JP2011143698A - Woody plate laminating compacting joining structure - Google Patents

Woody plate laminating compacting joining structure Download PDF

Info

Publication number
JP2011143698A
JP2011143698A JP2010019479A JP2010019479A JP2011143698A JP 2011143698 A JP2011143698 A JP 2011143698A JP 2010019479 A JP2010019479 A JP 2010019479A JP 2010019479 A JP2010019479 A JP 2010019479A JP 2011143698 A JP2011143698 A JP 2011143698A
Authority
JP
Japan
Prior art keywords
joint
wood
overlapping
woody
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010019479A
Other languages
Japanese (ja)
Other versions
JP5633041B2 (en
Inventor
Yasunobu Noda
康信 野田
Naoyuki Furuta
直之 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Research Organization
Original Assignee
Hokkaido Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Research Organization filed Critical Hokkaido Research Organization
Priority to JP2010019479A priority Critical patent/JP5633041B2/en
Publication of JP2011143698A publication Critical patent/JP2011143698A/en
Application granted granted Critical
Publication of JP5633041B2 publication Critical patent/JP5633041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining structure that attains rigid joints and total strength with woody materials and to provide a woody frame structure that can be designed with the same calculation system as Rahmen frame in a steel structure. <P>SOLUTION: In laminating a structural plate group 1' constituting a woody plate laminate member 1, an overlapping part A is provided by alternately inserting or intersecting at an arbitrary position and arbitrary angle a structural plate group 2' of a separate woody plate laminate member 2. Then, the overlapped part is fixedly compacted by a proper compacting means until non-overlapped parts B are each integrated. The rigidity and yield strength of the overlapped part are dramatically improved by the compaction, while the non-overlapped part is provided with performance equivalent to a regular axial material. A woody frame structure is formed primarily comprising joint junction by combining regular axial materials with members of a dog leg shape, T shape, cross shape, X shape or the like which are obtained by changing the overlapping angle, overlapping position, and the like. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は木質材料による接合方法において、剛節かつ全強を可能にする接合構造とこれを用いた木質フレーム構造に関するものである。  The present invention relates to a joining structure that enables rigidity and full strength in a joining method using a wood material, and a wood frame structure using the joining structure.

木材に樹脂を含浸して圧密固定し、剛性および強度を飛躍的に高める方法は古くから研究され(非特許文献1)、基材の形状、温度、圧力、時間、使用樹脂、型枠形状などの条件を最適化することで、樹種の特性に応じた寸法安定性の高い強化木が提供され、装飾品、刃物の柄、ドア引手、スポーツ用具などに利用されている。近年では圧縮木材、圧密化木材とも呼ばれ、樹脂による固定をせず、熱処理のみによる固定(非特許文献2)も確立されてきており、床板やテーブル天板などにも利用されている。また、板材を重ね合わせて圧縮することで得られるT字形の部材(非特許文献3)を椅子のフレームとして活用することも提案されている。  A method of drastically increasing rigidity and strength by impregnating and fixing resin to wood has been studied for a long time (Non-Patent Document 1), such as the shape of the base material, temperature, pressure, time, resin used, form shape, etc. By optimizing the above conditions, reinforced wood with high dimensional stability according to the characteristics of the tree species is provided, and it is used for ornaments, blade handles, door handles, sports equipment and the like. In recent years, it is also called compressed wood or consolidated wood, and fixing by only heat treatment (Non-Patent Document 2) has been established without fixing with resin, and it is also used for floor boards and table tops. It has also been proposed to use a T-shaped member (Non-Patent Document 3) obtained by overlapping and compressing plate materials as a chair frame.

この強化木を建築構造へ応用した例としては、接合具としての利用、すなわち、鋼製のガセットプレートやドリフトピンなどの接合金物の代替として利用するもの(特許文献1)や、伝統的構法で用いられる広葉樹材の込み栓やダボといった堅木を代替するもの(例えば、非特許文献4)などが挙げられる。  As an example of applying this reinforced wood to a building structure, it can be used as a joint, that is, as a substitute for joint hardware such as a steel gusset plate or drift pin (Patent Document 1), or in a traditional construction method. Examples include substitutes for hardwood such as hardwood plugs and dowels (for example, Non-Patent Document 4).

また、軸材料自体を強化する例として、圧密強化した挽き板で構成することで得られる高強度集成材(特許文献2)や、接合金物が取り付く部材端部を強化し、トラス構造を構成する技術(非特許文献5)も挙げられる。  In addition, as an example of strengthening the shaft material itself, a high-strength laminated material (Patent Document 2) obtained by constituting a compacted and strengthened saw plate, or a member end portion to which a joint hardware is attached, constitutes a truss structure. A technique (nonpatent literature 5) is also mentioned.

一方、接合方法に関するもののうち、剛節接合方法とされる接着接合においては、フィンガージョイントをコーナー接合部に適用したもの(特許文献3、4)や、スカーフジョイントを集成材の継手に応用したもの(非特許文献6)がある。  On the other hand, among the bonding methods, in adhesive bonding, which is considered to be a rigid joint method, finger joints are applied to corner joints (Patent Documents 3 and 4), and scarf joints are applied to laminated joints. (Non-Patent Document 6).

