably 0.10 to 0.16%.

Siは強度確保の観点で添加することに加え、通常、延性の確保のために添加される元素であるが、1.5%を超えると熱間圧延でのスケール除去にコストがかかり経済的に不利なため、1.5%を上限とする。またSiは脱酸剤や焼入れ性向上のために添加されるが,0.005%未満では脱酸効果が十分でないため,下限を0.005%とする。   Si is an element that is usually added to ensure ductility in addition to ensuring strength. However, if it exceeds 1.5%, the scale removal in hot rolling is costly and economical. Due to disadvantages, the upper limit is 1.5%. Si is added to improve the deoxidizer and hardenability, but if it is less than 0.005%, the deoxidation effect is not sufficient, so the lower limit is made 0.005%.

Mnは強度確保の観点で添加が必要であることに加え、炭化物の生成を遅らせる元素でありフェライトの生成に有効な元素である。Mnが1.0%未満では、強度が満足せず、またフェライトの形成が不十分となり延性が劣化する。また、Mn添加量が3.1%を超えると、焼入れ性が必要以上に高まるため、マルテンサイトが多く生成し、強度上昇を招きこれにより、製品のバラツキが大きくなるほか、延性が不足し工業材料として使用できない。従って、本発明におけるMnの範囲は、1.0〜3.1%とした。   Mn is an element that delays the formation of carbides and is effective for the formation of ferrite, in addition to the need for addition from the viewpoint of securing strength. If Mn is less than 1.0%, the strength is not satisfied, and the formation of ferrite is insufficient and the ductility deteriorates. In addition, if the Mn content exceeds 3.1%, the hardenability is increased more than necessary, so a lot of martensite is generated, resulting in an increase in strength, resulting in increased product variation and insufficient ductility. Cannot be used as a material. Therefore, the range of Mn in the present invention is set to 1.0 to 3.1%.

Pは鋼板の強度を上げる元素として必要な強度レベルに応じて添加する。しかし、添加量が多いと粒界へ偏析するために局部延性を劣化させる。また、溶接性を劣化させる。従って、P上限値は0.06とする。下限を0.001%としたのは、これ以上低減させることは、製鋼段階での精錬時のコストアップに繋がるためである。   P is added according to the strength level required as an element for increasing the strength of the steel sheet. However, if the addition amount is large, segregation to the grain boundary causes deterioration of local ductility. In addition, the weldability is deteriorated. Therefore, the P upper limit value is set to 0.06. The reason why the lower limit is set to 0.001% is that a further reduction leads to a cost increase during refining in the steelmaking stage.

Sは、MnSを生成することで局部延性、溶接性を劣化させる元素であり、鋼中に存在しない方が好ましい元素である。従って、上限を0.01%とする。下限を0.001%としたのは、Pと同様に、これ以上低減させることは、製鋼段階での精錬時のコストアップに繋がるためである。   S is an element that degrades local ductility and weldability by generating MnS, and is preferably an element that does not exist in steel. Therefore, the upper limit is made 0.01%. The reason why the lower limit is set to 0.001% is that, as in the case of P, a further reduction leads to an increase in cost during refining at the steelmaking stage.

Nは、不可避的に含まれる元素であるが、あまり多量に含有する場合は、時効性を劣化させるのみならず、AlN析出量が多くなってAl添加の効果を減少させるので、0.01%以下の含有が好ましい。 また、不必要にNを低減することは製鋼工程でのコストが増大するので通常0.0005%程度以上に制御することが好ましい。   N is an element inevitably included, but if it is contained in a large amount, not only deteriorates the aging property but also increases the amount of precipitated AlN and decreases the effect of Al addition, so 0.01% The following contents are preferred. Further, unnecessarily reducing N increases the cost in the steelmaking process, so it is usually preferable to control it to about 0.0005% or more.

Alは、脱酸のために0.005%以上を添加するが、添加量が増加するとアルミナ等の介在物が増加し、加工性が劣化するため1.2%を上限とする。   Al is added in an amount of 0.005% or more for deoxidation, but if the addition amount increases, inclusions such as alumina increase and workability deteriorates, so the upper limit is 1.2%.

さらに強度や焼入れ性、その他の材質改善としてB、Mo,Cr,V,Ti,Nb、Ca,REMのうち1種または2種以上を含有することもできる。   Furthermore, one or more of B, Mo, Cr, V, Ti, Nb, Ca, and REM can be contained as strength, hardenability, and other material improvements.

Bは、焼入れ性確保を目的として、B:0.0005〜0.002%の範囲で添加してもよい。B添加が0.0005%未満であると固容Bが不十分となり、充分な焼入れ性の向上効果が見られない。また、Bが0.002%超添加しても焼入れ性の効果は変わらない。このため、B添加範囲を0.0005〜0.002%とした。   B may be added in a range of B: 0.0005 to 0.002% for the purpose of ensuring hardenability. If the addition of B is less than 0.0005%, the solid solution B becomes insufficient, and a sufficient effect of improving hardenability cannot be seen. Moreover, the effect of hardenability does not change even if B exceeds 0.002%. Therefore, the B addition range is set to 0.0005 to 0.002%.

