JP2011139201A - Linear lighting device and image reading device - Google Patents
Linear lighting device and image reading device Download PDFInfo
- Publication number
- JP2011139201A JP2011139201A JP2009296770A JP2009296770A JP2011139201A JP 2011139201 A JP2011139201 A JP 2011139201A JP 2009296770 A JP2009296770 A JP 2009296770A JP 2009296770 A JP2009296770 A JP 2009296770A JP 2011139201 A JP2011139201 A JP 2011139201A
- Authority
- JP
- Japan
- Prior art keywords
- light
- irradiation
- plane
- exit
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Facsimile Heads (AREA)
- Facsimile Scanning Arrangements (AREA)
- Light Sources And Details Of Projection-Printing Devices (AREA)
Abstract
Description
本発明は、複写機、イメージスキャナー、あるいはファクシミリ等の画像読取装置で使用されるライン状照明装置に係り、特に原稿の読取面を照射してその反射光を読み取るイメージセンサユニットに用いられるライン状照明装置、及び、画像読取装置に関するものである。 The present invention relates to a line illumination device used in an image reading apparatus such as a copying machine, an image scanner, or a facsimile, and more particularly to a line shape used in an image sensor unit that irradiates a reading surface of a document and reads reflected light. The present invention relates to an illumination device and an image reading device.
従来、複写機、スキャナー、ファクシミリ等に利用される縮小光学系に用いられる画像読取装置には、照明装置としてLEDを用いたライン状照明装置がある。
これは、長手方向に延びた棒状の導光体の長手方向の一端面を入光面とし、その入光面の近傍に入光面に沿ってLED等からなる光源を複数配置することで、光源から発せられた照射光が導光体を通して導光体の長手方向に沿って設けられた出射面から原稿の照射点へ照射される構造である。
2. Description of the Related Art Conventionally, an image reading apparatus used in a reduction optical system used for a copying machine, a scanner, a facsimile, or the like includes a line illumination device using LEDs as an illumination device.
This is by arranging one end surface in the longitudinal direction of a rod-shaped light guide extending in the longitudinal direction as a light incident surface, and arranging a plurality of light sources composed of LEDs or the like along the light incident surface in the vicinity of the light incident surface. In this structure, irradiation light emitted from a light source is irradiated to an irradiation point of a document from an emission surface provided along the longitudinal direction of the light guide through the light guide.
また、特許文献1記載の画像読取装置において、基板400上に複数個配置されたLED光源401と、このLED光源401に一体に構成された集光レンズ(導光体)402により、LED基板400の法線方向に対して傾斜させた方向に照射する提案がなされている。(図14参照)
この構成により、LED401から発せられた照射光は、図示しない原稿の照射点に向かって斜め上方へ照射される。照射光は原稿によって反射され、この反射光(読取画像)が複数の反射ミラー402により光路の向きを変えられ、結像レンズ403を介してラインセンサ404に導かれ読取を行うものである。
In addition, in the image reading apparatus described in Patent Document 1, a plurality of LED light sources 401 arranged on the substrate 400 and a condensing lens (light guide) 402 configured integrally with the LED light source 401 are used. Proposals have been made to irradiate in a direction inclined with respect to the normal direction. (See Figure 14)
With this configuration, the irradiation light emitted from the LED 401 is irradiated obliquely upward toward an irradiation point of a document (not shown). Irradiation light is reflected by the document, and the reflected light (read image) is redirected by a plurality of reflection mirrors 402 and guided to the line sensor 404 via the imaging lens 403 for reading.
ところで、このライン状照明装置は、原稿の照射点に対し、2方向から照射する必要があることから照明装置が2組となり、部品点数が増えコストが増大する問題があった。また、組み立て作業が複雑となるため工数が増大するという問題があった。 By the way, since this line-shaped illumination device needs to irradiate the irradiation point of the document from two directions, there are two sets of illumination devices, and there is a problem that the number of parts increases and the cost increases. In addition, since the assembly work is complicated, there is a problem that man-hours increase.
この問題を解決するため、特許文献2記載の画像読取装置が提案されている。
即ち、基板500上に複数個配置されたLED光源501と、このLED光源501から発せられた照射光を原稿の照射点に照射する導光体502と、導光体502の射出面503に対向した反射面504を有する反射体505(反射鏡)とを備えた構成である。(図15参照)
In order to solve this problem, an image reading apparatus described in Patent Document 2 has been proposed.
That is, a plurality of LED light sources 501 arranged on the substrate 500, a light guide body 502 that irradiates an irradiation point of a document with irradiation light emitted from the LED light sources 501, and an exit surface 503 of the light guide body 502. The reflector 505 (reflecting mirror) having the reflecting surface 504 is provided. (See Figure 15)
しかしながら、特許文献2に記載の構成は、LED光源501の照射面が基板500の実装面に対して平行に配置されているため、原稿の照射点に向かって斜め上方へ照射する必要があった。このため、基板500を斜めに固定するなどしてLED光源501の照射面を斜め上方へ向ける必要があり、組み立て時に調整等の工数が増しコスト増となる問題があった。
また、導光体502の射出面503から浅い角度で発せられた照射光をフレア成分として除去するため、原稿の照射点に対し照射される照射光が減少し、LED光源501からの照射光の利用効率が低下する問題があった。
さらには、反射面504の反射率・形状等に応じて、直接光と間接光(反射体505による反射光)の割合を変更するには導光体502の形状を大幅に変更する必要があった。
However, in the configuration described in Patent Document 2, since the irradiation surface of the LED light source 501 is arranged in parallel with the mounting surface of the substrate 500, it is necessary to irradiate obliquely upward toward the irradiation point of the document. . For this reason, it is necessary to turn the irradiation surface of the LED light source 501 obliquely upward by fixing the substrate 500 diagonally, and there is a problem that the number of man-hours for adjustment and the like increases at the time of assembly and the cost increases.
In addition, since the irradiation light emitted from the exit surface 503 of the light guide body 502 at a shallow angle is removed as a flare component, the irradiation light irradiated to the irradiation point of the document is reduced, and the irradiation light from the LED light source 501 is reduced. There was a problem that utilization efficiency decreased.