特許公開平6−99412Patent Publication 6-99412 特許公開2008−44314Patent Publication 2008-44314 特許公開2001−90189Patent Publication 2001-90189 特許公開2001−173094 特許公開2006−213689Patent Publication 2001-173094 Patent Publication 2006-213689 A.J.STAMM、R.M.SEBROG:Resin−Treated、Laminated、Compressed Wood、Forest Products Laboratory、R1268、USDA(1941)A. J. et al. STAMM, R.M. M.M. SEBROG: Resin-Treated, Laminated, Compressed Wood, Forest Products Laboratory, R1268, USDA (1941) 飯田生穂、則元京:「圧縮セットの回復」、木材学会誌、33(12)、929−933(1987)Iida Ikuho, Norimoto Kyo: "Restoration of Compression Set", Journal of the Wood Society, 33 (12), 929-933 (1987) 長谷川良一、「軟質木材の高度利用研究(第1報)積層圧縮技術を利用した接合部の強度性能」、平成17年度 岐阜県生活技術研究所研究報告・No.8、p59−64(2006)Ryoichi Hasegawa, “Study on Advanced Utilization of Soft Wood (Part 1) Strength Performance of Joints Using Laminate Compression Technology”, 2005 Gifu Prefectural Research Institute for Life Technology No. 8, p59-64 (2006) 鄭基浩、北守顕久、A.J.M.Leijten、小松幸平:「温湿度による含水率変化が伝統的ホゾ−込み栓接合部の接触応力度に及ぼす影響(第3報)スギ圧縮木材込み栓を用いたホゾ接合部の引抜き強度性能評価」、木材学会誌、52(6)、358−367(2006)Motohiro Tsuji, Akuhisa Kitamori, A. J. et al. M.M. Leijten, Kohei Komatsu: "Effects of moisture content change due to temperature and humidity on contact stress of traditional scallop-plugged joints (3rd report) Evaluation of pull-out strength performance of horn joints using cedar-compressed wood-embedded plugs" , Journal of the Wood Society, 52 (6), 358-367 (2006) 河内武、他、「端部強化木トラス部材のボルト接合部引張実験」日本建築学会大会学術講演梗概集(中国)C−1、構造III、2008年9月、p323−324(2008)Takeshi Kawauchi, et al., “Attachment Test of Bolt Joint of End-Reinforced Wooden Truss Member” Summary of Academic Lectures of the Architectural Institute of Japan (China) C-1, Structure III, September 2008, p323-324 (2008) 木村近衛他、「集成材の全強接着継手に関する研究」日本建築学会大会学術講演梗概集(北陸)C−1、構造III、1992年8月、69−70(1992)Kimura, K. et al., "Study on All-Strength Adhesive Joints of Glulam" Summary of Annual Meeting of the Architectural Institute of Japan (Hokuriku) C-1, Structure III, August 1992, 69-70 (1992)

本発明の課題は圧密技術を応用することによって、剛節であり、全強である接合構造を木質材料で実現し、建築構造として適用が可能な木質フレーム構造を提供することである。ここで、剛節の接合部とは、構造計算において、接合部の変形を無視して部材の変形計算のみでフレーム全体の変形計算ができる接合部のことを指し、全強の接合部とは、接合部耐力が構成部材の耐力を上回る接合部のことを指す。  An object of the present invention is to provide a wood frame structure that can be applied as a building structure by applying a consolidation technique to realize a joint structure that is rigid and full strength with a wood material. Here, the joint part of the rigid joint refers to a joint part that can calculate the deformation of the entire frame only by calculating the deformation of the member while ignoring the deformation of the joint part in the structural calculation. In addition, it refers to a joint where the joint strength exceeds the strength of the constituent members.

通常の木質部材同士の接合方法は、金属部材同士、樹脂部材同士のような溶接ができないため、剛節かつ全強である接合は稀少である。継手接合においては非特許文献6の例のように接着接合によって実現できているものがあるが、仕口接合においては実現されていない。  Since the usual joining methods of wood members cannot be welded like metal members and resin members, joining that is rigid and strong is rare. Some joint joints can be realized by adhesive joining as in the example of Non-Patent Document 6, but not joint joint joining.

家具分野、建具分野では非特許文献3にあるような仕口接合において、圧密技術が応用され、接合部の剛性と耐力の両者において既存のホゾやダボによる仕口よりも優れた性能が得られている。しかし、構成部材全体を圧密することから、剛節、全強の条件を満たせる構成にはなっていない。通常の家具や建具などに対して構造計算を行うことは極めて稀であるが、単に剛性や耐力を向上させるだけでなく、接合部と部材との間の変形性能ならびに耐力のバランスを保ち、最終破壊形態をコントロールすることも構造安全性を確保するために重要な要素である。  In the furniture field and joinery field, compaction technology is applied to joints such as those described in Non-Patent Document 3, and both the rigidity and strength of the joints are superior to those of existing joints using tenon or dowels. ing. However, since the whole component is consolidated, it is not configured to satisfy the conditions of rigid joint and full strength. It is extremely rare to perform structural calculations on ordinary furniture and joinery, etc., but not only to improve rigidity and proof stress, but also to maintain a balance between deformation performance and proof strength between joints and members. Controlling the form of destruction is also an important factor for ensuring structural safety.

一方、建築分野においては、様々な接合方法がこれまでに開発されている。ただし、これらは接合金物を駆使した機械的接合を基本としていることから、特許文献1や非特許文献4にあるように、強化木や圧縮木材が利用されている範囲も接合金物の代替に留まっている。  On the other hand, in the construction field, various joining methods have been developed so far. However, since these are based on mechanical joining that makes full use of joint hardware, as described in Patent Document 1 and Non-Patent Document 4, the range in which reinforced wood and compressed wood are used remains a substitute for joint hardware. ing.

通常、木質の建築構造においては柱と梁の仕口接合が必然となるが、フレーム構造として成立させるためにはこの部分で大きな力を負担しなくてはならず、構造計算上、モーメントが最大となる箇所となることが通常である。したがって、仕口接合部から破壊に至ることが基本になるため、可能な限りの耐力を付与しておくことが望まれる。しかし、機械的接合における接合耐力は接合金物の存在自体が部材の断面を欠損させざるを得ないことから、部材の曲げ耐力を大きく下回ることが通常である。また、接合金物などが木材へめり込むことによって発生する接合部自体の変形が大きいことから、機械的接合においては剛節と仮定できるものは実現できていない。  Normally, joints between columns and beams are inevitable in wooden construction structures, but in order to establish a frame structure, a large force must be borne in this part, and the moment is the maximum in structural calculations. It is normal that it becomes a location. Therefore, since it is fundamental to break from the joint joint, it is desirable to give as much proof stress as possible. However, the bonding strength in mechanical bonding is usually much lower than the bending strength of the member because the presence of the joint metal itself must cause the cross section of the member to be lost. In addition, since the joint itself itself is greatly deformed by joining metal fittings or the like into the wood, what can be assumed to be a rigid joint cannot be realized in mechanical joining.

剛性に関しては、唯一、接着剤を用いることで剛節と仮定できるものが実現できるとされている。しかし、単に接着剤によって柱梁接合部を接合するだけでは、剛節は実現できても、全強と両立させることは困難である。この主因は横引張応力に代表される2次応力よって割裂破壊が発生することにあり、フレームの規模が大きくなるほど注意を払わなくてはならない項目である。つまり、仕口接合ではその部材の収まり形状から、剛性を高めようとするほど応力集中が顕著に表れ、繊維直交方向に発生する応力の影響を大きく受けるようになるためである。  Regarding rigidity, the only thing that can be assumed to be rigid joints can be realized by using an adhesive. However, by simply joining the beam-column joints with an adhesive, a rigid joint can be realized, but it is difficult to make it compatible with full strength. This is mainly due to the fact that split fracture occurs due to secondary stress represented by transverse tensile stress. This is an item that requires attention as the frame size increases. In other words, in joint joining, stress concentration becomes more conspicuous as the rigidity is increased due to the fit shape of the member, and the effect of stress generated in the direction perpendicular to the fiber is greatly affected.