MoおよびCrは強度確保と焼入れ性に効果のある元素である。過多のMoの添加はDPにおけるフェライト生成を抑制し、延性の劣化を招くほか、化成処理性や溶融亜鉛メッキ性を劣化させることがあるので、上限を0.5%とした。   Mo and Cr are elements that are effective in securing strength and hardenability. Excessive addition of Mo suppresses ferrite formation in DP, causes ductility deterioration, and may deteriorate chemical conversion property and hot dip galvanizing property, so the upper limit was made 0.5%.

V、Ti 、Nbは、強度確保の目的でV:0.01〜0.1%、Ti:0.01〜0.1%、Nb:0.005〜0.1%の範囲で添加してもよい。   V, Ti and Nb are added in the range of V: 0.01 to 0.1%, Ti: 0.01 to 0.1%, Nb: 0.005 to 0.1% for the purpose of securing strength. Also good.

CaおよびREMは、介在物制御、穴拡げ改善の目的で、Ca:0.0005〜0.005%、REM:0.0005〜0.005%の範囲で添加してもよい。   Ca and REM may be added within the range of Ca: 0.0005 to 0.005% and REM: 0.0005 to 0.005% for the purpose of inclusion control and improvement of hole expansion.

不可避的不純物として、例えば、Snなどがあるがこれら元素を0.01質量%以下の範囲で含有しても本発明の効果を損なうものではない。   Inevitable impurities include, for example, Sn, but the effects of the present invention are not impaired even if these elements are contained in the range of 0.01% by mass or less.

高強度鋼板とするためには、一般に多量の元素添加が必要になる。また、TSで980MPa級の高強度鋼板は組織強化が一般的である。このようにベイナイトやマルテンサイトのような硬い組織を生成するためには、焼入れ性の高い元素を活用することと、オーステナイトまたはオーステナイト/フェライトの二相組織からの急速冷却が必要である。   In order to obtain a high-strength steel plate, it is generally necessary to add a large amount of elements. Moreover, the structure strengthening is common for high strength steel sheets of TS 980 MPa class. Thus, in order to produce a hard structure such as bainite or martensite, it is necessary to utilize a highly hardenable element and to rapidly cool from a two-phase structure of austenite or austenite / ferrite.

ここで発明者らは、焼入れ性が高く、経済的にも成り立つ元素であるCとMnに着目した。C,Mn量が少ないと狙いのTSに到達しない。また、C,Mn量が多いと加工性が悪くなる。更に、C量とMn量のバランスが悪いと軟質相と硬質相の硬度差が高くなりすぎるなどが原因で、加工性が劣ってしまう。そこで、式(A)の関係を満たすC,Mnバランスを有する時、加工性の良い高強度鋼板を工業的に製造できることを見出した。
0.0004×[TS狙い値]-0.11-0.12[Mn]<[C]<0.0005×[TS狙い値]-0.07-0.12×[Mn] ・・・(A)
ここに、[TS狙い値]は鋼板の強度設計値で単位はMPa、[Mn]はMnの質量%、[C]はCの質量%
Here, the inventors focused on C and Mn, which are elements that have high hardenability and are economical. If the amount of C and Mn is small, the target TS will not be reached. Moreover, when there are many amounts of C and Mn, workability will worsen. Furthermore, if the balance between the amount of C and the amount of Mn is poor, the workability will be inferior due to the hardness difference between the soft phase and the hard phase becoming too high. Thus, it has been found that a high-strength steel sheet with good workability can be produced industrially when it has a C and Mn balance that satisfies the relationship of formula (A).
0.0004 × [TS target value] -0.11-0.12 [Mn] <[C] <0.0005 × [TS target value] -0.07-0.12 × [Mn] (A)
Here, [TS target value] is the strength design value of the steel sheet, the unit is MPa, [Mn] is the mass% of Mn, and [C] is the mass% of C.

図1に示すように、TS狙い値が980MPaである時に、C,Mnバランスによって加工性が影響される。加工性は、後述するサイドベンド試験で求めたεと強度実績値の積であるε×TSで判断し、この値が40000%MPa以上であるとすれば加工性は良好であるとして○、40000%MPa未満を×として判断した。尚、TS狙い値とは、ユーザーからの注文に際し提示されるTSで、440MPa,590MPa,780MPa,980MPa,1180MPa,1470MPaなどがその例である。   As shown in FIG. 1, when the TS target value is 980 MPa, workability is affected by the C and Mn balance. The workability is judged by ε × TS, which is the product of ε obtained in the side bend test described later and the actual strength value, and if this value is 40,000% MPa or more, the workability is good, and 0000 Less than% MPa was judged as x. The TS target value is a TS presented when placing an order from the user, and examples thereof include 440 MPa, 590 MPa, 780 MPa, 980 MPa, 1180 MPa, and 1470 MPa.