Furthermore, in order to change the ratio of direct light and indirect light (reflected light by the reflector 505) according to the reflectance and shape of the reflective surface 504, the shape of the light guide 502 needs to be significantly changed. It was.
本発明はかかる実情に鑑みなされたものであり、光源からの照射光の利用効率を向上すると共に、反射鏡の反射率・形状等に応じた直接光と間接光の割合の調整が容易なライン状照明装置、及び、画像読取装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a line that improves the utilization efficiency of irradiation light from a light source and allows easy adjustment of the ratio of direct light and indirect light according to the reflectivity, shape, etc. of the reflector. It is an object to provide a state illumination device and an image reading device.
請求項1記載のライン状照明装置は、基板と、前記基板上に直線状に配置された複数の光源と、前記光源に沿って配され、前記光源からの光を長手方向の側面より2方向へ照射する棒状の導光体と、前記2方向の一方の光を他方の光と交差させる反射鏡と、を備えたライン状照明装置において、前記導光体は、長手方向に沿って設けられた出射面と、前記出射面に対向して設けられた入光面と、前記出射面と、前記入光面との間に設けられた複数の反射面と、を備え、前記出射面は凸状に形成されると共に、前記入光面には前記光源の照射面に略平行に対向する平面を備え、前記平面の下端と前記出射面の下端との間には、少なくとも、入光面側反射面と出射面側反射面の連続する2つの反射面を備え、前記入光面側反射面と前記出射面側反射面との交線は、前記平面の上端より低くすると共に、前記出射面側反射面と前記出射面との交線は、前記入光面側反射面と前記出射面側反射面との交線と略同じ高さとしたことを特徴とする。 The line illumination device according to claim 1, wherein the line illumination device is arranged along the substrate, a plurality of light sources arranged linearly on the substrate, and the light from the light source in two directions from the side surface in the longitudinal direction. In a line-shaped illuminating device comprising a rod-shaped light guide that irradiates the light and a reflecting mirror that intersects one light in the two directions with the other light, the light guide is provided along the longitudinal direction. A light incident surface provided opposite to the light emission surface, and a plurality of reflection surfaces provided between the light emission surface and the light incident surface, wherein the light emission surface is convex. The light incident surface is provided with a flat surface facing substantially parallel to the irradiation surface of the light source, and at least the light incident surface side between the lower end of the flat surface and the lower end of the output surface. Two reflecting surfaces, which are a reflecting surface and an exit surface side reflecting surface, are provided, and the light incident surface side reflecting surface and the exit surface side opposite surface are provided. The line of intersection with the surface is lower than the upper end of the plane, and the line of intersection between the exit surface side reflecting surface and the exit surface is the intersection line between the light incident surface side reflecting surface and the exit surface side reflecting surface. It is characterized by having approximately the same height.
請求項2記載の画像読取装置は、基板と、前記基板上に直線状に配置された複数の光源と、前記光源に沿って配され、前記光源からの光を長手方向の側面より2方向へ照射する棒状の導光体と、前記2方向の一方の光を他方の光と交差させる反射鏡と、を備えたライン状照明装置を用いた画像読取装置において、前記導光体は、長手方向に沿って設けられた出射面と、前記出射面に対向して設けられた入光面と、前記出射面と、前記入光面との間に設けられた複数の反射面と、を備え、前記出射面は凸状に形成されすると共に、前記入光面には前記光源の照射面に略平行に対向する平面を備え、前記平面の下端と前記出射面の下端との間には、少なくとも、入光面側反射面と出射面側反射面の連続する2つの反射面を備え、前記入光面側反射面と前記出射面側反射面との交線は、前記平面の上端より低くすると共に、前記出射面側反射面と前記出射面との交線は、前記入光面側反射面と前記出射面側反射面との交線と略同じ高さとしたことを特徴とする。 The image reading apparatus according to claim 2, arranged along the substrate, a plurality of light sources arranged linearly on the substrate, and the light from the light source in two directions from the side surface in the longitudinal direction. In an image reading apparatus using a line-shaped illumination device including a rod-shaped light guide to be irradiated and a reflecting mirror that intersects one light in the two directions with the other light, the light guide is A light emitting surface provided along the light emitting surface, a light incident surface provided to face the light emitting surface, a plurality of reflective surfaces provided between the light emitting surface and the light incident surface, The exit surface is formed in a convex shape, and the light incident surface includes a plane that faces substantially parallel to the irradiation surface of the light source, and at least between the lower end of the plane and the lower end of the exit surface The light incident surface side reflective surface and the light exit surface side reflective surface are provided with two continuous reflective surfaces, and the light incident surface side reflective surface is provided. And the exit surface side reflecting surface is lower than the upper end of the plane, and the intersecting line between the exit surface side reflecting surface and the exit surface is the incident surface side reflecting surface and the exit surface side. The height is substantially the same as the line of intersection with the reflecting surface.
以上のように、照射面に略平行に対向する平面を備えたことにより、2方向へ照射する照射光の分離性を向上でき、照射光の利用効率を向上できる。
また、入光面側反射面と出射面側反射面との交線の高さ方向の位置を変更することにより、直接光と間接光の割合の調整を容易に行えるため、反射鏡の反射率等に応じた照射光の光量の割合の変更が容易となり、照明装置の設計の際の設計の自由度を増やすことができる。
As described above, by providing a plane that faces the irradiation surface substantially in parallel, the separation of irradiation light irradiated in two directions can be improved, and the utilization efficiency of irradiation light can be improved.
In addition, the ratio of the direct light and indirect light can be easily adjusted by changing the position in the height direction of the line of intersection between the light incident surface side reflective surface and the light exit surface side reflective surface. It becomes easy to change the ratio of the amount of irradiation light according to the above, and the degree of freedom in designing the lighting device can be increased.
以下、本発明の実施形態について、画像読取装置が組み込まれた複写機の例を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings as examples of a copying machine in which an image reading apparatus is incorporated.
