JP2011140711A - Electrolytic manganese dioxide, method for producing the same and use of the same - Google Patents

Electrolytic manganese dioxide, method for producing the same and use of the same Download PDF

Info

Publication number
JP2011140711A
JP2011140711A JP2010237431A JP2010237431A JP2011140711A JP 2011140711 A JP2011140711 A JP 2011140711A JP 2010237431 A JP2010237431 A JP 2010237431A JP 2010237431 A JP2010237431 A JP 2010237431A JP 2011140711 A JP2011140711 A JP 2011140711A
Authority
JP
Japan
Prior art keywords
manganese dioxide
electrolytic manganese
electrolysis
sulfuric acid
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010237431A
Other languages
Japanese (ja)
Other versions
JP5633301B2 (en
Inventor
Kenichi Takahashi
健一 高橋
Kazumasa Suetsugu
和正 末次
Akinori Eshita
明徳 江下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2010237431A priority Critical patent/JP5633301B2/en
Publication of JP2011140711A publication Critical patent/JP2011140711A/en
Application granted granted Critical
Publication of JP5633301B2 publication Critical patent/JP5633301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide electrolytic manganese dioxide and a production method thereof, excellent in high-rate discharge characteristics and middle-rate discharge characteristics without corroding a metal material. <P>SOLUTION: The electrolytic manganese dioxide is produced by pulverizing electrolytic manganese dioxide produced by electrolytic deposition in a manganese sulfate bath where the sulfuric acid concentration in the electrolytic solution after termination of the electrolysis is higher than the sulfuric acid concentration in the electrolytic solution at the start of electrolysis, then neutralizing the obtained slurry to a pH range from 2.0 to 5.0, cleaning and drying. Preferably, the obtained electrolytic manganese dioxide shows an alkali potential of 280 mV or more measured by using mercury/mercury oxide reference electrodes as a reference in a 40% KOH aqueous solution, JIS-pH of 1.5 or more but less than 2.6 (in accordance with JIS K1467), a sodium content of 0.02% by weight or more and less than 0.10% by weight, a sulfuric acid radical of less than 1.30% by weight, a median diameter of 30 μm or more and 50 μm or less, and a BET specific surface area of 20 m<SP>2</SP>/g or more and 50 m<SP>2</SP>/g or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、マンガン乾電池、特にアルカリマンガン乾電池において、ハイレート放電特性とミドルレート放電特性の両方に優れ、かつ金属材料の腐食の問題を生じない電解二酸化マンガン及びその製造方法に関するものである。   The present invention relates to an electrolytic manganese dioxide excellent in both high rate discharge characteristics and middle rate discharge characteristics in a manganese dry battery, particularly an alkaline manganese dry battery, and to a method for producing the same.

電解二酸化マンガンを正極活物質として用いるアルカリマンガン乾電池は、重負荷での放電特性に優れていることから電子カメラ、携帯情報機器、さらにはゲーム機や玩具など、大電流を使用(ハイレート放電)する機器に使用され、近年急速にその需要が伸びてきている。しかしながら、電解二酸化マンガンは、ハイレート放電において十分に使用されずに使用時間が短くなるという欠点を有しているため、ハイレート放電で高容量・長寿命の電解二酸化マンガン、いわゆるハイレート放電特性に優れた電解二酸化マンガンが望まれている。さらに、最近のデジタル機器の省電力化に伴い、ハイレート放電より低い放電電流(ミドルレート放電)における特性が求められており、ハイレート放電特性だけでなくミドルレート放電特性にも優れた電解二酸化マンガンが求められている。   Alkaline manganese batteries using electrolytic manganese dioxide as the positive electrode active material have excellent discharge characteristics under heavy loads, so they use large currents (high-rate discharge) in electronic cameras, portable information devices, game machines, and toys. In recent years, the demand has been increasing rapidly. However, electrolytic manganese dioxide has the disadvantage that it is not sufficiently used in high-rate discharge and the usage time is shortened, so high-rate discharge and high-capacity and long-life electrolytic manganese dioxide, so-called high-rate discharge characteristics are excellent. Electrolytic manganese dioxide is desired. Furthermore, with recent power savings of digital devices, characteristics at a discharge current (middle rate discharge) lower than that of high rate discharge are required. Electrolytic manganese dioxide that is superior not only in high rate discharge characteristics but also in middle rate discharge characteristics It has been demanded.

ハイレート放電特性を改善した電解二酸化マンガンの製造方法として、電解二酸化マンガンを中和前に加熱し、ナトリウム使用量を低減する電解二酸化マンガンの製造方法が提案されている(特許文献1)。しかしながら、加熱により電解二酸化マンガンの結晶構造が変化しているため、得られる電解二酸化マンガンのハイレート放電特性は十分ではなかった。さらに、この製造方法による電解二酸化マンガンはナトリウム使用量を下げたために中和が不十分となり、乾電池内部の金属材料を腐食するものであった。   As a method for producing electrolytic manganese dioxide with improved high-rate discharge characteristics, a method for producing electrolytic manganese dioxide in which electrolytic manganese dioxide is heated before neutralization to reduce the amount of sodium used has been proposed (Patent Document 1). However, since the crystal structure of electrolytic manganese dioxide is changed by heating, the high-rate discharge characteristics of the obtained electrolytic manganese dioxide are not sufficient. Furthermore, the electrolytic manganese dioxide produced by this production method was insufficiently neutralized because the amount of sodium used was reduced, and corroded the metal material inside the dry cell.

また、硫酸量の制御によるハイレート放電特性の改善がなされており、表面硫酸量を0.10重量%以上に制御する電解二酸化マンガンの製造方法(特許文献2)、硫酸根含有量を1.3〜1.6重量%にする二酸化マンガンの製造方法(特許文献3)が提案されている。しかしながら、これらの製造方法で得られた電解二酸化マンガンは硫酸を多く含むため、乾電池の保存劣化や電池電圧の不安定化を招くだけでなく、製造装置や乾電池内部の金属材料を腐食するという問題が生じていた。   Moreover, the high-rate discharge characteristics have been improved by controlling the amount of sulfuric acid, a method for producing electrolytic manganese dioxide (Patent Document 2) in which the amount of sulfuric acid on the surface is controlled to 0.10% by weight or more, and the sulfate group content is 1.3. The manufacturing method (patent document 3) of manganese dioxide made into 1.6 weight% is proposed. However, since electrolytic manganese dioxide obtained by these production methods contains a large amount of sulfuric acid, it not only causes storage deterioration of the dry battery and instability of the battery voltage, but also corrodes the metal material in the production apparatus and the dry battery. Has occurred.

一方、金属材料腐食の問題を生じさせずにハイレート放電特性を向上させるため、電解二酸化マンガンのJIS−pH、硫酸根含有量を制御し、更に電解二酸化マンガンの粒径とナトリウム含有量を制御する製造方法が提案されている(特許文献4)。しかしながら、この製造方法により得られる電解二酸化マンガンは、金属材料の腐食を抑制してハイレート放電特性に優れていたが、ミドルレート放電特性はまだ十分ではなかった。   On the other hand, in order to improve the high-rate discharge characteristics without causing the problem of metal material corrosion, the JIS-pH and sulfate group content of electrolytic manganese dioxide are controlled, and further the particle size and sodium content of electrolytic manganese dioxide are controlled. A manufacturing method has been proposed (Patent Document 4). However, the electrolytic manganese dioxide obtained by this production method is excellent in the high rate discharge characteristics by suppressing the corrosion of the metal material, but the middle rate discharge characteristics are still insufficient.

また、電解期間中の硫酸濃度を変える電解方法により得られたハイレート放電特性に優れた電解二酸化マンガン(特許文献5)および、電解後の電解二酸化マンガンを硫酸で処理することにより得られたハイレート放電特性に優れた電解二酸化マンガン(特許文献6)が提案されているが、いずれもミドルレート放電特性は十分ではなかった。   Moreover, electrolytic manganese dioxide (Patent Document 5) excellent in high-rate discharge characteristics obtained by an electrolysis method that changes the sulfuric acid concentration during electrolysis, and high-rate discharge obtained by treating electrolytic manganese dioxide after electrolysis with sulfuric acid Electrolytic manganese dioxide (Patent Document 6) excellent in characteristics has been proposed, but the middle rate discharge characteristics were not sufficient in any case.

このように、これまでは金属材料に対する腐食を起こさずにハイレート放電特性およびミドルレート放電特性の両方に優れた電解二酸化マンガンはなかった。   Thus, until now, there has been no electrolytic manganese dioxide excellent in both high rate discharge characteristics and middle rate discharge characteristics without causing corrosion to metal materials.

特開2001−026425JP 2001-026425 A 特開2002−304990JP 2002-304990 特開2004−047445JP 2004-047445 A 特開2008−013427JP2008-013427 特開2009−135067JP2009-135067 特開2009−117246JP 2009-117246 A

本発明は、特にアルカリマンガン乾電池の正極活物質として使用される電解二酸化マンガンに関し、ハイレート放電特性とミドルレート放電特性の両方の電池特性に優れ、かつ、金属材料を腐食することのない電解二酸化マンガン及びその製造方法を提供する。   The present invention particularly relates to electrolytic manganese dioxide used as a positive electrode active material of an alkaline manganese dry battery, and is excellent in battery characteristics of both high rate discharge characteristics and middle rate discharge characteristics, and does not corrode metal materials. And a method for manufacturing the same.

従来のアルカリマンガン電池用の二酸化マンガンの電解法による製造では、電解全期間において一定の硫酸濃度の電解液を使用した電解によって析出した電解二酸化マンガンを電極から剥離、粉砕した後、硫酸根を除去するために水洗処理した後、表面の酸性度や残存した表面硫酸を中和するためにアルカリで中和処理をし、その後、乾燥していた。この方法により得られる電解二酸化マンガンは電位が低く、かつ、水洗後の中和処理により電解二酸化マンガン表面に吸着したアルカリ金属イオンが電池反応を阻害していた。そのため、得られる電解二酸化マンガンの電池特性は低く、電池特性の改善のためには酸洗浄、加熱処理等の追加の処理が必要であった。さらに、水洗処理では、硫酸根を保存特性や電池電圧に影響を及ぼさないレベルまで除去するために繰り返しの水洗操作が必要であり、極めて非効率であった。   In conventional manufacturing of manganese dioxide for alkaline manganese batteries by electrolytic method, electrolytic manganese dioxide deposited by electrolysis using an electrolyte with a constant sulfuric acid concentration during the entire electrolysis period is peeled off from the electrode, pulverized, and then the sulfate radical is removed. In order to neutralize the surface acidity and the remaining surface sulfuric acid, it was neutralized with an alkali and then dried. The electrolytic manganese dioxide obtained by this method has a low potential, and alkali metal ions adsorbed on the surface of the electrolytic manganese dioxide by the neutralization treatment after washing with water inhibited the battery reaction. For this reason, the battery characteristics of the obtained electrolytic manganese dioxide are low, and additional treatments such as acid cleaning and heat treatment are required to improve the battery characteristics. Furthermore, the water washing treatment is extremely inefficient because it requires repeated water washing operations to remove the sulfate radicals to a level that does not affect the storage characteristics and battery voltage.

また、電解期間中に電解液中の硫酸濃度を変化させる電解方法においては、ハイレート放電特性が向上した二酸化マンガンが得られていたが、ハイレート放電特性と伴にミドルレート放電特性の高い二酸化マンガンは得られていなかった。   In addition, in the electrolysis method in which the sulfuric acid concentration in the electrolytic solution is changed during the electrolysis period, manganese dioxide having improved high rate discharge characteristics has been obtained, but manganese dioxide having high middle rate discharge characteristics along with high rate discharge characteristics is obtained. It was not obtained.

本発明者等は電解二酸化マンガンの放電特性の向上について鋭意検討した結果、電解期間中に異なる硫酸濃度で制御した硫酸−硫酸マンガン浴で電解析出した電解二酸化マンガンを、洗浄する前に特定のpHで中和処理することにより、ハイレート放電特性とミドルレート放電特性の両方に優れた電解二酸化マンガンが得られることを見出した。   As a result of intensive investigations on the improvement of the discharge characteristics of electrolytic manganese dioxide, the present inventors have found that electrolytic manganese dioxide electrolytically deposited in a sulfuric acid-manganese sulfate bath controlled at a different sulfuric acid concentration during the electrolysis period must be specified before washing. It has been found that an electrolytic manganese dioxide excellent in both high rate discharge characteristics and middle rate discharge characteristics can be obtained by neutralization treatment at pH.

以下、本発明の電解二酸化マンガンの製造方法について説明する。   Hereinafter, the manufacturing method of the electrolytic manganese dioxide of this invention is demonstrated.

本発明では、電解終了時の電解液中の硫酸濃度が、電解開始時の電解液中の硫酸濃度より高い濃度の硫酸マンガン浴により電解を行う。これにより、電解開始時の硫酸濃度で一定期間電解して充填性が高い二酸化マンガンを得、引き続き硫酸濃度を上げることで、電位の高い二酸化マンガンを得ることができる。   In the present invention, electrolysis is performed using a manganese sulfate bath having a concentration of sulfuric acid in the electrolytic solution at the end of electrolysis higher than the sulfuric acid concentration in the electrolytic solution at the start of electrolysis. Thereby, it is possible to obtain manganese dioxide having a high potential by electrolysis for a certain period of time at the sulfuric acid concentration at the start of electrolysis, and subsequently increasing the sulfuric acid concentration.

電解液中の硫酸濃度に特に制限はないが、電解開始時における電解液中の硫酸濃度は、20〜45g/Lであることが好ましく、電解終了時の電解液中の硫酸濃度は、電解開始時の硫酸濃度より高く、かつ、30〜75g/Lであることが好ましく、さらに、電解開始時における電解液中の硫酸濃度は、20〜40g/Lであることが好ましく、電解終了時の電解液中の硫酸濃度は、電解開始時の硫酸濃度より高く、かつ、35〜75g/Lであることが好ましい。これにより、ハイレート放電特性だけでなく、ミドルレート放電特性に優れた電解二酸化マンガンを得ることができる。   The sulfuric acid concentration in the electrolytic solution is not particularly limited, but the sulfuric acid concentration in the electrolytic solution at the start of electrolysis is preferably 20 to 45 g / L, and the sulfuric acid concentration in the electrolytic solution at the end of electrolysis is the start of electrolysis It is preferably higher than the sulfuric acid concentration at the time, and is preferably 30 to 75 g / L. Further, the sulfuric acid concentration in the electrolytic solution at the start of electrolysis is preferably 20 to 40 g / L. The sulfuric acid concentration in the liquid is preferably higher than the sulfuric acid concentration at the start of electrolysis and is 35 to 75 g / L. Thereby, it is possible to obtain electrolytic manganese dioxide that is excellent not only in high rate discharge characteristics but also in middle rate discharge characteristics.

また、特にミドルレート放電特性を高くする観点からは、電解開始時における電解液中の硫酸濃度は、20〜35g/Lであることが好ましく、電解終了時の電解液中の硫酸濃度は、電解開始時の硫酸濃度より高く、かつ、35g/Lを越えて40g/L以下であることが好ましく、電解開始時における電解液中の硫酸濃度は、25〜35g/Lであることが好ましく、電解終了時の電解液中の硫酸濃度は、電解開始時の硫酸濃度より高く、かつ、37g/L以上40g/L以下であることが好ましい。   In particular, from the viewpoint of improving the middle rate discharge characteristics, the sulfuric acid concentration in the electrolytic solution at the start of electrolysis is preferably 20 to 35 g / L, and the sulfuric acid concentration in the electrolytic solution at the end of electrolysis is It is preferably higher than the sulfuric acid concentration at the start and more than 35 g / L and not more than 40 g / L. The sulfuric acid concentration in the electrolytic solution at the start of electrolysis is preferably 25 to 35 g / L. The sulfuric acid concentration in the electrolytic solution at the end is preferably higher than the sulfuric acid concentration at the start of electrolysis and 37 g / L or more and 40 g / L or less.

本発明では、電解開始から電解終了まで電解中の硫酸濃度を徐々に変化させるのではなく、電解の前半で電解開始時の硫酸濃度を一定期間維持し、電解の後半に硫酸濃度を切替えて電解終了時の硫酸濃度にすることが好ましい。   In the present invention, instead of gradually changing the sulfuric acid concentration during electrolysis from the start of electrolysis to the end of electrolysis, the sulfuric acid concentration at the start of electrolysis is maintained for a certain period in the first half of electrolysis, and the sulfuric acid concentration is switched in the latter half of electrolysis to perform electrolysis. It is preferable to use the sulfuric acid concentration at the end.

なお、ここでいう硫酸濃度は硫酸マンガンの二価の陰イオンは除くものである。   The sulfuric acid concentration mentioned here excludes the divalent anion of manganese sulfate.

本発明における電解補給液中のマンガン濃度に限定はないが、例えば40〜60g/Lが例示できる。   Although there is no limitation on the manganese concentration in the electrolytic replenisher in the present invention, for example, 40 to 60 g / L can be exemplified.

電解の温度には特に限定はなく、例えば温度は94〜98℃の範囲が適用できる。また、電流密度としては、例えば0.4〜0.6A/dmが適用できる。 There is no particular limitation on the electrolysis temperature, and for example, a temperature range of 94 to 98 ° C. can be applied. Moreover, as a current density, 0.4-0.6 A / dm < 2 > is applicable, for example.

電解開始時の硫酸濃度での電解と、電解終了時の硫酸濃度での電解の比率に制限はないが、例えば電解開始時の硫酸濃度と電解終了時の硫酸濃度における電解時間の比が1:9〜9:1、特に3:7〜7:3の範囲が好ましい。   The ratio of electrolysis at the sulfuric acid concentration at the start of electrolysis and electrolysis at the sulfuric acid concentration at the end of electrolysis is not limited. For example, the ratio of the electrolysis time at the sulfuric acid concentration at the start of electrolysis and the sulfuric acid concentration at the end of electrolysis is 1: The range of 9-9: 1, particularly 3: 7-7: 3 is preferred.

電解時の電極材質については特に制限はなく、例えばチタン材などの金属や、グラファイト材などが適用できる。   There are no particular limitations on the electrode material during electrolysis, and for example, a metal such as a titanium material or a graphite material can be applied.

本発明の方法において、電解析出した電解二酸かマンガンを適宜粉砕することができる。電解二酸化マンガンの粉砕方法は、所定の粒径、例えば、メジアン径が30μm以上50μm以下、好ましくは35μm以上45μm以下になるように調整できれば特に制限はなく、例えばジェットミルやボールミルなどによる粉砕を挙げることができる。   In the method of the present invention, electrolytically deposited electrolytic diacid or manganese can be appropriately pulverized. The method for pulverizing electrolytic manganese dioxide is not particularly limited as long as it can be adjusted so that the predetermined particle size, for example, the median diameter is 30 μm or more and 50 μm or less, preferably 35 μm or more and 45 μm or less. be able to.

本発明の方法は、上記の電解方法によって電解析出した電解二酸化マンガンを粉砕後、洗浄する前に中和することを必須とする。   In the method of the present invention, it is essential to neutralize electrolytic manganese dioxide electrolytically deposited by the above electrolysis method after pulverization and before washing.

上記の電解方法で電解をして中和後に洗浄をする方法で製造された電解二酸化マンガンがハイレート放電特性およびミドルレート放電特性に優れる理由は必ずしもは明らかではないが、以下のような機構が考えられる。   The reason why the electrolytic manganese dioxide produced by the method of electrolysis by the above-described electrolysis method and washing after neutralization is excellent in high rate discharge characteristics and middle rate discharge characteristics is not necessarily clear, but the following mechanism is considered. It is done.

従来の電解二酸化マンガンの製造方法では、水洗後に中和が行われていたため、水洗時にまず硫酸根がHSOとして除去されるが、その後の中和に使用される中和剤中のアルカリ金属が電解二酸化マンガンの表面に残存していた。この様なアルカリ金属は、電池反応におけるプロトン移動を阻害して電池活性が低くなると考えられる。 In the conventional method for producing electrolytic manganese dioxide, since neutralization is performed after washing with water, the sulfate radical is first removed as H 2 SO 4 during washing with water, but the alkali in the neutralizing agent used for the subsequent neutralization is removed. Metal remained on the surface of the electrolytic manganese dioxide. Such an alkali metal is considered to inhibit the proton transfer in the battery reaction and lower the battery activity.

一方、本発明の方法では洗浄の前に中和を行うことにより、アルカリ金属と硫酸根がまずアルカリ金属硫酸塩に変化するために硫酸根およびアルカリ金属が除去され易い状態になり、中和処理後に水洗することによりアルカリ金属イオンと硫酸根がとともに洗浄除去される。そのため、特に電池性能を阻害する部位に存在するアルカリ金属がアルカリ金属流酸塩として除去され、優れた放電反応を示す電解二酸化マンガンとなるものと考えられる。   On the other hand, in the method of the present invention, neutralization is performed before washing, so that the alkali metal and sulfate radicals are first changed to alkali metal sulfate, so that the sulfate radical and alkali metal are easily removed, and the neutralization treatment is performed. By washing with water later, alkali metal ions and sulfate radicals are washed and removed. Therefore, it is thought that the alkali metal which exists especially in the site | part which inhibits battery performance is removed as an alkali metal sulfate, and it becomes the electrolytic manganese dioxide which shows the outstanding discharge reaction.

この場合において、本発明の方法では電解終了時の電解液中の硫酸濃度が電解開始時の電解液中の硫酸濃度より高い濃度の硫酸−硫酸マンガン浴により電解を行った電解二酸化マンガン、即ち、特に充填性及び電位が高い電解二酸化マンガンを用いることにより、特に電池性能を阻害する部位に存在するアルカリ金属がアルカリ金属硫酸塩として高度に除去されると考えられる。   In this case, in the method of the present invention, the electrolytic manganese dioxide in which the sulfuric acid concentration in the electrolytic solution at the end of electrolysis was electrolyzed with a sulfuric acid-manganese sulfate bath having a concentration higher than the sulfuric acid concentration in the electrolytic solution at the start of electrolysis, In particular, by using electrolytic manganese dioxide having a high filling property and high potential, it is considered that alkali metals present particularly at sites that inhibit battery performance are highly removed as alkali metal sulfates.

本発明における中和は、粉砕した電解二酸化マンガンを水に分散してスラリーとし、当該スラリーを中和することによって行うが、スラリーpHは2.0以上5.0以下、好ましくは2.2以上4.8以下、特に好ましくは2.8以上4.8以下、さらに3.1以上4.2以下とすることが好ましい。スラリーpHをこの様な範囲となる様に中和することにより、最終的に得られる電解二酸化マンガン中に残存するアルカリ金属が極めて少なくでき、優れたハイレート放電特性及びミドルレート放電特性を有し、なおかつ金属材料に対する腐食のない電解二酸化マンガンが得られる。   Neutralization in the present invention is carried out by dispersing pulverized electrolytic manganese dioxide in water to make a slurry, and neutralizing the slurry. The slurry pH is 2.0 or more and 5.0 or less, preferably 2.2 or more. It is preferably 4.8 or less, particularly preferably 2.8 or more and 4.8 or less, and further preferably 3.1 or more and 4.2 or less. By neutralizing the slurry pH in such a range, the alkali metal remaining in the finally obtained electrolytic manganese dioxide can be extremely reduced, and has excellent high-rate discharge characteristics and middle-rate discharge characteristics, In addition, electrolytic manganese dioxide that does not corrode metal materials is obtained.

スラリーpHが2.0よりも低い場合、十分に中和されず、得られる電解二酸化マンガンは電池正極材の加工製造装置の金属材料を腐食する。一方、スラリーpHが5.0よりも高い場合、電解二酸化マンガンの微粒子が分散して沈降しない現象(解こう現象)が起こり、洗浄効果が得られ難い。   When the slurry pH is lower than 2.0, it is not sufficiently neutralized, and the obtained electrolytic manganese dioxide corrodes the metal material of the battery cathode material processing and manufacturing apparatus. On the other hand, when the slurry pH is higher than 5.0, a phenomenon in which fine particles of electrolytic manganese dioxide are dispersed and do not settle (powder phenomenon) occurs, and a cleaning effect is difficult to obtain.

ここでのスラリーpHとは電解二酸化マンガンを水に分散した際のスラリー中の水を直接測定したpHのことであり、スラリーに塩化アンモニウムを添加して測定されるJIS−pH(JISK1467)とは異なる。スラリーpHは一般的なpH標準電極を使用して測定できる。   The slurry pH here is a pH obtained by directly measuring water in the slurry when electrolytic manganese dioxide is dispersed in water, and JIS-pH (JIS K1467) measured by adding ammonium chloride to the slurry. Different. The slurry pH can be measured using a common pH standard electrode.

本発明の方法において、電解二酸化マンガンの粉砕方法は、所定の粒径分布、粒度比率になるように調整できれば特に制限はなく、例えばジェットミルやボールミルなどによる粉砕を挙げることができる。   In the method of the present invention, the method for pulverizing electrolytic manganese dioxide is not particularly limited as long as it can be adjusted to have a predetermined particle size distribution and particle size ratio, and examples thereof include pulverization using a jet mill or a ball mill.

本発明の方法において、電解二酸化マンガンの中和にはアルカリ溶液を用いることができ、アルカリ溶液として水酸化ナトリウム、水酸化カリウムあるいは水酸化リチウムなどのアルカリ金属水酸化物やアンモニア水などを用いることができ、特に工業的に安価な水酸化ナトリウムを用いることが好ましい。   In the method of the present invention, an alkaline solution can be used for neutralization of electrolytic manganese dioxide, and an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or lithium hydroxide, aqueous ammonia, or the like is used as the alkaline solution. In particular, it is preferable to use sodium hydroxide which is industrially inexpensive.

本発明の方法において、中和の方式は特に制限なく、バッチ式中和、連続中和いずれも適用できる。また中和時の電解二酸化マンガンスラリーの濃度も特に限定はないが、中和の効率の観点から、150g/L以上450g/L以下が好ましく、150g/L以上300g/L以下の範囲が特に好ましい。   In the method of the present invention, the neutralization method is not particularly limited, and either batch neutralization or continuous neutralization can be applied. The concentration of the electrolytic manganese dioxide slurry at the time of neutralization is not particularly limited, but is preferably 150 g / L or more and 450 g / L or less, and particularly preferably 150 g / L or more and 300 g / L or less from the viewpoint of neutralization efficiency. .

本発明の方法における水洗の方式は特に制限はなく、バッチ洗浄、連続洗浄のどちらでも適用できる。水洗時のスラリー濃度も特に限定はないが、200g/L以上900g/L以下であることが好ましい。スラリー濃度が200g/L未満、或いは900g/Lを超える場合にはいずれも水洗の効率が低下しやすい。   There is no particular limitation on the washing method in the method of the present invention, and either batch washing or continuous washing can be applied. The slurry concentration at the time of washing with water is not particularly limited, but is preferably 200 g / L or more and 900 g / L or less. When the slurry concentration is less than 200 g / L or more than 900 g / L, the washing efficiency tends to decrease.

本発明の方法では、上述した中和、洗浄により電解二酸化マンガン中のアルカリ金属含有量を0.02重量%以上0.10重量%未満とすることが好ましい。   In the method of the present invention, the alkali metal content in electrolytic manganese dioxide is preferably 0.02 wt% or more and less than 0.10 wt% by the above-described neutralization and washing.

さらに、上述した中和、洗浄により電解二酸化マンガン中の硫酸根含有量を1.30重量%未満とすることが好ましい。   Furthermore, it is preferable that the sulfate group content in electrolytic manganese dioxide is less than 1.30% by weight by the above-described neutralization and washing.

本発明の方法では水洗後の電解二酸化マンガン粉末を乾燥して用いられる。乾燥条件は一般的な条件、例えば200℃以下で乾燥することができ、特に80℃〜150℃で乾燥することが好ましい。200℃より高い温度の処理では電解二酸化マンガン表面の水酸基が脱離されて、電解二酸化マンガン表面の親水性や粉末粒子内への保液性が低下し、金属材料を腐食しやすくなる。特に250℃以上での乾燥では、結晶相がガンマ型からベータ型に変化し、アルカリ乾電池用正極材としての電池活性が低下しやすくなる。   In the method of the present invention, the electrolytic manganese dioxide powder after washing with water is dried and used. Drying conditions can be general conditions, for example, 200 ° C. or lower, and it is particularly preferable to dry at 80 ° C. to 150 ° C. In the treatment at a temperature higher than 200 ° C., the hydroxyl group on the surface of the electrolytic manganese dioxide is desorbed, the hydrophilicity on the surface of the electrolytic manganese dioxide and the liquid retaining property in the powder particles are lowered, and the metal material is easily corroded. In particular, when the drying is performed at 250 ° C. or higher, the crystal phase is changed from the gamma type to the beta type, and the battery activity as a positive electrode material for an alkaline dry battery tends to be lowered.

次に、本発明の電解二酸化マンガンについて説明する。   Next, the electrolytic manganese dioxide of the present invention will be described.

本発明の電解二酸化マンガンは、40%KOH水溶液中で水銀/酸化水銀参照電極を基準として測定したときの電位が280mV以上、JIS−pH(JISK1467)が1.5以上2.6未満、ナトリウム含有量が0.02重量%以上0.10重量%未満の電解二酸化マンガンである。   The electrolytic manganese dioxide of the present invention has a potential of 280 mV or higher, a JIS-pH (JIS K1467) of 1.5 or more and less than 2.6 when measured with a mercury / mercury oxide reference electrode in a 40% KOH aqueous solution, and contains sodium. Electrolytic manganese dioxide whose amount is 0.02 wt% or more and less than 0.10 wt%.

本発明の電解二酸化マンガンは、40%KOH水溶液中で水銀/酸化水銀参照電極を基準として測定したときの電位(以下、アルカリ電位)が280mV以上であり、好ましくは285mV以上、特に好ましくは290mV以上である。アルカリ電位が280mV以上であることで電池の開回路電圧が上昇し、使用可能な放電電圧下限までの放電時間を長くすることができる。保存安定性の観点からアルカリ電位は350mV以下であることが好ましい。また、特にミドルレート放電特性を高くする観点からは、アルカリ電位は310mV未満であることが好ましい。   The electrolytic manganese dioxide of the present invention has a potential (hereinafter referred to as alkali potential) of 280 mV or more, preferably 285 mV or more, particularly preferably 290 mV or more when measured with a mercury / mercury oxide reference electrode in a 40% KOH aqueous solution as a standard. It is. When the alkaline potential is 280 mV or more, the open circuit voltage of the battery increases, and the discharge time to the lower limit of the usable discharge voltage can be extended. From the viewpoint of storage stability, the alkali potential is preferably 350 mV or less. In particular, from the viewpoint of improving the middle rate discharge characteristics, the alkali potential is preferably less than 310 mV.

本発明における電解二酸化マンガンのJISK1467に基づくJIS−pH(以下、単に「JIS−pH」と称す)は1.5以上2.6未満であり、1.8以上2.4以下が特に好ましい。JIS−pHが2.6以上では電池放電特性が十分ではなく、特にJIS−pHが2.6以上3.5未満ではハイレート放電特性は比較的高いが、ミドルレート放電特性が従来の二酸化マンガンと同程度しか得られない。JIS−pHが1.5未満では正極材の加工設備や電池缶などの金属材料を腐食しやすい。   The JIS-pH (hereinafter, simply referred to as “JIS-pH”) of electrolytic manganese dioxide in the present invention based on JISK1467 is 1.5 or more and less than 2.6, and 1.8 or more and 2.4 or less is particularly preferable. When the JIS-pH is 2.6 or more, the battery discharge characteristics are not sufficient. Particularly, when the JIS-pH is 2.6 or more and less than 3.5, the high-rate discharge characteristics are relatively high, but the middle-rate discharge characteristics are different from the conventional manganese dioxide. Only the same level can be obtained. When JIS-pH is less than 1.5, metal materials such as positive electrode material processing equipment and battery cans are easily corroded.

本発明の電解二酸化マンガンは、アルカリ金属含有量が0.02重量%以上0.10重量%未満であり、特に好ましくは0.02重量%以上0.09重量%以下、さらには0.03重量%以上0.08重量%以下が好ましい。   The electrolytic manganese dioxide of the present invention has an alkali metal content of 0.02 wt% or more and less than 0.10 wt%, particularly preferably 0.02 wt% or more and 0.09 wt% or less, and further 0.03 wt%. % To 0.08% by weight is preferable.

電解二酸化マンガンに含まれるアルカリ金属は主に中和剤に由来するため、そのほとんどが粒子表面に吸着されて存在する。そのため、アルカリ金属含有量が0.10重量%以上であると、粒子の表面から内部へのプロトン拡散を伴う電池放電反応が阻害され、放電特性が低下しやすい。一方、アルカリ金属含有量が0.02重量%未満であると、金属材料に対する腐食性が高くなりやすい。工業的な中和剤としては水酸化ナトリウムが使用されており、二酸化マンガンが含有する主なアルカリ金属としてはナトリウムが挙げられる。   Since the alkali metal contained in electrolytic manganese dioxide is mainly derived from the neutralizing agent, most of it is adsorbed on the particle surface. Therefore, when the alkali metal content is 0.10% by weight or more, the battery discharge reaction accompanied by proton diffusion from the surface to the inside of the particles is hindered, and the discharge characteristics are likely to deteriorate. On the other hand, when the alkali metal content is less than 0.02% by weight, the corrosiveness to the metal material tends to be high. Sodium hydroxide is used as an industrial neutralizer, and sodium is an example of the main alkali metal contained in manganese dioxide.

製造法において説明した様に、本発明の電解二酸化マンガンが優れた電池性能を有する理由は、特に電池性能を阻害する部位に存在するアルカリ金属および硫酸根が除去されるためと考えられる。しかしながら、中和処理後の洗浄を施した電解二酸化マンガンであっても、電解条件によっては本発明の電池特性を発揮しない場合がある。本発明の電解二酸化マンガンは、電解終了時の電解液中の硫酸濃度が電解開始時の電解液中の硫酸濃度より高い濃度の硫酸−硫酸マンガン浴により電解を行うことによって得られる電解二酸化マンガン特有の物性を有するものが特に好ましい。   As explained in the production method, the reason why the electrolytic manganese dioxide of the present invention has excellent battery performance is considered to be because alkali metals and sulfate radicals present at sites that inhibit battery performance are removed. However, even the electrolytic manganese dioxide that has been washed after the neutralization treatment may not exhibit the battery characteristics of the present invention depending on the electrolysis conditions. The electrolytic manganese dioxide of the present invention is characteristic of electrolytic manganese dioxide obtained by performing electrolysis with a sulfuric acid-manganese sulfate bath in which the sulfuric acid concentration in the electrolytic solution at the end of electrolysis is higher than the sulfuric acid concentration in the electrolytic solution at the start of electrolysis. Those having the following physical properties are particularly preferred.

電解終了時の電解液中の硫酸濃度が電解開始時の電解液中の硫酸濃度より高い濃度の硫酸マンガン浴により電解を行った二酸化マンガンは特に結晶性に特徴があり、例えばCuKα線を光源とするXRD測定における(110)面の半値幅が2.2°以上2.9°以下であることが好ましく、さらにX線回折ピーク(110)/(021)のピーク強度比が0.50以上0.80以下であることが好ましい。また、X線回折ピークにおける(110)面の面間隔が4.00Å以上4.06Å以下であることが好ましい。   Manganese dioxide electrolyzed with a manganese sulfate bath having a concentration of sulfuric acid in the electrolytic solution at the end of electrolysis higher than the sulfuric acid concentration in the electrolytic solution at the start of electrolysis is particularly characterized by crystallinity. For example, CuKα rays are used as a light source. The half width of the (110) plane in the XRD measurement is preferably 2.2 ° or more and 2.9 ° or less, and the peak intensity ratio of the X-ray diffraction peak (110) / (021) is 0.50 or more and 0. .80 or less is preferable. Moreover, it is preferable that the (110) plane spacing in the X-ray diffraction peak is 4.00 to 4.06 mm.

本発明の電解二酸化マンガンは、硫酸根含有量が1.30重量%未満であることが好ましく、1.25重量%以下であることが好ましい。硫酸根が1.30%以上では、乾電池の保存劣化や電池電圧の不安定化が生じやすくなり、正極材を製造する装置や乾電池内部の缶材などの金属材料を腐食しやすくなる。   The electrolytic manganese dioxide of the present invention preferably has a sulfate group content of less than 1.30% by weight, and preferably 1.25% by weight or less. If the sulfate radical is 1.30% or more, the storage deterioration of the dry battery and the instability of the battery voltage are likely to occur, and the metal material such as the device for producing the positive electrode material and the can inside the dry battery is likely to be corroded.

電解二酸化マンガンに含まれる硫酸根は、主に電解析出する電解二酸化マンガン粒子内部に電解液中の硫酸イオンが取り込まれるものであり、通常、電解析出後の電解二酸化マンガンには2〜3重量%の硫酸根が含まれている。この硫酸根は、水洗あるいは中和操作によって脱離できるもの(以下、「表面硫酸」)と、十分な水洗あるいは中和操作によっても電解二酸化マンガンから脱離できないもの(以下、「内部硫酸」)の存在が知られている。電解二酸化マンガンの内部硫酸量は、電解条件によって異なるが、少なくとも0.90〜1.25重量%である。   The sulfate radical contained in the electrolytic manganese dioxide is one in which sulfate ions in the electrolytic solution are mainly taken into the electrolytic manganese dioxide particles that are electrolytically deposited. Contains weight percent sulfate radicals. This sulfate radical can be removed by washing or neutralization (hereinafter “surface sulfuric acid”) and cannot be removed from electrolytic manganese dioxide by sufficient washing or neutralization (hereinafter “internal sulfuric acid”). The existence of is known. The amount of internal sulfuric acid in electrolytic manganese dioxide varies depending on the electrolysis conditions, but is at least 0.90 to 1.25% by weight.

本発明の電解二酸化マンガンは、洗浄前に中和することにより、表面硫酸痕を高度に除去することができる。電解二酸化マンガンは全体として含有する硫酸痕が1.30重量%未満であることが好ましい。   The electrolytic manganese dioxide of the present invention can highly remove surface sulfuric acid traces by neutralizing before washing. Electrolytic manganese dioxide preferably contains less than 1.30% by weight of sulfuric acid traces as a whole.

本発明の電解二酸化マンガンは、メジアン径(中央値)が30μm以上50μm以下であることが好ましく、35μm以上45μm以下であることがより好ましい。メジアン径が50μmを超えると粉末の反応表面積が低下して電池反応性が低下し易く、また、メジアン径が30μm未満の電解二酸化マンガン粉末では充填性が低下し、電池の容量エネルギー密度が低下する。   The electrolytic manganese dioxide of the present invention preferably has a median diameter (median value) of 30 μm or more and 50 μm or less, and more preferably 35 μm or more and 45 μm or less. When the median diameter exceeds 50 μm, the reaction surface area of the powder decreases and the battery reactivity tends to decrease, and with the electrolytic manganese dioxide powder having a median diameter of less than 30 μm, the packing property decreases and the capacity energy density of the battery decreases. .

本発明電解二酸化マンガンの最大粒子径は、特に制限はないが、250μm以下であることが好ましく、200μm以下であることがより好ましい。最大粒子径が250μmを超えるサイズの電解二酸化マンガンの粉末が存在すると、電池缶内を傷つける結果、電池缶に施した鍍金を破損し露出した鉄と反応してガス発生などを起こしやすい。さらに、電池内で負極と正極を絶縁するセパレータを破損しやすく、電池の保存中に自己放電を生じ容量低下を招きやすい。   The maximum particle diameter of the electrolytic manganese dioxide of the present invention is not particularly limited, but is preferably 250 μm or less, and more preferably 200 μm or less. If there is an electrolytic manganese dioxide powder having a maximum particle size exceeding 250 μm, the inside of the battery can is damaged. As a result, the plating applied to the battery can breaks and reacts with the exposed iron to easily generate gas. Furthermore, the separator that insulates the negative electrode from the positive electrode in the battery is likely to be damaged, and self-discharge occurs during storage of the battery, leading to a decrease in capacity.

本発明の電解二酸化マンガン粉末は、粒子径1μm以下の粒子の個数割合が3%以上25%以下であることが好ましい。電解二酸化マンガン中に含まれる粒子径1μm以下の粒子の個数割合が3%未満では、電解二酸化マンガンを加圧成形してなる粉末成形体が脆く崩れやすくなり、25%を超えるものでは、導電材との接触が不十分となり、有効に利用できる電解二酸化マンガンの量が少なくなりやすい。   In the electrolytic manganese dioxide powder of the present invention, the number ratio of particles having a particle diameter of 1 μm or less is preferably 3% or more and 25% or less. When the number ratio of particles having a particle diameter of 1 μm or less contained in electrolytic manganese dioxide is less than 3%, a powder molded body formed by pressure-molding electrolytic manganese dioxide becomes brittle and easily collapses. The amount of electrolytic manganese dioxide that can be effectively used tends to decrease.

本発明の電解二酸化マンガンにおけるBET比表面積は20m2/g以上50m2/g以下であることが好ましく、より好ましくは20m2/g以上40m2/g以下、さらには22m2/g以上32m2/g以下であることが好ましい。BET比表面積が20m2/gより低いと、電解二酸化マンガンの反応面積が低下するため、放電容量が低下する。一方、BET比表面積が50m2/gより大きいと、電解二酸化マンガンの充填性が低下し、電池を構成した場合の放電容量が低下しやすい。 The BET specific surface area of the electrolytic manganese dioxide of the present invention is preferably 20 m 2 / g or more and 50 m 2 / g or less, more preferably 20 m 2 / g or more and 40 m 2 / g or less, and further 22 m 2 / g or more and 32 m 2 or less. / G or less is preferable. When the BET specific surface area is lower than 20 m 2 / g, the reaction area of electrolytic manganese dioxide is reduced, so that the discharge capacity is reduced. On the other hand, when the BET specific surface area is larger than 50 m 2 / g, the filling property of electrolytic manganese dioxide is lowered, and the discharge capacity when the battery is configured is likely to be lowered.

本発明の電解二酸化マンガンは、金属材料に対する腐食速度が0.01mm/年以下であることが好ましい。腐食速度が0.01mm/年を越えると、正極材を製造する装置の金属部分や、乾電池内部の缶材などの金属材料を腐食しやすくなる。   As for the electrolytic manganese dioxide of this invention, it is preferable that the corrosion rate with respect to a metal material is 0.01 mm / year or less. When the corrosion rate exceeds 0.01 mm / year, the metal part of the apparatus for producing the positive electrode material and the metal material such as the can material inside the dry battery are easily corroded.

本発明の電解二酸化マンガンは、電池、特にアルカリ一次電池の正極材料として優れた性能を有するものである。   The electrolytic manganese dioxide of the present invention has excellent performance as a positive electrode material for batteries, particularly alkaline primary batteries.

電池正極材料に含まれる電解二酸化マンガン以外の組成物には特に限定はないが、導電材としてグラファイト、アセチレンブラックなどが例示でき、さらに電解液として水酸化カリウム水溶液などが例示できる。   The composition other than the electrolytic manganese dioxide contained in the battery positive electrode material is not particularly limited. Examples of the conductive material include graphite and acetylene black, and examples of the electrolytic solution include an aqueous potassium hydroxide solution.

本発明の電解二酸化マンガンは、ハイレート放電特性とミドルレート放電特性の両方の電池特性に優れ、且つ、金属材料に対する腐食が小さいものである。   The electrolytic manganese dioxide of the present invention is excellent in battery characteristics of both high rate discharge characteristics and middle rate discharge characteristics, and has little corrosion on metal materials.

放電特性評価用セルDischarge characteristic evaluation cell 金属腐食試験で使用した全塩ビ製腐食試験容器の模式図Schematic diagram of corrosion test vessel made of all PVC used in metal corrosion test

以下、本発明を実施例及び比較例により詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these Examples.

(中和処理のスラリーpH)
スラリーpHは、中和処理中の電解二酸化マンガンスラリーにpH標準電極を使用して測定した。
(Slurry pH for neutralization treatment)
The slurry pH was measured using a pH standard electrode on the electrolytic manganese dioxide slurry during neutralization.

(電解二酸化マンガンのJIS−pH)
JIS−pHはJIS K1467(塩化アンモニウム法)によって測定した。すなわち、一定量の塩化アンモニウム緩衝溶液に一定量の二酸化マンガンを入れ、上澄み液のpHを求める方法を用いた。
(JIS-pH of electrolytic manganese dioxide)
JIS-pH was measured by JIS K1467 (ammonium chloride method). That is, a method was used in which a certain amount of manganese dioxide was put into a certain amount of ammonium chloride buffer solution and the pH of the supernatant was obtained.

(硫酸根、ナトリウム含有量)
電解二酸化マンガン粉末粒子の硫酸根、ナトリウム含有量は、電解二酸化マンガン粉末を塩酸と過酸化水素水に溶解し、この溶解液を原子吸光法で測定して定量した。
(Sulfate radical, sodium content)
The sulfate radical and sodium content of the electrolytic manganese dioxide powder particles were quantified by dissolving the electrolytic manganese dioxide powder in hydrochloric acid and hydrogen peroxide solution, and measuring this dissolved solution by atomic absorption spectrometry.

(電解二酸化マンガンの電位)
電解二酸化マンガンの電位は、電解二酸化マンガン3gに導電剤としてカーボンを0.9g加えて混合粉体とし、この合粉体に40%KOH水溶液4mlを加え、電解二酸化マンガンとカーボンとKOH水溶液の混合物スラリーとした。この混合物スラリーの電位を水銀/酸化水銀参照電極を基準として電解二酸化マンガンのアルカリ電位を測定した。
(Electrolytic manganese dioxide potential)
The potential of electrolytic manganese dioxide is 0.9 g of carbon as a conductive agent added to 3 g of electrolytic manganese dioxide to obtain a mixed powder, and 4 ml of 40% KOH aqueous solution is added to this mixed powder, and a mixture of electrolytic manganese dioxide, carbon, and KOH aqueous solution. A slurry was obtained. The alkaline potential of the electrolytic manganese dioxide was measured with respect to the potential of the mixture slurry with reference to a mercury / mercury oxide reference electrode.

(XRD測定における半価全幅(FWHM)の測定)
電解二酸化マンガンの2θが22±1°付近の回折線の半価全幅(FWHM)を、一般的なX線回折装置(マックサイエンス社製MXP−3)を使用して測定した。線源にはCuKα線(λ=1.5405Å)を用い、測定モードはステップスキャン、スキャン条件は毎秒0.04°、計測時間は3秒、および測定範囲は2θとして5°から80°の範囲で測定した。
(Measurement of full width at half maximum (FWHM) in XRD measurement)
The full width at half maximum (FWHM) of a diffraction line having 2θ of about 22 ± 1 ° of electrolytic manganese dioxide was measured using a general X-ray diffractometer (MXP-3 manufactured by Mac Science). A CuKα ray (λ = 1.5405 mm) is used as the radiation source, the measurement mode is step scan, the scan condition is 0.04 ° per second, the measurement time is 3 seconds, and the measurement range is 2 ° to 5 ° to 80 °. Measured with

(XRD測定による(110)面間隔の算出)
電解二酸化マンガンの2θが22±1°付近の回折線をガウス処理して、ピークトップの2θを求めた。求めた2θ値からブラッグの式(nλ=2dsinθ,n=1)からdを算出して(110)面の面間隔とした。
(Calculation of (110) spacing by XRD measurement)
The diffraction line of electrolytic manganese dioxide with 2θ of around 22 ± 1 ° was Gaussian treated to determine the peak top 2θ. From the obtained 2θ value, d was calculated from the Bragg equation (nλ = 2dsinθ, n = 1) to obtain the (110) plane spacing.

(XRD測定による(110)/(021)強度比の算出)
2θが22±1°付近の回折線を(110)、37±1°付近の回折線を(021)として、(110)のピーク強度を(021)のピーク強度で除することにより(110)/(021)のピーク強度比を求めた。
(Calculation of (110) / (021) intensity ratio by XRD measurement)
By dividing the diffraction intensity of 2θ around 22 ± 1 ° as (110) and the diffraction line around 37 ± 1 ° as (021), the peak intensity of (110) is divided by the peak intensity of (021) (110). / (021) peak intensity ratio was determined.

(電解二酸化マンガンのBET比表面積の測定)
電解二酸化マンガンのBET比表面積は、BET1点法の窒素吸着により測定した。なお、BET比表面積の測定に使用した電解二酸化マンガンは、BET比表面積の測定に先立ち、150℃で40分間加熱して脱気処理を行った。
(Measurement of BET specific surface area of electrolytic manganese dioxide)
The BET specific surface area of electrolytic manganese dioxide was measured by nitrogen adsorption according to the BET one-point method. The electrolytic manganese dioxide used for the measurement of the BET specific surface area was deaerated by heating at 150 ° C. for 40 minutes prior to the measurement of the BET specific surface area.

(メジアン径)
電解二酸化マンガンを分散懸濁した溶液にレーザー光を照射し、その散乱光により測定する光散乱法(日機装社製、商品名:マイクロトラック)を用いて電解二酸化マンガンの粒子径と個数を測定しメジアン径を測定した。
(Median diameter)
The particle size and number of electrolytic manganese dioxide are measured using a light scattering method (trade name: Microtrac, manufactured by Nikkiso Co., Ltd.) that measures the scattered light by irradiating laser light to a solution in which electrolytic manganese dioxide is dispersed and suspended. The median diameter was measured.

(ハイレート放電特性評価)
電解二酸化マンガン粉末90.0%、グラファイト6.0%及び40%水酸化カリウム電解液4.0%で構成される混合粉5gを2トンの成形圧でリング状に成形した成形体2個を組み合わせて正極とし、亜鉛を含む負極材を負極にして、単三型の電池を組み立てた。この単三型電池を常温で24時間放置後、放電試験を行った。放電条件は1000mAで10秒放電の後50秒休止するサイクルを1パルスとして、終止電圧0.9Vに達するまでのパルス回数を測定し、比較例1の電解二酸化マンガンを用いた際のパルス回数を100としたときの相対値で示した。
(High-rate discharge characteristics evaluation)
Two compacts obtained by molding 5 g of mixed powder composed of electrolytic manganese dioxide powder 90.0%, graphite 6.0% and 40% potassium hydroxide electrolyte 4.0% into a ring shape with a molding pressure of 2 tons. AA type batteries were assembled using a positive electrode combined with a negative electrode material containing zinc. This AA battery was left at room temperature for 24 hours, and then a discharge test was conducted. The discharge condition was 1000 mA, 10 seconds of discharge followed by 50 seconds of rest as one pulse, the number of pulses until the final voltage of 0.9 V was reached, and the number of pulses when using the electrolytic manganese dioxide of Comparative Example 1 was determined. The relative value when 100 is assumed.

(ミドルレート放電特性評価)
電解二酸化マンガン粉末90.0%、グラファイト6.0%及び40%水酸化カリウム電解液4.0%で構成される混合粉5gを2トンの成形圧でリング状に成形した成形体2個を組み合わせて正極とし、亜鉛を含む負極材を負極にして、単三型の電池を組み立てた。この単三型電池を常温で24時間放置後、放電試験を行った。放電条件は250mAの連続放電で、終止電圧0.9Vに達するまでの放電時間を測定し、比較例1の電解二酸化マンガンを用いた際の放電時間を100としたときの相対値で示した。
(Evaluation of middle rate discharge characteristics)
Two compacts obtained by molding 5 g of mixed powder composed of electrolytic manganese dioxide powder 90.0%, graphite 6.0% and 40% potassium hydroxide electrolyte 4.0% into a ring shape with a molding pressure of 2 tons. AA type batteries were assembled using a positive electrode combined with a negative electrode material containing zinc. This AA battery was left at room temperature for 24 hours, and then a discharge test was conducted. The discharge conditions were a continuous discharge of 250 mA, the discharge time until reaching the final voltage of 0.9 V was measured, and the relative value was shown when the discharge time when using the electrolytic manganese dioxide of Comparative Example 1 was 100.

(金属腐食試験)
電解二酸化マンガン粉末10g、グラファイト0.7g及び40%水酸化カリウム電解液0.3gで構成される混合粉を2.5トンの成型圧でペレット状の成型体(20Φ)を作製した。続いて、このペレット成型体を全塩ビ製腐食試験容器(図1)の底部に挿入し、その上に電池正極材成型用の金型材料として一般的なSKD−11板を研磨した後に乗せた。次に、塩ビ製の押え板をSKD−11板の上に乗せ、スクリュー式のコックをトルクレンチ5N・mで押圧してから、60℃、湿度95%の恒温恒湿装置に2日間静置した。
(Metal corrosion test)
A pellet-shaped molded body (20Φ) of a mixed powder composed of 10 g of electrolytic manganese dioxide powder, 0.7 g of graphite, and 0.3 g of 40% potassium hydroxide electrolyte was prepared at a molding pressure of 2.5 tons. Subsequently, this pellet molded body was inserted into the bottom portion of the all-vinyl chloride corrosion test container (FIG. 1), and a general SKD-11 plate as a mold material for molding the battery positive electrode material was polished thereon and placed thereon. . Next, a PVC presser plate is placed on the SKD-11 plate, and the screw-type cock is pressed with a torque wrench 5 N · m. did.

2日後に、SKD−11板を取り出し、重曹処理してペレット成型体を十分除去した後、水洗、アセトン洗浄し、1時間乾燥した。腐食速度は、この腐食試験前後のSKD−11板の重量変化から、年あたりの減少厚みとして算出して腐食速度とした。   Two days later, the SKD-11 plate was taken out and treated with baking soda to sufficiently remove the pellet molded body, then washed with water, washed with acetone, and dried for 1 hour. The corrosion rate was calculated as the reduced thickness per year from the weight change of the SKD-11 plate before and after this corrosion test, and was used as the corrosion rate.

実施例1
加温装置を有し、陽極としてチタン板、陰極として黒鉛板をそれぞれ向かい合うように懸垂せしめた内容積12リットルの電解槽を用いて電解を行った。
Example 1
Electrolysis was carried out using an electrolytic cell having an internal volume of 12 liters, which had a heating device, and suspended a titanium plate as an anode and a graphite plate as a cathode so as to face each other.

電解では、電解供給液にはマンガンイオン濃度40g/lの硫酸マンガン溶液を用い、電流密度0.55A/dm、電解槽の温度を96℃に保ちながら、電解初期と電解後半の硫酸濃度を25.0g/l、40g/lとなるように調整し、前半の硫酸濃度で12日、後半の硫酸濃度で5日で計17日電解を行った。 In the electrolysis, a manganese sulfate solution having a manganese ion concentration of 40 g / l is used as an electrolytic supply solution, and the sulfuric acid concentrations in the initial stage and the latter half of the electrolysis are set while maintaining a current density of 0.55 A / dm 2 and an electrolytic cell temperature of 96 ° C. The electrolysis was carried out for a total of 17 days, with the sulfuric acid concentration in the first half being 12 days and the sulfuric acid concentration in the latter half being 5 days, adjusted to 25.0 g / l and 40 g / l.

電解後、電着した板状の電解二酸化マンガンを純水にて洗浄後、打撃により剥離し、得られた塊状物をボールミルで粉砕して、電解二酸化マンガンの粉砕物を得た。   After electrolysis, the electrodeposited plate-like electrolytic manganese dioxide was washed with pure water and then peeled off by impact. The resulting mass was pulverized with a ball mill to obtain an electrolytic manganese dioxide pulverized product.

次に、中和処理として、この電解二酸化マンガン粉砕物を水槽に入れて200g/lのスラリー状とし、撹拌しながら、そのスラリーpHが4.5になるように20%水酸化ナトリウム溶液を添加し、60分間撹拌を行った。   Next, as a neutralization treatment, this electrolytic manganese dioxide pulverized product is put into a water tank to form a slurry of 200 g / l, and with stirring, a 20% sodium hydroxide solution is added so that the slurry pH becomes 4.5. And stirred for 60 minutes.

次に、撹拌を止めて、15分間静定した後、上澄み部分をデカンテーションで取り除き、新たに水を加えて洗浄を行う操作を2回行ない洗浄処理とした。続いて、ろ過分離、乾燥を行い電解二酸化マンガン粉末を得た。   Next, after stirring was stopped and the mixture was allowed to stand for 15 minutes, the supernatant was removed by decantation, and washing was performed by newly adding water to perform washing treatment twice. Subsequently, separation by filtration and drying were performed to obtain electrolytic manganese dioxide powder.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

実施例2
電解後半の硫酸濃度を65g/lとなるように調整し、電流密度0.57A/dmで、前半の濃度で12日、後半の濃度で4日の計16日間電解を行った以外は実施例1と同様な方法で電解を行った。
Example 2
The sulfuric acid concentration in the latter half of the electrolysis was adjusted to 65 g / l, and the electrolysis was carried out at a current density of 0.57 A / dm 2 except that electrolysis was performed for a total of 16 days for 12 days in the first half and 4 days in the second half. Electrolysis was performed in the same manner as in Example 1.

電解後、スラリーpHを4.8として中和処理をし、洗浄操作を1回とした以外は実施例1と同様な方法で処理し、電解二酸化マンガン粉末を得た。   After electrolysis, the slurry was neutralized with a slurry pH of 4.8 and treated in the same manner as in Example 1 except that the washing operation was performed once to obtain electrolytic manganese dioxide powder.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

実施例3
中和処理においてスラリーpHを4.2とした以外は実施例2と同様の方法で処理し、電解二酸化マンガン粉末を得た。
Example 3
The neutralization treatment was carried out in the same manner as in Example 2 except that the slurry pH was changed to 4.2 to obtain electrolytic manganese dioxide powder.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

実施例4
電解供給液にマンガンイオン濃度40.3g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を23.4g/l、電解後半の硫酸濃度を40.0g/lとなるように調整し、前半の硫酸濃度で5日、後半の硫酸濃度で5日の計10日間電解を行った以外は実施例1と同様な条件で電解を行なった。
Example 4
A manganese sulfate solution having a manganese ion concentration of 40.3 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 23.4 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 40.0 g / l. The electrolysis was performed under the same conditions as in Example 1 except that the electrolysis was carried out for 10 days in total for 5 days at a sulfuric acid concentration of 5 days and at a sulfuric acid concentration of the latter half for 5 days.

電解後、pHが2.8になるよう中和処理をした以外は実施例1と同様な方法によって電解二酸化マンガン粉末を得た。   After the electrolysis, an electrolytic manganese dioxide powder was obtained in the same manner as in Example 1 except that the neutralization treatment was performed so that the pH became 2.8.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

実施例5
電解供給液にマンガンイオン濃度40.1g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を23.2g/l、電解後半の硫酸濃度を39.6g/lとなるように調整し、前半の硫酸濃度で5日、後半の硫酸濃度で5日の計10日間電解を行った以外は実施例1と同様な条件で電解を行なった。
Example 5
A manganese sulfate solution having a manganese ion concentration of 40.1 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 23.2 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 39.6 g / l. The electrolysis was performed under the same conditions as in Example 1 except that the electrolysis was carried out for 10 days in total for 5 days at a sulfuric acid concentration of 5 days and at a sulfuric acid concentration of the latter half for 5 days.

電解後、スラリーのpHが2.8になるように中和処理をした以外は実施例1と同様な方法によって電解二酸化マンガン粉末を得た。   After electrolysis, an electrolytic manganese dioxide powder was obtained by the same method as in Example 1 except that the slurry was neutralized so that the pH of the slurry was 2.8.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

実施例6
電解供給液にマンガンイオン濃度40.1g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を24.9g/l、電解後半の硫酸濃度を36.2g/lとなるように調整し、前半の硫酸濃度で5日、後半の硫酸濃度で5日の計10日間電解を行った以外は実施例1と同様な条件で電解を行なった。
Example 6
A manganese sulfate solution having a manganese ion concentration of 40.1 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 24.9 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 36.2 g / l. The electrolysis was performed under the same conditions as in Example 1 except that the electrolysis was carried out for 10 days in total for 5 days at a sulfuric acid concentration of 5 days and at a sulfuric acid concentration of the latter half for 5 days.

電解後、スラリーのpHが2.79になるように中和処理をした以外は実施例1と同様な方法によって電解二酸化マンガン粉末を得た。   After electrolysis, an electrolytic manganese dioxide powder was obtained in the same manner as in Example 1 except that the slurry was neutralized so that the pH of the slurry was 2.79.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

実施例7
電解供給液にマンガンイオン濃度39.4g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を28.6g/l、電解後半の硫酸濃度を36.5g/lとなるように調整し、前半の硫酸濃度で5日、後半の硫酸濃度で5日の計10日間電解を行った以外は実施例1と同様な条件で電解を行なった。
Example 7
A manganese sulfate solution having a manganese ion concentration of 39.4 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 28.6 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 36.5 g / l. The electrolysis was performed under the same conditions as in Example 1 except that the electrolysis was carried out for 10 days in total for 5 days at a sulfuric acid concentration of 5 days and at a sulfuric acid concentration of the latter half for 5 days.

電解後、スラリーのpHが2.79になるように中和処理をした以外は実施例1と同様な方法によって電解二酸化マンガン粉末を得た。   After electrolysis, an electrolytic manganese dioxide powder was obtained in the same manner as in Example 1 except that the slurry was neutralized so that the pH of the slurry was 2.79.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

実施例8
実施例1と同様な条件で電解を行なった。
Example 8
Electrolysis was performed under the same conditions as in Example 1.

電解後、スラリーのpHが2.6になるように中和処理をした以外は実施例1と同様な方法によって電解二酸化マンガン粉末を得た。   After electrolysis, an electrolytic manganese dioxide powder was obtained in the same manner as in Example 1 except that the slurry was neutralized so that the pH of the slurry was 2.6.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

実施例9
電解供給液にマンガンイオン濃度40.0g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を25.2g/l、電解後半の硫酸濃度を40.0g/lとなるように調整し、前半の硫酸濃度で12日、後半の硫酸濃度で5日の計17日間電解を行った以外は実施例1と同様な条件で電解を行なった。
Example 9
A manganese sulfate solution having a manganese ion concentration of 40.0 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 25.2 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 40.0 g / l. The electrolysis was carried out under the same conditions as in Example 1 except that electrolysis was carried out for a total of 17 days with a sulfuric acid concentration of 12 days and a sulfuric acid concentration of the latter half for 5 days.

電解後、スラリーのpHが2.6になるように中和処理をした以外は実施例1と同様な方法によって電解二酸化マンガン粉末を得た。   After electrolysis, an electrolytic manganese dioxide powder was obtained in the same manner as in Example 1 except that the slurry was neutralized so that the pH of the slurry was 2.6.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

実施例10
電解供給液にマンガンイオン濃度40.0g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を24.6g/l、電解後半の硫酸濃度を39.5g/lとなるように調整し、前半の硫酸濃度で12日、後半の硫酸濃度で5日の計17日間電解を行った以外は実施例1と同様な条件で電解を行なった。
Example 10
A manganese sulfate solution having a manganese ion concentration of 40.0 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 24.6 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 39.5 g / l. The electrolysis was carried out under the same conditions as in Example 1 except that electrolysis was carried out for a total of 17 days with a sulfuric acid concentration of 12 days and a sulfuric acid concentration of the latter half for 5 days.

電解後、スラリーのpHが2.6になるように中和処理をした以外は実施例1と同様な方法によって電解二酸化マンガン粉末を得た。   After electrolysis, an electrolytic manganese dioxide powder was obtained in the same manner as in Example 1 except that the slurry was neutralized so that the pH of the slurry was 2.6.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

実施例11
電解供給液にマンガンイオン濃度40.0g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を25.0g/l、電解後半の硫酸濃度を39.6g/lとなるように調整し、前半の硫酸濃度で12日、後半の硫酸濃度で5日の計17日間電解を行った以外は実施例1と同様な条件で電解を行なった。
Example 11
A manganese sulfate solution having a manganese ion concentration of 40.0 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 25.0 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 39.6 g / l. The electrolysis was carried out under the same conditions as in Example 1 except that electrolysis was carried out for a total of 17 days with a sulfuric acid concentration of 12 days and a sulfuric acid concentration of the latter half for 5 days.

電解後、スラリーのpHが2.6になるように中和処理をした以外は実施例1と同様な方法によって電解二酸化マンガン粉末を得た。   After electrolysis, an electrolytic manganese dioxide powder was obtained in the same manner as in Example 1 except that the slurry was neutralized so that the pH of the slurry was 2.6.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

比較例1
電解から粉砕までを実施例1と同様な条件で行い、電解二酸化マンガンの粉砕物を得た。
Comparative Example 1
The process from electrolysis to pulverization was performed under the same conditions as in Example 1 to obtain a pulverized product of electrolytic manganese dioxide.

次に、水洗処理として、この電解二酸化マンガン粉砕物を水槽に入れて500g/lのスラリー状とし、20分間撹拌しながら、15分間静定した後、上澄み部分をデカンテーションで取り除き、新たに水を加えて洗浄を行う操作を3回行った。続いて、中和処理として、スラリーpHが5.6になるように、同液に20%水酸化ナトリウムを加え、60分間撹拌を行い、続いて、ろ過分離、乾燥を行って、電解二酸化マンガン粉末を得た。   Next, as a water washing treatment, this electrolytic manganese dioxide pulverized product is put in a water tank to form a slurry of 500 g / l, and is left for 15 minutes while stirring for 20 minutes. Then, the supernatant is removed by decantation, and water is newly added. The washing operation was performed three times. Subsequently, as a neutralization treatment, 20% sodium hydroxide was added to the same solution so that the slurry pH was 5.6, and the mixture was stirred for 60 minutes, followed by filtration and drying, and electrolytic manganese dioxide. A powder was obtained.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

比較例2
電解から粉砕までを実施例2と同様な条件で行い、電解二酸化マンガンの粉砕物を得た。
Comparative Example 2
The process from electrolysis to pulverization was performed under the same conditions as in Example 2 to obtain a pulverized product of electrolytic manganese dioxide.

次に、比較例1と同様な処理により電解二酸化マンガン粉末を得た。   Next, electrolytic manganese dioxide powder was obtained by the same treatment as in Comparative Example 1.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

比較例2はアルカリ電位が高かったが、ハイレート放電特性およびミドルレート放電特性が共に低かった。   In Comparative Example 2, the alkaline potential was high, but both the high rate discharge characteristics and the middle rate discharge characteristics were low.

比較例3
電解供給液にマンガンイオン濃度40g/lの硫酸マンガン溶液を用い、電解開始から電解終了までの電解液の組成がマンガンイオン濃度26g/l、硫酸濃度33g/lとなるように調整して14日間電解した以外は実施例1と同様に電解を行なった以外は比較例1と同様な処理によって電解二酸化マンガン粉末を得た。
Comparative Example 3
A manganese sulfate solution having a manganese ion concentration of 40 g / l was used as the electrolyte supply solution, and the composition of the electrolyte solution from the start of electrolysis to the end of electrolysis was adjusted to a manganese ion concentration of 26 g / l and a sulfuric acid concentration of 33 g / l for 14 days. An electrolytic manganese dioxide powder was obtained by the same treatment as in Comparative Example 1 except that electrolysis was performed in the same manner as in Example 1 except that electrolysis was performed.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

本比較例は一般的な製造条件で製造された電解二酸化マンガンであり、ハイレート放電特性、ミドルレート放電特性がともに低かった。   This comparative example was an electrolytic manganese dioxide produced under general production conditions, and both high rate discharge characteristics and middle rate discharge characteristics were low.

比較例4
電解条件を比較例3と同様にし、電解後の処理において中和処理のスラリーpHを4.2とした以外は実施例1と同様に処理を行って電解二酸化マンガン粉末を得た。
Comparative Example 4
The electrolytic conditions were the same as in Comparative Example 3, and the treatment was performed in the same manner as in Example 1 except that the slurry pH for neutralization was changed to 4.2 in the treatment after electrolysis to obtain electrolytic manganese dioxide powder.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

比較例5
中和処理を行わなかった以外は比較例3と同様の方法で電解二酸化マンガン粉末を得た。
Comparative Example 5
An electrolytic manganese dioxide powder was obtained in the same manner as in Comparative Example 3 except that the neutralization treatment was not performed.

得られた電解二酸化マンガンの製造条件を表1に、結果を表2に示した。   The production conditions for the obtained electrolytic manganese dioxide are shown in Table 1, and the results are shown in Table 2.

Figure 2011140711
Figure 2011140711

Figure 2011140711
Figure 2011140711

本発明の製造方法で得られる電解二酸化マンガンは、ハイレート放電特性およびミドルレート放電特性の両方の放電特性に優れ、かつ、腐食性が低い正極活物質として、アルカリマンガン乾電池に使用することができる。   The electrolytic manganese dioxide obtained by the production method of the present invention can be used for alkaline manganese dry batteries as a positive electrode active material that is excellent in both high-rate discharge characteristics and middle-rate discharge characteristics and has low corrosivity.

Claims (11)

電解終了時の電解液中の硫酸濃度が電解開始時の電解液中の硫酸濃度より高い濃度の硫酸−硫酸マンガン浴において二酸化マンガンを電解析出し、得られた電解二酸化マンガンを粉砕してスラリーを得、該スラリーをpHを2.0以上5.0以下に中和した後に洗浄し、乾燥することを特徴とする電解二酸化マンガンの製造方法。   Manganese dioxide is electrolytically deposited in a sulfuric acid-manganese sulfate bath in which the sulfuric acid concentration in the electrolytic solution at the end of electrolysis is higher than the sulfuric acid concentration in the electrolytic solution at the start of electrolysis. A method for producing electrolytic manganese dioxide, characterized in that the slurry is neutralized to a pH of 2.0 to 5.0 and then washed and dried. 電解開始時における電解液中の硫酸濃度が20〜45g/Lであり、電解終了時の電解液中の硫酸濃度が電解開始時の硫酸濃度より高く、かつ、30〜75g/Lであることを特徴とする請求項1に記載の電解二酸化マンガンの製造方法。   The sulfuric acid concentration in the electrolytic solution at the start of electrolysis is 20 to 45 g / L, the sulfuric acid concentration in the electrolytic solution at the end of electrolysis is higher than the sulfuric acid concentration at the start of electrolysis, and 30 to 75 g / L. The method for producing electrolytic manganese dioxide according to claim 1, characterized in that: 電解二酸化マンガン中のアルカリ金属含有量を0.02重量%以上0.10重量%未満まで洗浄することを特徴とする請求項1又は2に記載の電解二酸化マンガンの製造方法。   The method for producing electrolytic manganese dioxide according to claim 1 or 2, wherein the alkali metal content in the electrolytic manganese dioxide is washed to 0.02 wt% or more and less than 0.10 wt%. 電解二酸化マンガン中の硫酸根含有量を1.30重量%未満まで洗浄することを特徴とする請求項1乃至3のいずれかに記載の電解二酸化マンガンの製造方法。   4. The method for producing electrolytic manganese dioxide according to claim 1, wherein the sulfate group content in the electrolytic manganese dioxide is washed to less than 1.30% by weight. 40%KOH水溶液中で水銀/酸化水銀参照電極を基準として測定したときの電位が280mV以上、JIS−pH(JISK1467)が1.5以上2.6未満、ナトリウム含有量が0.02重量%以上0.10重量%未満であることを特徴とする電解二酸化マンガン。   Potential measured in a 40% KOH aqueous solution based on a mercury / mercury oxide reference electrode is 280 mV or more, JIS-pH (JIS K1467) is 1.5 or more and less than 2.6, and sodium content is 0.02% by weight or more. Electrolytic manganese dioxide characterized by being less than 0.10% by weight. CuKα線を光源とするXRD測定における(110)面の半値幅が2.2°以上2.9°以下であることが好ましく、さらにX線回折ピーク(110)/(021)のピーク強度比が0.50以上0.80以下であることを特徴とする請求項5に記載の電解二酸化マンガン。   It is preferable that the half width of the (110) plane in XRD measurement using CuKα rays as a light source is 2.2 ° or more and 2.9 ° or less, and the peak intensity ratio of the X-ray diffraction peaks (110) / (021) is It is 0.50 or more and 0.80 or less, The electrolytic manganese dioxide of Claim 5 characterized by the above-mentioned. 硫酸根含有量が1.30重量%未満であることを特徴とする請求項5又は6に記載の電解二酸化マンガン。   The electrolytic manganese dioxide according to claim 5 or 6, wherein the sulfate radical content is less than 1.30% by weight. メジアン径が30μm以上50μm以下であることを特徴とする請求項5乃至7のいずれかに記載の電解二酸化マンガン。   The electrolytic manganese dioxide according to any one of claims 5 to 7, wherein a median diameter is 30 µm or more and 50 µm or less. BET比表面積が20m2/g以上50m2/g以下であることを特徴とする請求項5乃至8のいずれかに記載の電解二酸化マンガン。 The electrolytic manganese dioxide according to any one of claims 5 to 8, wherein the BET specific surface area is 20 m 2 / g or more and 50 m 2 / g or less. 請求項5乃至9のいずれかに記載の電解二酸化マンガンを含んでなる電池用正極活物質。   A positive electrode active material for a battery, comprising the electrolytic manganese dioxide according to any one of claims 5 to 9. 請求項9の電池用正極活物質を含んでなる電池。   A battery comprising the battery positive electrode active material according to claim 9.
JP2010237431A 2009-12-08 2010-10-22 Electrolytic manganese dioxide, method for producing the same, and use thereof Active JP5633301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010237431A JP5633301B2 (en) 2009-12-08 2010-10-22 Electrolytic manganese dioxide, method for producing the same, and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009278237 2009-12-08
JP2009278237 2009-12-08
JP2010237431A JP5633301B2 (en) 2009-12-08 2010-10-22 Electrolytic manganese dioxide, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2011140711A true JP2011140711A (en) 2011-07-21
JP5633301B2 JP5633301B2 (en) 2014-12-03

Family

ID=44456762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010237431A Active JP5633301B2 (en) 2009-12-08 2010-10-22 Electrolytic manganese dioxide, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP5633301B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057860A1 (en) * 2011-10-21 2013-04-25 パナソニック株式会社 Alkaline battery
WO2013157181A1 (en) * 2012-04-16 2013-10-24 パナソニック株式会社 Alkaline battery
JP2017179583A (en) * 2016-03-29 2017-10-05 東ソー株式会社 Electrolytic manganese dioxide, manufacturing method therefor and applications thereof
WO2017170240A1 (en) * 2016-03-29 2017-10-05 東ソー株式会社 Electrolytic manganese dioxide, method for manufacturing same, and use for same
JP2018076222A (en) * 2016-10-31 2018-05-17 東ソー株式会社 Electrolytic manganese dioxide, and use thereof
CN114507865A (en) * 2021-12-30 2022-05-17 广西汇元锰业有限责任公司 Pulse electrolysis method for electrolytic manganese dioxide and electrolytic manganese dioxide

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933544B2 (en) * 1980-07-18 1984-08-16 日本重化学工業株式会社 Manufacturing method of electrolytic manganese dioxide
JPH0499293A (en) * 1990-08-08 1992-03-31 Mitsui Mining & Smelting Co Ltd Production of manganese dioxide
JPH07245109A (en) * 1994-03-03 1995-09-19 Mitsui Mining & Smelting Co Ltd Manganese dry battery
JP2000036304A (en) * 1998-07-17 2000-02-02 Tosoh Corp Manufacture of electrolytic manganese dioxide
JP2000272922A (en) * 1999-03-25 2000-10-03 Osaka City Composition for electrolytic formation of manganese oxide film
JP2001236957A (en) * 2000-02-25 2001-08-31 Mitsui Mining & Smelting Co Ltd Manganese dioxide for lithium primary battery and its manufacturing method
JP2004273169A (en) * 2003-03-05 2004-09-30 Mitsui Mining & Smelting Co Ltd Electrolytic manganese dioxide
JP2006108082A (en) * 2004-09-09 2006-04-20 Mitsui Mining & Smelting Co Ltd Manganese oxide powder for anode active substance
JP2008013427A (en) * 2006-06-07 2008-01-24 Tosoh Corp Electrolytic manganese dioxide
JP2008210746A (en) * 2007-02-28 2008-09-11 Matsushita Electric Ind Co Ltd Manganese dioxide and battery using the same
JP2009135067A (en) * 2007-02-14 2009-06-18 Tosoh Corp Electrolytic manganese dioxide, and production method and application therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933544B2 (en) * 1980-07-18 1984-08-16 日本重化学工業株式会社 Manufacturing method of electrolytic manganese dioxide
JPH0499293A (en) * 1990-08-08 1992-03-31 Mitsui Mining & Smelting Co Ltd Production of manganese dioxide
JPH07245109A (en) * 1994-03-03 1995-09-19 Mitsui Mining & Smelting Co Ltd Manganese dry battery
JP2000036304A (en) * 1998-07-17 2000-02-02 Tosoh Corp Manufacture of electrolytic manganese dioxide
JP2000272922A (en) * 1999-03-25 2000-10-03 Osaka City Composition for electrolytic formation of manganese oxide film
JP2001236957A (en) * 2000-02-25 2001-08-31 Mitsui Mining & Smelting Co Ltd Manganese dioxide for lithium primary battery and its manufacturing method
JP2004273169A (en) * 2003-03-05 2004-09-30 Mitsui Mining & Smelting Co Ltd Electrolytic manganese dioxide
JP2006108082A (en) * 2004-09-09 2006-04-20 Mitsui Mining & Smelting Co Ltd Manganese oxide powder for anode active substance
JP2008013427A (en) * 2006-06-07 2008-01-24 Tosoh Corp Electrolytic manganese dioxide
JP2009135067A (en) * 2007-02-14 2009-06-18 Tosoh Corp Electrolytic manganese dioxide, and production method and application therefor
JP2008210746A (en) * 2007-02-28 2008-09-11 Matsushita Electric Ind Co Ltd Manganese dioxide and battery using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057860A1 (en) * 2011-10-21 2013-04-25 パナソニック株式会社 Alkaline battery
JP5587438B2 (en) * 2011-10-21 2014-09-10 パナソニック株式会社 Alkaline battery
JPWO2013057860A1 (en) * 2011-10-21 2015-04-02 パナソニック株式会社 Alkaline battery
WO2013157181A1 (en) * 2012-04-16 2013-10-24 パナソニック株式会社 Alkaline battery
JP5602313B2 (en) * 2012-04-16 2014-10-08 パナソニック株式会社 Alkaline battery
JPWO2013157181A1 (en) * 2012-04-16 2015-12-21 パナソニック株式会社 Alkaline battery
JP2017179583A (en) * 2016-03-29 2017-10-05 東ソー株式会社 Electrolytic manganese dioxide, manufacturing method therefor and applications thereof
WO2017170240A1 (en) * 2016-03-29 2017-10-05 東ソー株式会社 Electrolytic manganese dioxide, method for manufacturing same, and use for same
EP3438328A4 (en) * 2016-03-29 2019-11-06 Tosoh Corporation Electrolytic manganese dioxide, method for manufacturing same, and use for same
US11214496B2 (en) 2016-03-29 2022-01-04 Tosoh Corporation Electrolytic manganese dioxide and method for its production, and its application
JP2018076222A (en) * 2016-10-31 2018-05-17 東ソー株式会社 Electrolytic manganese dioxide, and use thereof
JP7039927B2 (en) 2016-10-31 2022-03-23 東ソー株式会社 Electrolyzed manganese dioxide and its uses
CN114507865A (en) * 2021-12-30 2022-05-17 广西汇元锰业有限责任公司 Pulse electrolysis method for electrolytic manganese dioxide and electrolytic manganese dioxide

Also Published As

Publication number Publication date
JP5633301B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2011024765A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
JP5998510B2 (en) Electrolytic manganese dioxide and method for producing the same, and method for producing lithium manganese composite oxide
JP5633301B2 (en) Electrolytic manganese dioxide, method for producing the same, and use thereof
JP4888088B2 (en) Electrolytic manganese dioxide
JP5909845B2 (en) Electrolytic manganese dioxide, method for producing the same, and use thereof
US10033038B2 (en) Electrolytic manganese dioxide, method for producing same, and use of same
JP2009135067A (en) Electrolytic manganese dioxide, and production method and application therefor
JP6862766B2 (en) Electrolyzed manganese dioxide, its manufacturing method and its uses
JP6188738B2 (en) Electrolyte composition
JP7063007B2 (en) Electrolyzed manganese dioxide, its manufacturing method and its uses
JPH09188519A (en) Electrolyzed manganese dioxide, its production and manganese dry cell
WO2017170240A1 (en) Electrolytic manganese dioxide, method for manufacturing same, and use for same
Li et al. Influence of cetyltrimethylammonium bromide and sodium lauryl sulfate on production of zinc powders by alkaline electrowinning
JP7039927B2 (en) Electrolyzed manganese dioxide and its uses
JPWO2006040907A1 (en) Alkaline battery
JP2007005281A (en) Positive electrode for battery and its manufacturing method
JP5544798B2 (en) Method for producing lithium manganate and manganese dioxide used therefor
Mohanty et al. Facile Electrolytic Synthesis of ϒ-Manganese Dioxide From Manganese Sulphate Solutions In The Presence of Betaine
JP7501769B2 (en) Electrolytic manganese dioxide, its manufacturing method and uses
WO2024106304A1 (en) Electrolytic manganese dioxide, method for producing same, and use thereof
JPH03503333A (en) Method for producing improved electrolytic manganese dioxide
JP2013025942A (en) Lead battery and negative electrode plate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R151 Written notification of patent or utility model registration

Ref document number: 5633301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151