JP2011140967A - Drive shaft - Google Patents

Drive shaft Download PDF

Info

Publication number
JP2011140967A
JP2011140967A JP2010000549A JP2010000549A JP2011140967A JP 2011140967 A JP2011140967 A JP 2011140967A JP 2010000549 A JP2010000549 A JP 2010000549A JP 2010000549 A JP2010000549 A JP 2010000549A JP 2011140967 A JP2011140967 A JP 2011140967A
Authority
JP
Japan
Prior art keywords
constant velocity
velocity universal
drive shaft
joint member
outer joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010000549A
Other languages
Japanese (ja)
Inventor
Masazumi Kobayashi
正純 小林
Chikaya Shinba
千佳也 榛葉
Kenji Yamada
賢二 山田
Shinichi Takabe
真一 高部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010000549A priority Critical patent/JP2011140967A/en
Publication of JP2011140967A publication Critical patent/JP2011140967A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily reduce the number of part items and assembling man-hours, and to reduce a dimension in the axial direction of an outside joint member. <P>SOLUTION: This drive shaft includes an intermediate shaft 10 and a pair of sliding type constant velocity universal joints 20 and 40 composed of cup-shaped outside joint members 23 and 43 having an opening part on one end and inside joint members 26 and 46 connected to both ends of the intermediate shaft 10 so that torque can be transmitted and transmitting the torque while allowing angular displacement and displacement in the axial direction via balls 27 and 47 between the outside joint members 23 and 43 and the inside joint members, and is provided by respectively installing an end part of cylindrical boots 30 and 50 for blocking up an opening part of the outside joint members 23 and 43 in the opening part of the outside joint members 23 and 43 and the intermediate shaft 10. The boots 30 and 50 have a reaction characteristic of 0.5-3.0 kN/mm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車や各種産業機械の動力伝達系において使用され、中間軸の両端部に一対の摺動式等速自在継手を連結したドライブシャフトに関する。   The present invention relates to a drive shaft that is used in a power transmission system of an automobile or various industrial machines and has a pair of sliding constant velocity universal joints connected to both ends of an intermediate shaft.

例えば、自動車のエンジンから車輪に回転力を等速で伝達する手段として使用される等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これら両者の等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。   For example, there are two types of constant velocity universal joints that are used as means for transmitting a rotational force from an automobile engine to wheels at a constant velocity: a fixed constant velocity universal joint and a sliding constant velocity universal joint. Both of these constant velocity universal joints have a structure in which two shafts on the driving side and the driven side are connected so that rotational torque can be transmitted at a constant speed even if the two shafts have an operating angle.

自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトは、エンジンと車輪との相対的位置関係の変化による角度変位と軸方向変位に対応する必要があるため、一般的に、エンジン側(インボード側)に摺動式等速自在継手を、車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装備し、両者の等速自在継手を中間軸で連結した構造を具備する。   A drive shaft that transmits power from an automobile engine to a driving wheel needs to cope with an angular displacement and an axial displacement caused by a change in a relative positional relationship between the engine and the wheel. Side) and a fixed type constant velocity universal joint on the wheel side (outboard side), and a structure in which both constant velocity universal joints are connected by an intermediate shaft.

また、自動車のリア用ドライブシャフトの場合、車輪側(アウトボード側)においても大きな角度変位を必要としないことから、エンジン側および車輪側の両方で摺動式等速自在継手を用い、これら一対の摺動式等速自在継手を中間軸で連結した構造のものもある。   Further, in the case of a rear drive shaft of an automobile, a large angular displacement is not required on the wheel side (outboard side), so a sliding type constant velocity universal joint is used on both the engine side and the wheel side. There is also a structure in which the sliding type constant velocity universal joints are connected by an intermediate shaft.

この中間軸の両端部に一対の摺動式等速自在継手を連結したリア用ドライブシャフトでは、中間軸の両側に位置する摺動式等速自在継手が軸方向変位も許容するものであることから、エンジン側および車輪側に取り付けられた摺動式等速自在継手の間で中間軸が軸方向に移動可能となってその軸方向位置が定まらない。そのため、この種のドライブシャフトでは、中間軸を強制的に軸方向で位置決めできるように、中間軸を自動調芯する構造を具備したものがある(例えば、特許文献1参照)。   In the rear drive shaft in which a pair of sliding constant velocity universal joints are connected to both ends of the intermediate shaft, the sliding constant velocity universal joints located on both sides of the intermediate shaft must allow axial displacement. Therefore, the intermediate shaft can move in the axial direction between the sliding type constant velocity universal joints attached to the engine side and the wheel side, and the axial position is not determined. Therefore, some drive shafts of this type have a structure that automatically aligns the intermediate shaft so that the intermediate shaft can be forcibly positioned in the axial direction (see, for example, Patent Document 1).

この特許文献1で開示されたドライブシャフトは、図6に示すように、中間軸110の両端部にトリポード型等速自在継手120,140を連結した構造を具備する。   The drive shaft disclosed in Patent Document 1 has a structure in which tripod type constant velocity universal joints 120 and 140 are connected to both ends of the intermediate shaft 110 as shown in FIG.

両方の等速自在継手120,140の基本構成は同一であり、一端に開口部を有するカップ状をなし、内周面に軸方向に延びる三本のトラック溝121,141が形成されると共に各トラック溝121,141の内側壁に互いに対向するローラ案内面122,142が形成された外側継手部材123,143と、径方向に突出した三本の脚軸124,144を有するトリポード部材125,145と、そのトリポード部材125,145の脚軸124,144に回転自在に支持されると共に外側継手部材123,143のトラック溝121,141に転動自在に挿入されてローラ案内面122,142に沿って案内されるローラ126,146とで主要部が構成されている。   The basic configurations of both constant velocity universal joints 120 and 140 are the same, and are formed into a cup shape having an opening at one end, and three track grooves 121 and 141 extending in the axial direction are formed on the inner peripheral surface. Tripod members 125 and 145 having outer joint members 123 and 143 formed with roller guide surfaces 122 and 142 opposed to each other on inner walls of the track grooves 121 and 141 and three leg shafts 124 and 144 projecting in the radial direction. And are rotatably supported by the leg shafts 124 and 144 of the tripod members 125 and 145 and are rotatably inserted into the track grooves 121 and 141 of the outer joint members 123 and 143 along the roller guide surfaces 122 and 142. The main parts are composed of the rollers 126 and 146 guided in this manner.