このように、剛節と全強を仕口接合で両立させようとしても、非特許文献6のような継手接合の場合とは応力状態が大きく異なり、容易に実現することができない。これは木材が直交異方性材料、すなわち繊維直交方向の強度が繊維方向に比べて極端に低いためであり、避けることのできない課題である。  Thus, even if it is going to make both rigid joint and full strength by joint joining, a stress state differs greatly from the case of joint joining like a nonpatent literature 6, and cannot be realized easily. This is because wood is an orthotropic material, that is, the strength in the direction perpendicular to the fiber is extremely lower than that in the fiber direction, which is an unavoidable problem.

近年、特定の接合方法が木質ラーメン架構として活用されてきているが、鉄骨構造における剛節のラーメン架構とは性質を異にしており、仕口接合部の変形を無視できない特殊なラーメン架構である。実際に既存の木質ラーメン架構において変形計算を行う際には、接合部を半剛節と定義して、接合部の変形を考慮した構造計算を伴うことになるが、この半剛節の場合の構造計算は剛節の場合に比べて飛躍的に煩雑である。また、接合部自体の変形の理論式は、一部においては木質構造を専門とする研究者によって誘導されているものが存在するが、複雑な計算式であることから、一般の建築士が扱えるものとは言い難い。  In recent years, a specific joining method has been used as a wooden frame, but it is different from the rigid frame frame in a steel structure, and it is a special frame structure in which the deformation of the joint joint cannot be ignored. . When actually calculating deformation in an existing wooden rigid frame, the joint is defined as a semi-rigid joint and is accompanied by a structural calculation that takes into account the deformation of the joint. The structural calculation is dramatically more complicated than the rigid joint. In addition, some of the theoretical formulas for deformation of the joint itself are derived by researchers specializing in wood structures, but they are complex calculations that can be handled by general architects. It's hard to say.

以上のように、現状の木質フレーム構造は、仕口接合部の変形性能と耐力によって著しい制約を受けている状態にあることから、部材が保有する変形性能と耐力を活かし切れていない。また、木質ラーメン架構とされているものにおいては、設計に際して接合部が半剛節であるがゆえに構造計算過程で非常に手間がかかるものとなっている。したがって、接合部を剛節かつ全強のものに置き換えることで、構造設計上の労力を軽減することができる。  As described above, the current wood frame structure is in a state of being significantly restricted by the deformation performance and the proof stress of the joint joint, and therefore cannot fully utilize the deformation performance and proof strength possessed by the member. In addition, in the case of a wooden ramen frame, since the joint portion is a semi-rigid joint at the time of designing, it takes much labor in the structural calculation process. Therefore, the structural design effort can be reduced by replacing the joint with a rigid and full-strength one.

そもそも、ラーメン架構とは鉄骨構造にあるように柱と梁の交点が剛節であることが前提の構造躯体であることから、木質構造においても剛節で全強の接合部で成立しているラーメン架構があるべきである。  In the first place, the ramen frame is a structural frame based on the premise that the intersection of a column and a beam is a rigid joint, as in a steel structure. There should be a ramen frame.

そこで本発明では剛節かつ全強を可能とする技術を建築構造用の接合方法として、通常の機械的接合による仕口接合とするのではなく、2部材が連続体とみなせる接合構造によって、仕口接合を代替する任意の角度付きの部材として提供する。加えて、家具構造や建具構造に適用可能な応用形を示し、最終的には、鉄骨構造と同じ設計概念で成立するラーメン架構と定義できる木質フレーム構造を提供する。  Therefore, in the present invention, a technique that enables rigidity and full strength is not used as a joining method for building structures, but by a joining structure in which two members can be regarded as a continuous body, rather than a joint joining by ordinary mechanical joining. It is provided as any angled member that replaces the mouth joint. In addition, the application form applicable to furniture structure and joinery structure is shown, and finally, a wooden frame structure that can be defined as a ramen frame based on the same design concept as a steel structure is provided.

まず、請求項1の接合構造について、L字形の接合構造を形成する場合を例に説明する(図1、2)。なお、ここでは木質板積層部材を木材または木質系材料の同形状の構成板を積層接着した部材と定義する。具体的にはロータリー単板、スライス単板、またはラミナなどの板材、ならびに繊維板やOSBなどの各種木質板を積層接着した部材の事を指し、矩形のロータリー単板で構成した場合には単板積層材(いわゆるLVL)、比較的厚さのある板材の場合には集成材に相当するものであるが、構成板の形状は矩形に限定されるものではなく、多角形板、円板、台形板など、任意の形状で構成されるものも木質板積層部材に含む。  First, the bonding structure of claim 1 will be described by taking an example of forming an L-shaped bonding structure (FIGS. 1 and 2). In this case, the wood board laminated member is defined as a member obtained by laminating and adhering components having the same shape made of wood or wood-based material. Specifically, it refers to a member made by laminating and adhering a plate material such as a rotary single plate, sliced single plate, or lamina, and various wood boards such as fiberboard and OSB. In the case of a plate laminate (so-called LVL), a relatively thick plate, it corresponds to a laminated material, but the shape of the component plate is not limited to a rectangle, a polygonal plate, a disc, What is comprised by arbitrary shapes, such as a trapezoid board, is also contained in a wooden board laminated member.

この甲構成板(1’)を数枚、構成板の角の1つを基準として、乙構成板(2’)を交互に直交するように挟み込み、L字形に配置する。これをプレス機で50%以上の圧密をして、固定することで所定の形状に成形する。ここで50%の圧密とは重複部の圧密度を指し、各構成板群の非重複部が互いに接触する圧密度の事である。プレス時には積層面に接着剤を塗布して構成板同士を接着し、非特許文献2や特許文献1の要領で適切な熱処理を加える事で圧密固定することが可能である。また、後述の実施例に示す通り、あらかじめ合成樹脂液を含浸して乾燥させた構成板を用いて圧密固定することで寸法安定性を付加することも可能である。  With the upper component plate (1 ') and several corners of the component plate as a reference, the second component plate (2') is sandwiched alternately and orthogonally, and arranged in an L shape. This is compacted by 50% or more with a press machine and fixed into a predetermined shape. Here, 50% consolidation refers to the density of the overlapping portion, and is the pressure density at which the non-overlapping portions of the constituent plate groups contact each other. At the time of pressing, it is possible to apply an adhesive to the laminated surface to bond the constituent plates together, and to perform consolidation fixing by applying an appropriate heat treatment as described in Non-Patent Document 2 or Patent Document 1. Moreover, as shown in the below-mentioned Example, it is also possible to add dimensional stability by carrying out the consolidation fixation using the structural board which impregnated and dried beforehand with the synthetic resin liquid.

この接合構造の最大の特徴は、重複部では2方向からの木材繊維同士が絡み合い、重複部と非重複部の境界で木繊維が連続していることにある。また、本発明は挿入角度ならびに重複位置を変える、または直交させることで様々な形状が実現でき、ヘ字形、T字形、十字形、X字形などの変則形の部材ができる(図3)。  The greatest feature of this joint structure is that wood fibers from two directions are intertwined in the overlapping portion, and the wood fibers are continuous at the boundary between the overlapping portion and the non-overlapping portion. Further, in the present invention, various shapes can be realized by changing the insertion angle and the overlapping position or making them orthogonal to each other, and irregular-shaped members such as a H shape, a T shape, a cross shape, and an X shape can be formed (FIG. 3).

請求項2はこれらの変則形の部材として提供するものであり、請求項1の接合構造によって剛節または全強、もしくはその両方を可能とする既存の仕口接合を代替する部材である。  Claim 2 is provided as a member of these irregular shapes, and is a member that replaces the existing joint joining that enables rigid joint and / or full strength by the joining structure of claim 1.

これまで木質系の構造部材はわん曲集成材を除いて通直材であることが通常であったが、本発明の接合構造を適用することでさまざまな角度付きの部材が得られる。ここで、この接合構造の部分が剛節であり、全強である場合には、この接合構造の部分を接合部とみなさずに、連続体として見なして設計できる。このような角度付きの部材は鉄骨構造では実在しているが、木質材料では実現するに至っていなかったものである。  Until now, wood-based structural members were usually straight through materials except for curved laminated materials, but various angled members can be obtained by applying the joining structure of the present invention. Here, when the joint structure portion is rigid and full strength, the joint structure portion can be regarded as a continuous body without being regarded as a joint portion. Such an angled member exists in the steel structure, but has not been realized in the wood material.

重複部が圧密されることで剛性および耐力が向上していることや交差重ね併せの効果によって異方性が緩和されていること、非重複部と重複部において剛性が大きく違うものが連続していることも特徴として挙げられる。これによって、重複部は特許文献3、4において課題となっていた複雑な複合応力に抵抗することができ、特に繊維直交方向の割裂に対して飛躍的に強化されている。また、この木質板積層圧密接合部材に開閉モーメントを加えた場合の破壊点は、圧密によって重複部での破壊を回避したことで、非重複部においてモーメントが最大となる重複部との境界に移行することになる。このとき、接合耐力を決定する因子は、境界の非重複部の曲げ耐力となるが、境界において構成板がとぎれていないことはすなわち、部材強度が境界においても担保されている。したがって、接合耐力は部材の曲げ強度から簡単に算出できる。  Consolidation of overlapping parts improves rigidity and yield strength, cross-over effect reduces anisotropy, and non-overlapping parts and overlapping parts with significantly different stiffness It is also mentioned as a feature. Thereby, the overlapping portion can resist the complex composite stress which has been a problem in Patent Documents 3 and 4, and is remarkably strengthened particularly against the split in the direction perpendicular to the fiber. In addition, the breaking point when an opening / closing moment is applied to this wood-plate laminated consolidated member is that it avoids fracture at the overlapping part due to consolidation, and moves to the boundary with the overlapping part where the moment is maximum in the non-overlapping part. Will do. At this time, the factor that determines the joint strength is the bending strength of the non-overlapping portion of the boundary. That is, the fact that the component plates are not broken at the boundary, that is, the member strength is secured at the boundary. Therefore, the joining strength can be easily calculated from the bending strength of the member.

構成板形状に制約はなく、例えば台形同士の接合構造部材(図4)も有効であり、矩形の木質板積層部材と三角形の木質板積層部材、台形の木質板積層部材と円形の木質板積層部材など、接合構造上の組み合わせは多数考えられる。さらに上記の接合構造を複数箇所で組み合わせることで、ロ字形、P字形などの応用形(図5)の部材とすることができる。ただし、これらの木質板積層圧密接合部材の形状はプレス機の加圧面の大きさに制約を受けることから、建築部材大のものを実現しようとするとそれなりの大型のプレス機が必要なる。  There is no restriction on the configuration plate shape, for example, a trapezoidal joining structure member (FIG. 4) is also effective, a rectangular wooden board laminated member and a triangular wooden board laminated member, a trapezoid wooden board laminated member and a circular wooden board laminated member Many combinations on the joining structure such as members are conceivable. Furthermore, it can be set as a member of application forms (FIG. 5), such as a square shape and P shape, by combining said joining structure in multiple places. However, since the shape of these wood board laminated consolidation members is restricted by the size of the pressing surface of the press machine, a large press machine is required to achieve a large building member.

なお、非重複部にも構成板を追加挿入して成形する場合(図6)も考えられるが、部材の強度が向上しても、追加した構成板の繊維は境界で不連続となるため、境界部が局所的に弱く、接合部として全強と見なすことができなくなる。本発明はあくまでも、重複部のみを部材の曲げ耐力よりも飛躍的に向上させることで全強を保持することに意義がある点で、非特許文献1とは技術を異にする。  In addition, although the case where a component plate is additionally inserted into a non-overlapping portion and molded (FIG. 6) can be considered, even if the strength of the member is improved, the fibers of the added component plate are discontinuous at the boundary. The boundary portion is locally weak and cannot be regarded as the full strength as a joint portion. The present invention is different from Non-Patent Document 1 in that it is meaningful to maintain the full strength by dramatically improving only the overlapping portion with respect to the bending strength of the member.

請求項3は、これを用いた木質フレーム構造に関するものである。L字形を用いた例としては、非重複部の長さを十分に確保し、端部を継手加工したものを接合することによって門形、ロ字形などのフレームが形成できる(図7、図8)。ただし、前述のように木質板積層圧密接合部材の大きさはプレス機の大きさに制約を受けることから、建築構造として大スパンの架構を想定した場合には他軸材料と継手接合することによって構築する(図9)。  Claim 3 relates to a wood frame structure using the same. As an example using the L-shape, a frame such as a gate shape or a square shape can be formed by sufficiently securing the length of the non-overlapping portion and joining the end portions that have been jointed (FIGS. 7 and 8). ). However, as mentioned above, the size of the wood-plate laminated compaction joint member is limited by the size of the press machine. Build (Figure 9).