本発明の金属組織がフェライトとマルテンサイトを含有することを特徴とする理由は、このような組織をとる場合は、強度延性バランスに優れた鋼板となるからである。ここでいう、フェライトは、ポリゴナルフェライト、ベイネティックフェライトを差し、マルテンサイトは通常の焼き入れにより得られるマルテンサイトの他、600℃以下の温度にて焼戻しを行ったマルテンサイトにおいても効果は変わらない。   The reason why the metal structure of the present invention is characterized by containing ferrite and martensite is that when such a structure is taken, the steel sheet has an excellent balance of strength and ductility. The ferrite here refers to polygonal ferrite and bainetic ferrite, and martensite is effective not only in martensite obtained by ordinary quenching but also in martensite tempered at a temperature of 600 ° C. or lower. does not change.

フェライト分率とマルテンサイト分率は鋼板強度によって異なる。TSが500〜800MPaの場合、好ましいフェライト分率は、50〜90%で、マルテンサイト分率は10〜40%である。TSが800〜1100MPaの場合、好ましいフェライト分率は、20〜60%で、マルテンサイト分率は30〜60%である。TSが1100MPa超の場合、好ましいフェライト分率は、30%以下で、マルテンサイト分率は40%以上である。   The ferrite fraction and martensite fraction vary depending on the steel sheet strength. When TS is 500 to 800 MPa, the preferred ferrite fraction is 50 to 90% and the martensite fraction is 10 to 40%. When TS is 800 to 1100 MPa, the preferred ferrite fraction is 20 to 60%, and the martensite fraction is 30 to 60%. When TS is over 1100 MPa, the preferred ferrite fraction is 30% or less and the martensite fraction is 40% or more.

また、全ての鋼板において、ベイナイト分率は10〜40%が好ましい。また、組織中にオーステナイトが残存すると2次加工脆性や遅れ破壊特性が悪化するため、本発明では不可避的に存在する3%以下の残留オーステナイトを許容し、実質的に残留オーステナイトを含まない。   Moreover, in all the steel plates, the bainite fraction is preferably 10 to 40%. Further, if austenite remains in the structure, the secondary work brittleness and delayed fracture characteristics deteriorate, so in the present invention, 3% or less of retained austenite that is unavoidably present is allowed, and substantially no retained austenite is contained.

また、自動車部品の加工性を示すには、従来の評価方法である伸びや穴拡げ値よりも、サイドベンド試験で計測したひずみ量の方が優れていることが分かったため、この方法で評価することとした。   In addition, to show the workability of automobile parts, it was found that the strain amount measured by the side bend test was superior to the elongation and hole expansion values that are conventional evaluation methods, so this method is used for evaluation. It was decided.

サイドベンド試験法は、せん断端面に面内曲げを加え、貫通割れが発生した時の伸びひずみの値を測定する方法である。図(2)に試験片形状を示す。伸びフランジ性を評価するために、試験片には大きなRでせん断された切欠きが設けられている。また、試験後の伸びひずみを測定するために、けがき線が入れられている。試験を開始すると、材料は周方向に引張りを受けながら曲げられ破断する。破断の判定は板厚方向の貫通割れが発生したときとするが、穴拡げ試験と異なり、貫通割れ後の伸びひずみは割れの大きさに影響されない。そのため、割れ判定のばらつきは生じない。   The side bend test method is a method in which in-plane bending is applied to the shear end face and the value of the elongation strain when a through crack occurs is measured. Fig. 2 shows the shape of the test piece. In order to evaluate stretch flangeability, the test piece is provided with a notch sheared with a large R. In addition, in order to measure the elongation strain after the test, a marking line is inserted. When the test is started, the material is bent and fractured while being pulled in the circumferential direction. The determination of breakage is made when a through crack in the thickness direction occurs. Unlike the hole expansion test, the elongation strain after the through crack is not affected by the size of the crack. Therefore, there is no variation in crack determination.

このひずみ量が大きいと加工性が良く、図3に示すように、この値を大きくするためには鋼板の硬度分布を制御することが有効であることを見出し、数2に示す下記式(B)を満たす時に、十分な加工性を満たすことを見出した。ε×TSの値が40000%MPa以上のときに成形性で問題は無かったため、この値以上であれば成形性は良好であるとした。なお、上限は求めていないが、試験を行った結果では、Yaveの最大値は250であった。

Figure 2011144409
When this strain amount is large, workability is good. As shown in FIG. 3, it is found that controlling the hardness distribution of the steel sheet is effective for increasing this value, and the following formula (B ) Was found to satisfy sufficient processability. There was no problem with moldability when the value of ε × TS was 40000% MPa or more. Although the upper limit was not obtained, the maximum value of Yave was 250 as a result of the test.
Figure 2011144409

また、サイドベンド試験で求めたひずみ量とTSの積が40000%MPa以上であれば成形性に問題は無いが、さらに、伸びとTSの積が16000%MPa以上であれば、より好ましく、より成形性に優れていることが分かった。   In addition, there is no problem in formability if the product of strain and TS obtained in the side bend test is 40,000% MPa or more, but more preferably, the product of elongation and TS is 16000% MPa or more. It was found that the moldability was excellent.