これら等速自在継手120,140は、ローラ126,146およびトリポード部材125,145を含む内部部品が外側継手部材123,143に軸方向摺動自在に収容された構造を備え、中間軸110の端部をトリポード部材125,145の軸孔にスプライン嵌合によりトルク伝達可能に連結している。また、継手内部に封入されたグリース等の潤滑剤の漏洩を防ぐと共に継手外部からの異物侵入を防止するため、外側継手部材123,143と中間軸110との間に筒状のブーツ127,147を装着した構造としている。   These constant velocity universal joints 120 and 140 have a structure in which inner parts including rollers 126 and 146 and tripod members 125 and 145 are accommodated in outer joint members 123 and 143 so as to be axially slidable. These parts are connected to the shaft holes of the tripod members 125 and 145 so that torque can be transmitted by spline fitting. Further, in order to prevent leakage of a lubricant such as grease enclosed in the joint and to prevent foreign matter from entering from the outside of the joint, cylindrical boots 127 and 147 are provided between the outer joint members 123 and 143 and the intermediate shaft 110. The structure is equipped with.

アウトボード側(図示左側)の等速自在継手120では、外側継手部材123の底に形成された凹部に圧縮コイルばね128を挿入し、その先端に凹球面状部材129を装着すると共に、トリポード部材125から突出する中間軸110の端部に凸球面状部材130を装着し、凹球面状部材129と凸球面状部材130とを衝合した構造を具備する。これに対して、インボード側(図示右側)の等速自在継手140では、外側継手部材143の底に凹球面状部材149を装着すると共に、トリポード部材145から突出する中間軸110の端部に凸球面状部材150を装着し、凹球面状部材149と凸球面状部材150とを衝合した構造を具備する。   In the constant velocity universal joint 120 on the outboard side (the left side in the figure), a compression coil spring 128 is inserted into a recess formed in the bottom of the outer joint member 123, and a concave spherical member 129 is attached to the tip thereof, and a tripod member A convex spherical member 130 is attached to the end of the intermediate shaft 110 protruding from 125, and the concave spherical member 129 and the convex spherical member 130 are abutted. On the other hand, in the constant velocity universal joint 140 on the inboard side (the right side in the figure), the concave spherical member 149 is mounted on the bottom of the outer joint member 143 and at the end of the intermediate shaft 110 protruding from the tripod member 145. A convex spherical member 150 is mounted, and the concave spherical member 149 and the convex spherical member 150 are abutted against each other.

以上の構造を具備することにより、特許文献1のドライブシャフトでは、圧縮コイルばね128の弾性力をアウトボード側からインボード側へ中間軸110に作用させることで、その中間軸110を強制的に位置決めできるように自動調芯している。   By providing the above structure, in the drive shaft of Patent Document 1, the intermediate shaft 110 is forcibly applied by causing the elastic force of the compression coil spring 128 to act on the intermediate shaft 110 from the outboard side to the inboard side. Self-aligning so that positioning is possible.

特開2005−172142号公報JP-A-2005-172142

ところで、前述した特許文献1に開示された従来のドライブシャフトにおいて、アウトボード側の等速自在継手120では、外側継手部材123の内部に圧縮コイルばね128を組み込み、その先端に凹球面状部材129を装着すると共に中間軸110の端部に凸球面状部材130を装着した構造とし、また、インボード側の等速自在継手140では、外側継手部材143の内部に凹球面状部材149を装着すると共に中間軸110の端部に凸球面状部材150を装着した構造としている。   Incidentally, in the conventional drive shaft disclosed in Patent Document 1 described above, in the constant velocity universal joint 120 on the outboard side, a compression coil spring 128 is incorporated inside the outer joint member 123 and a concave spherical member 129 is provided at the tip thereof. And a convex spherical member 130 is attached to the end of the intermediate shaft 110. In the constant velocity universal joint 140 on the inboard side, a concave spherical member 149 is attached to the inside of the outer joint member 143. In addition, a convex spherical member 150 is attached to the end of the intermediate shaft 110.

そのため、従来のドライブシャフトでは、圧縮コイルばね128、凹球面状部材129,149および凸球面状部材130,150の別部品を必要とすることから、部品点数の増加や組立工数の増加によりドライブシャフトのコストアップを招くことになる。   Therefore, in the conventional drive shaft, since separate parts of the compression coil spring 128, the concave spherical members 129 and 149, and the convex spherical members 130 and 150 are required, the drive shaft is increased due to an increase in the number of parts and an increase in assembly man-hours. Will increase the cost.

また、圧縮コイルばね128、凹球面状部材129,149および凸球面状部材130,150を外側継手部材123,143および中間軸110に組み込んだ複雑な構造となり、それら圧縮コイルばね128、凹球面状部材129,149および凸球面状部材130,150の別部品を収容するスペースも必要となり、外側継手部材123,143の軸方向寸法が大きくなってドライブシャフトのコンパクト化が困難になる。   Further, the compression coil spring 128, the concave spherical members 129 and 149, and the convex spherical members 130 and 150 are combined into the outer joint members 123 and 143 and the intermediate shaft 110, and the compression coil spring 128 and the concave spherical member are formed. A space for accommodating the separate members 129 and 149 and the convex spherical members 130 and 150 is also required, and the axial dimensions of the outer joint members 123 and 143 are increased, making it difficult to make the drive shaft compact.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、部品点数および組立工数の低減や、外側継手部材の軸方向寸法の縮小化を容易に図り得るドライブシャフトを提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is a drive that can easily reduce the number of parts and assembly man-hours and the axial dimension of the outer joint member. To provide a shaft.

前述の目的を達成するための技術的手段として、本発明は、中間軸と、一端に開口部を有するカップ状の外側継手部材、および、中間軸の両端部にトルク伝達可能に連結され、外側継手部材との間でトルク伝達部材を介して角度変位および軸方向変位を許容しながらトルクを伝達する内側継手部材からなる一対の摺動式等速自在継手とを備え、外側継手部材の開口部を閉塞する筒状のブーツの端部を外側継手部材の開口部と中間軸とにそれぞれ装着したドライブシャフトであって、ブーツは、0.5〜3.0kN/mmの反力特性を有することを特徴とする。ここで、「反力特性」とは、回転トルクの付与により等速自在継手に発生する軸力に対してその反対方向に作用する単位長さ当りのブーツの剛性力を意味する。   As technical means for achieving the above-mentioned object, the present invention comprises an intermediate shaft, a cup-shaped outer joint member having an opening at one end, and both ends of the intermediate shaft connected to each other so as to be able to transmit torque. A pair of sliding type constant velocity universal joints composed of an inner joint member that transmits torque while allowing angular displacement and axial displacement through a torque transmission member between the joint member and an opening of the outer joint member A drive shaft in which ends of a cylindrical boot that closes the shaft are attached to the opening of the outer joint member and the intermediate shaft, respectively, and the boot has a reaction force characteristic of 0.5 to 3.0 kN / mm It is characterized by. Here, the “reaction force characteristic” means the rigidity force of the boot per unit length acting in the opposite direction with respect to the axial force generated in the constant velocity universal joint by applying the rotational torque.

