JP2011143211A - Link system, walking aid equipment - Google Patents

Link system, walking aid equipment Download PDF

Info

Publication number
JP2011143211A
JP2011143211A JP2010020707A JP2010020707A JP2011143211A JP 2011143211 A JP2011143211 A JP 2011143211A JP 2010020707 A JP2010020707 A JP 2010020707A JP 2010020707 A JP2010020707 A JP 2010020707A JP 2011143211 A JP2011143211 A JP 2011143211A
Authority
JP
Japan
Prior art keywords
link
joint
link mechanism
reaction force
walking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010020707A
Other languages
Japanese (ja)
Inventor
Tatsuzo Kawamura
達三 川村
Toru Oura
徹 大浦
Kuniharu Gengo
邦治 玄子
Hayato Gengo
隼人 玄子
Yoshikazu Sakagami
嘉一 坂上
Shinichiro Shimizu
真一郎 清水
Koji Kajiura
幸司 梶浦
Yoshio Matsunaga
吉雄 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIGO Inc
Original Assignee
GIGO Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIGO Inc filed Critical GIGO Inc
Priority to JP2010020707A priority Critical patent/JP2011143211A/en
Publication of JP2011143211A publication Critical patent/JP2011143211A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a link system which uses no other power source than a human's own body to provide sufficient rigidity and soft flexibility against a load added on the human muscle skeletal system, and is safe, low-priced, and ready to transmit a stress; and walking aid equipment installed with the link system. <P>SOLUTION: The walking aid equipment, which will be worn by the human body to aid in walking, includes: a link system comprising a plurality of link materials 19, 20; and joint systems 23, 24 connected to the distal parts or the proximal parts of the link system. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

産業上の利用分野Industrial application fields

本発明は、一対のリンクが関節機構によって連結されているリンク機構に関し、特に該リンク機構を介して、人間の歩行補助装置に関する。The present invention relates to a link mechanism in which a pair of links are connected by a joint mechanism, and more particularly, to a human walking assistance device via the link mechanism.

特許文献1には、小型軽量で脱着が容易な、関節反力補助装置として、超音波モーターを応用した駆動手段と、この駆動手段の動力を人間の関節の動きに同調させる制御手段を有すると共に、上記駆動手段を人間の膝に代表される関節に配し、人間が任意の動きを行う際に、その動きの補助を行い、上記駆動手段を進行波型超音波でモーターを組み合わせ、且つ人間の関節の動きを感知するセンサーで構成した関節補助装置が提案されている。Patent Document 1 has a driving means applying an ultrasonic motor as a joint reaction force assisting device that is small and light and easy to be attached and detached, and a control means for synchronizing the power of the driving means with the movement of a human joint. The driving means is arranged in a joint typified by a human knee, and when the human makes an arbitrary movement, the movement is assisted, and the driving means is combined with a motor using traveling wave ultrasonic waves, and the human There has been proposed a joint assist device composed of a sensor that senses the movement of the joint.

また、特許文献2には、駆動力の伝達効率を向上させることが出来、動作量及び駆動力を増幅することができる装着型関節駆動装置であり、該装置は流体式アクチュエーターと制御ユニットを備え、この流体式アクチュエーターにより膨張収縮する膨張収縮体が上記関節機構に連結されたフレーム間に取り付けられ、該膨張収縮体か、膨張収縮することにより、駆動力を発生、伝達する装着型関節駆動装置が提案されている。Patent Document 2 discloses a wearable joint drive device that can improve the transmission efficiency of the driving force and can amplify the operation amount and the driving force. The device includes a fluid actuator and a control unit. A wearable joint drive device in which an expansion / contraction body that expands and contracts by the fluid actuator is attached between frames connected to the joint mechanism, and the expansion / contraction body expands and contracts to generate and transmit a driving force. Has been proposed.

特許文献3には、下肢麻痺等の歩行障害者に自力歩行手段を与えるため、被着用者の体幹部に装着され、左右の下肢を固定する左右1対の支柱を有する補装具と該補装具に装着され、上記2本の支柱の夫々を独立的に長さを変化させる空気圧式支柱長可変機構を具備し、さらに支柱長さ、鉛直方向に対する支柱角度、作動空気圧力の夫々を検知するセンサーと、該センサーからの信号に基き制御アルゴリズムに従い、支柱長さを交互に伸縮させる制御装置及び上記の支柱長可変機構に空気圧を供給する空気源を有することを特徴とする歩行補助装置が提案されている。Patent Document 3 discloses a prosthesis having a pair of left and right struts that are attached to the trunk of a wearer and fix left and right lower limbs in order to provide a self-walking means to persons with walking disabilities such as paralysis of the lower limbs, and the prosthesis Equipped with a pneumatic strut length variable mechanism that independently changes the length of each of the two struts, and further detects the strut length, the strut angle with respect to the vertical direction, and the operating air pressure. And a walking assist device characterized by having a control device that alternately expands and contracts the length of the column according to a control algorithm based on a signal from the sensor and an air source that supplies air pressure to the column length variable mechanism. ing.

特開2000−107213号公報JP 2000-107213 A WO2004/087033号公報WO 2004/087033 特許第3032039Patent No. 3032039

発明の解決しようとする課題Problems to be Solved by the Invention

上述した従来技術は、何れも人間の体の動きを補助するための関節機構や外骨格支柱に電動モーターや流体機器、空気圧機器を用いるものであり、そのためにモーターを駆動するための電源装置や流体機器に駆動用の流体を給排するための動力装置、空気圧機器を駆動さすための空気圧源装置さらには制御装置が必要となり、装置が大がかりになり、高価なものになるという問題があった。All of the above-described conventional techniques use an electric motor, a fluid device, and a pneumatic device for the joint mechanism and the exoskeleton support for assisting the movement of the human body. For this purpose, a power supply device for driving the motor, There is a problem that a power device for supplying and discharging a driving fluid to and from a fluid device, a pneumatic power source device for driving a pneumatic device, and a control device are necessary, and the device becomes large and expensive. .

また、動力源を外部に設置する場合にはキャプタイヤ、エアホース、油圧ホースが必要であり、行動範囲がその動力源の近傍に制限され、装着者の自由意志による行動が制約されてしまう。Further, when the power source is installed outside, a cap tire, an air hose, and a hydraulic hose are necessary, and the action range is limited to the vicinity of the power source, and the action by the wearer's free will is restricted.

加えて、制御装置が誤作動すると装着者の意に反した異常な動きを示し、事故の原因となるという問題もあった。In addition, if the control device malfunctions, there is a problem that it shows an abnormal movement against the wearer's will and causes an accident.

しかし、これら先行文献などによる、装着型の、人間の筋骨格系補助装置の最も大きな問題点は、応力を伝達するためのリンク機構にある。However, the biggest problem of the wearable human musculoskeletal system according to these prior documents is the link mechanism for transmitting stress.

つまり、人間の筋骨格系を構成する筋肉や骨にかかる外力は、ほとんど全て、非線形的であり、当然の帰結として、内部応力も非線形的に外力に拮抗して発現する。In other words, almost all external forces applied to muscles and bones constituting the human musculoskeletal system are non-linear, and as a natural consequence, internal stresses are also nonlinearly antagonized by external forces.

実験室などの静的で良好な環境下で身体の応力分布を解析する身体自由ダイアグラムによる応力解析や、皮膚表面に設置された電極から電気信号、いわゆるEMG(筋電図)信号を正現化することによる応力解析方法では処理できない外力が、日常生活においては常に、あるいは突然に発生する。Stress analysis using body free diagrams that analyze stress distribution in the body in a static and good environment such as a laboratory, and the realization of so-called EMG (electromyogram) signals from electrodes placed on the skin surface The external force that cannot be processed by the stress analysis method is always or suddenly generated in daily life.

このような外力に拮抗する応力を伝達するリンク機構を構成する部材を決定するための強度計算は、予測が困難な外力に対しては、通常衝撃荷重の範囲として、安全率を整数倍乗じて部材の材質、寸法、加工方法などを決定している。The strength calculation to determine the members that make up the link mechanism that transmits stress that antagonizes such external force is calculated by multiplying the safety factor by an integer multiple of the normal impact load range for external forces that are difficult to predict. The material, dimensions, processing method, etc. of the member are determined.

しかし乍ら、この様な方法で決定された剛体では、人間の筋骨格系の最もすぐれた機能である外力に対する柔軟性と追随性に同調して応力を伝達することは出来ない。However, a rigid body determined by such a method cannot transmit stress in synchronism with the flexibility and tracking of external forces, which are the most excellent functions of the human musculoskeletal system.

非線形的に発生する外力に拮抗して、必要十分な強度だけでなく柔軟に、しかも即座に追随して動き、簡便でしかも安全で且つ安価な応力伝達のためのリンク機構が求められているが今日までその様なリンク機構はない。There is a need for a link mechanism for stress transmission that is simple, safe, and inexpensive, antagonizing external forces generated in a non-linear manner, moving not only with necessary and sufficient strength, but also flexibly and immediately. To date there is no such link mechanism.

本発明は、上述した従来の問題点と実情に鑑み、人体以外の動力源を用いることなく、非線的に発生する外力に対して、十分な剛性と柔軟な追随性を持ち、しかも安全で安価な、且つ簡便な、応力伝達のためのリンク機構と該リンク機構を具備した歩行補助装置を提供することを課題とする。In view of the above-described conventional problems and situations, the present invention has sufficient rigidity and flexible followability to externally generated external force without using a power source other than the human body, and is safe. It is an object of the present invention to provide an inexpensive and simple link mechanism for stress transmission and a walking assist device including the link mechanism.

課題を解決するための手段Means for solving the problem

上記の課題を解決するため、本発明は以下の手段を提供する。In order to solve the above problems, the present invention provides the following means.

対向する一対のリンク機構が夫々、四辺形を構成するように対向配置された4本のリンクより成り、リンクの一方の端部と他方の端部が、自在継手、好ましくは球面継手を介して、該リンクを挟持する固定板に連結されているリンク機構。A pair of opposing link mechanisms are each composed of four links arranged so as to form a quadrilateral, and one end and the other end of the link are connected via a universal joint, preferably a spherical joint. A link mechanism connected to a fixed plate for sandwiching the link.

4本のリンクによって概念的に形成される四辺形の断面の回転中心の延長線と前述の4本のリンクを挟持する固定板との交点に取り付けられた自在継手、好ましくは球面継手を介して関節機構に連結されているリンク機構。Via a universal joint, preferably a spherical joint, attached to the intersection of the extension line of the center of rotation of the quadrilateral cross section conceptually formed by four links and the fixing plate sandwiching the four links. A link mechanism connected to a joint mechanism.

上記4本のリンクの回転中心には、さらにもう一本のリンク材が、自在継手、好ましくは球面継手を介して、リンク材を挟手する固定板に設けられているリンク機構。A link mechanism in which another link member is provided on a fixed plate that clamps the link member via a universal joint, preferably a spherical joint, at the rotation center of the four links.

該リンク材が、初期張力を持った、もしくは持たない部材で構成されているリンク機構。A link mechanism in which the link material is composed of a member having or not having an initial tension.

前述のリンク材の材質は、金属、非鉄金属あるいは高分子系材料など、任意の材料を選択できる。またその材料の断面形状も角形、円筒形、円柱形等、任意の形状を選択できるが、好ましくは円柱形、更に好ましくは円筒形であるリンク機構。As the material of the link material, any material such as metal, non-ferrous metal, or polymer material can be selected. Also, the cross-sectional shape of the material can be any shape such as a square, a cylinder, or a column, but the link mechanism is preferably a column, and more preferably a cylinder.

しかし、更に重要なことは、上記リンク材の内部構造である。非特許文献『KINESIOLOGY of the MUSCULOSKELETAL』 by Donald A.Neuman によると、人間の筋肉の膠原線維は垂直線に対して約65°であり、隣接する層の線維は反対方向に走行する。この構造配列は解離(垂直軸の分離)、剪断(滑り)およびねじり(ひねり)に抵抗する。もしこれらの膠原線維が垂直に近いものだけならば、外力の索引力に耐えうるが、滑りやねじれなどの力には抵抗しきれない。65°という角度は、通常の運動による張力に抵抗できる幾何学的な妥協点である。伸延力は屈曲、進展、側屈に本来備わる要素であり、隣接椎体に対して傾く際に生ずる。剪断力とねじれ力は脊柱のほとんどのすべての運動で生ずる。線維輪の線維走行が層ごとに交互パターン(図1)であることにより剪断力が、ねじり力の方向に対応する膠原線維のみが緊張し、他の線維は弘緩する。そこで本発明のリンク材はこのような人体の筋肉の基本的な構成單位である膠原線維の配向と同様に外力に対向する素材の内部応力が垂直方向に対して180°、95°、65°をなすように交互に積層して配置されていることを特徴とする。例えば、リンクの素材として金属や非鉄金属の圧延製品を選択するならば、圧延方向に対して、前期角度を形成するように成型加工すればよい。簡便な方弦としては、スパイラル成型材とパイプ材と板材のパイプ成型材とを積層することにより目的の素材を得ることができる。However, more important is the internal structure of the link material. Non-Patent Document “KINESIOLOGY of the MUSCULOSKELETAL” by Donald A. According to Neuman, human muscle collagen fibers are approximately 65 ° to the normal, and adjacent layer fibers run in the opposite direction. This structural arrangement resists dissociation (separation of the vertical axis), shearing (sliding) and twisting (twisting). If these collagen fibers are only perpendicular, they can withstand the index force of external forces, but cannot resist the forces of sliding and twisting. An angle of 65 ° is a geometric compromise that can resist tension from normal motion. The distraction force is an element inherent in bending, progressing, and lateral bending, and occurs when tilting with respect to the adjacent vertebral body. Shear and torsional forces occur with almost every movement of the spine. Since the fiber running of the annulus is an alternating pattern for each layer (FIG. 1), only the collagen fibers corresponding to the direction of the torsional force are strained, and the other fibers are relaxed. Therefore, in the link material of the present invention, the internal stress of the material facing the external force is 180 °, 95 °, 65 ° with respect to the vertical direction as in the orientation of collagen fibers, which is the basic constitutional position of the muscles of the human body. It is characterized by being alternately laminated so as to form For example, if a rolled product of metal or non-ferrous metal is selected as the material of the link, it may be molded so as to form the previous angle with respect to the rolling direction. As a simple chord, a target material can be obtained by laminating a spiral molded material, a pipe material, and a plate-formed pipe molded material.

人間の左右の距腿関節、膝関節、股関節、仙腸関節(図2)の水平面外側部周辺及び脊柱の仙尾椎後彎始点、好ましくは脊柱のL5(第5腰椎)とS4(第4仙椎)間、更に好ましくは、L5(第5腰椎)とS2(第2仙椎)間(図3)の水平面後背部周辺に配置された関節機構が前期リンク機構の遠位、近位として連結されていることを特徴とする歩行補助装置。The left and right thigh joints, knee joints, hip joints, sacroiliac joints (FIG. 2), the outer periphery of the horizontal plane, and the posterior origin of the sacrovertebral spine, preferably L5 (fifth lumbar vertebrae) and S4 (fourth) More preferably, the joint mechanism disposed around the back of the horizontal plane between L5 (fifth lumbar vertebra) and S2 (second sacrum) (FIG. 3) is the distal and proximal of the early link mechanism. A walking assist device characterized by being connected.

前期、関節機構の膝関節機構には、1及至2個の機械式ばね、好ましくは捻りコイルばねが内臓されており、歩行の際の関節反力を補助する。In the previous period, the knee joint mechanism of the joint mechanism includes one to two mechanical springs, preferably a torsion coil spring, to assist the joint reaction force during walking.

距腿関節機構は、装着者の靴に直接または間接に装備され歩行時の床反力を該関節機構に連結されている前述のリンク機構により、遠位である膝関節に伝達する。The thigh joint mechanism is directly or indirectly mounted on the wearer's shoes and transmits the floor reaction force during walking to the distal knee joint by the link mechanism connected to the joint mechanism.

この膝関節機構に伝達された反力は、前述のリンク機構により遠位である股関節機構に伝達される。The reaction force transmitted to the knee joint mechanism is transmitted to the distal hip joint mechanism by the link mechanism.

股関節に伝達された反力は、フレームを介して前述の第2仙椎水平面後背部あるいは仙尾椎後彎始部水平面後背部を支部とする反力受容装置に伝達される。The reaction force transmitted to the hip joint is transmitted via the frame to the reaction force receiving device using the second sacral spine posterior portion of the horizontal surface or the posterior portion of the sacral spine heel portion as the support.

発明の効果The invention's effect

本発明は以下の効果を奏する。The present invention has the following effects.

本発明のリンク機構及び該リンク機構を具備した歩行補助装置は、以上の如く構成されているので、該装置の装着者は、補装具により、下肢の関節反力が補助され、歩行に必要な消費エネルギーは少なくて済む。Since the link mechanism of the present invention and the walking assist device provided with the link mechanism are configured as described above, the wearer of the device assists the joint reaction force of the lower limbs with a prosthesis and is necessary for walking. Less energy is consumed.

リンク機構は、装着者の筋骨格系に追随して動くので、装着者は、装着の違和感なく安全に円滑な歩行が可能となる。Since the link mechanism moves following the wearer's musculoskeletal system, the wearer can safely and smoothly walk without discomfort.

また、人体以外の動力源を使わないので、安価で軽量且つ簡便であり、制御も人間の五感で制御するため、誤作動などは発生せず、安全に歩行ができる。In addition, since no power source other than the human body is used, it is inexpensive, lightweight and simple, and control is also performed by the human senses, so that no malfunctions occur and it is possible to walk safely.

膠原線維の配向図であるIt is an orientation map of collagen fibers 下肢骨格系の構成図であるIt is a block diagram of the lower limb skeleton system 胸椎後彎、腰椎前彎、仙尾椎後彎の構成図である。It is a block diagram of a thoracic kyphosis, a lumbar lordosis, and a Sendo vertebra. 本発明の歩行補助装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the walking assistance apparatus of this invention. 捻りコイルばねの寸法図である。It is a dimension figure of a torsion coil spring. 膝関節装置連結リンク材の作動線スケッチである。It is an operation line sketch of a knee joint apparatus connection link material.

以下、本発明の実施の形態を図面に基づいて説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

下記に表示した立脚相及び遊脚相の各歩行周期における位置エネルギーと運動エネルギーの相互交換、筋活動のタイミングや筋力の大きさ、各関節におけるエネルギーの産出と吸収等については、自体自由ダイヤグラム分析、EMG信号分析等の各種分析手法により、また先行技術により既知であるが、下表の如く非線形的に発生する応力は複合的に人間の筋骨格系に負担を強いる。

Figure 2011143211
The mutual exchange of potential energy and kinetic energy in each gait cycle of the stance phase and swing phase shown below, muscle activity timing and muscle strength, energy production and absorption in each joint itself, free diagram analysis itself Although known from various analysis methods such as EMG signal analysis and the prior art, the stress generated nonlinearly as shown in the following table imposes a burden on the human musculoskeletal system in a complex manner.
Figure 2011143211

まず、本発明は、下記図示の歩行周期における立脚相始期歩行周期0%の踵接地、図2、符号▲2▼の距骨回転中心には、踵骨(3)からの床反力が距骨(1)を介して、伝達される。この反力のベクトルは、上記の表の如く、背屈、底屈、内がえし、外がえしにより、対応し、反力を受ける。図4、符号(30)の距腿関節装置は、(2)にかかる床反力を補助的に受容する。その際、近位の自在継手、好ましくは球面継手(22)により、反力は、近位固定版(21)を介して、該(21)に球面継手により連結されたリンク(19)及び(20)により同じく遠位球面継手(22)により、遠位固定版(21)に狭持された球面継手を介して、膝関節装置(23)に伝達され、該(23)は内部に設けられた機械式バネにより関節反力を補助し、特に該膝関節装置は、歩行中の人間の五感による下肢の微細制御、いわゆる遊脚中に起こるトウ・クリアランス(足指と地面の間の最小距離。8m/m〜9m/m)の制御をさまたげずスムーズに立脚相に移行する役割を果す。

Figure 2011143211
First, according to the present invention, the ground reaction force from the radius (3) is applied to the talus (3) at the center of the talus at the limb phase of the initial gait cycle of 0% in the gait cycle shown in FIG. 1) is transmitted. As shown in the above table, this reaction force vector corresponds to and receives a reaction force due to dorsiflexion, bottom flexion, inward bending, and outward bending. The thigh joint device of FIG. 4 and reference numeral (30) supplementarily receives the floor reaction force applied to (2). In this case, by means of a proximal universal joint, preferably a spherical joint (22), the reaction force is connected via a proximal fixed plate (21) to the (21) by a spherical joint (19) and (19). 20), also transmitted by the distal spherical joint (22) to the knee joint device (23) via the spherical joint sandwiched by the distal fixed plate (21), which (23) is provided inside. In particular, the knee joint device has a fine control of the lower limbs by the five senses of a human being walking, the so-called toe clearance that occurs during the free leg (the minimum distance between the toes and the ground). 8m / m to 9m / m), and smoothly shifts to the stance phase.
Figure 2011143211

膝関節装置(23)によって緩衝された反力は、同様に近位(21)(22)及び下肢取付用締付具(28)並びに取付板(27)を介して、同様の構成により上部リンク(19)(20)に伝達され、上部(21)(22)を介して、股関節装置(24)に伝達される。The reaction force buffered by the knee joint device (23) is similarly applied to the upper link by the same configuration via the proximal (21) (22) and the lower limb mounting fastener (28) and the mounting plate (27). (19) is transmitted to (20), and is transmitted to the hip joint device (24) via the upper portions (21) and (22).

股関節装置は装着用フレーム(26)に自在継手を介して取り付けられる。該フレームは身体との密着性から弾性体により構成されているため股関節に伝達された反力は該(26)に取り付けられた反力に対して必要十分な強度を持った材料により構成された反力受容装置(25)に伝達される。The hip joint device is attached to the mounting frame (26) via a universal joint. Since the frame is made of an elastic body because of its close contact with the body, the reaction force transmitted to the hip joint is made of a material having a necessary and sufficient strength with respect to the reaction force attached to the (26). It is transmitted to the reaction force receiving device (25).

前記。反力受容装置(25)は、適度な硬度と摩擦係数を持ったフレーム(26)により構成されており、本装置の装着者の体重心▲11▼の近位に位置する仙腸関節▲13▼、仙骨▲17▼、尾骨▲18▼を通る水平面近辺と恥骨結合を通る矢状面及び前額面近辺で、反力を受けるので歩行中常に非線形的な負荷を与え続ける反力による慣性モーメントやトルクは、限りなく吸収され、滑らかな歩行ができる。Said. The reaction force receiving device (25) is composed of a frame (26) having an appropriate hardness and friction coefficient, and a sacroiliac joint ▲ 13 located proximal to the body center of gravity ▲ 11 ▼ of the wearer of the device. ▼, sacrum (17), coccyx (18) near the horizontal plane, sagittal plane passing through the pubic bone, and near the frontal plane, because it receives a reaction force, the moment of inertia due to the reaction force that always gives a nonlinear load during walking Torque is absorbed as much as possible and smooth walking is possible.

加えて、該リンク機構▲19▼▲20▼は、図1の如く、筋肉の膠原線維と相似の配向をした部材が積層されて形成されており、非線形的に発生する応力に対し、最適な条件で荷重の伝達をすることができる。In addition, as shown in FIG. 1, the link mechanism (19) (20) is formed by laminating members having orientation similar to that of muscle collagen fibers, and is optimal for stress generated nonlinearly. The load can be transmitted under certain conditions.

非線形的に発生する荷重に対して、例えば特許第3769615゛非線形バネ要素 SAT゛に提案されているリンク(19)の部材として使用し、中心のリンク(20)には、応力授受のため、必要十分な断面係数をもった部材の構成にすることにより、どのような荷重(引張り、曲げ、捻り、座屈、複合荷重など)に対しても、柔軟に追随して対応することができる。Used as a member of the link (19) proposed in, for example, Japanese Patent No. 3769615 “Nonlinear Spring Element SAT” against a load generated in a non-linear manner, and the center link (20) is necessary for giving and receiving stress. By configuring the member with a sufficient section modulus, any load (tensile, bending, twisting, buckling, compound load, etc.) can be flexibly followed.

次に該リンク機構の作動と効果について説明する。Next, the operation and effect of the link mechanism will be described.

また、上記[0040]の構成以外にも(20)に初期張力を内蔵した部材を使用することにより、重力の加速度を減じることができ、歩行時の消費エネルギーをより少なくすることができる。また、この効果は逆にリンク(19)に初期張力を内蔵さすことによっても可能である。In addition to the above-described configuration [0040], the use of the member (20) with the built-in initial tension makes it possible to reduce the acceleration of gravity and further reduce energy consumption during walking. This effect can also be achieved by incorporating an initial tension in the link (19).

膝関節装置(23)は図5の提示された機械式捻りコイルばねにより構成されバネの両端は、上下リンクに連結するための狭持板に締付具(28)により取り付けられている。The knee joint device (23) is constituted by the mechanical torsion coil spring presented in FIG. 5, and both ends of the spring are attached to a holding plate for connecting to the upper and lower links by a fastener (28).

この膝関節装置(23)は、膝関節中心(11)の大腿骨遠位部と脛骨(5)と腓骨(6)による、動的回転軸は一定せず、関節の滑りと転がりにより変位するので、変位する回転軸に対応するために、該回転軸を挟んで上下2個の関節装置を同調レバー、摩擦歯車などによる同調機構を装備または、装備しない構成とすることも可能である。In this knee joint device (23), the dynamic rotation axis by the distal part of the femur at the knee joint center (11), the tibia (5) and the rib (6) is not constant, and is displaced by the sliding and rolling of the joint. Therefore, in order to correspond to the rotating shaft that is displaced, it is possible to adopt a configuration in which the upper and lower two joint devices are equipped with or not equipped with a tuning mechanism such as a tuning lever and a friction gear with the rotating shaft interposed therebetween.

当該装置は、あらかじめ用意された靴に締付具(29)により、距腿関節(4)と中足関節、横足根関節の矢状面、前額面、水平面の支点周辺を締め付け、取り付ける。The device is attached to a shoe prepared in advance by tightening the thigh joint (4), the midfoot joint, the sagittal plane of the lateral tarsal joint, the frontal plane, and the horizontal plane around the fulcrum.

反力受容装置(25)、締付具(28)(29)を身体に取り付ける位置は、身体の各体節の重心位置周辺の水平面に具備することにより、各部位の慣性のモーメントを減じ、滑らかな歩行を可能にすることができる。なお各体節の重心位置は、from Dempster WT:1955:Space requirements for the seated operator.WADC−TR−55−159,Wright Patterson Air Force Bace.Braune and Fischer 1989.゛KINESIOLOGY of the MUSCULOSKELETAL SYSTEM゛by Donald A.Neuman P94によれば下記の通りである。The position where the reaction force receiving device (25) and the fasteners (28) and (29) are attached to the body is provided on a horizontal plane around the center of gravity of each segment of the body, thereby reducing the moment of inertia of each part, Smooth walking is possible. In addition, the center-of-gravity position of each somite is described in from Dempster WT: 1955: Space requirements for the saturated operator. WADC-TR-55-159, Wright Patterson Air Force Base. Braune and Fischer 1989. “KINESIOLOGY of the MUSCULOSKELETAL SYSTEM” by Donald A. According to Neuman P94:

各体節の重心位置
下肢:膝関節直上
大腿:短内転筋(または大内転筋、内側広筋)内で、大殿筋粗面の13m/m内方、内 転筋管の深層:大腿三角の頂点から29m/m下方で短内転筋遠位線維の18m /m近位。
下腿:膝窩の35m/m下で、後脛骨筋の後部:アキレスの腱近位端の16m/m上: 骨間膜の8m/m後方。
足部:足底腱膜内、または隣接の深部足部筋の表面:第2、3楔状骨の近位半分のした 、第2中足骨面内で足関節中央と足部の第1中足骨頭を結ぶ線上。
全身:第2仙椎の前。
Position of the center of gravity of each segment Lower limb: Just above the knee joint Thigh: 13 m / m inward of the rough surface of the gluteus dorsi muscle within the short adductor muscle (or greater adductor muscle, medial vastus muscle), deep layer of the adductor tube: thigh 18 m / m proximal of the short adductor distal fiber 29 m / m below the apex of the triangle.
Lower leg: 35 m / m below the popliteal posterior part of the posterior tibial muscle: 16 m / m above the proximal end of the Achilles tendon: 8 m / m behind the interstitium.
Foot: In the plantar aponeurosis, or in the surface of the adjacent deep foot muscles: the second half of the cuneiform bone, the middle of the ankle joint and the first middle of the foot in the second metatarsal plane On the line connecting the head of the foot.
Whole body: Before the second sacral spine.

(1) 距骨 (19)リンク
(2) 距骨回転中心 (20)リンク
(3) 踵骨 (21)固定板
(4) 距腿関節 (22)継手
(5) 腓骨 (23)膝関節装置
(6) 脛骨 (24)股関節装置
(7) 膝関節中心 (25)反力受容装置
(8) 膝蓋骨 (26)フレーム
(9) 大腿骨 (27)締付具取付板
(10)股関節回転中心 (28)締付具
(11)体重心 (29)締付具
(12)仙腸関節回転中心 (30)距腿関節装置
(13)仙腸関節
(14)腸骨
(15)腸骨陵
(16)大腿骨頭
(17)仙骨
(18)尾骨
(1) Talar (19) Link (2) Center of talus (20) Link (3) Rib (21) Fixing plate (4) Thigh joint (22) Joint (5) Rib (23) Knee joint device (6 ) Tibia (24) Hip joint device (7) Knee joint center (25) Reaction force receiving device (8) Patella (26) Frame (9) Femur (27) Fastener mounting plate (10) Hip joint rotation center (28) Fastener (11) Body center of gravity (29) Fastener (12) Sacroiliac rotation center (30) Thigh joint device (13) Sacroiliac joint (14) Iliac (15) Ileal limb (16) Thigh Bone head (17) Sacrum (18) Coccyx

Claims (11)

一対のリンク機構が関節機構によって連結されているリンク機構であって、膝関節機構は外力の荷重に対して関節反力として作用する1乃至2個の機械式ばね、好ましくは捻りコイルばねにより構成され、該リンク機構の第1リンクの一端部は、前述の関節機構の一端部と連結され、第2リンクの一端部は、該関節機構の他端部と連結されるリンク機構。A link mechanism in which a pair of link mechanisms are connected by a joint mechanism, and the knee joint mechanism is constituted by one or two mechanical springs, preferably a torsion coil spring, that act as a joint reaction force against a load of an external force. One end of the first link of the link mechanism is connected to one end of the joint mechanism, and one end of the second link is connected to the other end of the joint mechanism. 前記膝関節機構を構成する捻りコイルばねの最大トルクが3.4Nm、最大角度100°、最大外形60m/mである捻りコイルばねにより構成されている膝関節機構。A knee joint mechanism comprising a torsion coil spring having a maximum torque of 3.4 Nm, a maximum angle of 100 °, and a maximum outer shape of 60 m / m. 前記、捻りコイルばねの材質が、金属、非鉄金属あるいは各種の高分子系材料であり、好ましくは、市場での入手が容易であり、安価で、信頼性の高いSKE(S70CM相当材)である捻りコイルばね。The material of the torsion coil spring is metal, non-ferrous metal, or various polymer materials, and is preferably SKE (equivalent to S70CM) that is easily available on the market, inexpensive, and highly reliable. Torsion coil spring. 請求項1のリンク機構が対向して配置された4本のリンクで形成される四辺形の断面が同一形状または相似形状であるリンク機構。A link mechanism in which the cross section of a quadrilateral formed by four links disposed so that the link mechanisms of claim 1 are opposed to each other has the same shape or a similar shape. 請求項4のリンク機構の軸方向の両端部が、自在継手好ましくは球面継手を介して、該リンクを狭持する固定版に連結されているリンク機構。5. A link mechanism in which both end portions in the axial direction of the link mechanism of claim 4 are connected to a fixed plate holding the link through a universal joint, preferably a spherical joint. 請求項4のリンクが形成する断面の回転中心に更にもう一本の絵インクが球面継手を介して、請求項5に記載の固定版に連結されているリンク機構。A link mechanism in which another picture ink is connected to the fixed plate according to claim 5 through a spherical joint at the rotational center of the cross section formed by the link of claim 4. 請求項6のリンクが、初期張力をもった、もしくは持たない部材であるリンク機構。A link mechanism, wherein the link according to claim 6 is a member having or not having an initial tension. 前述のリンク機構によって連結されている関節機構が、人間の左右の距腿関節、膝関節及び股関節の水平面外側部に接触または非接触に設けられている装着型歩行補助装置。A wearable walking assist device in which the joint mechanism connected by the above-described link mechanism is provided in contact or non-contact with the horizontal plane outer portions of the human left and right thigh joints, knee joints and hip joints. 請求項8の歩行補助装置の床反力の受容装置が、脊柱の仙尾椎後彎始点、好ましくは脊柱のL5(第5腰椎)とS2(第2仙椎)間、更に好ましくはL5(第5腰椎)とS2(第2仙椎)間の水平面後背部に設けられ、左右の股関節とフレームを介して連結されている歩行補助装置。The floor reaction force receiving device of the walking assist device according to claim 8 is a sacral vertebral starting point of the vertebral column, preferably between L5 (fifth lumbar vertebra) and S2 (second sacral vertebrae), more preferably L5 ( A walking assistance device provided at the back of the horizontal plane between the fifth lumbar vertebra and S2 (second sacral vertebra) and connected to the left and right hip joints via a frame. 請求項8の反力受容装置がピン構造等を介して連結されたフレームが左右の大殿筋下部と恥骨結合部に接触する構造となっている歩行補助装置。A walking assist device in which a frame in which the reaction force receiving device according to claim 8 is connected through a pin structure or the like is in contact with the left and right lower gluteus musculature and the pubic joint. 請求項1及び請求項4乃至請求項8に記載のリンク機構の素材の内部応力の配向方向が、外力の垂直方向に対して、夫々180°、90°、65°を形成する素材により交互に積層さThe direction of the internal stress of the material of the link mechanism according to claim 1 and claims 4 to 8 is alternately changed depending on the material forming 180 °, 90 °, and 65 ° with respect to the vertical direction of the external force, respectively. Laminated
JP2010020707A 2010-01-12 2010-01-12 Link system, walking aid equipment Pending JP2011143211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020707A JP2011143211A (en) 2010-01-12 2010-01-12 Link system, walking aid equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020707A JP2011143211A (en) 2010-01-12 2010-01-12 Link system, walking aid equipment

Publications (1)

Publication Number Publication Date
JP2011143211A true JP2011143211A (en) 2011-07-28

Family

ID=44458581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020707A Pending JP2011143211A (en) 2010-01-12 2010-01-12 Link system, walking aid equipment

Country Status (1)

Country Link
JP (1) JP2011143211A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126919B1 (en) * 2012-04-09 2013-01-23 英治 川西 Walking assist device
US10070982B2 (en) 2014-03-28 2018-09-11 Samsung Electronics Co., Ltd. Link assembly, frame, and walking assistance robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126919B1 (en) * 2012-04-09 2013-01-23 英治 川西 Walking assist device
JP2013233406A (en) * 2012-04-09 2013-11-21 Eiji Kawanishi Walking assist device
US10070982B2 (en) 2014-03-28 2018-09-11 Samsung Electronics Co., Ltd. Link assembly, frame, and walking assistance robot

Similar Documents

Publication Publication Date Title
US20220362094A1 (en) Assistive flexible suits, flexible suit systems, and methods for making and control thereof to assist human mobility
Chen et al. Knee exoskeletons for gait rehabilitation and human performance augmentation: A state-of-the-art
KR101073525B1 (en) Wearable robot for assisting the muscular strength of lower extremity
Farahpour et al. Gait ground reaction force characteristics of low back pain patients with pronated foot and able-bodied individuals with and without foot pronation
Farris et al. Elastic ankle exoskeletons reduce soleus muscle force but not work in human hopping
Cullell et al. Biologically based design of an actuator system for a knee–ankle–foot orthosis
d’Elia et al. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots
Chen et al. Ankle-foot orthoses for rehabilitation and reducing metabolic cost of walking: Possibilities and challenges
CN104552276A (en) Pneumatic-muscle-driven exoskeleton assisting mechanism
Langlois et al. Design and development of customized physical interfaces to reduce relative motion between the user and a powered ankle foot exoskeleton
Alonso et al. A simple approach to estimate muscle forces and orthosis actuation in powered assisted walking of spinal cord-injured subjects
Raja et al. Quantifiable patterns of limb loading and unloading during hemiparetic gait: relation to kinetic and kinematic parameters
Arch et al. Passive-dynamic ankle–foot orthoses substitute for ankle strength while causing adaptive gait strategies: a feasibility study
Cherry et al. Design and fabrication of an elastic knee orthosis: Preliminary results
Xiu et al. Design, development, and clinical validation of a two degrees of freedom compliant ankle-foot prosthesis based on a 4-4r parallel mechanism
Ezzibdeh et al. Utilization of a pneumatic exoskeleton after total knee arthroplasty
Chung et al. Biomechanical comparison of a new dynamic ankle orthosis to a standard ankle-foot orthosis during walking
Zhou et al. Different prevention and treatment strategies for knee osteoarthritis (KOA) with various lower limb exoskeletons–A comprehensive review
JP2011143211A (en) Link system, walking aid equipment
Kerkum et al. The effects of footplate stiffness on push-off power when walking with posterior leaf spring ankle-foot orthoses
Siegel et al. A case study of gait compensations for hip muscle weakness in idiopathic inflammatory myopathy
Otálora et al. The agora v2 unilateral lower-limb exoskeleton: Mechatronic integration and biomechanical assessment
Racu Cazacu et al. Structural and kinematic aspects of a new ankle rehabilitation device
Berkelman et al. Passive orthosis linkage for locomotor rehabilitation
WO2011123951A1 (en) Frontal joint mechanism for orthotic devices