本発明の製造工程の限定理由は次の通りである。
製造工程は一般に行われている熱延鋼板、冷延鋼板、めっき鋼板の製造工程で構わない。熱間圧延は一般的条件で実施するが、好ましくはではフェライト粒にひずみが過度に加わり加工性が低下するのを防ぐために熱間圧延をAr以上で行い、また、高温すぎても焼鈍後の再結晶粒径が必要以上に粗大化するため、940℃以下が望ましい。巻き取り温度については、高温にすれば再結晶や粒成長が促進され、加工性の向上が望まれるが、熱間圧延時に発生するスケール生成も促進され酸洗性が低下する点や,フェライトとパーライトが層状に生成することによりCが不均一に拡散するので、550℃以下とする。一方で低温になりすぎると硬化するため、冷間圧延時での負荷が高くなる。このため、400℃以上とする。
The reasons for limiting the manufacturing process of the present invention are as follows.
A manufacturing process may be a manufacturing process of a hot-rolled steel sheet, a cold-rolled steel sheet, and a plated steel sheet that are generally performed. Hot rolling is performed under general conditions. Preferably, however, hot rolling is performed at Ar 3 or higher in order to prevent the ferrite grains from being excessively strained and the workability is deteriorated. The recrystallized grain size of 940 ° C. or lower is desirable because the recrystallized grain size becomes larger than necessary. With regard to the coiling temperature, recrystallization and grain growth are promoted at high temperatures, and improvement in workability is desired. However, scale formation that occurs during hot rolling is also promoted and pickling properties are reduced. Since pearlite is generated in a layered manner and C diffuses unevenly, the temperature is set to 550 ° C. or lower. On the other hand, since it hardens | cures when it becomes low temperature, the load at the time of cold rolling becomes high. For this reason, it shall be 400 degreeC or more.

酸洗は通常の酸洗を実施し、酸洗後の冷間圧延も通常の冷間圧延を実施する。冷間圧延において好ましくは、圧下率が低いと鋼板の形状矯正が難しくなるため下限値を30%とする。また、70%を超える圧下率で圧延すると、鋼板のエッジ部に割れの発生及び形状の乱れのため好ましくは上限値を70%とする。   For pickling, normal pickling is performed, and for cold rolling after pickling, normal cold rolling is also performed. Preferably, in cold rolling, if the rolling reduction is low, it becomes difficult to correct the shape of the steel sheet, so the lower limit is set to 30%. Further, if rolling is performed at a rolling reduction exceeding 70%, the upper limit is preferably set to 70% because of the occurrence of cracks in the edge portion of the steel sheet and disorder of the shape.

焼鈍工程での最初の加熱帯にて、下記(C)式から逆算される温度T1の範囲が30秒以上であると、図4のように加工性が良くなることを見出した。成形性は、ε×TSの値で判断し、この値が前述のように40000%MPa以上になれば、成形性は良好であるとして○、40000%MPa未満を×として判断した。(C)式の下限を外れると、未再結晶組織が多く残存するため、加工性が悪くなる。また(C)式の上限を外れると、靭性や低温脆性が悪化し加工性も良くない。
0.9≦T1/(750+10[Mn]+10[Si]+100[Ti]+500[Nb]+40[Mo])≦1.1・・・(C)
ここに、T1は温度℃、[Mn]はMn質量%、[Si]はSi質量%、
[Ti]はTi質量%、[Nb]はNb質量%、[Mo]はMo質量%である。
In the first heating zone in the annealing process, it was found that the workability is improved as shown in FIG. 4 when the range of the temperature T1 calculated backward from the following formula (C) is 30 seconds or more. Formability was judged by the value of ε × TS, and when this value was 40000% MPa or more as described above, it was judged that the moldability was good, and less than 40000% MPa was judged as x. If the lower limit of the formula (C) is exceeded, a large amount of unrecrystallized structure remains, resulting in poor workability. On the other hand, if the upper limit of the formula (C) is exceeded, toughness and low-temperature brittleness are deteriorated and workability is not good.
0.9 ≦ T1 / (750 + 10 [Mn] +10 [Si] +100 [Ti] +500 [Nb] +40 [Mo]) ≦ 1.1 (C)
Here, T1 is temperature ° C., [Mn] is Mn mass%, [Si] is Si mass%,
[Ti] is Ti mass%, [Nb] is Nb mass%, and [Mo] is Mo mass%.

T1の温度範囲が30秒以上であるか否かの確認は、実機試験の結果からシミュレーションを行い、その結果から間接的に温度と時間が範囲内かどうか判断する。例えば、炉内に複数の温度計を設置し、様々な鋼種やサイズの鋼板を用いて実機試験を行った後、そのデータを用いて計算機によるシミュレーションを行えば、T1の温度範囲が何秒であったかを確認できる。   To check whether the temperature range of T1 is 30 seconds or more, a simulation is performed from the result of the actual machine test, and it is indirectly determined from the result whether the temperature and time are within the range. For example, if you install multiple thermometers in a furnace, perform actual machine tests using steel sheets of various steel types and sizes, and perform simulations using a computer using the data, the temperature range of T1 can be measured in seconds. You can check if there was.

また、焼鈍工程で、均熱後の冷却帯において鋼板温度が800〜400℃の範囲の冷却速度V1と400℃未満の冷却速度V2が下記(D)を満たすことで図5のように加工性が良くなることを見出した。成形性は、ε×TSの値で判断し、この値が前述のように40000%MPa以上になれば、成形性は良好であるとして○、40000%MPa未満を×として判断した。   Further, in the annealing step, in the cooling zone after soaking, the cooling rate V1 in the range of 800 to 400 ° C. and the cooling rate V2 of less than 400 ° C. satisfy the following (D) as shown in FIG. Found out that it would be better. Formability was judged by the value of ε × TS, and when this value was 40000% MPa or more as described above, it was judged that the moldability was good, and less than 40000% MPa was judged as x.

V1が低いと充分な硬質相が生成されず強度不足となり、V1が高いとフェライト中へのC固容量が過大になり、加工性が劣化する。また、V2が低いと生産性を阻害し、V2が高いと冷却終点温度が大きくばらつき、製品の材質ばらつきにつながる。
0.5<V1/(3×V2)<3.5 ・・・(D)
ここに、V1は前段冷却速度m/s、V2は後段冷却速度m/sである。
焼鈍工程では、Ac1以上、Ac3+100℃以下の温度で焼鈍する。これ未満では組識が不均一となる。一方、これ以上の温度では、オーステナイトの粗大化によりフェライト生成が抑制されるため伸びの劣化を招く。また、経済的な点から焼鈍温度は900℃以下が望ましい。この際、層状の組識を解消するためには30秒以上の保持が必要であるが、30分を超えても効果は飽和し生産性も低下する。従って、30秒以上30分以下とする。
When V1 is low, a sufficient hard phase is not generated and the strength is insufficient, and when V1 is high, the C solid capacity in the ferrite becomes excessive and workability deteriorates. Further, if V2 is low, productivity is hindered, and if V2 is high, the end point temperature of cooling greatly varies, leading to variations in product materials.
0.5 <V1 / (3 × V2) <3.5 (D)
Here, V1 is the former cooling rate m / s, and V2 is the latter cooling rate m / s.
In the annealing process, annealing is performed at a temperature of Ac1 or higher and Ac3 + 100 ° C or lower. Below this, the organization becomes uneven. On the other hand, at a temperature higher than this, since the formation of ferrite is suppressed by the coarsening of austenite, the elongation is deteriorated. Also, the annealing temperature is desirably 900 ° C. or less from an economical point. At this time, in order to eliminate the layered organization, it is necessary to hold for 30 seconds or more. However, even if it exceeds 30 minutes, the effect is saturated and the productivity is also lowered. Therefore, it is 30 seconds or more and 30 minutes or less.

続いて、冷却終了温度を600℃以下の温度とする。600℃を超えるとオーステナイトが残留しやすくなり、2次加工性、遅れ破壊の問題が生じ易くなる。
本発明は、この熱処理の後、脆性の改善を目的とした、600℃以下の焼戻し処理を行っても効果は変わらない。
Subsequently, the cooling end temperature is set to a temperature of 600 ° C. or lower. If it exceeds 600 ° C., austenite tends to remain, and problems of secondary workability and delayed fracture tend to occur.
The effect of the present invention does not change even if a tempering treatment at 600 ° C. or lower for the purpose of improving brittleness is performed after the heat treatment.

以下に、表1〜表3を参照しつつ本発明の実施例、比較例を説明する。なお表2は表1の続きであり、表3は表2の続きである。   Examples of the present invention and comparative examples will be described below with reference to Tables 1 to 3. Table 2 is a continuation of Table 1, and Table 3 is a continuation of Table 2.

表1に示した成分組成を有する鋼を真空溶解炉にて製造し、冷却凝固後1200℃まで再加熱し、880℃にて仕上圧延を行い、冷却後500℃で1時間保持することで、熱延の巻取熱処理を再現した。得られた熱延板を研削によりスケールを除去し、60%の冷間圧延した。その後連続焼鈍シミュレータを用い、焼鈍を行った。   By manufacturing a steel having the composition shown in Table 1 in a vacuum melting furnace, reheating to 1200 ° C after cooling and solidification, performing finish rolling at 880 ° C, and holding at 500 ° C for 1 hour after cooling, The hot rolling coil heat treatment was reproduced. The obtained hot-rolled sheet was removed from the scale by grinding and cold-rolled 60%. Thereafter, annealing was performed using a continuous annealing simulator.

加工性は、サイドベンド試験法と引張試験にて評価し、破断伸びひずみε(%)×TS(MPa)の積が40000%・MPa以上を良好とし、さらに好ましい場合として、伸び(%)×TS(MPa)の積が16000%・MPa以上であるかどうかも評価した。   Workability is evaluated by a side bend test method and a tensile test, and the product of breaking elongation strain ε (%) × TS (MPa) is preferably 40000% · MPa or more, and more preferably, elongation (%) × It was also evaluated whether the product of TS (MPa) was 16000% · MPa or more.

サイドベンド試験法は、せん断端面に面内曲げを加え、貫通割れが発生した時の伸びひずみの値を測定する試験法である。引張試験はJIS5号片を使用した。金属組織は、光学顕微鏡で観察した。フェライトはナイタールエッチング、マルテンサイトはレペラーエッチングにより観察した。硬度測定は、HYSITRON社のTRIBOINDENTER(通称ナノインデンター)で行った。測定間隔は3μmであり、測定点は300点で行った。成形性の評価の一つとしてε×TSは前述のように40000%MPa以上を合格としている。   The side bend test method is a test method in which in-plane bending is applied to the shear end face and the value of the elongation strain when a through crack occurs is measured. The tensile test used a JIS No. 5 piece. The metal structure was observed with an optical microscope. Ferrite was observed by nital etching and martensite by repeller etching. The hardness was measured with TRIBOINDENTER (commonly known as Nanoindenter) manufactured by HYSITRON. The measurement interval was 3 μm and the measurement points were 300 points. As one of the evaluations of moldability, ε × TS passes 40000% MPa or more as described above.

表2に示す結果から認められるように、本発明による鋼板は加工性に優れる高強度鋼板を製造できる。
一方、表1の成分範囲が本発明の範囲から外れる比較例は、加工性を示す伸びEl×TSの値が16000%MPa未満、もしくは破断伸びひずみε×TSの値が40000%MPa未満である。
As can be seen from the results shown in Table 2, the steel sheet according to the present invention can produce a high-strength steel sheet excellent in workability.
On the other hand, in the comparative example in which the component range in Table 1 deviates from the range of the present invention, the value of elongation El × TS indicating workability is less than 16000% MPa, or the value of elongation at break strain ε × TS is less than 40000% MPa. .

また,(A)式を満足しない比較例(AM,AN)は,ε×TSの値が40000%MPa未満となっている。
また、(B)式を満足しない比較例(AO,AP)は,ε×TSの値が40000%MPa未満となっている。
また、(C)式を満足しない比較例(AQ、AR)は、El×TSの値が16000%MPa未満もしくはε×TSの値が40000%MPa未満となっている。
また、(D)式を満足しない比較例(AS,AT)は、El×TSの値が16000%MPa未満もしくはε×TSの値が40000%MPa未満となっている。
Further, in the comparative example (AM, AN) not satisfying the formula (A), the value of ε × TS is less than 40000% MPa.
Further, in the comparative example (AO, AP) not satisfying the formula (B), the value of ε × TS is less than 40000% MPa.
Further, in the comparative examples (AQ, AR) not satisfying the expression (C), the value of El × TS is less than 16000% MPa or the value of ε × TS is less than 40000% MPa.
In the comparative example (AS, AT) not satisfying the expression (D), the value of El × TS is less than 16000% MPa or the value of ε × TS is less than 40000% MPa.

Figure 2011144409
Figure 2011144409

Figure 2011144409
Figure 2011144409

Figure 2011144409
Figure 2011144409

Claims (5)

質量%で、
C :0.07〜0.20%、
Si:0.005〜1.5%、
Mn:1.0〜3.1%、
P :0.001〜0.06%、
S :0.001〜0.01%、
N :0.0005〜0.01%、
Al:0.005〜1.2%
を含有し、残部Feおよび不可避不純物からなり、さらに、C、Mnの質量%と、狙いの強度値(TS)とが、下記 (A) 式を満足し、さらに、ナノインデンターにて100点以上の箇所で硬度測定を行い、硬度分布が、数1に示す下記(B)式を満足し、金属組織がフェライトとマルテンサイトを含有することを特徴とする加工性に優れた高強度鋼板。
0.0004×[TS狙い値]-0.11-0.12[Mn]<[C]<0.0005×[TS狙い値]-0.07-0.12×[Mn] ・・・(A)
ここに、[TS狙い値]は鋼板の強度設計値で単位はMPa、[Mn]はMnの質量%、[C]はCの質量%
Figure 2011144409
% By mass
C: 0.07 to 0.20%,
Si: 0.005 to 1.5%,
Mn: 1.0 to 3.1%
P: 0.001 to 0.06%,
S: 0.001 to 0.01%,
N: 0.0005 to 0.01%,
Al: 0.005-1.2%
And the balance Fe and inevitable impurities, and the mass% of C and Mn and the target strength value (TS) satisfy the following formula (A). A high-strength steel sheet having excellent workability, wherein hardness measurement is performed at the above-described locations, the hardness distribution satisfies the following formula (B) shown in Formula 1, and the metal structure contains ferrite and martensite.
0.0004 × [TS target value] -0.11-0.12 [Mn] <[C] <0.0005 × [TS target value] -0.07-0.12 × [Mn] (A)
Here, [TS target value] is the strength design value of the steel sheet, the unit is MPa, [Mn] is the mass% of Mn, and [C] is the mass% of C.
Figure 2011144409
さらに、
B :0.0005〜0.002%、
Mo:0.01〜0.5%、
Cr:0.01〜0.5%、
V :0.01〜0.1%、
Ti:0.01〜0.1%、
Nb:0.005〜0.1%、
Ca:0.0005〜0.005%、
REM:0.0005〜0.005%
のうち1種または2種を含有することを特徴とする請求項1に記載の加工性に優れた高強度鋼板。
further,
B: 0.0005 to 0.002%,
Mo: 0.01 to 0.5%,
Cr: 0.01 to 0.5%,
V: 0.01 to 0.1%
Ti: 0.01 to 0.1%,
Nb: 0.005 to 0.1%,
Ca: 0.0005 to 0.005%,
REM: 0.0005-0.005%
The high-strength steel sheet excellent in workability according to claim 1, wherein one or two of them are contained.
請求項1または2に記載の成分のスラブを、熱間圧延を施した後に捲取り、次いで通常の酸洗の後、冷間圧延を実施し、その後連続焼鈍工程で焼鈍を施し、次いで調質圧延を施す工程からなり、焼鈍工程での最初の加熱帯にて下記(C)を満足する温度T1を30秒以上とし、焼鈍工程での均熱後の冷却帯において鋼板温度が800〜400℃の範囲の冷却速度V1と400℃未満の冷却速度V2が下記(D)を満足するようにしたことを特徴とする加工性に優れた高強度鋼板の製造方法。
0.9≦T1/(750+10[Mn]+10[Si]+100[Ti]+500[Nb]+40[Mo])≦1.1・・・(C)
ここに、T1は温度℃、[Mn]はMn質量%、[Si]はSi質量%、
[Ti]はTi質量%、[Nb]はNb質量%、[Mo]はMo質量%である。
0.5<V1/(3×V2)<3.5 ・・・(D)
ここに、V1は前段冷却速度m/s、V2は後段冷却速度m/sである。
The slab of the component according to claim 1 or 2 is subjected to hot rolling, and then subjected to normal pickling, followed by cold rolling, followed by annealing in a continuous annealing step, and then tempering. It consists of a step of rolling, and the temperature T1 that satisfies the following (C) in the first heating zone in the annealing step is 30 seconds or more, and the steel plate temperature is 800 to 400 ° C. in the cooling zone after soaking in the annealing step. A method for producing a high-strength steel sheet excellent in workability, characterized in that a cooling rate V1 in the range of 1 and a cooling rate V2 of less than 400 ° C. satisfy the following (D).
0.9 ≦ T1 / (750 + 10 [Mn] +10 [Si] +100 [Ti] +500 [Nb] +40 [Mo]) ≦ 1.1 (C)
Here, T1 is temperature ° C., [Mn] is Mn mass%, [Si] is Si mass%,
[Ti] is Ti mass%, [Nb] is Nb mass%, and [Mo] is Mo mass%.
0.5 <V1 / (3 × V2) <3.5 (D)
Here, V1 is the former cooling rate m / s, and V2 is the latter cooling rate m / s.
請求項1または2に記載の高強度鋼板が冷延鋼板であることを特徴とする、加工性に優れた高強度鋼板。   A high-strength steel sheet excellent in workability, wherein the high-strength steel sheet according to claim 1 or 2 is a cold-rolled steel sheet. 鋼板に溶融亜鉛メッキの表面処理が施されたことを特徴とする請求項1または2に記載の成形加工性に優れた高強度鋼板。   The high-strength steel sheet having excellent formability according to claim 1 or 2, wherein the steel sheet has been subjected to surface treatment by hot dip galvanization.
JP2010004736A 2010-01-13 2010-01-13 High-strength steel sheet with excellent workability and method for producing the same Active JP5521562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010004736A JP5521562B2 (en) 2010-01-13 2010-01-13 High-strength steel sheet with excellent workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010004736A JP5521562B2 (en) 2010-01-13 2010-01-13 High-strength steel sheet with excellent workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011144409A true JP2011144409A (en) 2011-07-28
JP5521562B2 JP5521562B2 (en) 2014-06-18

Family

ID=44459513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010004736A Active JP5521562B2 (en) 2010-01-13 2010-01-13 High-strength steel sheet with excellent workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5521562B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140102310A (en) * 2012-01-13 2014-08-21 신닛테츠스미킨 카부시키카이샤 Hot stamp molded article and method for producing same
KR20140102309A (en) * 2012-01-13 2014-08-21 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet and method for producing same
KR20140102308A (en) * 2012-01-13 2014-08-21 신닛테츠스미킨 카부시키카이샤 Hot stamp molded article, and method for producing hot stamp molded article
KR20140102755A (en) * 2012-01-13 2014-08-22 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet and method for producing cold-rolled steel sheet
KR20190045298A (en) 2017-01-30 2019-05-02 닛폰세이테츠 가부시키가이샤 Steel plate
CN109967525A (en) * 2019-04-08 2019-07-05 西安交通大学 A method of preparing reversed gradient nano structural metallic material
WO2020158228A1 (en) 2019-01-29 2020-08-06 Jfeスチール株式会社 High-strength steel sheet and method for producing same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605329B2 (en) 2012-01-13 2017-03-28 Nippon Steel & Sumitomo Metal Corporation Cold rolled steel sheet and manufacturing method thereof
KR101660144B1 (en) * 2012-01-13 2016-09-26 신닛테츠스미킨 카부시키카이샤 Hot stamp molded article and method for producing same
KR20140102310A (en) * 2012-01-13 2014-08-21 신닛테츠스미킨 카부시키카이샤 Hot stamp molded article and method for producing same
KR20140102755A (en) * 2012-01-13 2014-08-22 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet and method for producing cold-rolled steel sheet
US9725782B2 (en) 2012-01-13 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Hot stamped steel and method for producing the same
KR101660143B1 (en) * 2012-01-13 2016-09-26 신닛테츠스미킨 카부시키카이샤 Hot stamp molded article, and method for producing hot stamp molded article
KR101660607B1 (en) * 2012-01-13 2016-09-27 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet and method for producing cold-rolled steel sheet
US9920407B2 (en) 2012-01-13 2018-03-20 Nippon Steel & Sumitomo Metal Corporation Cold rolled steel sheet and method for producing cold rolled steel sheet
KR20140102308A (en) * 2012-01-13 2014-08-21 신닛테츠스미킨 카부시키카이샤 Hot stamp molded article, and method for producing hot stamp molded article
KR20140102309A (en) * 2012-01-13 2014-08-21 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet and method for producing same
KR101661045B1 (en) * 2012-01-13 2016-09-28 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet and method for producing same
US9945013B2 (en) 2012-01-13 2018-04-17 Nippon Steel & Sumitomo Metal Corporation Hot stamped steel and method for producing hot stamped steel
KR20190045298A (en) 2017-01-30 2019-05-02 닛폰세이테츠 가부시키가이샤 Steel plate
US10895002B2 (en) 2017-01-30 2021-01-19 Nippon Steel Corporation Steel sheet
WO2020158228A1 (en) 2019-01-29 2020-08-06 Jfeスチール株式会社 High-strength steel sheet and method for producing same
KR20210106556A (en) 2019-01-29 2021-08-30 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and its manufacturing method
CN109967525A (en) * 2019-04-08 2019-07-05 西安交通大学 A method of preparing reversed gradient nano structural metallic material

Also Published As

Publication number Publication date
JP5521562B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP4214006B2 (en) High strength steel sheet with excellent formability and method for producing the same
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
KR101290883B1 (en) High-strength steel plate having excellent formability, and production method for same
US20210040576A1 (en) High Strength Steel Sheet Having Excellent Formability and a Method of Manufacturing the Steel Sheet
RU2328545C2 (en) Composition of steel for production of cold rolled items out of polyphase steel
JP2017002384A (en) Steel plate superior in spot weld zone fracture resistance characteristics and production method thereof
KR20100016438A (en) Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JP5521562B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP2010059452A (en) Cold-rolled steel sheet and producing method therefor
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
KR20120087185A (en) High strength hot dip galvanised steel strip
KR102131527B1 (en) High-strength steel sheet with excellent durability and method for manufacturing thereof
TW201239105A (en) High-strength cold-rolled steel sheet superior in deep-drawability and bake hardenability, and method for manufacturing the same
US11981975B2 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
EP4077743A1 (en) Hot rolled and steel sheet and a method of manufacturing thereof
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP2003253385A (en) Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP2008189973A (en) Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance
JP3908964B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP4848722B2 (en) Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability
JP6684905B2 (en) High-strength cold-rolled steel sheet excellent in shear workability and method for producing the same
JP3762700B2 (en) High-strength steel sheet excellent in formability and chemical conversion treatment and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R151 Written notification of patent or utility model registration

Ref document number: 5521562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350