なお、ブーツは、ゴム製あるいは樹脂製のいずれであってもよい。また、一対の摺動式等速自在継手は、中間軸の両端部に同位相あるいは異なる位相のいずれで連結されていてもよい。ここで、「位相」とは、外側継手部材と内側継手部材との間に配されたトルク伝達部材の円周方向位置を意味する。   The boot may be made of rubber or resin. Further, the pair of sliding type constant velocity universal joints may be connected to both ends of the intermediate shaft in either the same phase or different phases. Here, “phase” means the circumferential position of the torque transmitting member disposed between the outer joint member and the inner joint member.

本発明では、0.5〜3.0kN/mmの反力特性を有するブーツを使用したことにより、回転トルクが負荷された状態であっても、ブーツによる調芯作用でもって中間軸を強制的に初期状態に位置決めする自動調芯を確保することができる。このようなブーツによる自動調芯を実現したことにより、従来のような圧縮コイルばね、凹球面状部材および凸球面状部材の別部品が不要となることから、部品点数および組立工数の低減が図れる。また、圧縮コイルばね、凹球面状部材および凸球面状部材の別部品を収容するスペースも不要となることから、外側継手部材の軸方向寸法の縮小化も容易となる。   In the present invention, by using a boot having a reaction force characteristic of 0.5 to 3.0 kN / mm, even if the rotational torque is loaded, the intermediate shaft is forced by the centering action by the boot. Thus, it is possible to ensure automatic alignment for positioning in the initial state. By realizing such automatic alignment with the boot, the separate parts of the compression coil spring, the concave spherical member and the convex spherical member as in the prior art are no longer required, so the number of parts and the number of assembly steps can be reduced. . In addition, since the space for accommodating the compression coil spring, the concave spherical member, and the separate components of the convex spherical member is not required, the axial dimension of the outer joint member can be easily reduced.

なお、前述の反力特性が0.5kN/mmよりも小さいと、ブーツによる調芯作用を発揮させることが困難となって中間軸を初期状態に位置決めすることが難しくなる。また、反力特性が3.0kN/mmよりも大きいと、ブーツによる調芯作用を発揮させることは可能であるが、ブーツの剛性が高くなり過ぎることから、ドライブシャフトの車両組み付け時の取り扱い性、等速自在継手の作動性、あるいはブーツ自体の耐久性が低下することになる。   If the reaction force characteristic is smaller than 0.5 kN / mm, it is difficult to exert the alignment effect by the boot, and it is difficult to position the intermediate shaft in the initial state. Also, if the reaction force characteristic is larger than 3.0 kN / mm, it is possible to exert the centering effect by the boot, but the rigidity of the boot becomes too high. Therefore, the operability of the constant velocity universal joint or the durability of the boot itself is lowered.

本発明における一対の摺動式等速自在継手のそれぞれは、同一仕様のものであることが望ましい。さらに、一対の摺動式等速自在継手に装着されたそれぞれのブーツも、同一仕様のものであることが望ましい。ここで、「同一仕様」とは、同一のサイズおよび構造の等速自在継手、あるいは同一のサイズおよび材質のブーツを意味する。このように、同一仕様の等速自在継手あるいはブーツを使用すれば、回転トルクの付与により等速自在継手に発生する軸力あるいはブーツの剛性力がそれぞれの等速自在継手あるいはブーツで同じになることから、中間軸の軸方向移動量を最小限に抑制することができ、ブーツによる調芯作用でもって中間軸を強制的に初期状態に位置決めする自動調芯をより一層確実に実現することができる。   Each of the pair of sliding constant velocity universal joints in the present invention is desirably of the same specification. Further, it is desirable that the boots mounted on the pair of sliding type constant velocity universal joints have the same specifications. Here, the “same specifications” means constant velocity universal joints having the same size and structure, or boots having the same size and material. In this way, if constant velocity universal joints or boots of the same specification are used, the axial force generated in the constant velocity universal joint or the rigid force of the boots by the application of rotational torque is the same in each constant velocity universal joint or boot. Therefore, the amount of axial movement of the intermediate shaft can be minimized, and automatic alignment that forcibly positions the intermediate shaft in the initial state by the alignment operation by the boot can be realized more reliably. it can.

本発明における外側継手部材は、円筒状内周面に軸方向に延びる複数の直線状トラック溝が形成され、内側継手部材は、外側継手部材のトラック溝と対をなして球面状外周面に複数の直線状トラック溝が形成され、トルク伝達部材は、外側継手部材の円筒状内周面と内側継手部材の球面状外周面との間に配されたケージにより保持された状態で、外側継手部材のトラック溝と内側継手部材のトラック溝との間に介在するボールである構造が望ましい。本発明は、このような構造を具備した等速自在継手、つまり、ダブルオフセット型等速自在継手に適用可能である。なお、ボールは6個であることが望ましいが、その数は任意である。   In the present invention, the outer joint member is formed with a plurality of linear track grooves extending in the axial direction on the cylindrical inner peripheral surface, and the inner joint member is formed on the spherical outer peripheral surface in pairs with the track grooves of the outer joint member. And the torque transmitting member is held by a cage disposed between the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the inner joint member. A structure that is a ball interposed between the track groove of the inner joint member and the track groove of the inner joint member is desirable. The present invention can be applied to a constant velocity universal joint having such a structure, that is, a double offset type constant velocity universal joint. The number of balls is preferably six, but the number is arbitrary.

また、本発明における外側継手部材は、内周面に軸方向に延びる三本のトラック溝が形成されると共に各トラック溝の内側壁に互いに対向するローラ案内面が形成され、内側継手部材は、半径方向に突出した三本の脚軸を有し、トルク伝達部材は、脚軸に回転自在に支持されると共に外側継手部材のトラック溝に転動自在に挿入されてローラ案内面に沿って案内される構造が望ましい。本発明は、このような構造を具備した等速自在継手、つまり、トリポード型等速自在継手に適用可能である。   In the outer joint member of the present invention, three track grooves extending in the axial direction are formed on the inner peripheral surface, and roller guide surfaces facing each other are formed on the inner side wall of each track groove. It has three leg shafts projecting in the radial direction, and the torque transmission member is rotatably supported by the leg shaft and is inserted into the track groove of the outer joint member so as to roll along the roller guide surface. The structure is desirable. The present invention is applicable to a constant velocity universal joint having such a structure, that is, a tripod type constant velocity universal joint.

本発明によれば、0.5〜3.0kN/mmの反力特性を有するブーツを使用したことにより、回転トルクが負荷された状態であっても、ブーツによる調芯作用でもって中間軸を強制的に初期状態に位置決めする自動調芯を確保することができる。このようなブーツによる自動調芯を実現したことにより、従来のような圧縮コイルばね、凹球面状部材および凸球面状部材の別部品が不要となることから、部品点数および組立工数の低減が図れる。また、圧縮コイルばね、凹球面状部材および凸球面状部材の別部品を収容するスペースも不要となることから、外側継手部材の軸方向寸法の縮小化も容易となる。   According to the present invention, by using a boot having a reaction force characteristic of 0.5 to 3.0 kN / mm, even if the rotational torque is loaded, the intermediate shaft can be moved by the centering action by the boot. It is possible to ensure automatic alignment for forcibly positioning to the initial state. By realizing such automatic alignment with the boot, the separate parts of the compression coil spring, the concave spherical member and the convex spherical member as in the prior art are no longer required, so the number of parts and the number of assembly steps can be reduced. . In addition, since the space for accommodating the compression coil spring, the concave spherical member, and the separate components of the convex spherical member is not required, the axial dimension of the outer joint member can be easily reduced.

このように、部品点数および組立工数の低減により、等速自在継手のコスト削減が容易となり、外側継手部材の軸方向寸法の縮小化により、等速自在継手のコンパクト化も容易となって、安価で小型のドライブシャフトを提供することができる。   In this way, the cost of the constant velocity universal joint can be easily reduced by reducing the number of parts and the number of assembly steps, and the axial dimension of the outer joint member can be reduced to make the constant velocity universal joint more compact and inexpensive. A small drive shaft can be provided.

本発明の実施形態で、ドライブシャフトの全体構成を示す縦断面図である。1 is a longitudinal sectional view showing an overall configuration of a drive shaft in an embodiment of the present invention. 一対の等速自在継手を同位相で連結した場合で、(a)はアウトボード側の等速自在継手を示す横断面図、(b)はインボード側の等速自在継手を示す横断面図である。When a pair of constant velocity universal joints are connected in the same phase, (a) is a cross-sectional view showing the constant velocity universal joint on the outboard side, and (b) is a cross sectional view showing the constant velocity universal joint on the inboard side. It is. 一対の等速自在継手を異なる位相で連結した場合で、(a)はアウトボード側の等速自在継手を示す横断面図、(b)はインボード側の等速自在継手を示す横断面図である。When a pair of constant velocity universal joints are connected at different phases, (a) is a cross-sectional view showing the constant velocity universal joint on the outboard side, and (b) is a cross sectional view showing the constant velocity universal joint on the inboard side. It is. 本出願人が行った試験条件および試験結果(ブーツなしの場合)を示す表である。It is a table | surface which shows the test conditions and test result (in the case of no boots) which the present applicant performed. 本出願人が行った試験結果(ブーツありの場合)を示す波形図である。It is a wave form diagram which shows the test result (when there is boots) which the present applicant conducted. 従来のドライブシャフトを示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional drive shaft.

本発明に係るドライブシャフトの実施形態を以下に詳述する。以下の実施形態では、自動車のエンジン側(インボード側)および車輪側(アウトボード側)ともに摺動式等速自在継手をそれぞれ装備し、両者の等速自在継手を中間軸で連結した構造を具備するリア用ドライブシャフトを例示し、その摺動式等速自在継手の一つとしてダブルオフセット型等速自在継手を適用した場合を例示する。   Embodiments of the drive shaft according to the present invention will be described in detail below. In the following embodiments, the engine side (inboard side) and the wheel side (outboard side) of the automobile are each equipped with a sliding type constant velocity universal joint, and both the constant velocity universal joints are connected by an intermediate shaft. The rear drive shaft provided is exemplified, and a case where a double offset type constant velocity universal joint is applied as one of the sliding type constant velocity universal joints is exemplified.

図1および図2(a)(b)に示す実施形態におけるドライブシャフトは、中間軸10の両端部にダブルオフセット型等速自在継手20,40を連結した構造を具備する。アウトボード側(図1の左側)の等速自在継手20とインボード側(図1の右側)の等速自在継手40は同一の基本構成をなす。なお、図1では中間軸10の一部を省略している。図2(a)はアウトボード側の等速自在継手20の横断面図、図2(b)はインボード側の等速自在継手40の横断面図である。   The drive shaft in the embodiment shown in FIGS. 1 and 2A and 2B has a structure in which double offset constant velocity universal joints 20 and 40 are connected to both ends of the intermediate shaft 10. The constant velocity universal joint 20 on the outboard side (left side in FIG. 1) and the constant velocity universal joint 40 on the inboard side (right side in FIG. 1) have the same basic configuration. In FIG. 1, a part of the intermediate shaft 10 is omitted. 2A is a cross-sectional view of the constant velocity universal joint 20 on the outboard side, and FIG. 2B is a cross-sectional view of the constant velocity universal joint 40 on the inboard side.

両方の等速自在継手20,40は、一端に開口部を有するカップ状をなし、軸線に平行な複数の直線状トラック溝21,41が円筒状内周面22,42に円周方向等間隔で形成された外側継手部材23,43と、その外側継手部材23,43のトラック溝21,41と対応させて軸線に平行な複数の直線状トラック溝24,44が球面状外周面25,45に形成された内側継手部材26,46と、外側継手部材23,43のトラック溝21,41と内側継手部材26,46のトラック溝24,44との間に介在してトルクを伝達する複数のトルク伝達部材であるボール27,47と、外側継手部材23,43の内周面22,42と内側継手部材26,46の外周面25,45との間に配され、円周方向等間隔に形成されたポケット28,48に収容したボール27,47を保持するケージ29,49とを主要な構成要素としている。なお、この実施形態では、図2(a)(b)に示すように6個のボール27,47を例示するが、ボール27,47は、その他、3,5あるいは8個のいずれであってもよく、その個数は任意である。   Both constant velocity universal joints 20 and 40 have a cup shape having an opening at one end, and a plurality of linear track grooves 21 and 41 parallel to the axis are circumferentially equidistant from the cylindrical inner peripheral surfaces 22 and 42. The outer joint members 23, 43 formed in the above-described manner and a plurality of linear track grooves 24, 44 parallel to the axis corresponding to the track grooves 21, 41 of the outer joint members 23, 43 are spherical outer peripheral surfaces 25, 45. A plurality of inner joint members 26 and 46 formed between the outer joint members 23 and 43 and the track grooves 21 and 41 of the outer joint members 23 and the track grooves 24 and 44 of the inner joint members 26 and 46. It is arranged between the balls 27 and 47, which are torque transmission members, the inner peripheral surfaces 22 and 42 of the outer joint members 23 and 43, and the outer peripheral surfaces 25 and 45 of the inner joint members 26 and 46, and at equal intervals in the circumferential direction. Pockets 28 and 48 formed A cage 29, 49 for holding the accommodated balls 27 and 47 are the major components. In this embodiment, six balls 27 and 47 are illustrated as shown in FIGS. 2 (a) and 2 (b). However, the balls 27 and 47 are any of 3, 5, or 8 in addition. The number is arbitrary.

両者の等速自在継手20,40は、内側継手部材26,46、ボール27,47およびケージ29,49からなる内部部品が外側継手部材23,43に軸方向摺動自在に収容された構造を具備する。また、内側継手部材26,46の軸孔に中間軸10の端部がスプライン嵌合により連結されている。また、継手内部に封入されたグリース等の潤滑剤の漏洩を防ぐと共に継手外部からの異物侵入を防止するため、外側継手部材23,43と中間軸10との間に筒状のブーツ30,50を装着した構造を具備する。   Both of the constant velocity universal joints 20 and 40 have a structure in which internal parts including inner joint members 26 and 46, balls 27 and 47 and cages 29 and 49 are accommodated in the outer joint members 23 and 43 so as to be slidable in the axial direction. It has. Further, the end of the intermediate shaft 10 is connected to the shaft holes of the inner joint members 26 and 46 by spline fitting. Further, in order to prevent leakage of a lubricant such as grease enclosed in the joint and to prevent foreign matter from entering from the outside of the joint, the cylindrical boots 30 and 50 are interposed between the outer joint members 23 and 43 and the intermediate shaft 10. It has a structure equipped with.

このように、外側継手部材23,43およびブーツ30,50の内部空間に潤滑剤を封入することにより、外側継手部材23,43に対して中間軸10が作動角をとりながら回転する動作時において、継手内部の摺動部位、つまり、外側継手部材23,43、内側継手部材26,46、ボール27,47およびケージ29,49で構成される摺動部位での潤滑性を確保するようにしている。   As described above, by encapsulating the lubricant in the inner space of the outer joint members 23 and 43 and the boots 30 and 50, the intermediate shaft 10 rotates while taking an operating angle with respect to the outer joint members 23 and 43. The sliding part inside the joint, that is, the sliding part constituted by the outer joint members 23 and 43, the inner joint members 26 and 46, the balls 27 and 47, and the cages 29 and 49 is ensured. Yes.

ブーツ30,50は、外側継手部材23,43の開口部の外周面にブーツバンド31,51により締め付け固定された大径端部32,52と、内側継手部材26,46から延びる中間軸10の外周面にブーツバンド33,53により締め付け固定された小径端部34,54と、大径端部32,52と小径端部34,54とを繋ぎ、その大径端部32,52から小径端部34,54へ向けて縮径した伸縮自在な蛇腹部35,55とで構成されている。   The boots 30 and 50 include large-diameter end portions 32 and 52 fastened and fixed to the outer peripheral surfaces of the openings of the outer joint members 23 and 43 by boot bands 31 and 51, and the intermediate shaft 10 extending from the inner joint members 26 and 46. The small-diameter end portions 34 and 54 fastened and fixed to the outer peripheral surface by the boot bands 33 and 53, the large-diameter end portions 32 and 52, and the small-diameter end portions 34 and 54 are connected, and the large-diameter end portions 32 and 52 are connected to the small-diameter end. It is comprised with the elastic bellows parts 35 and 55 which were diameter-reduced toward the parts 34 and 54. As shown in FIG.

このブーツ30,50としては、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、クロロプレンゴム、ブチルゴム、ニトリルゴム、水素化ニトリルゴム、エチレンプロピレンゴム、エチレンアクリルゴム、塩素化ポリエチレン、クロロスルフォン化ポリエチレン、シリコーンゴム、ウレタンゴム、フッ素ゴムクロロスルフォンゴム等の各種ゴムからなるゴム製、あるいはエステル系エラストマー、ウレタン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、スチレン系エラストマー、アミド系エラストマー、塩化ビニル系エラストマー等の公知の各種エラストマーからなる樹脂製のものが使用可能である。   As these boots 30 and 50, natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, chloroprene rubber, butyl rubber, nitrile rubber, hydrogenated nitrile rubber, ethylene propylene rubber, ethylene acrylic rubber, chlorinated polyethylene, chlorosulfonated polyethylene Made of rubber such as silicone rubber, urethane rubber, fluoro rubber, chlorosulfone rubber, etc., or ester elastomer, urethane elastomer, olefin elastomer, urethane elastomer, styrene elastomer, amide elastomer, vinyl chloride elastomer Resins made of various known elastomers such as the above can be used.

両者の等速自在継手20,40に装着されるブーツ30,50は、0.5〜3.0kN/mmの反力特性を有する。ここで、反力特性とは、回転トルクの付与により等速自在継手20,40に発生する軸力に対してその反対方向に作用する単位長さ当りのブーツ30,50の剛性力を意味する。   The boots 30 and 50 attached to both constant velocity universal joints 20 and 40 have reaction force characteristics of 0.5 to 3.0 kN / mm. Here, the reaction force characteristic means the rigidity force of the boots 30 and 50 per unit length acting in the opposite direction with respect to the axial force generated in the constant velocity universal joints 20 and 40 by applying the rotational torque. .

0.5〜3.0kN/mmの反力特性を有するブーツ30,50を使用したことにより、回転トルクが負荷された状態であっても、ブーツ30,50による調芯作用でもって中間軸10を強制的に初期状態に位置決めする自動調芯を確保することができる。このようなブーツ30,50による自動調芯を実現したことにより、従来のような圧縮コイルばね128、凹球面状部材129,149および凸球面状部材130,150(図6参照)の別部品が不要となることから、部品点数および組立工数の低減が図れる。また、圧縮コイルばね128、凹球面状部材129,149および凸球面状部材130,150(図6参照)の別部品を収容するスペースも不要となることから、外側継手部材23,43の軸方向寸法の縮小化も容易となる。   By using the boots 30 and 50 having reaction force characteristics of 0.5 to 3.0 kN / mm, the intermediate shaft 10 can be adjusted by the centering action by the boots 30 and 50 even when the rotational torque is applied. It is possible to secure automatic alignment for forcibly positioning the lens in the initial state. By realizing such automatic alignment with the boots 30 and 50, separate parts such as the conventional compression coil spring 128, concave spherical members 129 and 149 and convex spherical members 130 and 150 (see FIG. 6) are obtained. Since it becomes unnecessary, the number of parts and the number of assembly steps can be reduced. Further, since the space for accommodating the separate parts of the compression coil spring 128, the concave spherical members 129 and 149 and the convex spherical members 130 and 150 (see FIG. 6) is not required, the axial direction of the outer joint members 23 and 43 is eliminated. The size can be easily reduced.

なお、この反力特性が0.5kN/mmよりも小さいと、ブーツ30,50による調芯作用を発揮させることが困難となって中間軸10を初期状態に位置決めすることが難しくなり、中間軸10がいずれか一方の等速自在継手20,40側に片寄ることになる。また、反力特性が3.0kN/mmよりも大きいと、ブーツ30,50による調芯作用を発揮させることは可能であるが、ブーツ30,50の剛性が高くなり過ぎることから、ドライブシャフトの車両組み付け時の取り扱い性、等速自在継手20,40の作動性、あるいはブーツ自体の耐久性が低下することになる。   If this reaction force characteristic is smaller than 0.5 kN / mm, it is difficult to exert the alignment action by the boots 30 and 50, and it becomes difficult to position the intermediate shaft 10 in the initial state. 10 is shifted to one of the constant velocity universal joints 20 and 40 side. Further, if the reaction force characteristic is larger than 3.0 kN / mm, it is possible to exert the alignment action by the boots 30 and 50, but the rigidity of the boots 30 and 50 becomes too high. The handling property at the time of vehicle assembly, the operability of the constant velocity universal joints 20 and 40, or the durability of the boot itself will be lowered.

本出願人は、以上で説明したダブルオフセット型等速自在継手20,40を中間軸10の両端部に連結したドライブシャフト(図1参照)について以下のような条件に基づいて試験を実施した。図示左右の等速自在継手20,40の自重による影響を除くため、水平方向に10°の取り付け角度を設定し、100rpmの回転数で、等速自在継手20,40に回転トルクを付与した。その他、図示左右の等速自在継手20,40の位相、回転方向、駆動方向、および試験結果としての中間軸10の動きについては図4の表に示す通りである。なお、図4はブーツ30,50を装着しない場合を示す。   The present applicant conducted a test on the drive shaft (see FIG. 1) in which the double offset constant velocity universal joints 20 and 40 described above are connected to both ends of the intermediate shaft 10 based on the following conditions. In order to eliminate the influence of the weights of the left and right constant velocity universal joints 20 and 40 shown in the figure, a mounting angle of 10 ° was set in the horizontal direction, and rotational torque was applied to the constant velocity universal joints 20 and 40 at a rotation speed of 100 rpm. In addition, the phase of the constant velocity universal joints 20 and 40 shown in the figure, the rotation direction, the driving direction, and the movement of the intermediate shaft 10 as a test result are as shown in the table of FIG. FIG. 4 shows a case where the boots 30 and 50 are not attached.

図4に示すように、条件A〜Hのドライブシャフトのうち、条件A〜Dでは同位相、条件E〜Hでは逆位相とした。ここで、同位相とは、図1に示す左右の等速自在継手20と等速自在継手40とで、図2(a)(b)に示すように、ボール27,47の円周方向位置を同じにすることを意味する。逆位相とは、図3(a)(b)に示すように、等速自在継手20と等速自在継手40とで、ボール27,47の円周方向位置を例えば30°ずらしたことを意味する。また、条件C,D,G,Hでは正回転、条件A,B,E,Fでは逆回転とした。この回転方向については、図1中の矢印方向を正回転「+」とし、その逆方向を逆回転「−」としている。さらに、駆動方向については、左右の等速自在継手20と等速自在継手40とで、回転トルクを付与する側を「駆動」、その回転トルクの付与に対して従動する側を「被駆動」とした。   As shown in FIG. 4, among the drive shafts of conditions A to H, the conditions A to D are the same phase, and the conditions E to H are the opposite phase. Here, the same phase means the left and right constant velocity universal joint 20 and the constant velocity universal joint 40 shown in FIG. 1 and the circumferential positions of the balls 27 and 47 as shown in FIGS. Means the same. As shown in FIGS. 3A and 3B, the reverse phase means that the circumferential positions of the balls 27 and 47 are shifted by, for example, 30 ° between the constant velocity universal joint 20 and the constant velocity universal joint 40. To do. In addition, the conditions C, D, G, and H are normal rotations, and the conditions A, B, E, and F are reverse rotations. With respect to this rotation direction, the arrow direction in FIG. 1 is the forward rotation “+”, and the opposite direction is the reverse rotation “−”. Furthermore, with respect to the driving direction, the left and right constant velocity universal joints 20 and the constant velocity universal joint 40 “drive” the side that applies the rotational torque, and “driven” the side that follows the application of the rotational torque. It was.

これら条件に基づく試験の結果、図4の「中間軸の動き」で示すように、中間軸10は、回転方向および位相に関係なく、駆動側の等速自在継手20,40から被駆動側の等速自在継手20,40へ向けて移動することが判明した。被駆動側の等速自在継手20,40では、内部部品が外側継手部材23,43の底面に突き当たるまで移動し続け、その後、外側継手部材23,43の底面に内部部品が当接した状態で回転し続ける。   As a result of the test based on these conditions, as shown by “movement of the intermediate shaft” in FIG. 4, the intermediate shaft 10 is connected to the driven-side constant velocity universal joints 20, 40 from the driven-side constant velocity universal joints 20, 40 regardless of the rotation direction and phase. It turned out that it moved toward the constant velocity universal joints 20 and 40. In the driven constant velocity universal joints 20, 40, the internal parts continue to move until they abut against the bottom surfaces of the outer joint members 23, 43, and then the internal parts are in contact with the bottom surfaces of the outer joint members 23, 43. Continue to rotate.

一方、前述の条件A〜Hのドライブシャフトの等速自在継手20,40(ブーツ30,50を装着しない場合)に、0.5〜3.0kN/mmの反力特性を有するブーツ30,50を取り付け、このブーツ30,50を装着した条件A〜Hのドライブシャフトについて、ブーツ30,50を装着しない場合と同一条件で試験を実施した。   On the other hand, the boots 30 and 50 having a reaction force characteristic of 0.5 to 3.0 kN / mm are applied to the constant velocity universal joints 20 and 40 (when the boots 30 and 50 are not mounted) of the drive shafts in the above conditions A to H. The drive shafts under conditions A to H with the boots 30 and 50 attached were tested under the same conditions as when the boots 30 and 50 were not attached.

その結果、条件A〜Hの全てのドライブシャフトについて、図5に示すような試験結果を得た。つまり、中間軸10は、駆動側の等速自在継手20,40から被駆動側の等速自在継手20,40へ向けて移動を開始するが、すぐに反対方向へ移動し、また、数mm(5〜6mm)程度、駆動側の等速自在継手20,40から被駆動側の等速自在継手20,40へ向けて移動した後、反対方向へ移動する。   As a result, test results as shown in FIG. 5 were obtained for all drive shafts under conditions A to H. That is, the intermediate shaft 10 starts to move from the constant velocity universal joints 20 and 40 on the driving side toward the constant velocity universal joints 20 and 40 on the driven side, but immediately moves in the opposite direction and is several mm. After moving from the constant velocity universal joints 20 and 40 on the driving side to the constant velocity universal joints 20 and 40 on the driven side, it moves in the opposite direction.

このように、初期位置を中心に数mmの振幅Wで、駆動側の等速自在継手20,40から被駆動側の等速自在継手20,40への移動と、被駆動側の等速自在継手20,40から駆動側の等速自在継手20,40への移動とを繰り返すことが判明した。なお、この試験は、運転開始から10分間行ったが、等速自在継手20,40の内部部品が外側継手部材23,43の底面に突き当たることはなかった。   In this way, with the amplitude W of several millimeters around the initial position, the movement from the constant velocity universal joints 20 and 40 on the driving side to the constant velocity universal joints 20 and 40 on the driven side and the constant velocity universal on the driven side are possible. It has been found that the movement from the joints 20 and 40 to the constant velocity universal joints 20 and 40 on the driving side is repeated. In addition, although this test was performed for 10 minutes from the start of operation, the internal components of the constant velocity universal joints 20 and 40 did not hit the bottom surfaces of the outer joint members 23 and 43.

以上の試験結果から、ブーツ30,50を装着しない場合には、等速自在継手20,40の内部で発生した軸力により、中間軸10が駆動側の等速自在継手20,40から被駆動側の等速自在継手20,40へ向けて移動する。これに対して、0.5〜3.0kN/mmの反力特性を有するブーツ30,50を装着した場合、初期位置を中心に数mmの振幅Wで、駆動側の等速自在継手20,40から被駆動側の等速自在継手20,40への移動と、被駆動側の等速自在継手20,40から駆動側の等速自在継手20,40への移動とを繰り返すことで、ブーツ30,50による自動調芯が実現可能となる。   From the above test results, when the boots 30 and 50 are not mounted, the intermediate shaft 10 is driven from the drive-side constant velocity universal joints 20 and 40 by the axial force generated in the constant velocity universal joints 20 and 40. It moves toward the constant velocity universal joints 20 and 40 on the side. On the other hand, when the boots 30 and 50 having a reaction force characteristic of 0.5 to 3.0 kN / mm are mounted, the constant velocity universal joint 20 on the drive side with an amplitude W of several millimeters around the initial position. By repeating the movement from 40 to the driven constant velocity universal joints 20 and 40 and the movement from the driven side constant velocity universal joints 20 and 40 to the driving side constant velocity universal joints 20 and 40, the boot Automatic alignment by 30, 50 can be realized.

左右の等速自在継手20,40あるいはブーツ30,50のそれぞれは、同一仕様のものを使用する。ここで、「同一仕様」とは、同一のサイズおよび構造の等速自在継手20,40、あるいは同一のサイズおよび材質のブーツ30,50を意味する。   The left and right constant velocity universal joints 20 and 40 or the boots 30 and 50 have the same specifications. Here, the “same specification” means constant velocity universal joints 20 and 40 having the same size and structure, or boots 30 and 50 having the same size and material.

このように、同一仕様の等速自在継手20,40あるいはブーツ30,50を使用することにより、回転トルクの付与により等速自在継手20,40に発生する軸力あるいはブーツ30,50の剛性力がそれぞれの等速自在継手20,40あるいはブーツ30,50で同じになることから、ブーツ30,50による調芯作用でもって中間軸10を強制的に初期状態に位置決めする自動調芯をより一層確実に実現することができる。また、中間軸10の軸方向移動量を最小限に抑制することができ、外側継手部材23,43の軸方向長さが最短で済むため、ドライブシャフトの軸方向寸法を短くすることができてコンパクト化が容易に図れる。   As described above, by using the constant velocity universal joints 20 and 40 or the boots 30 and 50 having the same specifications, the axial force generated in the constant velocity universal joints 20 and 40 or the rigidity force of the boots 30 and 50 due to the application of rotational torque. Is the same for each constant velocity universal joint 20, 40 or boot 30, 50. Therefore, automatic alignment for forcibly positioning the intermediate shaft 10 in the initial state by the alignment operation by the boot 30, 50 is further enhanced. It can be realized reliably. Further, the amount of axial movement of the intermediate shaft 10 can be minimized, and the axial length of the outer joint members 23 and 43 can be minimized, so that the axial dimension of the drive shaft can be shortened. Compact size can be easily achieved.

以上の実施形態では、摺動式等速自在継手の一つとしてダブルオフセット型等速自在継手を適用した場合について説明したが、本発明はこれに限定されることなく、他の摺動式等速自在継手としてトリポード型等速自在継手を適用することも可能である。   In the above embodiment, the case where the double offset type constant velocity universal joint is applied as one of the sliding type constant velocity universal joints has been described. However, the present invention is not limited to this, and other sliding type etc. It is also possible to apply a tripod type constant velocity universal joint as the speed universal joint.

このトリポード型等速自在継手は、図示しないが、内周面に軸方向に延びる三本のトラック溝が形成されると共に各トラック溝の内側壁に互いに対向するローラ案内面が形成された外側継手部材と、半径方向に突出した三本の脚軸を有する内側継手部材であるトリポード部材と、脚軸に回転自在に支持されると共に外側継手部材のトラック溝に転動自在に挿入されてローラ案内面に沿って案内されるトルク伝達部材であるローラとで構成されている(図6参照)。   Although not shown, this tripod type constant velocity universal joint has three track grooves extending in the axial direction on the inner peripheral surface and an outer joint in which roller guide surfaces facing each other are formed on the inner wall of each track groove. A member, a tripod member which is an inner joint member having three leg shafts projecting in the radial direction, and a roller guide which is rotatably supported by the leg shaft and is rotatably inserted into a track groove of the outer joint member. It is comprised with the roller which is a torque transmission member guided along a surface (refer FIG. 6).

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

10 中間軸
20,40 等速自在継手
21,41 トラック溝
22,42 円筒状内周面
23,43 外側継手部材
24,44 トラック溝
25,45 球面状外周面
26,46 内側継手部材
27,47 トルク伝達部材(ボール)
29,49 ケージ
30,50 ブーツ
10 Intermediate shaft 20, 40 Constant velocity universal joint 21, 41 Track groove 22, 42 Cylindrical inner peripheral surface 23, 43 Outer joint member 24, 44 Track groove 25, 45 Spherical outer peripheral surface 26, 46 Inner joint member 27, 47 Torque transmission member (ball)
29,49 Cage 30,50 Boots

Claims (10)

中間軸と、一端に開口部を有するカップ状の外側継手部材、および、前記中間軸の両端部にトルク伝達可能に連結され、前記外側継手部材との間でトルク伝達部材を介して角度変位および軸方向変位を許容しながらトルクを伝達する内側継手部材からなる一対の摺動式等速自在継手とを備え、前記外側継手部材の開口部を閉塞する筒状のブーツの端部を前記外側継手部材の開口部と前記中間軸とにそれぞれ装着したドライブシャフトであって、前記ブーツは、0.5〜3.0kN/mmの反力特性を有することを特徴とするドライブシャフト。   An intermediate shaft, a cup-shaped outer joint member having an opening at one end, and both ends of the intermediate shaft are connected so as to be able to transmit torque, and are angularly displaced between the outer joint member and the outer joint member via a torque transmission member. A pair of sliding type constant velocity universal joints configured to transmit torque while allowing axial displacement, and an end portion of a cylindrical boot that closes an opening of the outer joint member is connected to the outer joint A drive shaft mounted on each of the opening of the member and the intermediate shaft, wherein the boot has a reaction force characteristic of 0.5 to 3.0 kN / mm. 前記ブーツは、ゴム製である請求項1に記載のドライブシャフト。   The drive shaft according to claim 1, wherein the boot is made of rubber. 前記ブーツは、樹脂製である請求項1に記載のドライブシャフト。   The drive shaft according to claim 1, wherein the boot is made of resin. 前記一対の摺動式等速自在継手のそれぞれは、同一仕様のものである請求項1〜3のいずれか一項に記載のドライブシャフト。   The drive shaft according to any one of claims 1 to 3, wherein each of the pair of sliding constant velocity universal joints has the same specification. 前記一対の摺動式等速自在継手に装着されたそれぞれのブーツは、同一仕様のものである請求項1〜4のいずれか一項に記載のドライブシャフト。   5. The drive shaft according to claim 1, wherein the boots mounted on the pair of sliding constant velocity universal joints have the same specifications. 前記一対の摺動式等速自在継手は、中間軸の両端部に同位相で連結されている請求項1〜5のいずれか一項に記載のドライブシャフト。   The drive shaft according to any one of claims 1 to 5, wherein the pair of sliding constant velocity universal joints are coupled to both ends of the intermediate shaft in the same phase. 前記一対の摺動式等速自在継手は、中間軸の両端部に異なる位相で連結されている請求項1〜5のいずれか一項に記載のドライブシャフト。   The drive shaft according to any one of claims 1 to 5, wherein the pair of sliding constant velocity universal joints are connected to both ends of the intermediate shaft at different phases. 前記外側継手部材は、円筒状内周面に軸方向に延びる複数の直線状トラック溝が形成され、前記内側継手部材は、外側継手部材のトラック溝と対をなして球面状外周面に複数の直線状トラック溝が形成され、前記トルク伝達部材は、外側継手部材の円筒状内周面と内側継手部材の球面状外周面との間に配されたケージにより保持された状態で、前記外側継手部材のトラック溝と前記内側継手部材のトラック溝との間に介在するボールである請求項1〜7のいずれか一項に記載のドライブシャフト。   The outer joint member has a plurality of linear track grooves extending in the axial direction on a cylindrical inner peripheral surface, and the inner joint member forms a plurality of pairs on the spherical outer peripheral surface in pairs with the track grooves of the outer joint member. A straight track groove is formed, and the torque transmission member is held by a cage disposed between a cylindrical inner peripheral surface of the outer joint member and a spherical outer peripheral surface of the inner joint member, and the outer joint The drive shaft according to any one of claims 1 to 7, wherein the drive shaft is a ball interposed between a track groove of a member and a track groove of the inner joint member. 前記ボールは6個である請求項8に記載のドライブシャフト。   The drive shaft according to claim 8, wherein the number of the balls is six. 前記外側継手部材は、内周面に軸方向に延びる三本のトラック溝が形成されると共に各トラック溝の内側壁に互いに対向するローラ案内面が形成され、前記内側継手部材は、半径方向に突出した三本の脚軸を有し、前記トルク伝達部材は、脚軸に回転自在に支持されると共に前記外側継手部材のトラック溝に転動自在に挿入されて前記ローラ案内面に沿って案内される請求項1〜7のいずれか一項に記載のドライブシャフト。   In the outer joint member, three track grooves extending in the axial direction are formed on the inner peripheral surface, and roller guide surfaces facing each other are formed on the inner wall of each track groove, and the inner joint member is formed in the radial direction. The torque transmission member is rotatably supported by the leg shaft and is rotatably inserted in the track groove of the outer joint member and guided along the roller guide surface. The drive shaft according to any one of claims 1 to 7.
JP2010000549A 2010-01-05 2010-01-05 Drive shaft Pending JP2011140967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010000549A JP2011140967A (en) 2010-01-05 2010-01-05 Drive shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010000549A JP2011140967A (en) 2010-01-05 2010-01-05 Drive shaft

Publications (1)

Publication Number Publication Date
JP2011140967A true JP2011140967A (en) 2011-07-21

Family

ID=44456966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010000549A Pending JP2011140967A (en) 2010-01-05 2010-01-05 Drive shaft

Country Status (1)

Country Link
JP (1) JP2011140967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513401A (en) * 2019-09-19 2019-11-29 浙江向隆机械有限公司 A kind of tripod diverter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239878A (en) * 2006-03-08 2007-09-20 Ntn Corp Drive shaft boot
JP2008082393A (en) * 2006-09-26 2008-04-10 Ntn Corp Driving shaft for automobile
JP2008089152A (en) * 2006-10-04 2008-04-17 Ntn Corp Automobile driving shaft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239878A (en) * 2006-03-08 2007-09-20 Ntn Corp Drive shaft boot
JP2008082393A (en) * 2006-09-26 2008-04-10 Ntn Corp Driving shaft for automobile
JP2008089152A (en) * 2006-10-04 2008-04-17 Ntn Corp Automobile driving shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513401A (en) * 2019-09-19 2019-11-29 浙江向隆机械有限公司 A kind of tripod diverter

Similar Documents

Publication Publication Date Title
KR102239252B1 (en) Hub built-in type constant velocity joint apparatus
JP2008082393A (en) Driving shaft for automobile
JP7412099B2 (en) Power transmission mechanism and vehicle
JP2011140967A (en) Drive shaft
JP2018112198A (en) Damper structure
KR101658643B1 (en) Tripod constant velocity joint for a vehicle
JP2012189190A (en) Sliding-type constant-velocity universal joint
JP6066618B2 (en) Drive shaft assembly
JP2010242780A (en) Drive shaft
JP5859379B2 (en) Constant velocity universal joint
JP2008275175A (en) Fixed type constant velocity universal joint
WO2017081982A1 (en) Sliding-type constant velocity universal joint
JP2010025207A (en) Constant velocity universal joint
JP2018185008A (en) Slide type constant-velocity universal joint
JP2012163170A (en) Constant velocity universal joint
KR20210008735A (en) Hub built-in type constant velocity joint apparatus
KR20140025178A (en) Outlace of ball type constant velocity joint for vehicle
JP2018053926A (en) Constant velocity universal joint
KR20060060342A (en) Tripod constant velocity joint
JP2017089882A (en) Slide-type constant velocity universal joint
JP2004183902A (en) Fixed type constant velocity universal joint
JP2019132316A (en) Tripod type constant velocity universal joint
JP2013155803A (en) Sliding type constant velocity universal joint
JP2018105383A (en) Constant velocity universal joint
JP2012163171A (en) Constant velocity universal coupling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140411