いずれの場合においても木質板積層圧密接合部材を用いたフレーム構造では継手が主体となるが、採用できる継手方法に制約はない。木質板積層圧密接合部材の構成上の特徴によって非重複部に継手加工の容易性を維持されていることから、剛節全強のものからピン接合まで、ありとあらゆるものが建築規模に応じて選択できる。また、他軸材料との継手位置については、躯体のモーメント分布に配慮し、最も効率の良い位置で縦継ぎできるように非重複部の長さを調整する。エネルギー吸収の高い継手を組み込むことも選択肢の1つである。なお、この継手によって躯体全体の施工誤差を吸収できるように配慮する。  In any case, in the frame structure using the wood board laminated consolidation member, the joint is mainly used, but there is no restriction on the joint method that can be adopted. Since the ease of joint processing is maintained in the non-overlapping parts due to the structural features of the wood board consolidated joint members, everything from rigid joints to pin joints can be selected according to the building scale . In addition, regarding the joint position with the other shaft material, the length distribution of the non-overlapping part is adjusted so that the longitudinal connection can be performed at the most efficient position in consideration of the moment distribution of the housing. Incorporating joints with high energy absorption is also an option. Consideration should be given so that construction errors of the entire frame can be absorbed by this joint.

本発明で構成される木質フレーム構造は、モーメントが最大となるコーナー部の性能が集中的に飛躍的に向上されていることから、構造力学的な合理性を追求した木質フレーム構造の一形態であり、鉄骨構造におけるラーメン架構と同等とみなすことができる、まったく新しい木質構造を実現する技術である。  The wooden frame structure constructed according to the present invention is a form of a wooden frame structure that pursues structural mechanical rationality because the performance of the corner portion where the moment is maximum has been dramatically improved. Yes, it is a technology that realizes a completely new wooden structure that can be regarded as equivalent to a ramen frame in a steel structure.

まず、剛節を実現したことから、構造計算をする際に、接合部の変形計算を伴わず、鉄骨構造と同じラーメン架構として設計できる。また、重複部は全強を実現していることから、非重複部の曲げ強度で木質ラーメン架構の最大耐力を算出できる。  First, since the rigid joint is realized, it can be designed as the same rigid frame as the steel structure without calculating the deformation of the joint when calculating the structure. Moreover, since the overlap part has realized the full strength, the maximum proof stress of a wooden frame frame can be calculated with the bending strength of a non-overlap part.

この木質板積層圧密部材を用いた架構としては、小規模建築物であればピン接合として、門形のスリーヒンジラーメン架構が可能である(図7)。建築規模が大きい場合でも、継手に全強の剛節接合を採用すれば単純明快な構造となるが、継手接合には鉄骨の塑性ヒンジに相当する強度接合効率が非常に高く、剛性および靭性の高い接合方法を選択する事で木質フレーム構造として最良の形態が実現できる(図9)。この点で、継手の加工に加工機を選ぶことなく、既存の継手が選択できる意義は大きく、架構の規模や求める性能に応じた継手が選択できる。一般に、仕口接合に比べて継手接合は設計が容易であることに加え、継手位置をコントロールすることで構造計算の最適化を計ることができることから、継手接合の性能がフレーム構造全体の性能を決定するという新しい構造形式として提供できる。  As a frame using this wooden board laminated compaction member, if it is a small-scale building, a gate-shaped three-hinge frame can be used as a pin joint (FIG. 7). Even if the building scale is large, if a strong joint with full strength is adopted for the joint, it becomes a simple and clear structure. However, the joint joint has a very high strength joint efficiency equivalent to the plastic hinge of the steel frame, and it has rigidity and toughness. By selecting a high joining method, the best form as a wood frame structure can be realized (FIG. 9). In this respect, it is significant that an existing joint can be selected without selecting a processing machine for processing the joint, and a joint according to the scale of the frame and the required performance can be selected. In general, joint joints are easier to design than joint joints, and structural calculations can be optimized by controlling joint positions. It can be provided as a new structural form to be determined.

また、これまで接合部の接合耐力にあわせて柱や梁などの部材断面を決定しなければならなかったことから、鉄骨構造にくらべて部材断面が大きくなる傾向にあったが、接合耐力が向上したことにより、部材断面を小さくできる効果も期待できる。  In addition, since it has been necessary to determine the cross-section of members such as columns and beams according to the joint strength of joints, the cross-section of members tends to be larger than that of steel structures, but the joint strength is improved. As a result, an effect of reducing the member cross section can be expected.

加えて、ヘ字形、T字形、十字形、X字形、イの字形などを駆使すればすべてが継手接合で成立する構造が可能となる(図10)。  In addition, if a square shape, a T shape, a cross shape, an X shape, a square shape, etc. are fully utilized, a structure in which all are formed by joint joining becomes possible (FIG. 10).

さらには、直交する耐力壁の取り合い、または2方向のフレーム構造を想定するとなると、これまでの仕口接合では直交する梁の金物との取り合いが複雑であり、断面欠損もさらに大きくなることから破壊の起点になりがちであったが、本部材の重複部は圧密化されていることから余力が十分に期待でき、少々のボルト孔などの加工が施されても、その影響は非常に小さいといえる。  Furthermore, assuming that the bearing walls are orthogonal to each other or a frame structure in two directions is assumed, the conventional joint joints have a complicated relationship with the hardware of the orthogonal beams, and the cross-sectional defects will be even larger, resulting in failure. However, even if a few bolt holes are processed, the effect is very small. I can say that.

その他の応用としては、図8の形態を水平構面として使用すれば、火打ち梁を省略した吹き抜けなどを構成することも可能である。  As another application, if the form shown in FIG. 8 is used as a horizontal surface, it is possible to configure a blow-out or the like in which a fire beam is omitted.

まず、本発明の接合性能について、同厚同数の矩形構成板群によるL字形の木質板積層圧密接合部材を例に、接合部と部材のバランスを素材(非重複部)の剛性および耐力を基準として下表に示す。

Figure 2011143698
重複部の圧密度0%はいわゆるクロスラップジョイントであり、互いに交差する構成板の厚さ分だけ隙間のある状態である。重複部の圧密度に比例してこの隙間は狭くなり、50%でちょうど非重複部同士が接触する。使用性を考慮すると、非重複部が一体化する50%以上の圧密度が良好といえる。ただし、重複部の圧密度が80%近辺になると、圧密を超えて、基材の破壊(木繊維の破断や分離)の発生が進行する。加えて、圧密に必要なプレス荷重が極端に高くなることから、実大サイズで実施するとプレス容量が不足するなど、製造面での困難を伴う。このことから重複部の圧密度は50%〜70%が良好である。一方、重複部、非重複部の剛性ならびに耐力については木材繊維の密度と比例して上昇する。重複部の剛性については接着接合によるものであることから、非圧密でも1と評価できる。一方、耐力については交差角度によって繊維直交方向成分の影響を受けるため、非圧密では重複部の耐力は非重複部の半分である。剛節か否かの判定は重複部と非重複部の剛比で行ったところ、非圧密でも剛節仮定で設計が可能であるが寸法効果に応じて局所変形の影響が懸念されることから、ここでは重複部の剛性が2倍以上で「◎」として完全に接合部の変形が無視できるものと評価した。一方、全強についての判定は重複部と非重複部の耐力比である接合効率100%以上で「○」と評価した。このように圧密度で重複部と非重複部の剛性と耐力のバランスをコントロールすることが可能であるが、剛比ならびに接合効率においても50%〜70%で良好であると言える。なお、実際に圧密度を決定するに当たっては、非重複部の性能が縦継ぎする部材の剛性、耐力と同等性能になるように設定することが理想となる。First, with regard to the bonding performance of the present invention, taking the L-shaped wood board laminated consolidated member by the same number of rectangular components of the same thickness as the example, the balance between the bonded portion and the member is based on the rigidity and proof strength of the material (non-overlapping portion) As shown in the table below.
Figure 2011143698
The pressure density 0% of the overlapping portion is a so-called cross lap joint, and there is a gap corresponding to the thickness of the constituent plates that intersect each other. This gap becomes narrower in proportion to the pressure density of the overlapping portion, and the non-overlapping portions are just in contact with each other at 50%. Considering usability, it can be said that a pressure density of 50% or more at which the non-overlapping parts are integrated is good. However, when the pressure density of the overlapping portion is close to 80%, the destruction of the base material (breaking or separation of the wood fiber) proceeds beyond the consolidation. In addition, since the press load necessary for compaction becomes extremely high, if it is carried out at a full size, there are difficulties in manufacturing such as insufficient press capacity. For this reason, the pressure density of the overlapping portion is preferably 50% to 70%. On the other hand, the rigidity and proof stress of the overlapping part and the non-overlapping part increase in proportion to the density of the wood fiber. Since the rigidity of the overlapping portion is based on adhesive bonding, it can be evaluated as 1 even with non-consolidation. On the other hand, since the yield strength is affected by the cross-angle direction component of the fiber, the non-consolidated portion has half the yield strength of the non-overlapping portion. Judgment of whether or not it is a rigid joint is based on the stiffness ratio of the overlapping part and the non-overlapping part, but it is possible to design with non-consolidated rigid joint assumption, but there is concern about the influence of local deformation depending on the size effect Here, it was evaluated that the rigidity of the overlapped portion was more than twice, and the deformation of the joint portion was completely negligible as “◎”. On the other hand, the determination about the total strength was evaluated as “◯” when the joining efficiency was 100% or more, which is the proof stress ratio of the overlapping portion and the non-overlapping portion. Thus, although it is possible to control the balance between the rigidity and the proof stress of the overlapping portion and the non-overlapping portion by the pressure density, it can be said that the rigidity ratio and the joining efficiency are good at 50% to 70%. When actually determining the pressure density, it is ideal to set the non-overlapping portion so that the performance of the non-overlapping portion is equivalent to the rigidity and proof strength of the member to be cascaded.

以上が基本となる同厚同数の構成板からなる木質板積層部材の場合の良好条件であるが、異厚や異数の構成板からなる木質板積層部材による場合にも本発明の接合構造を成立させることも可能である。これによって、梁と柱とで剛性や耐力が異なる組合せの場合に対応できる部材となる。ただし、圧密後に甲木質板積層部材と乙木質板積層部材の厚さを揃えるとなると、その重複部の圧密度は、構成板の総厚が薄い方によって決定されることになる。この場合、実現可能範囲を同厚同数の木質板積層部材の組み合わせと同じく、重複部の圧密度が50%〜70%に収まる範囲とした場合には、甲構成板と乙構成板の総厚比が7:3以下となる組み合わせとなるが、このような極端に構成板の総厚比が異なるもので実施しなくてもよく、構成板の形状を変えるか、構成板のグレードや樹種の組合せを変えることによっても梁と柱の剛性が異なるものに対応することができる。  The above is a good condition in the case of a wooden board laminated member composed of the same number and the same number of constituent plates, but the joining structure of the present invention is also used in the case of a wooden board laminated member consisting of different thicknesses or different numbers of constituent plates It can also be established. As a result, the member can cope with a combination of a beam and a column having different rigidity and proof stress. However, if the thicknesses of the deck board laminated member and the otowood board laminated member are equalized after consolidation, the pressure density of the overlapping portion is determined by the thinner total thickness of the constituent plates. In this case, if the possible range is the same as the combination of the same number of wood board laminated members, the pressure density of the overlapping part is within the range of 50% to 70%, the total thickness of the former component board and the former component board The ratio is 7: 3 or less, but it is not necessary to carry out with such an extremely different total thickness ratio of the component boards. By changing the combination, it is possible to cope with different beams and columns having different rigidity.

次に、具体的な性能をトドマツを使用して120mm角のL字形部材の製造工程と併せて示す。なお、接合構造を構成するに当たっては構成板の樹種は問わないとしているが、本実施例のように樹脂含浸工程を経る場合には、構成板の内部まで確実に樹脂を含浸できる事が望ましいことから、比較的低比重の材で、薄いものが良好である。  Next, specific performance is shown together with the manufacturing process of a 120 mm square L-shaped member using Todomatsu. In addition, although it does not ask | require the tree seed | species of a component board in comprising a junction structure, when passing through a resin impregnation process like a present Example, it is desirable that it can be reliably impregnated to the inside of a component board. Therefore, a thin material with a relatively low specific gravity is good.

