JP2011140041A - Casting method - Google Patents

Casting method Download PDF

Info

Publication number
JP2011140041A
JP2011140041A JP2010001771A JP2010001771A JP2011140041A JP 2011140041 A JP2011140041 A JP 2011140041A JP 2010001771 A JP2010001771 A JP 2010001771A JP 2010001771 A JP2010001771 A JP 2010001771A JP 2011140041 A JP2011140041 A JP 2011140041A
Authority
JP
Japan
Prior art keywords
mold
casting
casting method
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010001771A
Other languages
Japanese (ja)
Inventor
Yuriko Saito
侑里子 齋藤
Akihiko Kimazuka
明彦 木間塚
Yasunari Kuroki
康徳 黒木
Tomomichi Ozaki
智道 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010001771A priority Critical patent/JP2011140041A/en
Publication of JP2011140041A publication Critical patent/JP2011140041A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a casting method which can obtain a casting of high quality free from casting defects without taking much time and effort even if its shape is complicated. <P>SOLUTION: When a molten metal is poured into a mold 1 having a casting space at the inside, and casting is performed, the part 1a requiring the control of temperature is set in the mold 1, and the external surface in the part 1a requiring the control of temperature in the mold 1 is coated with a heat resistant paint P. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋳造方法に係わり、特にタービンブレードやベアリングハウジングなどの精密鋳造品を製造するのに好適な鋳造方法に関するものである。   The present invention relates to a casting method, and more particularly to a casting method suitable for producing precision castings such as turbine blades and bearing housings.

従来、上記した精密鋳造品の鋳造方法としては、例えば、特許文献1に記載された一方向凝固鋳造方法がある。この一方向凝固鋳造方法では、冷却プレート上にベースプレートを介して配置した鋳型を加熱炉内で加熱し、加熱された鋳型の鋳造空間に溶湯金属を注入して所定時間が経過した段階において、冷却プレートとともに鋳型を下降させて加熱炉から引き出して、鋳型の鋳造空間内の溶湯金属を下から上に向けて順次凝固させるようにしており、この際、ベースプレート上に水冷銅板を設置することで、ベースプレートが加熱されるのを防ぐようにしている。   Conventionally, as a casting method of the above-described precision casting product, for example, there is a unidirectional solidification casting method described in Patent Document 1. In this unidirectional solidification casting method, a mold placed on a cooling plate via a base plate is heated in a heating furnace, and the molten metal is injected into the casting space of the heated mold and cooling is performed after a predetermined time has elapsed. The mold is lowered with the plate and pulled out from the heating furnace, and the molten metal in the casting space of the mold is sequentially solidified from the bottom to the top.At this time, by installing a water-cooled copper plate on the base plate, The base plate is prevented from being heated.

特開2002-144019号公報Japanese Patent Laid-Open No. 2002-144019

ところが、上記した一方向凝固鋳造方法において、鋳型に対して凝固方向である鉛直方向の温度勾配を与えることはできるものの、凝固方向と直交する方向である水平方向の温度勾配については制御することができず、意図しない冷却過程による欠陥の発生が予想される部分については、この欠陥発生予想部分を断熱材で包むといった現場的手法を適宜採用することで冷却を遅らせるようにしている。   However, in the above-described unidirectional solidification casting method, although a temperature gradient in the vertical direction, which is the solidification direction, can be given to the mold, the temperature gradient in the horizontal direction, which is a direction orthogonal to the solidification direction, can be controlled. For a portion that cannot be generated and a defect is expected to occur due to an unintended cooling process, cooling is delayed by appropriately adopting an on-site method of wrapping the predicted defect generation portion with a heat insulating material.

つまり、鋳型の急冷却による欠陥発生予想部分を断熱材で包む分だけ手間隙がかかるのに加えて、形状が複雑な部分にはこの断熱材で包む手法を用いることが困難であるという問題を有しており、この問題を解決することが従来の課題となっていた。   In other words, there is a problem that it takes a lot of space to wrap the expected part of the defect due to rapid cooling of the mold with the heat insulating material, and it is difficult to use the method of wrapping with the heat insulating material for the complicated part. Therefore, it has been a conventional problem to solve this problem.

本発明は、上記した従来の課題に着目してなされたもので、鋳型の形状が複雑な部分に対しても、多くの手間隙をかけることなく温度を制御することができ、その結果、鋳造欠陥のない高品質な鋳造品を得ることが可能である鋳造方法を提供することを目的としている。   The present invention has been made by paying attention to the above-described conventional problems, and can control the temperature of a complex part of the mold without taking much time, resulting in a casting defect. It is an object of the present invention to provide a casting method capable of obtaining a high-quality cast product having no crack.

本発明の請求項1に係る鋳造方法は、内部に鋳造空間を有する鋳型に溶湯金属を注湯して鋳造を行うに際して、前記鋳型に温度を制御する部分を設定し、前記鋳型の温度を制御する部分における外部表面に、耐熱性塗料を塗布する構成としたことを特徴としており、この構成の鋳造方法を前述した従来の課題を解決するための手段としている。   In the casting method according to claim 1 of the present invention, when performing casting by pouring molten metal into a mold having a casting space therein, a temperature control portion is set in the mold, and the temperature of the mold is controlled. The heat-resistant paint is applied to the external surface of the portion to be applied, and the casting method of this structure is a means for solving the above-described conventional problems.

また、本発明の請求項2に係る鋳造方法は、内部に鋳造空間を有する鋳型に溶湯金属を注湯して行う鋳造が一方向凝固鋳造である構成としており、この鋳造方法は、タービンブレードやベアリングハウジングなどの精密鋳造品を製造するのに適していることから、本発明の請求項3に係る鋳造方法では、タービンブレードを鋳造により得る場合において、前記鋳型の温度を制御する部分が、前記タービンブレードの根元の凸部に対応させてある構成としている。   The casting method according to claim 2 of the present invention is such that casting performed by pouring molten metal into a mold having a casting space inside is unidirectional solidification casting, and this casting method includes a turbine blade, Since it is suitable for manufacturing precision castings such as bearing housings, in the casting method according to claim 3 of the present invention, when the turbine blade is obtained by casting, the part for controlling the temperature of the mold is The configuration corresponds to the convex portion at the base of the turbine blade.

本発明に係る鋳造方法において、鋳型の形状は、単純な形状及び複雑な形状のいずれであってもよい。また、鋳型の温度を制御する部分すなわち温度を制御したい部分における外部表面に塗布する耐熱性塗料としては、鋳型焼成温度に耐え得る塗料であれば、成分を問わず採用することができる。例えば、酸化コバルトから成る耐熱性塗料を採用することができ、塗料の色に関しては特に限定しない。   In the casting method according to the present invention, the shape of the mold may be either a simple shape or a complicated shape. In addition, as a heat-resistant paint applied to the outer surface of the part for controlling the temperature of the mold, that is, the part for which the temperature is desired to be controlled, any paint can be adopted as long as it can withstand the mold baking temperature. For example, a heat-resistant paint made of cobalt oxide can be employed, and the color of the paint is not particularly limited.

また、インベストメント鋳造法(別名ロストワックス鋳造法)においてワックス製模型に塗付される磁器原料や接着剤などの鋳型材も、耐熱性塗料として採用することができる。
例えば、酸化物セラミックス(アルミナAl2O3,ジルコンサンドZrSiO4など)を骨材として含むスラリー状あるいはパテ状のものを用いることができるほか、有機バインダー(エポキシ樹脂,PMMA(ポリメタクリル酸メチル樹脂),アクリル樹脂,ウレタン樹脂,ポリエステル樹脂,シリコーン樹脂など)や無機バインダー(アルカリシリケート,アルキルシリケートなど)を含むスラリー状あるいはパテ状のものを用いることができ、この際、造形した鋳型の所望の部位にピンポイントで塗布及び付着させることが可能であり、且つ、塗布及び付着させた後の鋳型焼成と同時に焼結して鋳型と一体化する性状のものを用いる。
Further, a mold material such as a porcelain raw material or an adhesive applied to a wax model in the investment casting method (also known as a lost wax casting method) can also be used as a heat resistant paint.
For example, a slurry or putty having oxide ceramics (alumina Al 2 O 3 , zircon sand ZrSiO 4 etc.) as an aggregate can be used, and an organic binder (epoxy resin, PMMA (polymethyl methacrylate resin) ), Acrylic resin, urethane resin, polyester resin, silicone resin, etc.) and slurry-like or putty-like materials containing inorganic binders (alkali silicate, alkyl silicate, etc.) can be used. A material that can be applied and adhered to a portion at a pinpoint and is sintered and integrated with the mold at the same time as the mold firing after the application and adhesion is used.

本発明に係る鋳造方法では、鋳型の温度を制御したい部分における外部表面に耐熱性塗料を塗布すると、鋳型と耐熱性塗料との間に熱伝達が生じて、この耐熱性塗料を塗布した部分の冷却が期待通りに遅れることとなり、すなわち、鋳型の部分毎に温度勾配が与えられることとなり、その結果、鋳型の鋳造空間の形状に起因する引け巣等の欠陥が生じるのを回避し得ることとなる。   In the casting method according to the present invention, when heat-resistant paint is applied to the outer surface of the part where the temperature of the mold is to be controlled, heat transfer occurs between the mold and the heat-resistant paint, and the heat-resistant paint is applied to the part where the heat-resistant paint is applied. Cooling will be delayed as expected, i.e., a temperature gradient will be given to each part of the mold, and as a result, defects such as shrinkage cavities due to the shape of the casting space of the mold can be avoided. Become.

このように、鋳型の外部表面に耐熱性塗料を塗布するといった簡単な作業で、鋳型の冷却を遅らせる部分をピンポイントでコントロールし得るので、複雑な形状を成していたとしても、多くの手間隙をかけることなく、鋳造欠陥のない高品質な鋳造品が得られることとなる。   In this way, it is possible to control the part that delays cooling of the mold by a simple operation such as applying a heat-resistant paint to the outer surface of the mold, so even if it has a complicated shape, many manual gaps are required. Thus, a high-quality cast product free from casting defects can be obtained.

本発明の請求項1及び2に係る鋳造方法では、上記した構成としているので、作業性の向上を実現したうえで、形状が複雑であったとしても、引け巣等の欠陥のない高品質な鋳造品を得ることが可能であるという非常に優れた効果がもたらされ、とくに、請求項3に係る鋳造方法では、品質の良いタービンブレードを製造することができるという非常に優れた効果がもたらされる。   In the casting method according to claims 1 and 2 of the present invention, since the above-described configuration is adopted, improvement in workability is realized, and even if the shape is complicated, high quality without defects such as shrinkage nests. A very excellent effect that it is possible to obtain a cast product is brought about. In particular, the casting method according to claim 3 brings about a very good effect that a turbine blade having a high quality can be manufactured. It is.

本発明の一実施例に係る一方向凝固鋳造方法で用いる鋳型の加熱炉内における配置状況を示す断面説明図である。It is sectional explanatory drawing which shows the arrangement | positioning condition in the heating furnace of the casting_mold | template used with the unidirectional solidification casting method which concerns on one Example of this invention. 図1に示した一方向凝固鋳造方法で用いる鋳型の全体斜視説明図(a)及びこの鋳型で製造される鋳造品の全体斜視説明図(b)である。It is the whole perspective explanatory drawing (a) of the casting_mold | template used with the unidirectional solidification casting method shown in FIG. 1, and the whole perspective explanatory drawing (b) of the cast product manufactured with this casting_mold | template. 本発明の一実施例に係る一方向凝固鋳造方法の効果を確かめるための実験に用いる鋳型モデルの一部を破断して示した正面説明図(a)及び側面方向からの断面説明図(b)である。Front explanatory drawing (a) which fractured | ruptured and showed a part of casting_mold | template model used for the experiment for confirming the effect of the unidirectional solidification casting method which concerns on one Example of this invention, and cross-sectional explanatory drawing from a side direction (b) It is. 本発明の一実施例に係る一方向凝固鋳造方法の実験結果を示す温度曲線図である。It is a temperature curve figure which shows the experimental result of the unidirectional solidification casting method which concerns on one Example of this invention.

以下、本発明を図面に基づいて説明する。
図1及び図2は本発明に係る鋳造方法の一実施例を示しており、この実施例では、本発明に係る鋳造方法を精密鋳造品として耐熱超合金から成るタービンブレードを製造する一方向凝固鋳造方法に適用した場合を例に挙げて説明する。
Hereinafter, the present invention will be described with reference to the drawings.
1 and 2 show an embodiment of a casting method according to the present invention. In this embodiment, unidirectional solidification for producing a turbine blade made of a heat-resistant superalloy using the casting method according to the present invention as a precision cast product is shown. A case where the present invention is applied to a casting method will be described as an example.

図1に示すように、この一方向凝固鋳造方法は、内部に鋳造空間を有する鋳型1を加熱炉2内に収容して行う鋳造方法であり、耐熱超合金の溶湯の酸化汚染を防止するために、加熱炉2内は真空又は不活性ガス雰囲気に保たれる。
鋳型1の鋳造空間の図示しない上端開口部は湯口であり、鋳造空間の図示しない下端開口部は水冷板3上に接した状態で固定される。この水冷板3は図示しない駆動機構により適宜速度で昇降可能となっており、鋳型1は加熱炉2とこの加熱炉2の下方に位置する冷却ゾーン4との間を行き来する。
また、この鋳型1は、鋳造空間内に注湯された溶湯金属が凝固しないように、加熱炉2内においてふく射加熱を受けて、耐熱超合金の凝固開始温度以上に保たれるようになっている。
As shown in FIG. 1, this unidirectionally solidified casting method is a casting method in which a mold 1 having a casting space inside is housed in a heating furnace 2 to prevent oxidation contamination of the molten heat-resistant superalloy. In addition, the inside of the heating furnace 2 is kept in a vacuum or an inert gas atmosphere.
An upper end opening (not shown) of the casting space of the mold 1 is a gate, and a lower opening (not shown) of the casting space is fixed in contact with the water cooling plate 3. The water cooling plate 3 can be moved up and down at an appropriate speed by a drive mechanism (not shown), and the mold 1 moves between the heating furnace 2 and the cooling zone 4 located below the heating furnace 2.
Further, the mold 1 is subjected to radiant heating in the heating furnace 2 so that the molten metal poured into the casting space does not solidify, and is maintained at a solidification start temperature of the heat-resistant superalloy or higher. Yes.

この一方向凝固鋳造方法では、まず、下降位置にある水冷板3上に鋳型1を下端開口部が接するようにして固定した後、駆動機構により水冷板3を上昇させ、真空加熱炉2内に鋳型1をセットしてふく射加熱を開始する(図1に示す状態)。   In this unidirectional solidification casting method, first, the mold 1 is fixed on the water-cooled plate 3 in the lowered position so that the lower end opening is in contact therewith, and then the water-cooled plate 3 is lifted by the drive mechanism, and placed in the vacuum heating furnace 2. The mold 1 is set and radiant heating is started (state shown in FIG. 1).

次いで、水冷板3上の鋳型1が溶湯金属の凝固温度以上に加熱された時点で、鋳型1の上部湯口から溶湯金属を注湯し、鋳型1内の溶湯金属の均熱化ないしは意図的な温度勾配設定のためにふく射加熱状態を維持する。   Next, when the mold 1 on the water-cooled plate 3 is heated to a temperature equal to or higher than the solidification temperature of the molten metal, the molten metal is poured from the upper gate of the mold 1 and the molten metal in the mold 1 is soaked or intentionally heated. Maintain radiant heating for temperature gradient setting.

そして、所定時間が経過した段階において、図1の矢印に示すように、駆動機構により水冷板3を下降させて鋳型1を加熱炉2から所定の速度で下方に引き抜き、鋳型1の鋳造空間内の溶湯金属を下から上に向けて順次凝固させる。   Then, when a predetermined time has elapsed, as shown by an arrow in FIG. 1, the water cooling plate 3 is lowered by the drive mechanism, and the mold 1 is drawn downward from the heating furnace 2 at a predetermined speed, and the casting space of the mold 1 is reduced. The molten metal is solidified sequentially from bottom to top.

上記した一方向凝固鋳造方法において、駆動機構による鋳型1の加熱炉2からの引き抜き速度を制御することで、大方の場合品質の良いタービンブレードを製造することができるが、図2(b)に示すように、タービンブレードBのプラットフォームなどと呼称される根元の凸部Ba(簡略的に示す)には、その形状の複雑さに起因して、引け巣などの欠陥が生じる可能性がある。なお、この欠陥が生じる位置は、新山パラメータという評価基準に基づいて予測される。   In the above-described unidirectional solidification casting method, by controlling the drawing speed of the casting mold 1 from the heating furnace 2 by the driving mechanism, a turbine blade with good quality can be manufactured in most cases. As shown, the root convex portion Ba (simply shown) referred to as the platform of the turbine blade B or the like may have a defect such as a shrinkage nest due to the complexity of its shape. Note that the position where this defect occurs is predicted based on an evaluation standard called a new mountain parameter.

このような欠陥が生じるのを回避するべく、この実施例では、図2(a)に示すように、鋳型1の欠陥の発生が予測される部分(鋳型1におけるタービンブレードの根元の凸部に対応する部分)を、冷却を遅らせるための温度を制御したい部分1aとして設定し、この鋳型1の温度を制御したい部分1aの外部表面に、耐熱性塗料P(例えば、酸化コバルトから成る耐熱性塗料)を塗布することにより温度を制御する。   In order to avoid the occurrence of such a defect, in this embodiment, as shown in FIG. 2A, a portion where a defect of the mold 1 is predicted to occur (in the convex portion at the root of the turbine blade in the mold 1). The corresponding part) is set as a part 1a for controlling the temperature for delaying cooling, and a heat-resistant paint P (for example, a heat-resistant paint made of cobalt oxide) is formed on the outer surface of the part 1a for controlling the temperature of the mold 1 ) Is applied to control the temperature.

このように、上記した一方向凝固鋳造方法では、温度を制御したい部分1aの外部表面に耐熱性塗料Pを塗布した鋳型1を用いて鋳造を行うことから、鋳型1に注湯された溶湯金属の凝固形態を制御することができ、したがって、タービンブレードBの根元の凸部Baに生じる欠陥リスクが減ることとなる。   In this way, in the above-described unidirectional solidification casting method, casting is performed using the mold 1 in which the heat-resistant paint P is applied to the outer surface of the portion 1a whose temperature is to be controlled, so that the molten metal poured into the mold 1 is poured. Therefore, the risk of defects occurring in the convex portion Ba at the root of the turbine blade B is reduced.

つまり、鋳型1の温度を制御したい部分1aに耐熱性塗料Pを塗布するといった簡単な作業で、鋳型1の冷却を遅らせる部分1aをピンポイントでコントロールし得るので、タービンブレードBのように複雑な形状を成していたとしても、多くの手間隙をかけることなく、高品質な鋳造品が得られることとなる。   That is, the portion 1a for delaying the cooling of the mold 1 can be controlled by a simple operation such as applying the heat-resistant paint P to the portion 1a where the temperature of the mold 1 is desired to be controlled. Even if it has a shape, a high-quality cast product can be obtained without much time.

そこで、上記した一方向凝固鋳造方法の効果を確かめるために、図3(a),(b)に示すように、略板状の鋳型本体12の正面12aに耐熱性塗料Pを塗布した鋳型モデル11を用いて一方向凝固鋳造を行った。   Therefore, in order to confirm the effect of the above-described unidirectional solidification casting method, as shown in FIGS. 3A and 3B, a mold model in which a heat-resistant paint P is applied to the front surface 12a of the substantially plate-shaped mold body 12. 11 was used for unidirectional solidification casting.

この実験において、加熱炉内温度を約1500℃、鋳型モデル11の加熱炉からの引き抜き速度を約150mm/h、鋳型モデル11における鋳型本体12の正面12aに塗布した耐熱性塗料Pを酸化コバルトから成る耐熱性塗料とした。
また、鋳型モデル11の内部において、鋳型本体12の背面12b側の2点A−1,B−1及び正面12a側の2点A−2,B−2を温度測定点とし、この際、背面12b側の温度測定点A−1と正面12a側の温度測定点A−2を同一高さとし、背面12b側の温度測定点B−1と正面12a側の温度測定点B−2も同一高さとした。
In this experiment, the temperature in the heating furnace is about 1500 ° C., the drawing speed of the mold model 11 from the heating furnace is about 150 mm / h, and the heat-resistant paint P applied to the front surface 12a of the mold body 12 in the mold model 11 is made of cobalt oxide. A heat-resistant paint consisting of
In the mold model 11, two points A-1 and B-1 on the back surface 12b side of the mold body 12 and two points A-2 and B-2 on the front surface 12a are used as temperature measurement points. The temperature measurement point A-1 on the 12b side and the temperature measurement point A-2 on the front 12a side have the same height, and the temperature measurement point B-1 on the back surface 12b side and the temperature measurement point B-2 on the front 12a side also have the same height. did.

図4に示す本実施例に係る一方向凝固鋳造方法の実験結果による温度曲線図では、同一高さの温度測定点、すなわち、温度測定点A−1,A−2、及び、温度測定点B−1,B−2において、いずれも耐熱性塗料Pを塗布した側の温度測定点A−2,B−2による測定温度が30〜100℃高くなっていることが判り、これらの測定結果から、本実施例に係る一方向凝固鋳造方法では、鋳型の冷却速度を局部的に制御し得ることが立証できた。   In the temperature curve diagram by the experimental result of the unidirectional solidification casting method according to the present embodiment shown in FIG. 4, temperature measurement points at the same height, that is, temperature measurement points A-1, A-2 and temperature measurement point B In -1, B-2, it can be seen that the measurement temperature at the temperature measurement points A-2, B-2 on the side where the heat-resistant paint P is applied is higher by 30 to 100 ° C. From these measurement results In the unidirectional solidification casting method according to this example, it was proved that the cooling rate of the mold can be locally controlled.

上記した実施例では、タービンブレードを製造する一方向凝固鋳造方法に本発明に係る鋳造方法を適用した場合を例に挙げて説明したが、これに限定されるものではなく、本発明に係る鋳造方法の構成も、上記した実施例の構成に限定されるものではない。   In the above-described embodiments, the case where the casting method according to the present invention is applied to the unidirectional solidification casting method for manufacturing a turbine blade has been described as an example, but the present invention is not limited thereto, and the casting according to the present invention is not limited thereto. The configuration of the method is not limited to the configuration of the above-described embodiment.

1 鋳型
1a 温度を制御したい部分
2 加熱炉
B タービンブレード(精密鋳造品)
P 耐熱塗料
1 Mold 1a Temperature control part 2 Heating furnace B Turbine blade (Precision casting)
P heat resistant paint

Claims (3)

内部に鋳造空間を有する鋳型に溶湯金属を注湯して鋳造を行うに際して、
前記鋳型に温度を制御する部分を設定し、前記鋳型の温度を制御する部分における外部表面に、耐熱性塗料を塗布する
ことを特徴とする鋳造方法。
When casting a molten metal into a mold having a casting space inside,
A casting method, wherein a temperature control portion is set on the mold, and a heat resistant paint is applied to an external surface of the mold temperature control portion.
内部に鋳造空間を有する鋳型に溶湯金属を注湯して行う鋳造が一方向凝固鋳造である請求項1に記載の鋳造方法。   The casting method according to claim 1, wherein casting performed by pouring molten metal into a mold having a casting space therein is unidirectional solidification casting. タービンブレードを鋳造により得る場合において、前記鋳型の温度を制御する部分が、前記タービンブレードの根元の凸部に対応させてある請求項1又は2に記載の鋳造方法。   3. The casting method according to claim 1, wherein, when the turbine blade is obtained by casting, a portion for controlling the temperature of the mold corresponds to a convex portion at a base of the turbine blade.
JP2010001771A 2010-01-07 2010-01-07 Casting method Pending JP2011140041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010001771A JP2011140041A (en) 2010-01-07 2010-01-07 Casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001771A JP2011140041A (en) 2010-01-07 2010-01-07 Casting method

Publications (1)

Publication Number Publication Date
JP2011140041A true JP2011140041A (en) 2011-07-21

Family

ID=44456276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010001771A Pending JP2011140041A (en) 2010-01-07 2010-01-07 Casting method

Country Status (1)

Country Link
JP (1) JP2011140041A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114436A (en) * 1979-02-28 1980-09-03 Hitachi Ltd Production of turbine blade material having crystal directivity
JPS56119660A (en) * 1980-01-30 1981-09-19 Trw Inc Method of casting monocrystal metallic article
JPH07314117A (en) * 1994-05-20 1995-12-05 Daido Steel Co Ltd Precision casting method and mold therefor
JP2002144019A (en) * 2000-11-02 2002-05-21 Mitsubishi Heavy Ind Ltd Unidirectional solidified casting method and apparatus therefor
JP2002336956A (en) * 2001-03-15 2002-11-26 Nissin Kogyo Co Ltd Reduction casting method and reduction casting apparatus
JP2007125615A (en) * 2005-10-04 2007-05-24 Mitsubishi Materials Corp Mold for precisely casting high melting point metal hollow drum-shaped casting and precise casting method for high melting point metal hollow drum-shaped casting using the mold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114436A (en) * 1979-02-28 1980-09-03 Hitachi Ltd Production of turbine blade material having crystal directivity
JPS56119660A (en) * 1980-01-30 1981-09-19 Trw Inc Method of casting monocrystal metallic article
JPH07314117A (en) * 1994-05-20 1995-12-05 Daido Steel Co Ltd Precision casting method and mold therefor
JP2002144019A (en) * 2000-11-02 2002-05-21 Mitsubishi Heavy Ind Ltd Unidirectional solidified casting method and apparatus therefor
JP2002336956A (en) * 2001-03-15 2002-11-26 Nissin Kogyo Co Ltd Reduction casting method and reduction casting apparatus
JP2007125615A (en) * 2005-10-04 2007-05-24 Mitsubishi Materials Corp Mold for precisely casting high melting point metal hollow drum-shaped casting and precise casting method for high melting point metal hollow drum-shaped casting using the mold

Similar Documents

Publication Publication Date Title
JP5869747B2 (en) Method for producing an alloy casting having a protective layer
US20170312813A1 (en) Casting method of using 3d printing to make shell mold and vacuum casting device for use in the casting method
US8210240B2 (en) Casting processes, casting apparatuses therefor, and castings produced thereby
CN1931477A (en) Method for casting core removal
CN107206481B (en) Method for producing Ni alloy cast product, and Ni alloy cast product
CN104550719A (en) Ice mold based investment casting technology
JP5437788B2 (en) Casting mold and method for directional solidification process
RU2572118C1 (en) Method of producing of combined shell moulds as per consumable patterns to produce castings out of heat-resistant alloys with directed and single-crystal structures
JP2011140041A (en) Casting method
US10259034B2 (en) Slurry for forming mold, mold and method for producing mold
JP2014100731A (en) Mold and method of manufacturing the same, precision casting device, and precision casting method
JP6401051B2 (en) Method for producing polycrystalline silicon ingot
JPH11248363A (en) Laminate crucible for producing silicon ingot and manufacture thereof
KR870001309B1 (en) Metal founding in a glass-ceramic mold which is reusable
CN110831712A (en) Casting process by utilizing hot die casting
JP2012148293A (en) Method of casting ingot
JP5042384B1 (en) Casting apparatus and casting method
JP6344034B2 (en) Casting method of TiAl alloy
JP2007160323A (en) Vacuum molding
JP2017189796A (en) Core molding apparatus
JP5598649B2 (en) Casting method
CN102407319A (en) Method for casting hollow turbine working blade by using K465 alloy
CN106475520B (en) Method of manufacturing precision-cast parts for vehicle exhaust systems
JPH0788623A (en) Simple precision casting method for injection formation
RU2142352C1 (en) Method for investment casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140716