図1は、本発明を適用できる複写機の構造を示す図であり、図2は、複写機の画像読取部の構造を示す図である。図1、及び、図2において、21は複写機本体であり、画像読取部30と画像形成部40とを備えている。画像読取部30はいわゆるイメージスキャナーの機能を有するものであり、以下のように構成される。 FIG. 1 is a diagram showing a structure of a copying machine to which the present invention can be applied, and FIG. 2 is a diagram showing a structure of an image reading unit of the copying machine. In FIGS. 1 and 2, reference numeral 21 denotes a copying machine body, which includes an image reading unit 30 and an image forming unit 40. The image reading unit 30 has a so-called image scanner function, and is configured as follows.
即ち、プラテンガラス31と、プラテンカバー32と、キャリッジ33とを備える。
プラテンカバー32はプラテンガラス31を覆うように設けられており、外光を遮断してプラテンガラス31上の原稿34の読取を容易にする。キャリッジ33は縮小光学系の画像読取装置であり、光源ユニット35と複数の反射ミラー36、結像レンズ37と、ラインセンサ38とを備えるものである。
That is, a platen glass 31, a platen cover 32, and a carriage 33 are provided.
The platen cover 32 is provided so as to cover the platen glass 31. The platen cover 32 blocks outside light and facilitates reading of the document 34 on the platen glass 31. The carriage 33 is a reduction optical system image reading device, and includes a light source unit 35, a plurality of reflection mirrors 36, an imaging lens 37, and a line sensor 38.
この構成により、光源ユニット35から発せられた照射光は原稿34の表面に照射される。照射光は原稿34によって反射され、この反射光(読取画像)が複数の反射ミラー36により光路の向きを変えられ、結像レンズ37を介してラインセンサ38に導かれる。 With this configuration, the irradiation light emitted from the light source unit 35 is irradiated onto the surface of the document 34. Irradiation light is reflected by the document 34, and the reflected light (read image) is guided to the line sensor 38 via the imaging lens 37 by changing the direction of the optical path by a plurality of reflection mirrors 36.
キャリッジ33は走査時において副走査方向に移動し、原稿34を照射しながら原稿34全面を走査する。結像レンズ37は複数の反射ミラー36とラインセンサ38とを結ぶ光路上に設けられており、原稿34からの反射光をラインセンサ38上に結像する。ラインセンサ38は反射光を例えばレッド(R)、グリーン(G)、およびブルー(B)の3色に分光して受光し、それぞれを光電変換する3ラインカラーCCD(Charge Coupled Device)イメージセンサ等の受光素子であり、受光した反射光を信号に変換して画像信号として出力する。 The carriage 33 moves in the sub-scanning direction during scanning, and scans the entire surface of the document 34 while irradiating the document 34. The imaging lens 37 is provided on an optical path connecting the plurality of reflection mirrors 36 and the line sensor 38, and forms an image of the reflected light from the document 34 on the line sensor 38. The line sensor 38 divides and receives reflected light into, for example, three colors of red (R), green (G), and blue (B), and photoelectrically converts each of the three colors CCD (Charge Coupled Device) image sensor or the like. The light receiving element converts the received reflected light into a signal and outputs it as an image signal.
画像形成部40はいわゆるプリンタ(出力装置)の機能を有するものであり、以下のように構成される。
即ち、給紙トレイ41と、搬送ロール42と、転写ユニット43と、中間転写ベルト44と、定着ユニット45とを備えるものである。
41は給紙トレイであり、所定のサイズのシートを収容し、このシートを画像形成に合わせて供給するものである。
The image forming unit 40 has a so-called printer (output device) function, and is configured as follows.
That is, it includes a paper feed tray 41, a transport roll 42, a transfer unit 43, an intermediate transfer belt 44, and a fixing unit 45.
Reference numeral 41 denotes a paper feed tray that stores sheets of a predetermined size and supplies the sheets in accordance with image formation.
43は転写ユニットであり、前述のラインセンサ38より出力される画像信号から静電潜像を形成し、トナーを付着させることによってトナー像を形成するものである。このトナー像は中間転写ベルト44に転写された後、シート上に転写され、定着ユニット45によって加圧・加熱されシート上に定着することで、画像印刷を行うものである。 A transfer unit 43 forms an electrostatic latent image from the image signal output from the line sensor 38, and forms a toner image by attaching toner. This toner image is transferred to the intermediate transfer belt 44, then transferred onto the sheet, and is pressed and heated by the fixing unit 45 to be fixed on the sheet to perform image printing.
図3は、本発明を適用できる光源ユニット35の構成を示す図であり、図4は、光源ユニット35の長手方向(主走査方向)の略中央部における副走査方向の断面図である。
1は基板であり、この基板1の実装面は、例えば反射材として酸化チタン粉末やアルミニウム粉末等による白シルク印刷で塗装されており、後述するLED2からの照射光を効率的に反射するものである。
FIG. 3 is a diagram showing a configuration of the light source unit 35 to which the present invention can be applied, and FIG. 4 is a cross-sectional view in the sub-scanning direction at a substantially central portion in the longitudinal direction (main scanning direction) of the light source unit 35.
Reference numeral 1 denotes a substrate, and the mounting surface of the substrate 1 is painted by white silk printing using, for example, titanium oxide powder or aluminum powder as a reflective material, and efficiently reflects irradiation light from the LED 2 described later. is there.
2は白色光を発するLEDであり、基板1上に複数のLED2k(kは自然数)が直線状に実装されている。
また、LED2kは図5に示すように主走査方向に対して中央部の間隔「b」を粗に、両端部の間隔「a」を密に実装されている「b」>「a」。
尚、図面の記載上、LEDの数を図3において35個としてあるが、LEDの数は特に限定されるものではない。
Reference numeral 2 denotes an LED that emits white light, and a plurality of LEDs 2 k (k is a natural number) are linearly mounted on the substrate 1.
Further, as shown in FIG. 5, the LED 2 k is mounted with “b”> “a” in which the central portion “b” is coarsely arranged and the end portions “a” are closely arranged in the main scanning direction.
In the drawing, the number of LEDs is 35 in FIG. 3, but the number of LEDs is not particularly limited.
3はアクリル等の透明素材からなる棒状の導光体であり、前記LED2kに沿って覆うように設置されている。4は導光体3を支持するフレーム、5は基板1と図示しない外部機器とを接続するコネクタである。
即ち、光源ユニット35は、複数のLED2kの実装された基板1、導光体3が夫々所定の位置関係でフレーム4に取り付け支持された構成であり、基板1の実装面に対してLED2kからの照射光を略垂直に照射できるものである。
3 is a rod-shaped light guide made of a transparent material such as acrylic, and is installed so as to cover the LED 2 k . Reference numeral 4 denotes a frame that supports the light guide 3, and 5 denotes a connector that connects the substrate 1 to an external device (not shown).
That is, the light source unit 35 has a configuration in which the substrate 1 and the light guide 3 on which a plurality of LEDs 2 k are mounted are mounted and supported on the frame 4 in a predetermined positional relationship, and the LED 2 k is mounted on the mounting surface of the substrate 1. Can be irradiated substantially vertically.
導光体3は、長手方向(主走査方向)に沿って入光面6と出射面7と第1の反射面8と第2の反射面9に大別できる。尚、長手方向(主走査方向)の両側の端面は夫々図示しない反射面である。また、光源ユニット35において複数のLED2kが入光面6の近傍に配置されることにより、LED2kから発せられた照射光が入光面6を透過して導光体3の内部に入光する構成である。 The light guide 3 can be roughly divided into a light incident surface 6, an output surface 7, a first reflective surface 8, and a second reflective surface 9 along the longitudinal direction (main scanning direction). Note that the end surfaces on both sides in the longitudinal direction (main scanning direction) are reflecting surfaces (not shown). In addition, since the plurality of LEDs 2 k are arranged in the vicinity of the light incident surface 6 in the light source unit 35, the irradiation light emitted from the LEDs 2 k passes through the light incident surface 6 and enters the light guide 3. It is the structure to do.
出射面7は入光面6に対向する面であり、集光効果のため凸状に湾曲して形成されており、例えば、表面にはローレット加工が施されている。
入光面6は、少なくとも、第1の平面Aと第2の平面Bとの連続する2つの平面から成り、LED2kの照射面と略平行に対向する第1の平面Aを備えるように形成したものであり、第1の平面Aと第2の平面Bとの交線は「c」である。
また、第1の平面Aの出射面7の下端との間に位置する第1の反射面8は、少なくとも、入光面側反射面Cと出射面側反射面Dとの連続する2つの反射面から成り、入光面側反射面Cと出射面側反射面Dとの交線は「d」である。
また、出射面側反射面Dと出射面7との交線「e」は、交線「d」と略同じ高さとなっている。
The emission surface 7 is a surface facing the light incident surface 6 and is formed in a convex shape for condensing effect. For example, the surface is knurled.
The light incident surface 6 includes at least a first plane A and a second plane B, and is formed to include a first plane A that faces the irradiation surface of the LED 2 k substantially in parallel. The intersection line between the first plane A and the second plane B is “c”.
Further, the first reflecting surface 8 located between the lower end of the exit surface 7 of the first plane A has at least two continuous reflections of the light incident surface side reflecting surface C and the exit surface reflecting surface D. The intersection line between the light incident surface side reflective surface C and the light exit surface side reflective surface D is “d”.
Further, the intersection line “e” between the exit surface side reflection surface D and the exit surface 7 is substantially the same height as the intersection line “d”.
尚、出射面側反射面Dは出射面7に向かって逆テーパー状となるよう低く(「e」が「d」より低く)なっていても構わない。 Note that the exit surface-side reflecting surface D may be low (“e” is lower than “d”) so as to be reversely tapered toward the exit surface 7.
12は反射鏡であり、この反射鏡12は、導光体3の長手方向(主走査方向)と略同一の長さを有する平面状のミラーであり、例えば、アルミ板、又は、反射面にアルミ膜が形成されたものから構成されることにより、光源ユニット35の長手方向(主走査方向)の側面から照射される照射光の向きを変え、後述する一方の光(第1の光束13)を他方の光(第2の光束14)とを原稿34の照射点に交差させるように導くものである。(図6参照)
図6に示す反射鏡12は平面形状をしているが、断面楕円状または断面放物線状に形成されていても構わない。この場合、平面形状と比較して、光原稿34の照射点への照射光の収束性の向上が図れると共に、照射光の照射範囲を任意に制御できるものである。
Reference numeral 12 denotes a reflecting mirror, and the reflecting mirror 12 is a planar mirror having substantially the same length as the longitudinal direction (main scanning direction) of the light guide 3, for example, an aluminum plate or a reflecting surface. By being constituted by the one formed with the aluminum film, the direction of the irradiation light irradiated from the side surface in the longitudinal direction (main scanning direction) of the light source unit 35 is changed, and one light (first light beam 13) described later is changed. Is guided so that the other light (second light beam 14) intersects the irradiation point of the document 34. (See Figure 6)
Although the reflecting mirror 12 shown in FIG. 6 has a planar shape, it may be formed in an elliptical section or a parabolic section. In this case, as compared with the planar shape, the convergence of the irradiation light to the irradiation point of the optical original 34 can be improved, and the irradiation range of the irradiation light can be arbitrarily controlled.
この構成により、LED2kから発せられた照射光の内、第1の平面Aを透過した照射光の一部は第1の光束13(間接光)として直接出射面7から照射されることにより、原稿34に対し略平行に照射される。他の照射光の多くは第1の反射面8により全反射されることにより、第2の光束14(直接光)として直接出射面7から原稿34の照射点に照射され、出射面7の凸状部により原稿34の照射点に集光される。 With this configuration, a part of the irradiation light transmitted through the first plane A out of the irradiation light emitted from the LED 2 k is directly irradiated from the emission surface 7 as the first light flux 13 (indirect light). Irradiation is substantially parallel to the document 34. Most of the other irradiating light is totally reflected by the first reflecting surface 8, and is irradiated as a second light beam 14 (direct light) directly from the emitting surface 7 to the irradiation point of the document 34. The light is condensed on the irradiation point of the original 34 by the shape portion.
また、第2の平面Bを透過した照射光の多くは直接出射面7から原稿34の照射点に照射され(又は、第2の反射面9にて全反射された後、直接出射面7より出射され)た後、第2の光束14と合成され、出射面7の凸状部により原稿34の照射点に集光される。
このように、LED2kからの照射光を出射面7より各々独立した異なる2方向に照射するものである。
さらに、第1の光束13は、第2の光束14と原稿34の照射点に交差するよう反射鏡12により反射されるものである。
Further, most of the irradiation light transmitted through the second plane B is directly irradiated onto the irradiation point of the document 34 from the direct emission surface 7 (or after being totally reflected by the second reflection surface 9 and then directly from the emission surface 7. Are emitted, and then combined with the second light flux 14 and condensed on the irradiation point of the document 34 by the convex portion of the emission surface 7.
In this way, the irradiation light from the LED 2 k is irradiated in two different directions independent from each other from the emission surface 7.
Further, the first light beam 13 is reflected by the reflecting mirror 12 so as to intersect the irradiation point of the second light beam 14 and the document 34.
図7は、本実施形態の導光体3において、LED2kの照射面の下端と「d」との高さ方向の差「Δd」と直接光・間接光の割合の関係を示す図であり、100は「Δd」の変化による直接光・間接光の割合の変化を示す線である。
図7によると、「Δd」を調整することにより、原稿34に対し略平行に照射される成分(直接光)と、直接原稿34に照射される成分(間接光)との割合が調整可能となる。 このため、反射鏡の反射率等に応じた照射光の光量の割合の変更が容易となり、照明装置の設計の際の設計の自由度を増やすことができる。
FIG. 7 is a diagram illustrating a relationship between a difference “Δd” in the height direction between the lower end of the irradiation surface of the LED 2 k and “d” and the ratio of direct light / indirect light in the light guide 3 of the present embodiment. , 100 is a line showing a change in the ratio of direct light / indirect light due to a change in “Δd”.
According to FIG. 7, by adjusting “Δd”, it is possible to adjust the ratio between the component (direct light) irradiated substantially parallel to the document 34 and the component (indirect light) irradiated directly on the document 34. Become. For this reason, it becomes easy to change the ratio of the amount of irradiation light according to the reflectance of the reflecting mirror and the like, and the degree of freedom in designing the lighting device can be increased.
本実施形態では、実装面に対し、第1の反射面8(入光面側反射面C)は17.6°、第2の平面Bは132°、第2の反射面9は62°夫々傾いている。
これにより、第1の反射面8、及び、第2の反射面9は、LED2kからの照射光に対し、臨界角を越える照射光を全反射するものである。
また、「Δc」=0.36mm、「Δd」=「Δe」=0.1mmとし、直接光:間接光=55%:45%とした。
尚、「c」においては、LED2kの照射面の上端と「c」との高さ方向の差を「Δc」とし、照射面の上端と「c」とが同一の高さにある場合を「Δc」=0mmとする。
「d」、「e」においては、LED2kの照射面の下端と「d」、「e」との高さ方向の差を「Δd」、「Δe」とし、照射面の下端と「d」、「e」とが同一の高さにある場合を「Δd」=「Δe」=0mmとする。
また、少なくとも、「c」は、LED2kの照射面の上端より「Δc」だけ高いものとし、「Δd」、「Δe」共、「c」の高さより低いものとする。
In the present embodiment, the first reflecting surface 8 (light incident surface side reflecting surface C) is 17.6 °, the second plane B is 132 °, and the second reflecting surface 9 is 62 ° with respect to the mounting surface. Tilted.
Thus, a first reflecting surface 8, and the second reflecting surface 9, with respect to the irradiation light from LED2 k, in which totally reflects the illumination light exceeding the critical angle.
Further, “Δc” = 0.36 mm, “Δd” = “Δe” = 0.1 mm, and direct light: indirect light = 55%: 45%.
In “c”, the difference in height between the upper end of the irradiation surface of LED 2 k and “c” is “Δc”, and the upper end of the irradiation surface and “c” are at the same height. “Δc” = 0 mm.
In “d” and “e”, the difference in height between the lower end of the irradiation surface of LED 2 k and “d” and “e” is “Δd” and “Δe”, and the lower end of the irradiation surface and “d” , “E” is at the same height, “Δd” = “Δe” = 0 mm.
Further, at least “c” is assumed to be higher by “Δc” than the upper end of the irradiation surface of the LED 2 k , and both “Δd” and “Δe” are lower than the height of “c”.
ここで、導光体3内部を伝播する照射光をシミュレーションにより示した図を用いて上述の効果を説明する。
図8は入光面6にLED2kの照射面と略平行に対向する第1の平面A、及び、第2の平面Bを備えた例であり、図9は比較の一例として入光面6を斜め直線状の平面(第1の平面Aを備えていない)とした例である。
Here, the above-described effect will be described with reference to a diagram showing the irradiation light propagating through the light guide 3 by simulation.
Figure 8 is an example having first plane A substantially parallel to face the LED2 k irradiation surface of the light incident surface 6, and, the second plane B, fig. 9 is the light incident surface as an example of comparison 6 Is an example of an oblique linear plane (not provided with the first plane A).
図8における本実施形態の導光体3においては、入光面6の近傍に配置されたLED2kから発せられた照射光の内、第1の平面Aを透過した照射光の一部は、第1の光束13として直接出射面7から照射されることにより、原稿34に対し略平行に照射される。また、他の照射光の多くは第1の反射面8により全反射されることにより、第2の光束14として出射面7より出射され、出射面7の凸状部により原稿34の照射点に集光される。 また、第2の平面Bを透過した照射光の多くは直接出射面7から原稿34の照射点に出射され(又は、第2の反射面9にて全反射された後、直接出射面7より出射され)た後、第2の光束14と合成され、出射面7の凸状部により原稿34の照射点に集光される状態を示している。
この時、第1の光束13は、出射面7の凸状部により原稿34の照射点に収束されるものである。また、第1の光束13は、第2の光束14と原稿34の照射点に交差するよう反射鏡12により反射されることで、原稿34の照射点に照射され、原稿34の読取対象部分がライン状に照明されるものである。
In the light guide 3 of the present embodiment in FIG. 8, a part of the irradiation light transmitted through the first plane A among the irradiation light emitted from the LEDs 2 k arranged in the vicinity of the light incident surface 6 is: By irradiating directly from the exit surface 7 as the first light flux 13, the original 34 is irradiated substantially in parallel. Also, most of the other irradiated light is totally reflected by the first reflecting surface 8 and is emitted from the emitting surface 7 as the second light flux 14, and is projected to the irradiation point of the document 34 by the convex portion of the emitting surface 7. Focused. In addition, most of the irradiation light transmitted through the second plane B is emitted from the direct emission surface 7 to the irradiation point of the document 34 (or after being totally reflected by the second reflection surface 9 and then directly from the emission surface 7. After being emitted), it is combined with the second light beam 14 and is condensed on the irradiation point of the document 34 by the convex portion of the emission surface 7.
At this time, the first light beam 13 is converged on the irradiation point of the document 34 by the convex portion of the emission surface 7. Further, the first light beam 13 is reflected by the reflecting mirror 12 so as to intersect the irradiation point of the second light beam 14 and the original 34, so that the irradiation point of the original 34 is irradiated, and the portion to be read of the original 34 is read. It is illuminated in a line.
図9における導光体3においても同様に、入光面6の近傍に配置されたLED2kから発せられた照射光の全てが入光面6を透過し、一部が第1の光束13として直接出射面7から照射されることにより、原稿34に対し略平行に照射される。一方、他の照射光の多くは第1の反射面8、及び、第2の反射面9により全反射されることにより、第2の光束14として出射面7より照射されると共に、直接出射面7より出射された照射光の一部とが合成されることで形成される。
第2の光束14は出射面7の凸状部により原稿34の照射点に集光される。
Similarly, in the light guide 3 in FIG. 9, all of the irradiation light emitted from the LED 2 k disposed in the vicinity of the light incident surface 6 is transmitted through the light incident surface 6, and a part thereof is the first light flux 13. By irradiating from the direct emission surface 7, the original 34 is irradiated substantially in parallel. On the other hand, most of the other irradiated light is totally reflected by the first reflecting surface 8 and the second reflecting surface 9 so as to be irradiated from the emitting surface 7 as the second light beam 14 and directly emitted. 7 is formed by combining with a part of the irradiation light emitted from 7.
The second light beam 14 is focused on the irradiation point of the document 34 by the convex portion of the exit surface 7.
しかしながら、図9に示す導光体3では、入光面6に第1の平面Aが形成されておらず直線状の平面のみのため、この平面の中央部付近を透過した照射光は出射面7から略均一に照射されることになる。この結果、出射面7の中央部付近から、原稿34の照射点に照射されない角度で、且つ、反射鏡12によっても反射されない角度で照射される照射光が生じることから、迷光(フレア成分)が発生するものである。 However, in the light guide 3 shown in FIG. 9, since the first plane A is not formed on the light incident surface 6 and only a linear plane, the irradiation light transmitted near the center of this plane is the exit surface. 7 is irradiated almost uniformly. As a result, irradiation light is emitted from the vicinity of the central portion of the emission surface 7 at an angle at which the irradiation point of the original 34 is not irradiated and at an angle that is not reflected by the reflecting mirror 12, so stray light (flare component) is generated. It is what happens.
一方、図8における本実施形態の導光体3では、第1の平面Aを形成することにより、出射面7の中央部付近から照射光を照射させることなく第1の光束13、及び、第2の光束14に収束させることができる。この結果、反射鏡12により反射されない角度で照射される照射光を低減できることにより、LED2kからの照射光を効率よく原稿34の照射点に集光することが可能となり、照射点の照度を向上できる。 On the other hand, in the light guide 3 of the present embodiment in FIG. 8, by forming the first plane A, the first light flux 13 and the first light beam 13 are irradiated without irradiating irradiation light from the vicinity of the central portion of the emission surface 7. 2 light beams 14 can be converged. As a result, the ability to reduce the illumination light emitted at an angle that is not reflected by the reflecting mirror 12, it is possible to condense the illumination light to the irradiation point of efficiently document 34 from LED2 k, improving the illuminance of the irradiation point it can.
このように、入光面6に第1の平面A、及び、第2の平面Bを備えたことにより、2方向へ照射する場合の分離性が向上することにより、照射点の照度、即ち、照射光の利用効率を向上できるものである。 Thus, by providing the light incident surface 6 with the first plane A and the second plane B, the separability when irradiating in two directions is improved, so that the illuminance at the irradiation point, that is, The utilization efficiency of irradiation light can be improved.
尚、図中の実線は、LED2kから発せられた照射光の状態を追跡できるようにするためものであり、実際は光束である。 Note that the solid line in the figure is for tracking the state of the irradiation light emitted from the LED 2 k , and is actually a light beam.
図10は本発明を適用できる光源ユニット35の配光特性を示す図であり、図11は比較の一例としての1方向のみに光を照射する光源ユニット35の配光特性を示す図である。
また、図14は本実施形態の光源ユニット35において、原稿34の照射点の位置における副走査方向に対する照度分布の反射鏡12の有無による比較例である。
200は反射鏡12有りの状態を示す線であり、201は反射鏡12無しの状態を示す線である。
図12に示すように、本発明を適用できる反射鏡12を用いることで、原稿34の照射点の副走査方向における位置の変化(±1.0mm)において、安定した照度を保つことができる。
FIG. 10 is a diagram showing the light distribution characteristics of the light source unit 35 to which the present invention can be applied, and FIG. 11 is a diagram showing the light distribution characteristics of the light source unit 35 that emits light only in one direction as an example of comparison.
FIG. 14 is a comparative example of the light source unit 35 according to the present embodiment in the presence or absence of the reflecting mirror 12 in the illuminance distribution in the sub-scanning direction at the irradiation point position of the document 34.
Reference numeral 200 denotes a line indicating the state with the reflecting mirror 12, and reference numeral 201 denotes a line indicating the state without the reflecting mirror 12.
As shown in FIG. 12, by using the reflecting mirror 12 to which the present invention can be applied, it is possible to maintain a stable illuminance even when the irradiation point of the document 34 changes in position in the sub-scanning direction (± 1.0 mm).
これにより、副走査方向における読み取り光量の変動を抑制でき、出力変動幅を小さくできることから、画像読み取り装置の出力画像に発生する濃度変動を低減することができ、読み取り性能を安定できる。 As a result, fluctuations in the amount of reading light in the sub-scanning direction can be suppressed and the output fluctuation range can be reduced, so that density fluctuations occurring in the output image of the image reading apparatus can be reduced, and reading performance can be stabilized.
図13は本実施形態の光源ユニット35において、反射鏡12の有無による原稿34の照射点の位置における高さ方向の位置の変化(「Δl」)に対する照度分布の比較例を示す図である。
300は反射鏡12有りの状態を示す線であり、301は反射鏡12無しの状態を示す線である。
図13に示すように、本発明を適用できる、2方向に光を照射する光源ユニット35、及び、反射鏡12を用いることで、0mm<「Δl」<3.0mmにおいて、安定した照度を保つことができる。
これは、反射鏡12からの第1の光束13の照明ピーク位置を反射鏡側へ、光源ユニット35からの第2の光束14の照明ピーク位置を光源側へずらすことにより、プラテンガラス31の上方にピーク位置の合致する位置が生じるためである。
FIG. 13 is a diagram showing a comparative example of the illuminance distribution with respect to a change in position in the height direction (“Δl”) at the position of the irradiation point of the document 34 depending on the presence or absence of the reflecting mirror 12 in the light source unit 35 of the present embodiment.
Reference numeral 300 denotes a line indicating the state with the reflecting mirror 12, and reference numeral 301 denotes a line indicating the state without the reflecting mirror 12.
As shown in FIG. 13, by using the light source unit 35 that irradiates light in two directions and the reflecting mirror 12 to which the present invention can be applied, stable illuminance is maintained at 0 mm <“Δl” <3.0 mm. be able to.
This is because the illumination peak position of the first light beam 13 from the reflecting mirror 12 is shifted to the reflecting mirror side, and the illumination peak position of the second light beam 14 from the light source unit 35 is shifted to the light source side, so that the upper position of the platen glass 31 is increased. This is because a position where the peak position matches is generated.
これにより、原稿34の高さ方向への位置の変化につれ両者のピーク位置が合致することになることから、原稿34の皺・段差・浮き上がり等に伴う高さの変動による出力の低下量を低減することができ、読み取り性能を安定できる。このため、画像読み取り装置の出力画像に発生する濃度変動を低減することができ、読み取り性能を安定できる。 As a result, the peak positions of the two coincide with each other as the position of the document 34 in the height direction is changed. Therefore, the amount of decrease in output due to the height variation caused by the wrinkles, steps, and lifting of the document 34 is reduced. And the reading performance can be stabilized. For this reason, the density fluctuation generated in the output image of the image reading apparatus can be reduced, and the reading performance can be stabilized.
尚、図10、乃至、図13は、各LED2kのピッチ(間隔)は中央部で6.4mm、端部で4.3mm、LED光源を60個使用時のものである。 Incidentally, FIG. 10 to, 13, the pitch of each LED2 k (intervals) are those 6.4 mm, at 60 using 4.3 mm, the LED light source at the end in the central portion.
本発明のライン状照明装置はイメージスキャナー、ファクシミリ、複写機等の画像読取装置として有効な技術である。 The line illumination device of the present invention is an effective technique as an image reading device such as an image scanner, a facsimile machine, a copying machine or the like.
1 基板
2 LED
3 導光体
6 入光面
7 出射面
13 第1の光束
14 第2の光束
A 第1の平面
B 第2の平面
C 入光面側反射面
D 出射面側反射面
1 Substrate 2 LED
DESCRIPTION OF SYMBOLS 3 Light guide 6 Light entrance surface 7 Output surface 13 1st light beam 14 2nd light beam A 1st plane B 2nd plane C Light input surface side reflective surface D Output surface reflective surface
Claims (2)
前記基板上に直線状に配置された複数の光源と、
前記光源に沿って配され、前記光源からの光を長手方向の側面より2方向へ照射する棒状の導光体と、
前記2方向の一方の光を他方の光と交差させる反射鏡と、
を備えたライン状照明装置において、
前記導光体は、
長手方向に沿って設けられた出射面と、
前記出射面に対向して設けられた入光面と、
前記出射面と、前記入光面との間に設けられた複数の反射面と、
を備え、
前記出射面は凸状に形成されると共に、
前記入光面には前記光源の照射面に略平行に対向する平面を備え、
前記平面の下端と前記出射面の下端との間には、少なくとも、入光面側反射面と出射面側反射面の連続する2つの反射面を備え、
前記入光面側反射面と前記出射面側反射面との交線は、前記平面の上端より低くすると共に、
前記出射面側反射面と前記出射面との交線は、前記入光面側反射面と前記出射面側反射面との交線と略同じ高さとした
ことを特徴とするライン状照明装置。 A substrate,
A plurality of light sources arranged linearly on the substrate;
A rod-shaped light guide that is arranged along the light source and irradiates light from the light source in two directions from a side surface in the longitudinal direction;
A reflecting mirror that crosses one light in the two directions with the other light;
In the line-shaped lighting device provided with
The light guide is
An exit surface provided along the longitudinal direction;
A light incident surface provided to face the light exit surface;
A plurality of reflecting surfaces provided between the emitting surface and the light incident surface;
With
The exit surface is formed in a convex shape,
The light incident surface includes a plane that faces the irradiation surface of the light source substantially in parallel,
Between the lower end of the plane and the lower end of the exit surface, at least two reflective surfaces that are continuous with the incident surface side reflective surface and the exit surface side reflective surface are provided,
The line of intersection between the light incident surface side reflective surface and the light exit surface side reflective surface is lower than the upper end of the plane,
The line-shaped illuminating device according to claim 1, wherein an intersection line between the emission surface side reflection surface and the emission surface is substantially the same height as an intersection line between the light incident surface side reflection surface and the emission surface side reflection surface.