ここでは甲構成板群と乙構成板群は同厚同数同形状とし、厚さ3.3mm、長さ240mm、幅120mmのロータリー単板を用いた。含浸した樹脂はフェノール樹脂である。樹脂を含浸した単板をホットプレスする際、積層数が少ない方が内部まで効率よく硬化温度に達するため、重複部の積層数を10として重複部の総厚を33mmとした。これを木材の軟化ならびにフェノール樹脂の硬化に適切な温度条件下(ここでは140℃)で厚さ規制によって15mmまで圧密して、L字形の単位板(図11−10)を製造した。このL字形の単位板を8枚、2次接着することで120mm角とし、縦継ぎする柱梁と同じ断面を確保した。なお、熱圧プレスの際においては、合成樹脂液があらかじめ含浸されていることによって構成板同士が圧着すると同時に、各構成板の表層面の樹脂が互いに結合して熱硬化するため、接着剤を塗布した場合と同等の接着性能が得られる。また、2次接着工程は高周波プレスを用いて必要厚さを一括して成形することで省略が可能である。このように、樹脂含浸構成板を用いる場合には、通常の接着剤を用いる場合に配慮が必要な接着剤の可使時間に束縛されないという製造効率上の利点があるが、本発明は樹脂含浸にこだわるものではなく、対象構造物に応じた圧密固定を適宜選択するとよい。  Here, the former plate group and the second plate group have the same thickness and the same shape, and a single rotary plate having a thickness of 3.3 mm, a length of 240 mm, and a width of 120 mm was used. The impregnated resin is a phenolic resin. When hot-pressing a single plate impregnated with resin, the smaller the number of layers, the more efficiently reaching the curing temperature to the inside. Therefore, the number of overlapping portions was set to 10 and the total thickness of the overlapping portions was set to 33 mm. This was compacted to 15 mm by thickness regulation under temperature conditions suitable for softening of the wood and hardening of the phenolic resin (140 ° C. in this case) to produce an L-shaped unit plate (FIGS. 11-10). Eight L-shaped unit plates were secondarily bonded to form a 120 mm square, and the same cross section as the column beam to be longitudinally connected was secured. In the case of hot-pressing, the constituent plates are pre-impregnated with each other so that the constituent plates are bonded to each other, and at the same time, the resins on the surface layers of the constituent plates are bonded to each other and thermally cured. Adhesive performance equivalent to that when applied is obtained. Further, the secondary bonding step can be omitted by forming the required thickness in a lump using a high frequency press. Thus, when using a resin-impregnated component plate, there is an advantage in production efficiency that it is not constrained by the usable time of the adhesive that needs to be considered when using a normal adhesive, but the present invention is resin-impregnated. It is good not to stick to it but to select the compaction according to the object structure as appropriate.

これを柱梁部材に相当する集成材と縦継ぎして、モーメント抵抗性能試験体とした。ここではL字部材の真の性能を測定するために継手接合において剛節かつ接合効率の高さで実績のある大型のフィンガージョイントによる接着接合を採用した。このL字形試験体を開閉方向に加力し、剛性および耐力を得た。剛性については重複部を剛節として導出した部材のみの変形角の計算値を実験値と比較した(図12)。開閉いずれの方向においても、変形量は実験値の方が計算値よりも小さかったことから、接合部の変形角が計測されなかったものとみなすことでき、剛節であることが確認された。また、破壊は非重複部と重複部の境界から曲げ破壊し、その耐力(最大モーメント)は集成材の公称値と同等であった。このことから接合耐力についても全強といえることも確認できた。  This was cascaded with a laminated material corresponding to a column beam member to obtain a moment resistance performance test specimen. Here, in order to measure the true performance of the L-shaped member, an adhesive joint using a large-sized finger joint that has been proven to be rigid and has high joint efficiency in joint joint is employed. This L-shaped specimen was applied in the opening / closing direction to obtain rigidity and proof stress. Regarding the stiffness, the calculated value of the deformation angle of only the member derived from the overlapping portion as a rigid joint was compared with the experimental value (FIG. 12). In both the opening and closing directions, the deformation amount of the experimental value was smaller than the calculated value, so that it was considered that the deformation angle of the joint was not measured, and it was confirmed that it was a rigid joint. In addition, the fracture broke at the boundary between the non-overlapping part and the overlapping part, and the yield strength (maximum moment) was equivalent to the nominal value of the laminated wood. From this, it was also confirmed that the joint strength was all strong.

なお、90°よりも鈍角になる場合は、重複部の応力状態において横引張応力成分の割合が小さくなっていくことから重複部での破壊は生じない。一方、90°よりも鋭角になる場合には横引張応力成分の割合は大きくなるが、構成板の繊維方向が横引張応力方向に一致するようになっていくことから、こちらも重複部での破壊は生じない。  In addition, when it becomes an obtuse angle from 90 degrees, since the ratio of a transverse tensile stress component becomes small in the stress state of an overlapping part, the destruction in an overlapping part does not arise. On the other hand, when the angle is more acute than 90 °, the ratio of the transverse tensile stress component is increased, but the fiber direction of the constituent plate becomes coincident with the transverse tensile stress direction. There is no destruction.

L字形木質板積層圧密接合部材の例Example of L-shaped wood board laminated consolidation member L字形木質板積層圧密接合部材の構成方法Method for constructing L-shaped wood board laminated consolidation member X字形木質板積層圧密接合部材の例Example of X-shaped wood board laminated consolidation member 台形構成板によるL字形木質板積層圧密接合部材の例Example of L-shaped wood board laminated consolidation member with trapezoidal component board ロ字形、P字形木質板積層圧密接合部材の例Example of B-shaped and P-shaped wood board laminated consolidation members 追加構成板を入れた場合のL字形木質板積層圧密接合部材の構成方法Method for constructing L-shaped wood board laminated consolidation member with additional construction board 小規模門形ラーメン架構の例Example of small portal ramen frame 小規模閉合フレーム構造の例Example of small closed frame structure 大規模門形フレーム構造とその継手の例Example of large-scale portal frame structure and its joints 木質板積層圧密接合部材を用いた継手のみによる木質フレーム構造の例Example of wood frame structure with only joints using wood-plate laminated consolidation members 単位板を2次接着して厚さを調整する例Example of adjusting the thickness by secondary bonding of unit plates L字形木質板積層圧密接合部材の荷重変形曲線Load deformation curve of L-shaped wood board laminated consolidation member

1 …甲木質板積層部材
1’…甲構成板
2 …乙木質板積層部材
2’…乙構成板
3 …追加構成板
4 …鋼板などのガセット板
5 …柱脚金物
6 …ドリフトピン群
7 …集成材などの軸材料
8 …木ダボや鋼棒などを想定した接合具群
9 …木質板積層圧密接合部材
10…L字形単位板
A …重複部
B …非重複部
DESCRIPTION OF SYMBOLS 1 ... Shell board laminated member 1 '... Upper board 2 ... Otoki board laminated member 2' ... B board 3 ... Additional component board 4 ... Gusset board, such as a steel plate 5 ... Column base metal 6 ... Drift pin group 7 ... Shaft materials such as laminated lumber 8 ... Connector group assuming wood dowels, steel bars, etc. 9 ... Wood board laminated consolidation member 10 ... L-shaped unit board A ... Overlapping part B ... Non-overlapping part

Claims (3)

甲木質板積層部材を構成する甲構成板群を積層する際に、乙木質板積層部材を構成する乙構成板群を任意位置、任意角度で甲構成板群の構成板間に挿入または交差することで重複部を設け、その重複部を甲および乙構成板群の非重複部がそれぞれで一体化するまで圧密し、固定することによって得られる木質板積層圧密接合構造。  When stacking the former component group constituting the deck board laminate member, the former component group constituting the former board laminate member is inserted or intersected between the constituent plates of the former member group at an arbitrary position and at an arbitrary angle. A wood board laminated consolidation structure obtained by consolidating and fixing the overlapping portions until the non-overlapping portions of the former and the second component board group are integrated with each other. 重複部で剛節または全強、もしくはその両方を可能にすることを特徴とする請求項1の接合構造を有する木質板積層圧密接合部材。  The wood board laminated consolidation member having the joint structure according to claim 1, wherein the overlapping portion enables rigid joint and / or full strength. 請求項2の部材同士、もしくは請求項2の部材と他軸材料からなる継手接合を主体とした木質フレーム構造。  A wood frame structure mainly composed of joints made of the members of claim 2 or joints made of the member of claim 2 and another shaft material.
JP2010019479A 2010-01-13 2010-01-13 Wood board laminated joint structure Expired - Fee Related JP5633041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010019479A JP5633041B2 (en) 2010-01-13 2010-01-13 Wood board laminated joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019479A JP5633041B2 (en) 2010-01-13 2010-01-13 Wood board laminated joint structure

Publications (2)

Publication Number Publication Date
JP2011143698A true JP2011143698A (en) 2011-07-28
JP5633041B2 JP5633041B2 (en) 2014-12-03

Family

ID=44458978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019479A Expired - Fee Related JP5633041B2 (en) 2010-01-13 2010-01-13 Wood board laminated joint structure

Country Status (1)

Country Link
JP (1) JP5633041B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016978A (en) * 2016-07-26 2018-02-01 株式会社竹中工務店 Structural member
WO2021167059A1 (en) 2020-02-19 2021-08-26 株式会社ユニウッドコーポレーション Structural laminated veneer lumber and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144109A (en) * 1979-04-28 1980-11-10 Matsushita Electric Works Ltd Preparation of special form aggregate wood
JPS58152147U (en) * 1982-04-08 1983-10-12 山下 悟 Legs made from laminated plywood
JPS5969325U (en) * 1982-10-30 1984-05-11 安藤 則男 Structure of intersection of shaped members
JP2002021252A (en) * 2000-07-03 2002-01-23 J Kenchiku Syst Kk Wooden beam and manufacturing method for building member such as wooden beam and column
JP2009208469A (en) * 2008-02-06 2009-09-17 National Institute Of Advanced Industrial & Technology Method for production of structural member, structural member, and truss structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144109A (en) * 1979-04-28 1980-11-10 Matsushita Electric Works Ltd Preparation of special form aggregate wood
JPS58152147U (en) * 1982-04-08 1983-10-12 山下 悟 Legs made from laminated plywood
JPS5969325U (en) * 1982-10-30 1984-05-11 安藤 則男 Structure of intersection of shaped members
JP2002021252A (en) * 2000-07-03 2002-01-23 J Kenchiku Syst Kk Wooden beam and manufacturing method for building member such as wooden beam and column
JP2009208469A (en) * 2008-02-06 2009-09-17 National Institute Of Advanced Industrial & Technology Method for production of structural member, structural member, and truss structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016978A (en) * 2016-07-26 2018-02-01 株式会社竹中工務店 Structural member
WO2021167059A1 (en) 2020-02-19 2021-08-26 株式会社ユニウッドコーポレーション Structural laminated veneer lumber and method for producing same

Also Published As

Publication number Publication date
JP5633041B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
Wang et al. Mechanical properties of laminated strand lumber and hybrid cross-laminated timber
Ghanbari-Ghazijahani et al. Lightweight timber I-beams reinforced by composite materials
Wang et al. Feasibility of using poplar as cross layer to fabricate cross-laminated timber
Auriga et al. Performance properties of plywood composites reinforced with carbon fibers
Bal Some physical and mechanical properties of reinforced laminated veneer lumber
Lam Modern structural wood products
Li et al. Cross-laminated timber (CLT) in China: a state-of-the-art
Dauletbek et al. A review of basic mechanical behavior of laminated bamboo lumber
Santos et al. An experimental comparison of strengthening solutions for dowel-type wood connections
Way et al. Evaluation of a wood-strand molded core sandwich panel
Cui et al. Manufacture and structural performance of modular hybrid FRP-timber thin-walled columns
CN208293858U (en) A kind of assembled floor made with CLT plate and unbonded prestressing tendon
Yadav et al. Engineered wood products as a sustainable construction material: A review
JP5633041B2 (en) Wood board laminated joint structure
Kia et al. Radiata pine and douglas fir timber steel encased columns subjected to concentric and eccentric loading
Li et al. Structural behavior of steel dowel-reinforced cross-laminated bamboo and timber beams
Khajouei-Nezhad et al. Advances in engineered bamboo processing: Material conversion and structure
Globa et al. Carbon fiber and structural timber composites for engineering and construction
Md Noh et al. Axial compression behaviour of wallettes constructed using wood-wool cement composite panel
US20090087656A1 (en) Reinforced Foam Panel
Jung et al. Development of a joint system using a compressed wooden fastener II: evaluation of rotation performance for a column-beam joint
Bhat Improved strength and stiffness characteristics of cross-laminated poplar timber columns
Gao et al. Shear performance of a novel non-metallic cross-laminated timber wall-to-wall connection using double-dovetail mortise-tenon joint
Song et al. Compressive Strength Properties Perpendicular to the Grain of Larch Cross-laminated Timber
JP2018089897A (en) Woody laminated lumber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140919

R150 Certificate of patent or registration of utility model

Ref document number: 5633041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees