JP2011143440A - Method of manufacturing grain oriented silicon steel sheet - Google Patents

Method of manufacturing grain oriented silicon steel sheet Download PDF

Info

Publication number
JP2011143440A
JP2011143440A JP2010005753A JP2010005753A JP2011143440A JP 2011143440 A JP2011143440 A JP 2011143440A JP 2010005753 A JP2010005753 A JP 2010005753A JP 2010005753 A JP2010005753 A JP 2010005753A JP 2011143440 A JP2011143440 A JP 2011143440A
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
roll
grain
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010005753A
Other languages
Japanese (ja)
Other versions
JP5573175B2 (en
Inventor
Minoru Takashima
高島  稔
Hideo Kijima
秀夫 木島
Masanori Takenaka
雅紀 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010005753A priority Critical patent/JP5573175B2/en
Publication of JP2011143440A publication Critical patent/JP2011143440A/en
Application granted granted Critical
Publication of JP5573175B2 publication Critical patent/JP5573175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an advantageous method of manufacturing a grain oriented silicon steel sheet excellent in core loss properties. <P>SOLUTION: In the method of manufacturing the grain oriented silicon steel sheet, which includes a series of processes in which a hot-rolled steel sheet is made into a cold-rolled steel sheet having the final sheet thickness by one time or two or more times of the cold rolling holding intermediate annealing between the cold rolling processes, after that, primary recrystallization annealing is performed and secondary recrystallization annealing is performed, in one or more passes in the final cold rolling, rolling is performed by using work rolls having a crossed grinding mark which is composed of a grinding mark inclined at ≥2° to <90° with respect to a roll peripheral direction and a grinding mark inclined at ≥2° to <90° in the opposite direction of the above grinding mark. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鉄損特性に優れた方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent iron loss characteristics.

方向性電磁鋼板は、主に変圧器の鉄心材料として使用されており、磁気特性、とくに鉄損特性に優れる(鉄損が低い)ことが必要とされている。   The grain-oriented electrical steel sheet is mainly used as a core material of a transformer, and is required to have excellent magnetic properties, particularly iron loss properties (low iron loss).

一般に、方向性電磁鋼板の鉄損特性は、製品の表面粗さが小さいほど、製品の結晶方位のゴス方位への集積度が高いほど、また、製品の結晶粒径が小さいほど、良好となることが知られている。そして、上記特性は、製品板厚(最終板厚)まで冷間圧延する最終冷間圧延におけるワークロールによって大きな影響を受けることも知られている。   Generally, the iron loss characteristics of grain-oriented electrical steel sheets become better as the surface roughness of the product is smaller, the degree of integration of the crystal orientation of the product in the Goth orientation is higher, and the crystal grain size of the product is smaller. It is known. It is also known that the above characteristics are greatly affected by a work roll in final cold rolling that is cold-rolled to a product plate thickness (final plate thickness).

たとえば、最終冷間圧延におけるワークロール径が小さいと、ワークロールと被圧延材との接触面圧が上昇し、圧延摩擦係数も大きくなるため、被圧延材が圧延によって受ける塑性変形中に占める剪断変形分が増加する。その結果、一次再結晶焼鈍後の集合組織中のゴス方位粒の数が増加するため、二次再結晶焼鈍で得られる集合組織のゴス方位への集積度が高まるとともに、製品板の結晶粒径も小さくなる。   For example, if the work roll diameter in the final cold rolling is small, the contact surface pressure between the work roll and the material to be rolled increases, and the rolling friction coefficient also increases. Deformation increases. As a result, since the number of goth-oriented grains in the texture after primary recrystallization annealing increases, the degree of accumulation in the goth orientation of the texture obtained by secondary recrystallization annealing increases, and the crystal grain size of the product plate Becomes smaller.

また、最終冷間圧延におけるワークロールの表面粗さが小さいと、圧延時にロールと被圧延材の間に取り込まれる圧延油の量が減少して油膜厚が薄くなるため、ロール表面粗さが被圧延材の表面に転写され易くなり、鋼板表面の粗さも小さくなる。   In addition, if the surface roughness of the work roll in the final cold rolling is small, the amount of rolling oil taken in between the roll and the material to be rolled during rolling is reduced and the oil film thickness is reduced. It becomes easy to be transferred to the surface of the rolled material, and the roughness of the steel plate surface is also reduced.

上記のような理由から、方向性電磁鋼板の最終冷間圧延は、一般的に、直径が80mmφ程度で鏡面研磨した小径ワークロールを具備したゼンジミアミルやクラスターミルを用いて行われている。しかし、ゼンジミアミルやクラスターミルは、圧延速度が低く、かつ、リバース圧延であるため、生産性が低く、製造コストが高いという問題点がある。   For the reasons described above, final cold rolling of grain-oriented electrical steel sheets is generally performed using a Sendzimir mill or a cluster mill having a small-diameter work roll having a diameter of about 80 mmφ and mirror-polished. However, the Sendzimir mill and the cluster mill have problems that the rolling speed is low and the reverse rolling is performed, so that the productivity is low and the manufacturing cost is high.

そこで、生産性を高め、製造コストの低減を図るため、最終冷間圧延を、大径ロールのタンデム圧延機を用いて行うことが試みられている。しかし、大径ロールによるタンデム圧延では、圧延速度が大きく、生産性が向上する反面、ロールと被圧延材(鋼板)間に取り込まれる圧延油量が増して、圧延摩擦係数が減少し、その結果、圧延で受ける塑性変形における剪断変形分が減少したり、オイルピットと呼ばれる鋼板表面の凹凸が発生して表面粗さが大きくなったりするため、良好な鉄損特性が得られないという問題点を抱えている。   Therefore, in order to increase productivity and reduce manufacturing costs, it has been attempted to perform final cold rolling using a large-diameter roll tandem rolling mill. However, in tandem rolling with large-diameter rolls, the rolling speed is large and productivity is improved, while the amount of rolling oil taken up between the roll and the material to be rolled (steel plate) increases, and the rolling friction coefficient decreases. The problem is that good iron loss characteristics cannot be obtained because the amount of shear deformation in plastic deformation received by rolling is reduced or the surface roughness of the steel sheet surface called oil pits increases and the surface roughness increases. I have it.

タンデム圧延法における上記問題点に対して、幾つかの改善技術が提案されている。例えば、特許文献1には、2回冷延法によって方向性電磁鋼板を製造するに際して、2回目の冷間圧延における少なくとも第1スタンドを含む前段において、ロール周方向に延びるスクラッチ疵を付与したロール軸方向の表面粗さRaが0.3μm以上のスクラッチダルロールを用いて冷間圧延することにより、最終冷延板の表面粗さを低減して磁気特性を改善する技術が開示されている。   Several improvement techniques have been proposed for the above problem in the tandem rolling method. For example, in Patent Document 1, when producing a grain-oriented electrical steel sheet by a two-time cold rolling method, a roll provided with scratch ridges extending in the roll circumferential direction in the previous stage including at least the first stand in the second cold rolling. A technique for improving the magnetic properties by reducing the surface roughness of the final cold rolled sheet by cold rolling using a scratch dull roll having an axial surface roughness Ra of 0.3 μm or more is disclosed.

また、特許文献2には、2回冷延法によって方向性電磁鋼板を製造するに際して、2回目の冷間圧延における第1スタンドに、表面粗さRaが1.0〜3.0μmのワークロールを用い、第2スタンド以降の1スタンド以上に、表面粗さRaが0.05〜0.5μmの傾斜研磨目ワークロールを用いて圧延することによって表面粗さを低減し、鉄損特性を改善する技術が開示されている。   Patent Document 2 discloses a work roll having a surface roughness Ra of 1.0 to 3.0 μm as a first stand in the second cold rolling when a grain-oriented electrical steel sheet is produced by a two-time cold rolling method. , Using a slanted abrasive work roll with a surface roughness Ra of 0.05 to 0.5 μm to one or more stands after the second stand to reduce the surface roughness and improve the iron loss characteristics Techniques to do this are disclosed.

特開平02−175010号公報Japanese Patent Laid-Open No. 02-175010 特開平11−199933号公報JP-A-11-199933

しかしながら、特許文献1の圧延法では、表面粗さの低減には一定の効果が認められるものの、圧延時の摩擦係数を高める効果は小さいため、鉄損改善効果も不十分なレベルでしかない。また、特許文献2の圧延法では、表面粗さを低減し、圧延時の摩擦係数を高めることについては一定の効果が認められるものの、鉄損改善効果は、依然として不十分なレベルでしかない。さらに、特許文献2の圧延法では、ワークロール研磨目の摩耗にともなって摩擦係数が低下し、鉄損改善効果が急激に減少するため、頻繁にロール交換をする必要があり、ロール原単位が高いという問題点があった。   However, in the rolling method of Patent Document 1, although a certain effect is recognized in reducing the surface roughness, the effect of improving the friction coefficient during rolling is small, so the iron loss improvement effect is only at an insufficient level. Moreover, in the rolling method of Patent Document 2, although a certain effect is recognized for reducing the surface roughness and increasing the friction coefficient during rolling, the iron loss improvement effect is still at an insufficient level. Furthermore, in the rolling method of Patent Document 2, the friction coefficient decreases with wear of the work roll polishing eyes, and the iron loss improvement effect decreases rapidly. Therefore, it is necessary to frequently replace the roll, and the roll basic unit is There was a problem that it was expensive.

そこで、本発明の目的は、従来技術が抱える上記問題点を解決し、鉄損特性に優れる方向性電磁鋼板の有利な製造方法を提案することにある。   Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to propose an advantageous method for producing a grain-oriented electrical steel sheet having excellent iron loss characteristics.

発明者らは、上記課題を解決するために、圧延方法の違いや圧延ロールの粗さ特性が鉄損特性に及ぼす影響について鋭意検討を重ねた。その結果、タンデム式冷間圧延機等で行う多パス圧延の少なくとも1パス以上において、クロス研磨目を付与したワークロールを用いて圧延することにより、圧延摩擦係数を高め、しかも、鋼板表面粗さを低減することができるので、方向性電磁鋼板の鉄損特性を大きく向上することができることを見出し、本発明を完成させるに至った。   In order to solve the above-mentioned problems, the inventors have made extensive studies on the influence of the difference in rolling method and the roughness characteristics of the rolling roll on the iron loss characteristics. As a result, in at least one pass of multi-pass rolling performed by a tandem cold rolling mill or the like, rolling is performed using a work roll provided with a cross-grind, thereby increasing the rolling friction coefficient and the steel sheet surface roughness. Therefore, the present inventors have found that the iron loss characteristics of the grain-oriented electrical steel sheet can be greatly improved, and have completed the present invention.

すなわち、本発明は、方向性電磁鋼板用熱延鋼板を、1回あるいは中間焼鈍を挟む2回以上の冷間圧延で最終板厚の冷延鋼板とし、その後、一次再結晶焼鈍し、二次再結晶焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、最終冷間圧延における1パス以上を、ロール周方向に対して2°以上90°未満傾斜した研磨目と、上記研磨目とは逆向きに0°以上90°未満傾斜した研磨目とからなるクロス研磨目を有するワークロールを用いて圧延することを特徴とする方向性電磁鋼板の製造方法である。   That is, in the present invention, a hot-rolled steel sheet for grain-oriented electrical steel sheet is made into a cold-rolled steel sheet having a final thickness by one or more cold rollings sandwiching intermediate annealing, followed by primary recrystallization annealing, In the method for producing a grain-oriented electrical steel sheet comprising a series of steps for recrystallization annealing, the polishing marks inclined at least 2 ° and less than 90 ° with respect to the roll circumferential direction at least one pass in the final cold rolling; Is a method for producing a grain-oriented electrical steel sheet, characterized in that rolling is performed using a work roll having a cross-grind having a slant of 0 ° or more and less than 90 °.

本発明の方向性電磁鋼板の製造方法は、上記ワークロールとして、ロール周方向に対して10°以上90°未満傾斜した研磨目と、上記研磨目とは逆向きに0°以上90°未満傾斜した研磨目とからなるクロス研磨目を有するワークロールを用いることを特徴とする。   The method for producing a grain-oriented electrical steel sheet according to the present invention includes, as the work roll, a polishing eye inclined at 10 ° or more and less than 90 ° with respect to the roll circumferential direction, and an inclination of 0 ° or more and less than 90 ° opposite to the polishing eye. It is characterized by using a work roll having a cross-polishing eye consisting of the polished eye.

また、本発明の方向性電磁鋼板の製造方法における上記ワークロールの表面粗さは、算術平均粗さRaが0.05〜1.5μmであることを特徴とする。   The surface roughness of the work roll in the method for producing a grain-oriented electrical steel sheet according to the present invention is characterized in that an arithmetic average roughness Ra is 0.05 to 1.5 μm.

また、本発明の方向性電磁鋼板の製造方法は、上記最終冷間圧延を、タンデム式圧延機を用いて行うことを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention is characterized in that the final cold rolling is performed using a tandem rolling mill.

本発明によれば、クロス研磨目を付与したワークロールを用いて最終冷間圧延を行うようにしたので、従来技術と比べ、圧延摩擦係数を大きくすることができ、しかも、圧延後の鋼板表面ひいては製品表面の粗さが低減することができるので、方向性電磁鋼板の鉄損特性を大きく改善することができる。また、本発明によれば、最終冷間圧延を、タンデム式圧延機を用いて行うことができるので、鉄損特性の向上に加えて、生産性の向上、製造コストの低減にも大いに寄与することができる。また、本発明のクロス研磨目を付与したワークロールは、研磨目の摩耗にともなう摩擦係数の低下が小さいので、ロール原単位を低減でき、ひいては生産性の向上や製造コストの低減に大きく寄与することができる。   According to the present invention, since the final cold rolling is performed using a work roll provided with a cross-grind, the rolling friction coefficient can be increased as compared with the prior art, and the steel sheet surface after rolling As a result, the roughness of the product surface can be reduced, so that the iron loss characteristics of the grain-oriented electrical steel sheet can be greatly improved. In addition, according to the present invention, since the final cold rolling can be performed using a tandem rolling mill, in addition to the improvement of iron loss characteristics, it greatly contributes to the improvement of productivity and the reduction of manufacturing cost. be able to. In addition, since the work roll provided with the cross-abrasion according to the present invention has a small decrease in the friction coefficient due to the abrasion of the abrasion, the roll basic unit can be reduced, which greatly contributes to an improvement in productivity and a reduction in manufacturing cost. be able to.

従来の冷間圧延ロールの研磨目方向を説明する図である。It is a figure explaining the grinding eye direction of the conventional cold rolling roll. 特許文献2に開示された傾斜研磨目ロールを説明する図である。It is a figure explaining the inclination grinding eye roll disclosed by patent document 2. FIG. 本発明のクロス研磨目ロールを説明する図である。It is a figure explaining the cloth polishing eye roll of the present invention.

本発明は、方向性電磁鋼板用熱延鋼板を、1回あるいは中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板と、その後、一次再結晶焼鈍し、二次再結晶焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、最終板厚とする冷間圧延(最終冷間圧延)における1パス以上を、ロール周方向に対して2°以上90°未満傾斜した研磨目と、上記研磨目とは逆向きに0°以上90°未満傾斜した研磨目とからなるクロス研磨目を有するワークロールを用いて圧延することにより、鉄損特性に優れる方向性電磁鋼板を製造する技術である。   In the present invention, a hot-rolled steel sheet for grain-oriented electrical steel sheets is subjected to cold rolling of a final thickness by one or two or more cold rolling sandwiching intermediate annealing, followed by primary recrystallization annealing and secondary recrystallization. In the method for producing a grain-oriented electrical steel sheet comprising a series of annealing steps, one or more passes in cold rolling (final cold rolling) with a final thickness is inclined by 2 ° or more and less than 90 ° with respect to the roll circumferential direction. A grain-oriented electrical steel sheet having excellent iron loss characteristics is obtained by rolling using a work roll having a cross-grinding eye composed of a grinding eye and a polishing eye inclined at an angle of 0 ° or more and less than 90 ° in the opposite direction to the polishing eye. It is a technology to manufacture.

ここで、本発明の方向性電磁鋼板の製造に用いる素材としての熱延鋼板は、方向性電磁鋼板用として従来公知の成分組成を有する鋼素材(スラブ)を、通常公知の条件で熱間圧延したものであればいずれの鋼種のものでもよく、したがって、インヒビター成分の添加有無や種類に関係なく、本発明に用いることができる。たとえば、インヒビター成分を添加した成分系しては、S:0.01〜0.03mass%および/またはSe:0.01〜0.03mass%、Al:0.01〜0.04mass%、N:0.0050〜0.0200mass%の少なくともいずれかを含有するもの、また、インヒビター成分を含まない成分系しては、S:0.0050mass%未満、Se:0.0050mass%未満、Al:0.01mass%未満、N:0.0050mass%未満を含有するものであれば、好適に用いることができる。   Here, the hot-rolled steel sheet as a raw material used for manufacturing the grain-oriented electrical steel sheet of the present invention is a steel material (slab) having a conventionally known component composition for the grain-oriented electrical steel sheet, and is hot-rolled under a generally known condition. Thus, any steel type can be used, and therefore, it can be used in the present invention regardless of the presence or type of the inhibitor component. For example, as the component system to which the inhibitor component is added, S: 0.01 to 0.03 mass% and / or Se: 0.01 to 0.03 mass%, Al: 0.01 to 0.04 mass%, N: The component system containing at least one of 0.0050 to 0.0200 mass%, and the component system not containing the inhibitor component is S: less than 0.0050 mass%, Se: less than 0.0050 mass%, Al: 0. Any material containing less than 01 mass% and N: less than 0.0050 mass% can be suitably used.

また、上記熱延鋼板は、必要に応じて熱延板焼鈍を施したものであってもよく、また、その焼鈍条件も通常公知の条件で施せばよく、特に制限はない。   Further, the hot-rolled steel sheet may be subjected to hot-rolled sheet annealing as necessary, and the annealing conditions may be applied under generally known conditions, and there is no particular limitation.

次いで、上記熱延鋼板は、必要に応じて酸洗等で脱スケール後、冷間圧延して最終板厚の冷延板とする。なお、この冷間圧延では、1回で最終板厚としてもよく、あるいは中間焼鈍を挟む2回以上の冷間圧延で最終板厚としてもよい。ここで、本発明では、最終板厚とする一次再結晶焼鈍直前の圧延を、最終冷間圧延と称するが、この最終冷間圧延における圧下率は50〜95%の範囲で行うのが一般的であり、本発明においても上記範囲で行うのが好ましい。   Next, the hot-rolled steel sheet is descaled by pickling or the like as necessary, and then cold-rolled to obtain a cold-rolled sheet having a final thickness. In this cold rolling, the final plate thickness may be obtained once, or the final plate thickness may be obtained by cold rolling two or more times with intermediate annealing. Here, in the present invention, rolling immediately before the primary recrystallization annealing with the final plate thickness is referred to as final cold rolling, and the rolling reduction in this final cold rolling is generally performed in the range of 50 to 95%. In the present invention, it is preferable to carry out within the above range.

上記冷間圧延で用いるワークロールには、一般に、摩擦係数を低減して圧延性を向上する観点から、図1に示したような、ロールの周方向に研磨目が存在するブライトロール(以降、「通常ロール」とも称する)が用いられている。しかし、上記通常ロールを用いて圧延した場合には、前述したように、被圧延材の表面粗さが大きくなると共に、圧延摩擦係数が減少することによって、二次再結晶組織におけるゴス方位への集積度が低下し、優れた鉄損特性を得ることができない。   In general, the work roll used in the cold rolling is a bright roll (hereinafter, referred to as “bright roll”) having polishing eyes in the circumferential direction of the roll as shown in FIG. 1 from the viewpoint of reducing the friction coefficient and improving the rollability. Also called “normal roll”). However, when rolling using the above normal roll, as described above, the surface roughness of the material to be rolled is increased, and the rolling friction coefficient is reduced, so that the goth orientation in the secondary recrystallized structure is reduced. The degree of integration is reduced, and excellent iron loss characteristics cannot be obtained.

また、図2は、特許文献2に開示されている、ロール円周方向に対して45°の研磨目を付与した傾斜研磨目ロールを模式的に示したものである。しかし、この傾斜研磨目ロールを用いて圧延を行った場合には、ロールと被圧延材(鋼板)との間のロールバイトに取り込まれた圧延油を完全に排出することができないため、摩擦係数の上昇代が小さく、鉄損特性を改善するには不十分であった。また、研磨目の摩耗にともない、圧延油の排出はますます困難となるため、圧延量の増加とともに摩擦係数が低下し、鉄損改善効果も急激に小さくなってしまう。   FIG. 2 schematically shows an inclined abrasive roll provided with a 45 ° abrasive in the roll circumferential direction, which is disclosed in Patent Document 2. However, when rolling is performed using this inclined abrasive roll, the rolling oil taken into the roll bite between the roll and the material to be rolled (steel plate) cannot be completely discharged, so the friction coefficient The amount of increase was small and insufficient to improve the iron loss characteristics. In addition, as the abrasive eyes wear, it becomes increasingly difficult to discharge the rolling oil. As the rolling amount increases, the friction coefficient decreases, and the iron loss improvement effect decreases rapidly.

そこで、本発明では、最終冷間圧延における1パス以上を、ロール周方向に対して2°以上90°未満の傾斜角θで傾斜した研磨目と、上記研磨目とは逆向きに0°以上90°未満の傾斜角θで傾斜した研磨目とからなるクロス研磨目を有するワークロールを用いて行うこととした。このクロス研磨目を付与したワークロールを用いることで、ロールバイトに取り込まれた圧延油を十分に排出することが可能となるので、圧延摩擦係数を高め、かつ鋼板表面粗さを小さくすることができ、ひいては鉄損特性を確実に向上することができる。また、研磨目が多少摩耗しても、圧延油の排出が可能であるため、高い摩擦係数を長時間にわたって確保できるので、圧延量が増加しても、高い鉄損改善効果を維持することができる。 Therefore, in the present invention, a polishing eye inclined at an inclination angle θ 1 of 2 ° or more and less than 90 ° with respect to the roll circumferential direction in one or more passes in the final cold rolling, and 0 ° in the opposite direction to the polishing eye. It was decided to use a work roll having cross polishing eyes composed of polishing eyes inclined at an inclination angle θ 2 of less than 90 °. By using a work roll with this cross-grind, it is possible to sufficiently discharge the rolling oil taken into the roll bite, so that the rolling friction coefficient can be increased and the steel sheet surface roughness can be reduced. As a result, iron loss characteristics can be reliably improved. In addition, since the rolling oil can be discharged even if the abrasive eyes are worn somewhat, a high friction coefficient can be secured over a long period of time, so that even if the rolling amount increases, a high iron loss improvement effect can be maintained. it can.

図3は、本発明に係るクロス研磨目ロールの例を示したものであり、図3(a)は、上記傾斜角θと傾斜角θの絶対値が等しい場合、即ち、クロス研磨目がロール周方向に対して左右対称である場合、図3(b)は、傾斜角θと傾斜角θの絶対値が等しくない場合、即ち、クロス研磨目がロール周方向に対して左右非対称である場合である。 FIG. 3 shows an example of a cross polishing eye roll according to the present invention. FIG. 3A shows a case where the absolute values of the inclination angle θ 1 and the inclination angle θ 2 are equal, that is, the cross polishing eye roll. If There is symmetrical with respect to the roll circumferential direction, FIG. 3 (b), when the absolute value of the inclination angle theta 1 and the inclination angle theta 2 are not equal, i.e., left and right cross polishing marks are relative to the roll circumferential direction This is the case when it is asymmetric.

ここで、本発明のクロス研磨目ロールにおける、一方の研磨目の傾斜角θは、ロールの周方向に対して2°以上90°未満であることが必要である。傾斜角θが2°未満では、製品の表面粗さを低減する効果が小さく、圧延時の摩擦係数を高める効果も小さいため、鉄損特性の改善効果が得られない。さらに、θを10°以上とすれば、圧延時の摩擦係数の増加効果がより高められ、鉄損特性を大きく向上することができる。したがって、θは好ましくは10°以上90°未満である。なお、上記θとθの関係は、図3に示したとおりである必要はなく、θとθが逆であってもよいことは勿論である。 Here, the inclination angle θ 1 of one polishing eye in the cross polishing eye roll of the present invention needs to be 2 ° or more and less than 90 ° with respect to the circumferential direction of the roll. If the inclination angle θ 1 is less than 2 °, the effect of reducing the surface roughness of the product is small, and the effect of increasing the friction coefficient during rolling is small, so that the effect of improving the iron loss characteristics cannot be obtained. Furthermore, if θ 1 is 10 ° or more, the effect of increasing the friction coefficient during rolling can be further enhanced, and the iron loss characteristics can be greatly improved. Therefore, θ 1 is preferably 10 ° or more and less than 90 °. Note that the relationship between θ 1 and θ 2 does not have to be as shown in FIG. 3, and it is needless to say that θ 1 and θ 2 may be reversed.

また、他方の研磨目の傾斜角θは、ロールの周方向に対して上記θとは逆向きの0°以上90°未満であることが必要である。上記傾斜角θの研磨目に加えて、この研磨目付与することにより、圧延油がロールバイト内に封じ込まれることなく排出されるので、圧延時の摩擦係数を確実に高めることができると共に、鋼板表面粗さをより小さくすることができる。 In addition, the inclination angle θ 2 of the other polishing eye needs to be 0 ° or more and less than 90 ° opposite to θ 1 with respect to the circumferential direction of the roll. In addition to the polishing eyes having the inclination angle θ 1 , by applying the polishing marks, the rolling oil is discharged without being enclosed in the roll bite, so that the friction coefficient during rolling can be reliably increased. The steel plate surface roughness can be further reduced.

また、上記最終冷間圧延に用いるワークロールは、その表面粗さが、JIS B0601(2001)で規定される算術平均粗さRaで0.05〜1.5μmの範囲であることが好ましい。Raが0.05μm未満では、クロス研磨目の効果が得られず、一方、1.5μm超えでは、ロールの表面粗さが大きすぎて、製品の表面粗さが増加し、却って鉄損特性が劣化するからである。ここで、上記Raは、JIS B0601(2001)に準じてワークロールの軸方向に測定した値であり、Ra測定時の評価長さとカットオフ値は、上記JIS記載の基準値を用いる。   Moreover, it is preferable that the surface roughness of the work roll used for the said final cold rolling is the range of 0.05-1.5 micrometers in arithmetic mean roughness Ra prescribed | regulated by JISB0601 (2001). If Ra is less than 0.05 μm, the effect of cross polishing is not obtained. On the other hand, if it exceeds 1.5 μm, the surface roughness of the roll is too large and the surface roughness of the product is increased. It is because it deteriorates. Here, the Ra is a value measured in the axial direction of the work roll in accordance with JIS B0601 (2001), and the reference value described in the JIS is used for the evaluation length and the cut-off value at the time of Ra measurement.

なお、ワークロールに付与する上記研磨目は、必ずしも連続的である必要はなく、ワークロールを研磨する上では、むしろ断続的である方が好ましいこともある。また、ワークロール表面に研磨目を付与する方法は、いかなる方法でもよく、例えば、回転砥石や遊離砥粒などによる研磨、研削バイトによる研磨あるいはエッチング等で付与してもよい。   In addition, the said grinding | polishing eyes provided to a work roll do not necessarily need to be continuous, and when grinding | polishing a work roll, it is rather preferable that it is intermittent. Further, any method may be used to apply the polishing marks to the surface of the work roll. For example, the work roll surface may be provided by polishing with a rotating grindstone or loose abrasive grains, polishing with a grinding bit or etching.

また、最終冷間圧延では、上記クロス研磨目ロールを全ての圧延パスで用いる必要はなく、少なくとも1パス以上で用いればよい。ただし、クロス研磨目ロールの効果を確実の得るためには、1パスよりも2パス以上で用いるのが好ましい。   Further, in the final cold rolling, it is not necessary to use the cross polishing rolls in all rolling passes, and it is sufficient to use at least one pass or more. However, in order to reliably obtain the effect of the cross polishing roll, it is preferable to use two or more passes rather than one pass.

なお、最終冷間圧延を行う圧延機は、タンデム式冷間圧延機、ゼンジミアミル、プラネタリーミル等いずれでもよいが、生産性を向上し、製造コストを低減する観点からは、タンデム式の冷間圧延機であることが好ましい。   The final cold rolling mill may be a tandem cold rolling mill, a sendzimir mill, a planetary mill, or the like. From the viewpoint of improving productivity and reducing manufacturing costs, a tandem cold rolling mill may be used. A rolling mill is preferable.

次に、本発明の方向性電磁鋼板の製造方法においては、上述した条件で最終冷間圧延した冷延鋼板を、一次再結晶焼鈍し、次いで、二次再結晶焼鈍し、さらに必要に応じて通常公知の絶縁被膜を被成し、製品(方向性電磁鋼板)とするのが好ましい。   Next, in the method for producing a grain-oriented electrical steel sheet according to the present invention, the cold-rolled steel sheet that has been finally cold-rolled under the above-described conditions is subjected to primary recrystallization annealing, then secondary recrystallization annealing, and further, if necessary. It is preferable to form a product (oriented electrical steel sheet) by depositing a generally known insulating coating.

上記一次再結晶焼鈍は、通常公知の条件で行えばよく、例えば、湿水素雰囲気中で800℃×2分の脱炭焼鈍を兼ねた焼鈍条件などが好ましく適合する。また、二次再結晶焼鈍についても、通常公知の条件で行えばよく、例えば、水素雰囲気中で1200℃×5時間の焼鈍で、二次再結晶と純化を行う焼鈍条件などが好ましく適合する。なお、一次再結晶焼鈍から二次再結晶焼鈍の間で窒化処理を行ってもよい。   The primary recrystallization annealing may be performed under generally known conditions. For example, annealing conditions that also serve as decarburization annealing at 800 ° C. for 2 minutes in a wet hydrogen atmosphere are suitable. Also, the secondary recrystallization annealing may be performed under generally known conditions. For example, annealing conditions in which secondary recrystallization and purification are performed by annealing at 1200 ° C. for 5 hours in a hydrogen atmosphere are preferably suitable. Note that nitriding treatment may be performed between the primary recrystallization annealing and the secondary recrystallization annealing.

また、一次再結晶焼鈍後、焼鈍分離剤を塗布してから二次再結晶焼鈍してもよい。この場合、上記焼鈍分離剤としては、MgOやAlなどを主成分とする従来公知のものであればいずれも用いることができ、二次再結晶焼鈍後、鋼板表面にフォルステライト被膜を形成する、しないに関係されない。 Further, after the primary recrystallization annealing, the secondary recrystallization annealing may be performed after applying the annealing separator. In this case, as the annealing separator, any conventionally known ones mainly composed of MgO, Al 2 O 3 and the like can be used. After the secondary recrystallization annealing, a forsterite film is applied to the steel sheet surface. Regardless of forming or not.

C:0.07mass%、Si:3.2mass%、Mn:0.07mass%、Al:0.02mass%、N:0.01mass%、S:0.02mass%、残部がFeおよび不可避的不純物からなる成分組成を有する板厚2.8mmの方向性電磁鋼板用熱延板に900℃×3分の熱延板焼鈍を施した後、1回目の冷間圧延で中間板厚2.0mmとし、1050℃×3分の中間焼鈍を施した。次いで、4スタンドからなり、#3,#4スタンドのワークロール径が300mmφのタンデム式冷間圧延機を用いて2回目の冷間圧延(最終冷間圧延)を行い、最終板厚が0.3mmの冷延鋼板とした。
なお、上記圧延機の#1,#2スタンドには、円周方向に研磨目を有する通常のワークロール(Ra:1.0μmのブライトロール)を用い、#3,#4スタンドには、表1に示す各種の研磨目と表面粗さを有するワークロールを用い、各条件でそれぞれ500ton以上の圧延を行った。
次いで、最終板厚とした上記冷延鋼板は、湿水素雰囲気中で800℃×2分の脱炭焼鈍を兼ねた一次再結晶焼鈍を施し、焼鈍分離剤としてMgOスラリーを塗布・乾燥した後、1200℃×5時間の二次再結晶焼鈍を施して方向性電磁鋼板とした。
かくして得られた方向性電磁鋼板の、各ロール条件におけるロール交換直後に圧延した位置および500ton圧延後の位置から、圧延方向に平行な試験片を採取し、800℃×3hrの歪取焼鈍を施した後、JIS C2550(2000)に準じて鉄損W17/50を測定し、両位置の鉄損を比較することで、鉄損特性の改善効果とワークロールの寿命を評価した。
C: 0.07 mass%, Si: 3.2 mass%, Mn: 0.07 mass%, Al: 0.02 mass%, N: 0.01 mass%, S: 0.02 mass%, the balance from Fe and inevitable impurities After subjecting the hot rolled sheet for directional electrical steel sheet having a thickness of 2.8 mm to a hot rolled sheet for 900 ° C. × 3 minutes, an intermediate sheet thickness of 2.0 mm is obtained by the first cold rolling, Intermediate annealing at 1050 ° C. for 3 minutes was performed. Next, the second cold rolling (final cold rolling) was performed using a tandem cold rolling mill consisting of 4 stands and a work roll diameter of # 3 and # 4 stands of 300 mmφ. A 3 mm cold-rolled steel sheet was used.
For the # 1 and # 2 stands of the rolling mill, a normal work roll (Ra: 1.0 μm bright roll) having abrasive eyes in the circumferential direction is used, and for the # 3 and # 4 stands, Using a work roll having various polishing marks and surface roughness shown in No. 1, rolling was performed for 500 tons or more under each condition.
Next, the cold-rolled steel sheet having a final thickness is subjected to primary recrystallization annealing also serving as decarburization annealing at 800 ° C. for 2 minutes in a wet hydrogen atmosphere, and after applying and drying MgO slurry as an annealing separator, A secondary recrystallization annealing was performed at 1200 ° C. for 5 hours to obtain a grain-oriented electrical steel sheet.
A specimen parallel to the rolling direction was collected from the position of the grain-oriented electrical steel sheet thus obtained immediately after the roll change in each roll condition and the position after 500 ton rolling, and subjected to 800 ° C. × 3 hr strain relief annealing. After that, the iron loss W 17/50 was measured according to JIS C2550 (2000) and the iron loss at both positions was compared to evaluate the improvement effect of the iron loss property and the life of the work roll.

Figure 2011143440
Figure 2011143440

上記結果を、表1に併記して示した。ここで、表1に示したNo.1の比較例は、円周方向に研磨目(θ=0°)を有する通常ロールを#3,#4スタンドに用いた例、No.2の比較例は、特許文献2に開示された傾斜研磨目ロールを#3,#4スタンドに用いた例、No.3の比較例は、クロス研磨目ではあるが、傾斜角θが本発明外であるロールを#3,#4スタンドに用いた例である。また、表1に示したNo.4〜15の発明例は、本発明に適合する各種クロス研磨目ロールを#3,#4スタンドに用いた例である。
表1の結果から、本発明に適合するクロス研磨目ロールを用いた発明例では、比較例と比較して鉄損特性に優れる方向性電磁鋼板が得られていること、また、圧延量が増加しても鉄損改善効果の低下が傾斜研磨ロールを用いたNo.2の比較例よりも小さく、ワークロール寿命の面でも優れていることがわかる。
The results are shown together in Table 1. Here, No. 1 shown in Table 1 was used. No. 1 is an example in which a normal roll having polishing eyes (θ 1 = 0 °) in the circumferential direction is used for the # 3 and # 4 stands. The comparative example of No. 2 is an example in which the inclined abrasive roll disclosed in Patent Document 2 is used for # 3 and # 4 stands, The comparative example 3 is an example in which a roll having an inclination angle θ 1 outside the present invention is used for the # 3 and # 4 stands, although it is a cross-polishing eye. In addition, No. 1 shown in Table 1. Examples 4 to 15 are examples in which various cross polishing rolls suitable for the present invention are used for the # 3 and # 4 stands.
From the results shown in Table 1, in the inventive examples using the cross polishing rolls suitable for the present invention, a grain-oriented electrical steel sheet having excellent iron loss characteristics as compared with the comparative examples is obtained, and the rolling amount is increased. Even when the effect of improving the iron loss was decreased, the No. It is smaller than the comparative example 2 and it can be seen that the work roll life is also excellent.

C:0.01mass%、Si:3.4mass%、Mn:0.05mass%、Al:0.0025mass%、N:0.0035mass%、S:0.0010mass%、Se:0.0002mass%、残部がFeおよび不可避的不純物からなる成分組成を有する板厚1.8mmの方向性電磁鋼板用熱延板に1000℃×30秒の熱延板焼鈍を施した後、4スタンドからなり、各スタンドのワークロール径が300mmφのタンデム式冷間圧延機を用いて、1回の冷間圧延で最終板厚が0.20mmの冷延鋼板とした。
なお、上記圧延機の各スタンドには、表2に示した種類の研磨目を有するワークロールを用い、各条件でそれぞれ500ton以上の圧延を行った。また、各スタンドのワークロールの表面粗さRaは、通常ロール、クロス研磨目ロールにかかわらず、#1スタンドは1.0μm、#2〜#4スタンドは0.3μmに調整した。
次いで、最終板厚とした上記冷延鋼板は、湿水素雰囲気中で850℃×1分の脱炭焼鈍を兼ねた一次再結晶焼鈍を施し、焼鈍分離剤としてMgOスラリーを塗布・乾燥した後、1250℃×12時間の二次再結晶焼鈍を施して方向性電磁鋼板とした。
かくして得られた方向性電磁鋼板の、各ロール条件での圧延量が500tonに相当する位置から、圧延方向に平行な試験片を採取し、800℃×3hrの歪取焼鈍を施した後、JIS C2550(2000)の規定に準じて鉄損W17/50を測定し、鉄損特性を評価した。
C: 0.01 mass%, Si: 3.4 mass%, Mn: 0.05 mass%, Al: 0.0025 mass%, N: 0.0035 mass%, S: 0.0010 mass%, Se: 0.0002 mass%, balance After subjecting a hot rolled sheet for a directional electrical steel sheet with a thickness of 1.8 mm having a component composition consisting of Fe and unavoidable impurities to hot rolled sheet annealing at 1000 ° C. for 30 seconds, it consists of 4 stands, Using a tandem cold rolling mill with a work roll diameter of 300 mmφ, a cold rolled steel sheet having a final sheet thickness of 0.20 mm was obtained by one cold rolling.
In addition, for each stand of the rolling mill, a work roll having the types of polishing marks shown in Table 2 was used, and rolling was performed for 500 tons or more under each condition. Further, the surface roughness Ra of the work roll of each stand was adjusted to 1.0 μm for the # 1 stand and 0.3 μm for the # 2 to # 4 stands regardless of the normal roll and the cross polishing roll.
Next, the cold-rolled steel sheet having a final thickness is subjected to primary recrystallization annealing also serving as decarburization annealing at 850 ° C. for 1 minute in a wet hydrogen atmosphere, and after applying and drying MgO slurry as an annealing separator, A secondary recrystallization annealing at 1250 ° C. for 12 hours was performed to obtain a grain-oriented electrical steel sheet.
A test piece parallel to the rolling direction was collected from a position corresponding to 500 ton of the rolling amount under each roll condition of the grain-oriented electrical steel sheet thus obtained, and subjected to strain relief annealing at 800 ° C. × 3 hr. The iron loss W 17/50 was measured in accordance with C2550 (2000), and the iron loss characteristics were evaluated.

Figure 2011143440
Figure 2011143440

上記結果を、表2に併記して示した。ここで、表2に示したNo.1の比較例は、全スタンドに円周方向の研磨目(θ=0°)を有する通常ロールを用いた例、No.2〜8の発明例は、#1〜#4スタンドのいずれか1以上のスタンドにおいて本発明に適合するクロス研磨目(θ=30°、θ=45°)を有するワークロールを用いた例である。
表2の結果から、いずれか1以上のスタンドにおいて本発明に適合するクロス研磨目を有するワークロールを用いて冷間圧延することにより、鉄損特性に優れた方向性電磁鋼板が得られることがわかる。
The results are shown together in Table 2. Here, No. 1 shown in Table 2 was used. The comparative example of No. 1 is an example in which a normal roll having circumferential polishing eyes (θ 1 = 0 °) is used for all the stands. In the invention examples 2 to 8, work rolls having cross polishing eyes (θ 1 = 30 °, θ 2 = 45 °) suitable for the present invention in any one or more of the # 1 to # 4 stands were used. It is an example.
From the results in Table 2, it is possible to obtain a grain-oriented electrical steel sheet having excellent iron loss characteristics by performing cold rolling using a work roll having a cross-grind suitable for the present invention in any one or more stands. Recognize.

Claims (4)

方向性電磁鋼板用熱延鋼板を、1回あるいは中間焼鈍を挟む2回以上の冷間圧延で最終板厚の冷延鋼板とし、その後、一次再結晶焼鈍し、二次再結晶焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、最終冷間圧延における1パス以上を、ロール周方向に対して2°以上90°未満傾斜した研磨目と、上記研磨目とは逆向きに0°以上90°未満傾斜した研磨目とからなるクロス研磨目を有するワークロールを用いて圧延することを特徴とする方向性電磁鋼板の製造方法。 A series of hot-rolled steel sheets for grain-oriented electrical steel sheets, which are cold-rolled steel sheets having a final thickness by one or more cold rollings with intermediate annealing, followed by primary recrystallization annealing and secondary recrystallization annealing. In the method for producing a grain-oriented electrical steel sheet comprising the steps, a polishing eye inclined at least 2 ° and less than 90 ° with respect to the roll circumferential direction for at least one pass in the final cold rolling, and 0 ° in the opposite direction to the polishing eye A method for producing a grain-oriented electrical steel sheet, characterized by rolling using a work roll having a cross-grid having an abrasive grain inclined by less than 90 °. 上記ワークロールとして、ロール周方向に対して10°以上90°未満傾斜した研磨目と、上記研磨目とは逆向きに0°以上90°未満傾斜した研磨目とからなるクロス研磨目を有するワークロールを用いることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 As the work roll, a work having a cross polishing eye composed of a polishing eye inclined at 10 ° or more and less than 90 ° with respect to the roll circumferential direction and a polishing eye inclined at an angle of 0 ° or more and less than 90 ° in the opposite direction to the polishing eye. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein a roll is used. 上記ワークロールの表面粗さは、算術平均粗さRaが0.05〜1.5μmであることを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the surface roughness of the work roll has an arithmetic average roughness Ra of 0.05 to 1.5 µm. 上記最終冷間圧延を、タンデム式圧延機を用いて行うことを特徴とする請求項1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 3, wherein the final cold rolling is performed using a tandem rolling mill.
JP2010005753A 2010-01-14 2010-01-14 Method for producing grain-oriented electrical steel sheet Active JP5573175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005753A JP5573175B2 (en) 2010-01-14 2010-01-14 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005753A JP5573175B2 (en) 2010-01-14 2010-01-14 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2011143440A true JP2011143440A (en) 2011-07-28
JP5573175B2 JP5573175B2 (en) 2014-08-20

Family

ID=44458760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005753A Active JP5573175B2 (en) 2010-01-14 2010-01-14 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5573175B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073518A (en) * 2012-10-05 2014-04-24 Jfe Steel Corp Method for manufacturing oriented electromagnetic steel plate
JP2014114490A (en) * 2012-12-11 2014-06-26 Jfe Steel Corp Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2014208895A (en) * 2013-03-27 2014-11-06 Jfeスチール株式会社 Method of producing grain oriented electrical steel
KR20170084189A (en) 2014-11-27 2017-07-19 제이에프이 스틸 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
JP2017133086A (en) * 2016-01-29 2017-08-03 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP2017177219A (en) * 2016-03-28 2017-10-05 Jfeスチール株式会社 Cold rolling method for electromagnetic steel sheet
KR101937925B1 (en) 2016-12-19 2019-01-11 주식회사 포스코 Method for manufacturing grain oriented electrical steel sheet
CN109477186A (en) * 2016-07-29 2019-03-15 杰富意钢铁株式会社 The manufacturing method of orientation electromagnetic steel plate hot rolled steel plate and its manufacturing method and orientation electromagnetic steel plate
JP2020164907A (en) * 2019-03-28 2020-10-08 Jfeスチール株式会社 Method of manufacturing grain-oriented electromagnetic steel sheet
CN112692058A (en) * 2021-01-07 2021-04-23 唐山燕山钢铁有限公司 Rolling process for controlling thickness stability of non-oriented silicon steel
CN113727788A (en) * 2019-04-22 2021-11-30 杰富意钢铁株式会社 Method for producing non-oriented electromagnetic steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199933A (en) * 1998-01-09 1999-07-27 Kawasaki Steel Corp Production of grain oriented magnetic steel sheet
JP2000190005A (en) * 1998-12-24 2000-07-11 Kawasaki Steel Corp Cold rolling method for metal plate superior in luster
JP2003275803A (en) * 2002-03-20 2003-09-30 Jfe Steel Kk Method for cold-rolling metallic sheet having excellent gloss
JP2004351520A (en) * 2004-07-30 2004-12-16 Jfe Steel Kk Metallic sheet excellent in gloss

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199933A (en) * 1998-01-09 1999-07-27 Kawasaki Steel Corp Production of grain oriented magnetic steel sheet
JP2000190005A (en) * 1998-12-24 2000-07-11 Kawasaki Steel Corp Cold rolling method for metal plate superior in luster
JP2003275803A (en) * 2002-03-20 2003-09-30 Jfe Steel Kk Method for cold-rolling metallic sheet having excellent gloss
JP2004351520A (en) * 2004-07-30 2004-12-16 Jfe Steel Kk Metallic sheet excellent in gloss

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073518A (en) * 2012-10-05 2014-04-24 Jfe Steel Corp Method for manufacturing oriented electromagnetic steel plate
JP2014114490A (en) * 2012-12-11 2014-06-26 Jfe Steel Corp Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2014208895A (en) * 2013-03-27 2014-11-06 Jfeスチール株式会社 Method of producing grain oriented electrical steel
KR20170084189A (en) 2014-11-27 2017-07-19 제이에프이 스틸 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
EP3225704A4 (en) * 2014-11-27 2017-11-15 JFE Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
US10428403B2 (en) 2014-11-27 2019-10-01 Jfe Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
JP2017133086A (en) * 2016-01-29 2017-08-03 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP2017177219A (en) * 2016-03-28 2017-10-05 Jfeスチール株式会社 Cold rolling method for electromagnetic steel sheet
CN109477186A (en) * 2016-07-29 2019-03-15 杰富意钢铁株式会社 The manufacturing method of orientation electromagnetic steel plate hot rolled steel plate and its manufacturing method and orientation electromagnetic steel plate
CN109477186B (en) * 2016-07-29 2020-11-27 杰富意钢铁株式会社 Hot-rolled steel sheet for grain-oriented electrical steel sheet, method for producing same, and method for producing grain-oriented electrical steel sheet
KR101937925B1 (en) 2016-12-19 2019-01-11 주식회사 포스코 Method for manufacturing grain oriented electrical steel sheet
JP2020164907A (en) * 2019-03-28 2020-10-08 Jfeスチール株式会社 Method of manufacturing grain-oriented electromagnetic steel sheet
JP7028215B2 (en) 2019-03-28 2022-03-02 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet
CN113727788A (en) * 2019-04-22 2021-11-30 杰富意钢铁株式会社 Method for producing non-oriented electromagnetic steel sheet
CN113727788B (en) * 2019-04-22 2023-09-01 杰富意钢铁株式会社 Method for producing non-oriented electromagnetic steel sheet
CN112692058A (en) * 2021-01-07 2021-04-23 唐山燕山钢铁有限公司 Rolling process for controlling thickness stability of non-oriented silicon steel

Also Published As

Publication number Publication date
JP5573175B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5573175B2 (en) Method for producing grain-oriented electrical steel sheet
JP2814437B2 (en) Method for manufacturing oriented silicon steel sheet with excellent surface properties
JP6954464B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2698407B2 (en) Cold rolling method in the production process of grain oriented silicon steel sheet.
CN109550793A (en) A kind of method of high-chrome super-purity ferrite stainless steel hot-rolling sticking defect in reduction
JPS643562B2 (en)
JPH11199933A (en) Production of grain oriented magnetic steel sheet
JP6126507B2 (en) Manufacturing method of high gloss metal plate
JP4305814B2 (en) Manufacturing method of high-gloss cold-rolled steel sheet
JP2594634B2 (en) Cold rolling method for grain-oriented silicon steel sheet.
JP2006161094A (en) Method for manufacturing high-grade non-oriented electromagnetic steel sheet
JP2594631B2 (en) Cold rolling method for grain-oriented silicon steel sheet.
JPH0214122B2 (en)
RU2414973C1 (en) Method of producing cold-rolled automobile sheet
JP2001198602A (en) Method of manufacturing high-gloss metallic strip
WO2015019409A1 (en) Process for producing cold-rolled low-carbon-steel strip
JPH03207503A (en) Manufacture of hot rolled wire rod of high carbon steel
JPH0280105A (en) Method for cold rolling silicon steel sheet
JP2698408B2 (en) Cold rolling method in the production process of grain oriented silicon steel sheet.
JP2004223567A (en) Method for manufacturing high-carbon bright steel sheet
JP2735846B2 (en) Method for controlling surface roughness of cold rolled sheet during production of grain-oriented silicon steel sheet
JPH06182402A (en) Highly brilliant stainless steel sheet and its production
JP2004243349A (en) Method for straightening shape of steel sheet
JP2562255B2 (en) Stable manufacturing method of ultra-high-silicon electrical steel sheet with controlled surface properties
RU2343021C2 (en) Method for production of low-carbon cold rolled strip steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250