前記基板上に直線状に配置された複数の光源と、
前記光源に沿って配され、前記光源からの光を長手方向の側面より2方向へ照射する棒状の導光体と、
前記2方向の一方の光を他方の光と交差させる反射鏡と、
を備えたライン状照明装置を用いた画像読取装置において、
前記導光体は、
長手方向に沿って設けられた出射面と、
前記出射面に対向して設けられた入光面と、
前記出射面と、前記入光面との間に設けられた複数の反射面と、
を備え、
前記出射面は凸状に形成されると共に、
前記入光面には前記光源の照射面に略平行に対向する平面を備え、
前記平面の下端と前記出射面の下端との間には、少なくとも、入光面側反射面と出射面側反射面の連続する2つの反射面を備え、
前記入光面側反射面と前記出射面側反射面との交線は、前記平面の上端より低くすると共に、
前記出射面側反射面と前記出射面との交線は、前記入光面側反射面と前記出射面側反射面との交線と略同じ高さとした
ことを特徴とする画像読取装置。 A substrate,
A plurality of light sources arranged linearly on the substrate;
A rod-shaped light guide that is arranged along the light source and irradiates light from the light source in two directions from a side surface in the longitudinal direction;
A reflecting mirror that crosses one light in the two directions with the other light;
In an image reading apparatus using a line illumination device comprising:
The light guide is
An exit surface provided along the longitudinal direction;
A light incident surface provided to face the light exit surface;
A plurality of reflecting surfaces provided between the emitting surface and the light incident surface;
With
The exit surface is formed in a convex shape,
The light incident surface includes a plane that faces the irradiation surface of the light source substantially in parallel,
Between the lower end of the plane and the lower end of the exit surface, at least two reflective surfaces that are continuous with the incident surface side reflective surface and the exit surface side reflective surface are provided,
The line of intersection between the light incident surface side reflective surface and the light exit surface side reflective surface is lower than the upper end of the plane,
An image reading apparatus, wherein an intersection line between the exit surface side reflection surface and the exit surface is substantially the same height as an intersection line between the light incident surface side reflection surface and the exit surface side reflection surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009296770A JP4928598B2 (en) | 2009-12-28 | 2009-12-28 | Line-shaped illumination device and image reading device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009296770A JP4928598B2 (en) | 2009-12-28 | 2009-12-28 | Line-shaped illumination device and image reading device |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2011139201A true JP2011139201A (en) | 2011-07-14 |
JP2011139201A5 JP2011139201A5 (en) | 2012-02-09 |
JP4928598B2 JP4928598B2 (en) | 2012-05-09 |
Family
ID=44350199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009296770A Expired - Fee Related JP4928598B2 (en) | 2009-12-28 | 2009-12-28 | Line-shaped illumination device and image reading device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4928598B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9057809B2 (en) | 2013-08-28 | 2015-06-16 | Ricoh Company, Ltd. | Light irradiation device and image forming apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001222076A (en) * | 1999-12-01 | 2001-08-17 | Canon Inc | Document illuminator |
JP2002142082A (en) * | 2000-10-31 | 2002-05-17 | Pfu Ltd | Image reader |
JP2002158833A (en) * | 2000-11-17 | 2002-05-31 | Stanley Electric Co Ltd | Light source device for reading image |
-
2009
- 2009-12-28 JP JP2009296770A patent/JP4928598B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001222076A (en) * | 1999-12-01 | 2001-08-17 | Canon Inc | Document illuminator |
JP2002142082A (en) * | 2000-10-31 | 2002-05-17 | Pfu Ltd | Image reader |
JP2002158833A (en) * | 2000-11-17 | 2002-05-31 | Stanley Electric Co Ltd | Light source device for reading image |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9057809B2 (en) | 2013-08-28 | 2015-06-16 | Ricoh Company, Ltd. | Light irradiation device and image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP4928598B2 (en) | 2012-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8830542B2 (en) | Illumination apparatus and image reading apparatus | |
US20100265551A1 (en) | Illuminating device and image reading apparatus | |
JP2009111544A (en) | Contact image sensor, and image forming apparatus | |
US8199371B2 (en) | Image reader and image formation apparatus | |
JP2007005860A (en) | Light irradiating unit, image reading mechanism, image reader and image forming apparatus | |
US10033899B2 (en) | Lighting device including a board to mount the light source on a mount surface opposite a cover, image reading device, and image forming apparatus | |
JP2013175892A (en) | Illuminating device and image reader | |
US9007663B2 (en) | Light irradiation system, image scanning apparatus, and image forming apparatus | |
US10567609B2 (en) | Illumination device, image scanning apparatus, and image forming apparatus | |
JP5912307B2 (en) | Image reading device | |
JP2008172562A (en) | Lighting system, image reader and image forming apparatus | |
JP5856994B2 (en) | Illumination device, and image reading apparatus and image forming apparatus provided with the same | |
US7760434B2 (en) | Document illuminator with surface lens | |
JP4928598B2 (en) | Line-shaped illumination device and image reading device | |
US11936829B2 (en) | Illuminating device, image reading device, and image forming apparatus with multiple light sources | |
KR101486215B1 (en) | Optical element for a document illuminator | |
JP5811595B2 (en) | Document illumination device, image reading device, and image forming device | |
JP2010136348A (en) | Linear illumination device, and image reading apparatus employing same | |
US9749493B2 (en) | Image reading apparatus that illuminates an original and reads an image of the original | |
WO2015146470A1 (en) | Image reading apparatus and image forming apparatus comprising same | |
JP5994229B2 (en) | Illumination unit, document reading apparatus, and image forming apparatus | |
JP5494640B2 (en) | Illumination device, image reading device, and image forming device | |
JP5724374B2 (en) | Document illumination device, image reading device, and image forming device | |
JP2009171376A (en) | Illumination unit, image reader with the same, and image forming apparatus equipped with the unit | |
JP2020120237A (en) | Image reading device and image forming apparatus including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111130 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111130 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20111130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111219 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20111219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120210 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4928598 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |