JP2011139127A - Image processor and image processing method - Google Patents

Image processor and image processing method Download PDF

Info

Publication number
JP2011139127A
JP2011139127A JP2009295941A JP2009295941A JP2011139127A JP 2011139127 A JP2011139127 A JP 2011139127A JP 2009295941 A JP2009295941 A JP 2009295941A JP 2009295941 A JP2009295941 A JP 2009295941A JP 2011139127 A JP2011139127 A JP 2011139127A
Authority
JP
Japan
Prior art keywords
signal
low frequency
contour
value
minimum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009295941A
Other languages
Japanese (ja)
Inventor
Shuichi Goto
秀一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung R&D Institute Japan Co Ltd
Original Assignee
Samsung Yokohama Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Yokohama Research Institute filed Critical Samsung Yokohama Research Institute
Priority to JP2009295941A priority Critical patent/JP2011139127A/en
Publication of JP2011139127A publication Critical patent/JP2011139127A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Picture Signal Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image processor which appropriately controls an amount of contour enhancement. <P>SOLUTION: In the image processor, luminance signals respectively corresponding to a plurality of pixels constituting an image and a contour signal indicating luminance of a contour portion included in the image are added to generate a contour enhancement signal, and low frequency signals are extracted from the luminance signals, and a maximum value and a minimum value of the luminance signals and those of the low frequency signals are detected with respect to a plurality of pixels located around a target pixel, and a low frequency edge level is calculated which takes a lower value for a larger difference absolute value between the maximum value of the low frequency signals and the maximum value of the luminance signals or between the minimum value of the low frequency signals and the minimum value of the luminance signals and takes a higher value for a smaller difference absolute value between them, and a Shoot amount of the target pixel calculated on the basis of the contour enhancement signal and the maximum value or the minimum value of the luminance signals is more reduced toward zero for a lower low frequency edge level, and the contour enhancement signal is corrected on the basis of the reduced Shoot amount. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、画像信号に対する適切な輪郭強調処理を実現するための画像処理装置及び画像処理方法に関し、特に、低周波域のEdge部分に生じるOvershoot及びUndershootを抑制する画像処理装置及び画像処理方法に関する。   The present invention relates to an image processing apparatus and an image processing method for realizing appropriate edge enhancement processing on an image signal, and more particularly to an image processing apparatus and an image processing method for suppressing Overshoot and Undershot that occur in an edge portion in a low frequency range. .

画像信号の鮮鋭度を高めたい場合、一般に、その画像信号に対して輪郭強調処理が施される。輪郭強調は、通常、輪郭抽出フィルタに画像の輝度信号を入力して画像信号のEdge部分だけを抽出し、そのEdge部分の輝度信号を元の輝度信号に加算することにより実現される。しかしながら、このような輪郭強調方法を用いると、画像信号に含まれる低周波域のEdge部分にOvershoot及びUndershootが生じてしまい、そのEdge部分に縁取りが発生してしまう。特に、輪郭抽出フィルタのTap数が多い場合、輪郭強調により生じる縁取りの幅が広くなるため、非常に不自然な画像となる。   When it is desired to increase the sharpness of an image signal, an edge enhancement process is generally performed on the image signal. Outline enhancement is usually realized by inputting an image luminance signal to an outline extraction filter, extracting only the edge portion of the image signal, and adding the luminance signal of the edge portion to the original luminance signal. However, when such a contour emphasizing method is used, Overshoot and Undershot are generated in the edge portion of the low frequency region included in the image signal, and the edge portion is generated in the Edge portion. In particular, when the number of Taps of the contour extraction filter is large, the border width generated by contour enhancement is widened, resulting in a very unnatural image.

このような問題を解決すべく、例えば、下記の特許文献1には、画像信号が持つ波形の複雑さ度合い(平坦度)を判別し、波形の複雑さ度合いが低い部分のOvershoot及びUndershootを抑制する輪郭強調信号の補正方法が開示されている。また、下記の特許文献2には、上記の特許文献1と同様に画像信号が持つ波形の平坦度に基づいて輪郭強調信号を補正する処理に加え、Edge部分の周辺に位置する画素の平均信号の差に基づいてOvershoot及びUndershootを抑制する補正方法が開示されている。   In order to solve such a problem, for example, in Patent Document 1 below, the degree of waveform complexity (flatness) of an image signal is determined, and Overshoot and Undershot are suppressed in a portion where the degree of waveform complexity is low. A method for correcting a contour emphasis signal is disclosed. In addition, in Patent Document 2 below, in addition to the process of correcting the edge enhancement signal based on the flatness of the waveform of the image signal as in Patent Document 1, the average signal of the pixels located around the edge portion is disclosed. A correction method for suppressing Overshot and Undershot based on the difference between the two is disclosed.

特開2004−266775号公報JP 2004-266775 A 特開2009− 71714号公報JP 2009-71714 A

確かに、上記の特許文献1に記載の補正方法を適用することで、輪郭強調により生じる低周波域のEdge部分に縁取りが発生することを抑制することはできる。しかしながら、上記の特許文献1に記載の補正方法は、画像信号が持つ波形の複雑さに基づいて低周波域のEdge部分を判別しているため、そのEdge部分がOvershoot及びUndershootを抑制すべき周波数帯に属するか否かの適切な判断がなされない。その結果、上記の特許文献1の技術を適用すると、本来抑制すべきでないOvershootやUndershootを抑制してしまい、適正な輪郭強調効果が得られない。   Certainly, by applying the correction method described in Patent Document 1, it is possible to suppress the occurrence of bordering at the edge portion of the low frequency region caused by the contour enhancement. However, since the correction method described in Patent Document 1 discriminates the edge portion of the low frequency region based on the complexity of the waveform of the image signal, the edge portion is a frequency at which overshoot and undershoot are to be suppressed. Appropriate judgment is not made as to whether it belongs to the belt. As a result, when the technique of Patent Document 1 is applied, Overshoot and Undershot that should not be suppressed are suppressed, and an appropriate contour emphasis effect cannot be obtained.

また、上記の特許文献2に記載の補正方法も、上記の特許文献1に記載の補正方法と同様に、低周波域のEdge部分を画像信号が持つ波形の平坦度に基づいて判別しているため、上記の特許文献1の場合と同様、本来抑制すべきでないOvershootやUndershootを抑制してしまい、適正な輪郭強調効果が得られない。つまり、上記の特許文献1、2に記載の技術を適用すると、図1に示すように、抑制の対象とすべきOvershoot又はUndershootを抑制することはできるものの、輪郭強調によるOvershootやUndershootを残したい周波数域のEdge部分についても、近傍の複雑さの度合いが低ければ抑制してしまい、適切な抑制効果を得られない。   Further, the correction method described in Patent Document 2 also determines the edge portion of the low frequency region based on the flatness of the waveform of the image signal, similarly to the correction method described in Patent Document 1. Therefore, as in the case of the above-mentioned Patent Document 1, Overshoot and Undershot that should not be suppressed are suppressed, and an appropriate contour emphasis effect cannot be obtained. That is, when the techniques described in Patent Documents 1 and 2 are applied, as shown in FIG. 1, it is possible to suppress Overshot or Undershot that should be the target of suppression, but want to retain Overshot and Undershot by edge enhancement. The edge portion of the frequency range is also suppressed if the degree of complexity in the vicinity is low, and an appropriate suppression effect cannot be obtained.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、低周波域のEdge部分に生じるOvershoot及びUndershootについて、抑制すべき周波数の低周波域Edgeを適切に判断して抑制することにより、好適な輪郭強調画像を得ることが可能な、新規かつ改良された画像処理装置、及び画像処理方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to appropriately set the low frequency range Edge of the frequency to be suppressed for Overshoot and Undershot generated in the Edge portion of the low frequency range. It is an object of the present invention to provide a new and improved image processing apparatus and an image processing method capable of obtaining a suitable contour-enhanced image by determining and suppressing the above.

上記課題を解決するために、本発明のある観点によれば、画像を成す複数の画素のそれぞれに対応する輝度信号と、前記画像に含まれる輪郭部分の輝度を示す輪郭信号とを加算して輪郭強調信号を生成する輪郭強調手段と、前記輝度信号の低周波数帯域成分である低周波信号を抽出する低周波信号抽出手段と、注目画素の周囲に位置する複数の画素について、前記輝度信号の最大値及び最小値、及び、前記低周波信号の最大値及び最小値、を検出する最大・最小値検出手段と、前記低周波信号の最大値と前記輝度信号の最大値との差分絶対値、又は前記低周波信号の最小値と前記輝度信号の最小値との差分絶対値、が大きいほど低い値となり、当該差分絶対値が小さいほど高い値となる低周波エッジ度を算出する低周波エッジ度算出手段と、前記輪郭強調信号と、前記輝度信号の最大値又は最小値と、に基づいて算出される前記注目画素のShoot量を、前記低周波エッジ度が小さいほど0に近づくように抑制して抑制Shoot量を算出する抑制Shoot量算出手段と、前記抑制Shoot量算出手段により算出された抑制Shoot量に基づいて前記輪郭強調信号を補正する輪郭強調信号補正手段と、を備える画像処理装置が提供される。   In order to solve the above-described problem, according to an aspect of the present invention, a luminance signal corresponding to each of a plurality of pixels forming an image and a contour signal indicating the luminance of a contour portion included in the image are added. Contour emphasis means for generating an edge emphasis signal, low frequency signal extraction means for extracting a low frequency signal that is a low frequency band component of the luminance signal, and a plurality of pixels located around the pixel of interest, A maximum / minimum value detecting means for detecting a maximum value and a minimum value, and a maximum value and a minimum value of the low-frequency signal; an absolute value of a difference between the maximum value of the low-frequency signal and the maximum value of the luminance signal; Alternatively, the low-frequency edge degree for calculating a low-frequency edge degree that becomes a lower value as the difference absolute value between the minimum value of the low-frequency signal and the minimum value of the luminance signal is larger and becomes higher as the difference absolute value is smaller. A calculation means; The shot amount of the target pixel calculated based on the contour enhancement signal and the maximum value or the minimum value of the luminance signal is suppressed so as to approach 0 as the low-frequency edge degree is small, and is suppressed. There is provided an image processing apparatus comprising suppression shot amount calculation means for calculating the edge enhancement signal and edge enhancement signal correction means for correcting the edge enhancement signal based on the suppression shot amount calculated by the suppression shot amount calculation means.

かかる構成により、輪郭強調により生じるEdge部分のOvershoot及びUndershootについて、画像信号、及び、特定の低周波帯域を通過帯域とする低域通過フィルタを用いて画像信号から検出された低周波信号から、抑制すべき周波数の低周波域Edgeである度合いが判断され、その度合いに応じた適切なShoot量の抑制が施されるため、より好適な輪郭強調画像を得ることが可能になる。つまり、強調すべきEdge部分に対する強調効果を損なうことなく、抑制対象の低周波域Edgeに対するOvershootやUndershootを適切に抑制することができる。その結果、輪郭強調による不自然な縁取りを回避しつつ、強調すべき低周波域Edge部分を強調した画像信号を得ることが可能になる。   With this configuration, the Overshoot and Undershot of the Edge portion generated by edge enhancement are suppressed from the image signal and the low-frequency signal detected from the image signal using a low-pass filter having a specific low-frequency band as a pass band. Since the degree of the low frequency range edge of the frequency to be determined is determined and the appropriate amount of shot is suppressed according to the degree, it is possible to obtain a more suitable contour-enhanced image. That is, it is possible to appropriately suppress Overshoot and Undershot for the low frequency range Edge to be suppressed without impairing the enhancement effect for the Edge portion to be enhanced. As a result, it is possible to obtain an image signal in which the low-frequency edge portion to be emphasized is emphasized while avoiding unnatural borders due to edge enhancement.

また、前記低周波エッジ度算出手段は、前記Shoot量が所定値よりも大きい場合、前記低周波信号の最大値と前記輝度信号の最大値との差分絶対値に基づいて前記低周波エッジ度を算出し、前記Shoot量が所定値よりも小さい場合、前記低周波信号の最小値と前記輝度信号の最小値との差分絶対値に基づいて前記低周波エッジ度を算出するように構成されていてもよい。かかる構成により、より適切な低周波域Edge度が算出される。   The low frequency edge degree calculating means may calculate the low frequency edge degree based on an absolute value of a difference between the maximum value of the low frequency signal and the maximum value of the luminance signal when the Shot amount is larger than a predetermined value. And when the amount of shot is smaller than a predetermined value, the low frequency edge degree is calculated based on an absolute difference value between the minimum value of the low frequency signal and the minimum value of the luminance signal. Also good. With this configuration, a more appropriate low frequency range Edge degree is calculated.

また、前記Shoot量算出手段は、前記輪郭強調信号と、前記輝度信号の最大値又は最小値と、に基づいて前記注目画素のShoot量を算出する際、前記輪郭信号の値が正の場合には前記輪郭強調信号と前記輝度信号の最大値とに基づいて前記注目画素のShoot量を算出し、前記輪郭信号の値が負の場合には前記輪郭強調信号と前記輝度信号の最小値とに基づいて前記注目画素のShoot量を算出するように構成されていてもよい。かかる構成により、より適切なShoot量が算出される。   Further, the Shot amount calculation means calculates the Shot amount of the target pixel based on the contour emphasis signal and the maximum value or minimum value of the luminance signal, and when the value of the contour signal is positive. Calculates a shot amount of the target pixel based on the contour emphasis signal and the maximum value of the luminance signal. When the value of the contour signal is negative, the contour emphasis signal and the minimum value of the luminance signal are calculated. Based on this, it may be configured to calculate the Shot amount of the target pixel. With this configuration, a more appropriate amount of shot is calculated.

また、前記抑制Shoot量算出手段は、前記低周波エッジ度が小さいほど0に近づくように、かつ、前記低周波エッジ度が大きいほど前記Shoot量に近づくように、前記抑制Shoot量を算出するように構成されていてもよい。かかる構成により、より適切に抑制されたShoot量(抑制Shoot量)が算出される。   Further, the suppression Shot amount calculation means calculates the suppression Shot amount so that the smaller the low frequency edge degree is, the closer to 0, and the higher the low frequency edge degree is, the closer the Shot amount is. It may be configured. With such a configuration, a more appropriately suppressed amount of shot (inhibited shot amount) is calculated.

また、前記最大・最小値検出手段は、Shoot量の補正対象とする注目画素を基準として所定範囲内に位置する複数の画素について、前記輝度信号の最大値及び最小値、又は、前記低周波信号の最大値及び最小値、を検出する際に、検出対象となる前記複数の画素を決める所定範囲を任意に変更するように構成されていてもよい。   In addition, the maximum / minimum value detecting unit may detect the maximum value and the minimum value of the luminance signal or the low frequency signal for a plurality of pixels located within a predetermined range with reference to a target pixel as a correction amount of a shot amount. When detecting the maximum value and the minimum value, the predetermined range for determining the plurality of pixels to be detected may be arbitrarily changed.

また、複数の画素からなる画像の画像信号から輝度信号を抽出する輝度信号抽出手段と、前記輝度信号から画像の輪郭を示す輪郭信号を抽出する輪郭信号抽出手段と、をさらに備えていてもよい。かかる構成により、画像信号の入力に対して、適切な輪郭強調処理を施した画像信号が得られるようになる。   The image processing apparatus may further include: a luminance signal extracting unit that extracts a luminance signal from an image signal of an image including a plurality of pixels; and a contour signal extracting unit that extracts a contour signal indicating an image contour from the luminance signal. . With this configuration, it is possible to obtain an image signal that has been subjected to appropriate edge enhancement processing with respect to the input of the image signal.

また、上記課題を解決するために、本発明の別の観点によれば、画像を成す複数の画素のそれぞれに対応する輝度信号と、前記画像に含まれる輪郭部分の輝度を示す輪郭信号とを加算して輪郭強調信号を生成する輪郭強調ステップと、前記輝度信号の低周波数帯域成分である低周波信号を抽出する低周波信号抽出ステップと、注目画素の周囲に位置する複数の画素について、前記輝度信号の最大値及び最小値、及び、前記低周波信号の最大値及び最小値、を検出する最大・最小値検出ステップと、前記低周波信号の最大値と前記輝度信号の最大値との差分絶対値、又は前記低周波信号の最小値と前記輝度信号の最小値との差分絶対値、が大きいほど低い値となり、当該差分絶対値が小さいほど高い値となる低周波エッジ度を算出する低周波エッジ度算出ステップと、前記輪郭強調信号と、前記輝度信号の最大値又は最小値と、に基づいて算出される前記注目画素のShoot量を、前記低周波エッジ度が小さいほど0に近づくように抑制して抑制Shoot量を算出する抑制Shoot量算出ステップと、前記抑制Shoot量算出ステップにて算出された抑制Shoot量に基づいて前記輪郭強調信号を補正する輪郭強調信号補正ステップと、を含む、画像処理方法が提供される。   In order to solve the above problem, according to another aspect of the present invention, a luminance signal corresponding to each of a plurality of pixels constituting an image and a contour signal indicating the luminance of a contour portion included in the image are obtained. A contour emphasizing step for generating a contour emphasizing signal by adding, a low frequency signal extracting step for extracting a low frequency signal that is a low frequency band component of the luminance signal, and a plurality of pixels located around the pixel of interest, Maximum / minimum value detection step for detecting the maximum value and minimum value of the luminance signal and the maximum value and minimum value of the low-frequency signal, and the difference between the maximum value of the low-frequency signal and the maximum value of the luminance signal The lower the absolute value, or the lower the absolute value of the difference between the minimum value of the low frequency signal and the minimum value of the luminance signal, the lower the value. Frequency The shot amount of the target pixel calculated based on the degree of degree calculation step, the contour emphasis signal, and the maximum value or the minimum value of the luminance signal is made closer to 0 as the low frequency edge degree is smaller. A suppression shot amount calculation step for suppressing and calculating a suppression shot amount; and a contour enhancement signal correction step for correcting the contour enhancement signal based on the suppression shot amount calculated in the suppression shot amount calculation step. An image processing method is provided.

かかる構成により、輪郭強調により生じるEdge部分のOvershoot及びUndershootについて、画像信号、及び、特定の低周波帯域を通過帯域とする低域通過フィルタを用いて画像信号から検出された低周波信号から、抑制すべき周波数の低周波域Edgeである度合いが判断され、その度合いに応じた適切な抑制が施されるため、より好適な輪郭強調画像を得ることが可能になる。つまり、強調すべきEdge部分に対する強調効果を損なうことなく、抑制対象の低周波域Edgeに対するOvershootやUndershootを適切に抑制することができる。その結果、輪郭強調による不自然な縁取りを回避しつつ、強調すべき低周波域Edge部分を強調した画像信号を得ることが可能になる。   With this configuration, the Overshoot and Undershot of the Edge portion generated by edge enhancement are suppressed from the image signal and the low-frequency signal detected from the image signal using a low-pass filter having a specific low-frequency band as a pass band. Since the degree of the low frequency range Edge of the frequency to be determined is determined and appropriate suppression according to the degree is performed, it is possible to obtain a more suitable contour-enhanced image. That is, it is possible to appropriately suppress Overshoot and Undershot for the low frequency range Edge to be suppressed without impairing the enhancement effect for the Edge portion to be enhanced. As a result, it is possible to obtain an image signal in which the low-frequency edge portion to be emphasized is emphasized while avoiding unnatural borders due to edge enhancement.

また、上記課題を解決するために、本発明の別の観点によれば、上記の画像処理装置が備える各手段の機能をコンピュータに実現させるためのプログラムが提供される。さらに、上記課題を解決するために、本発明の別の観点によれば、当該プログラムが記録された、コンピュータにより読み取り可能な記録媒体が提供される。そして、上記課題を解決するために、本発明の別の観点によれば、上記の画像処理装置を搭載した撮像装置や表示装置が提供される。   In order to solve the above problems, according to another aspect of the present invention, there is provided a program for causing a computer to realize the functions of the units included in the image processing apparatus. Furthermore, in order to solve the above problems, according to another aspect of the present invention, a computer-readable recording medium on which the program is recorded is provided. And in order to solve the said subject, according to another viewpoint of this invention, the imaging device and display apparatus which mount said image processing apparatus are provided.

以上説明したように本発明によれば、低周波域のEdge部分に生じるOvershoot及びUndershootについて、抑制すべき周波数の低周波域Edgeを適切に判断して抑制することにより、好適な輪郭強調画像を得ることが可能になる。   As described above, according to the present invention, a suitable contour-enhanced image can be obtained by appropriately determining and suppressing the low frequency range edge of the frequency to be suppressed with respect to the overshoot and the undershot generated in the edge portion of the low frequency range. It becomes possible to obtain.

一般的な輪郭強調信号の抑制方法を概略的に示す説明図である。It is explanatory drawing which shows schematically the suppression method of a general outline emphasis signal. 本発明の一実施形態に係る輪郭強調信号の抑制方法を概略的に示す説明図である。It is explanatory drawing which shows roughly the suppression method of the outline emphasis signal which concerns on one Embodiment of this invention. 同実施形態に係る撮像装置の一構成例を示す説明図である。FIG. 3 is an explanatory diagram illustrating a configuration example of an imaging apparatus according to the embodiment. 同実施形態に係る輪郭強調処理部(画像処理装置)の機能構成例を示す説明図である。It is explanatory drawing which shows the function structural example of the outline emphasis processing part (image processing apparatus) which concerns on the same embodiment. 同実施形態に係る注目画素の表現方法を示す説明図である。It is explanatory drawing which shows the expression method of the attention pixel which concerns on the embodiment. 同実施形態に係る注目画素に関して最大値/最小値を算出する際に考慮される周辺画素の範囲の一例を示す説明図である。It is explanatory drawing which shows an example of the range of the surrounding pixel considered when calculating the maximum value / minimum value regarding the attention pixel which concerns on the embodiment. 同実施形態に係る注目画素に関して最大値/最小値を算出する際に考慮される周辺画素の範囲の一例を示す説明図である。It is explanatory drawing which shows an example of the range of the surrounding pixel considered when calculating the maximum value / minimum value regarding the attention pixel which concerns on the embodiment. 同実施形態に係るOvershoot/Undershootの判定方法の一例を示す説明図である。It is explanatory drawing which shows an example of the determination method of Overshot / Undershot which concerns on the embodiment. 同実施形態に係る低周波域Edge度の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the low frequency range Edge degree which concerns on the same embodiment. 同実施形態に係る低周波域Edge度の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the low frequency range Edge degree which concerns on the same embodiment. 同実施形態に係るShoot抑制係数kの特性例を示す説明図である。It is explanatory drawing which shows the example of a characteristic of the Shot suppression coefficient k which concerns on the same embodiment. 同実施形態に係る補正輪郭強調信号の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the correction | amendment outline emphasis signal which concerns on the same embodiment. 同実施形態に係る補正輪郭強調信号の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the correction | amendment outline emphasis signal which concerns on the same embodiment. 同実施形態に係る補正輪郭強調信号の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the correction | amendment outline emphasis signal which concerns on the same embodiment. 同実施形態に係る輪郭強調処理の流れを示す説明図である。It is explanatory drawing which shows the flow of the outline emphasis process which concerns on the same embodiment. 同実施形態に係る輪郭強調処理の流れを示す説明図である。It is explanatory drawing which shows the flow of the outline emphasis process which concerns on the same embodiment.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

[説明の流れについて]
ここで、以下に記載する本発明の実施形態に関する説明の流れについて簡単に述べる。まず、図1、図2を参照しながら、本実施形態に係る輪郭強調信号の抑制方法について、その概要を説明する。次いで、図3を参照しながら、本実施形態に係る輪郭強調信号の抑制方法を適用可能な装置の一例として、撮像装置10の構成を例示する。次いで、図4〜図14を参照しながら、本実施形態に係る輪郭強調信号の抑制方法を適用した輪郭強調処理を実行可能な輪郭強調処理部42の機能構成について詳細に説明する。次いで、図15、図16を参照しながら、本実施形態に係る輪郭強調処理の流れについて説明する。
[About the flow of explanation]
Here, the flow of explanation regarding the embodiment of the present invention described below will be briefly described. First, an outline of a method for suppressing an edge enhancement signal according to the present embodiment will be described with reference to FIGS. 1 and 2. Next, referring to FIG. 3, the configuration of the imaging device 10 is illustrated as an example of a device to which the contour enhancement signal suppression method according to the present embodiment can be applied. Next, the functional configuration of the contour emphasis processing unit 42 that can execute the contour emphasis processing to which the method of suppressing the contour emphasis signal according to the present embodiment is applied will be described in detail with reference to FIGS. Next, the flow of the contour enhancement process according to the present embodiment will be described with reference to FIGS. 15 and 16.

<実施形態>
以下、本発明の一実施形態について説明する。本実施形態は、画像信号に対する適切な輪郭強調処理を実現するための画像処理装置及び画像処理方法に関し、特に、低周波域のEdge部分に生じるOvershoot及びUndershootを抑制する画像処理装置及び画像処理方法に関する。
<Embodiment>
Hereinafter, an embodiment of the present invention will be described. The present embodiment relates to an image processing apparatus and an image processing method for realizing appropriate edge enhancement processing for an image signal, and in particular, an image processing apparatus and an image processing method for suppressing Overshoot and Undershot that occur in an edge portion in a low frequency range. About.

[1:概要]
まず、図1、図2を参照しながら、本実施形態に係る画像信号の輪郭強調方法について、その概要を説明する。図1は、従来の輪郭強調方法を概略的に示した説明図である。図2は、本実施形態に係る輪郭強調方法を概略的に示した説明図である。
[1: Overview]
First, an outline of an image signal contour enhancement method according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is an explanatory view schematically showing a conventional contour enhancement method. FIG. 2 is an explanatory diagram schematically showing the contour emphasizing method according to the present embodiment.

図1、図2には、それぞれ輝度信号及び輪郭強調信号の信号強度分布が示されている。なお、輝度信号は、複数の画素で構成される画像信号の各画素における輝度を表す信号である。また、輝度強調信号は、輪郭強調後の輝度信号である。但し、図1(右図)の輪郭強調信号は、従来の輪郭強調方法によりUndershootやOvershootが抑制された輪郭強調信号である。一方、図2(右図)の輪郭強調信号は、本実施形態に係る輪郭強調方法によりUndershootやOvershootが抑制された輪郭強調信号である。   1 and 2 show the signal intensity distributions of the luminance signal and the contour enhancement signal, respectively. Note that the luminance signal is a signal representing the luminance at each pixel of the image signal composed of a plurality of pixels. The luminance enhancement signal is a luminance signal after contour enhancement. However, the edge emphasis signal in FIG. 1 (right figure) is an edge emphasis signal in which undershoot and overshoot are suppressed by the conventional edge emphasis method. On the other hand, the edge emphasis signal in FIG. 2 (right figure) is an edge emphasis signal in which undershoot and overshoot are suppressed by the edge emphasis method according to the present embodiment.

上記特許文献1、2のように、従来の輪郭強調方法は、UndershootやOvershootを抑制する際、その抑制対象を画像信号が持つ波形の平坦度に基づいて判断していた。そのため、図1に示すように、抑制すべきUndershootやOvershoot(図1の例ではUndershoot)は効果的に抑制されるものの、抑制すべきでないUndershootやOvershoot(図1の例ではOvershoot)までもが抑制されてしまうという問題がある。   As described in Patent Documents 1 and 2, when the conventional edge enhancement method suppresses Undershot or Overshoot, the suppression target is determined based on the flatness of the waveform of the image signal. Therefore, as shown in FIG. 1, although the Undershot and Overshot (Undershot in the example of FIG. 1) to be suppressed are effectively suppressed, the Undershot and Overshot (Overshot in the example of FIG. 1) should not be suppressed. There is a problem of being suppressed.

一方、本実施形態に係る輪郭強調方法は、後述するように、UndershootやOvershootを抑制する際、その抑制対象を低周波域Edgeの度合いに基づいて判断する。そのため、図2に示すように、抑制すべきUndershootやOvershoot(図2の例ではUndershoot)を効果的に抑制しつつも、抑制すべきでないUndershootやOvershoot(図2の例ではOvershoot)は抑制されず、適切な輪郭強調信号を得ることが可能になる。   On the other hand, as will be described later, the edge emphasis method according to the present embodiment determines the suppression target based on the degree of the low frequency range edge when suppressing the Undershot and Overshot. Therefore, as shown in FIG. 2, the Undershot and Overshot that should be suppressed (Undershot in the example of FIG. 2) are effectively suppressed, but the Undershot and Overshot that are not to be suppressed (Overshot in the example of FIG. 2) are suppressed. Therefore, it is possible to obtain an appropriate edge enhancement signal.

このように、本実施形態に係る輪郭強調方法は、不自然な縁取りが生じないようにUndershootやOvershootを抑制する際に、本来抑制すべきでないUndershootやOvershootを抑制してしまうのを防止する技術に関する。   As described above, the contour emphasizing method according to the present embodiment is a technique for preventing undershoot and overshot that should not be originally suppressed when suppressing undershot and overshot so that an unnatural border is not generated. About.

以下、本実施形態に係る輪郭強調方法について、具体例を挙げて詳細に説明する。本稿では、本実施形態に係る輪郭強調方法の適用例として、撮像装置10の構成を例示する。しかし、本実施形態に係る輪郭強調方法の適用範囲は撮像装置10に限定されない。例えば、パーソナルコンピュータ、携帯電話、携帯情報端末、カーナビゲーションシステム、各種情報家電等の電子機器に搭載されたディスプレイデバイス、或いは、これら電子機器に接続されたプロジェクタ等における画像表示に適用することができる。さらに、テレビジョン受像機に対する画像表示にも適用することができる。このように、本実施形態に係る輪郭強調方法の適用対象が多岐にわたる点には注意されたい。   Hereinafter, the contour enhancement method according to the present embodiment will be described in detail with a specific example. In this article, the configuration of the imaging apparatus 10 is illustrated as an application example of the contour enhancement method according to the present embodiment. However, the application range of the contour enhancement method according to the present embodiment is not limited to the imaging apparatus 10. For example, the present invention can be applied to image display on a display device mounted on an electronic device such as a personal computer, a mobile phone, a portable information terminal, a car navigation system, various information home appliances, or a projector connected to the electronic device. . Furthermore, the present invention can be applied to image display for a television receiver. As described above, it should be noted that the application target of the contour enhancement method according to the present embodiment is various.

[2:撮像装置10の構成]
以下、本実施形態に係る撮像装置10の構成について説明する。
[2: Configuration of the imaging apparatus 10]
Hereinafter, the configuration of the imaging apparatus 10 according to the present embodiment will be described.

(2−1:撮像装置10の全体構成)
まず、図3を参照しながら、本実施形態に係る撮像装置10の全体構成について説明する。図3は、本実施形態に係る撮像装置10の全体構成を示す説明図である。
(2-1: Overall Configuration of Imaging Device 10)
First, the overall configuration of the imaging apparatus 10 according to the present embodiment will be described with reference to FIG. FIG. 3 is an explanatory diagram illustrating the overall configuration of the imaging apparatus 10 according to the present embodiment.

図3に示すように、撮像装置10は、レンズ12と、絞り14と、シャッター16と、撮像素子18と、AFE回路20(AFE:Analog Front End)と、前処理部22と、後処理部24と、データ圧縮部26と、メモリカードインターフェース28と、メモリカード30とにより構成される。   As illustrated in FIG. 3, the imaging device 10 includes a lens 12, a diaphragm 14, a shutter 16, an imaging device 18, an AFE circuit 20 (AFE: Analog Front End), a preprocessing unit 22, and a postprocessing unit. 24, a data compression unit 26, a memory card interface 28, and a memory card 30.

また、後処理部24は、ホワイトバランス処理部32と、デモザイク処理部34と、ノイズ低減処理部36と、ガンマ補正処理部38と、色補正処理部40と、輪郭強調処理部42とにより構成される。後述するように、本実施形態に係る輪郭強調方法は、輪郭強調処理部42の機能として提供される。   The post-processing unit 24 includes a white balance processing unit 32, a demosaic processing unit 34, a noise reduction processing unit 36, a gamma correction processing unit 38, a color correction processing unit 40, and an edge enhancement processing unit 42. Is done. As will be described later, the contour enhancement method according to the present embodiment is provided as a function of the contour enhancement processing unit 42.

なお、撮像素子18は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等である。また、メモリカード30は、撮像装置10に内蔵されている記録手段であってもよいし、着脱可能な外部の記録手段であってもよい。   The image sensor 18 is, for example, a CCD (Charge Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor), or the like. Further, the memory card 30 may be a recording unit built in the imaging apparatus 10 or an external recording unit that is detachable.

レンズ12は、光学系を構成し、被写体により反射された光を撮像素子18に集光する。但し、レンズ12を介して入射される光は、絞り14により絞り込まれる。また、撮像素子18は、シャッター16が開いている間だけ光を受光する。撮像素子18は、レンズ12により集光された光を複数の受光素子(例えば、赤色、青色、緑色の受光感度を持つ半導体素子の組が複数組設けられている。)で受光し、その受光した光を光電変換する。さらに、撮像素子18は、各受光素子が受光した光の強度に応じた強度の電気信号を出力する。各受光素子から出力された電気信号は、AFE回路20に入力され、その電気信号の強度に基づいて画像信号が形成される。   The lens 12 constitutes an optical system and condenses the light reflected by the subject on the image sensor 18. However, light incident through the lens 12 is narrowed down by the diaphragm 14. Further, the image sensor 18 receives light only while the shutter 16 is open. The imaging element 18 receives light collected by the lens 12 by a plurality of light receiving elements (for example, a plurality of sets of semiconductor elements having red, blue, and green light receiving sensitivities) and receives the light. The converted light is photoelectrically converted. Further, the image sensor 18 outputs an electrical signal having an intensity corresponding to the intensity of light received by each light receiving element. The electric signal output from each light receiving element is input to the AFE circuit 20, and an image signal is formed based on the intensity of the electric signal.

AFE回路20により形成された画像信号は、前処理部22に入力される。前処理部22は、AFE回路20から入力された画像信号にOB(Optical Black)処理や欠陥画素補正等の前処理を施す。なお、OB処理とは、画像信号のブラックレベルを調整する処理である。前処理部22により前処理が施された画像信号は、後処理部24に入力される。後処理部24は、前処理部22から入力された画像信号に対し、ホワイトバランスの調整処理、デモザイク処理、ノイズ除去処理、ガンマ補正処理、色補正処理、輪郭強調処理等のデジタル画像処理を施す。   The image signal formed by the AFE circuit 20 is input to the preprocessing unit 22. The preprocessing unit 22 performs preprocessing such as OB (Optical Black) processing and defect pixel correction on the image signal input from the AFE circuit 20. The OB process is a process for adjusting the black level of the image signal. The image signal preprocessed by the preprocessing unit 22 is input to the postprocessing unit 24. The post-processing unit 24 performs digital image processing such as white balance adjustment processing, demosaic processing, noise removal processing, gamma correction processing, color correction processing, and edge enhancement processing on the image signal input from the pre-processing unit 22. .

ホワイトバランスの調整処理は、ホワイトバランス処理部32により実行される。デモザイク処理は、デモザイク処理部34により実行される。ノイズ低減処理は、ノイズ低減処理部36により実行される。ガンマ補正処理は、ガンマ補正処理部38により実行される。色補正処理は、色補正処理部40により実行される。また、輪郭強調処理は、後述する輪郭強調処理部42により実行される。なお、デモザイク処理とは、例えば、色情報が足りない画素に対し、その画素の色情報を周辺画素の情報に基づいて補完する処理(所謂デモザイキング)である。   The white balance adjustment process is executed by the white balance processing unit 32. The demosaic process is executed by the demosaic processing unit 34. The noise reduction processing is executed by the noise reduction processing unit 36. The gamma correction processing is executed by the gamma correction processing unit 38. The color correction process is executed by the color correction processing unit 40. The contour emphasis process is executed by an edge emphasis processing unit 42 described later. Note that the demosaic process is a process (so-called demosaicing) in which, for example, a pixel for which color information is insufficient, the color information of the pixel is complemented based on the information of surrounding pixels.

後処理部24によりデジタル画像処理が施された画像信号は、データ圧縮部26に入力される。データ圧縮部26は、画像信号をBMP、GIF、JPEG、PICT、又はPING等の符号化データに変換して出力する。データ圧縮部26により出力された符号化データは、メモリカードインターフェース28を介してメモリカード30に記録される。なお、メモリカード30に代えて、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の記録媒体が用いられてもよい。   The image signal that has been subjected to the digital image processing by the post-processing unit 24 is input to the data compression unit 26. The data compression unit 26 converts the image signal into encoded data such as BMP, GIF, JPEG, PICT, or PING and outputs the encoded data. The encoded data output by the data compression unit 26 is recorded on the memory card 30 via the memory card interface 28. Instead of the memory card 30, a recording medium such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive) may be used.

以上、撮像装置10の全体構成について説明した。先に述べた通り、本実施形態に係る輪郭強調方法は、輪郭強調処理部42の機能として実現される。そこで、以下では、輪郭強調処理部42の機能構成について、より詳細に説明する。   The overall configuration of the imaging device 10 has been described above. As described above, the contour emphasis method according to the present embodiment is realized as a function of the contour emphasis processing unit 42. Therefore, in the following, the functional configuration of the contour enhancement processing unit 42 will be described in more detail.

(2−2:輪郭強調処理部42の詳細)
以下、図4を参照しながら、本実施形態に係る輪郭強調方法を適用した輪郭強調処理部42の機能構成について、より詳細に説明する。図4は、本実施形態に係る輪郭強調方法を適用した輪郭強調処理部42の詳細な機能構成を示す説明図である。なお、輪郭強調処理部42は、本実施形態に係る輪郭強調処理を実行する画像処理装置として機能する。
(2-2: Details of Outline Enhancement Processing Unit 42)
Hereinafter, the functional configuration of the contour enhancement processing unit 42 to which the contour enhancement method according to the present embodiment is applied will be described in more detail with reference to FIG. FIG. 4 is an explanatory diagram showing a detailed functional configuration of the contour enhancement processing unit 42 to which the contour enhancement method according to the present embodiment is applied. Note that the contour enhancement processing unit 42 functions as an image processing device that executes the contour enhancement processing according to the present embodiment.

図4に示すように、輪郭強調処理部42は、輝度信号抽出手段422と、輪郭信号抽出手段424と、輪郭強調信号算出手段426と、輝度信号最大値検出手段428と、輝度信号最小値検出手段430と、Shoot量算出手段432と、を有する。さらに、輪郭強調処理部42は、低周波信号抽出手段434と、低周波信号最大値検出手段436と、低周波信号最小値検出手段438と、低周波域Edge度算出手段440と、Shoot量抑制手段442と、補正輪郭強調信号算出手段444と、を有する。   As shown in FIG. 4, the contour enhancement processing unit 42 includes a luminance signal extraction unit 422, a contour signal extraction unit 424, a contour enhancement signal calculation unit 426, a luminance signal maximum value detection unit 428, and a luminance signal minimum value detection. Means 430 and Shot amount calculation means 432 are provided. Further, the contour enhancement processing unit 42 includes a low frequency signal extraction unit 434, a low frequency signal maximum value detection unit 436, a low frequency signal minimum value detection unit 438, a low frequency range Edge degree calculation unit 440, and a shot amount suppression. Means 442 and corrected outline emphasis signal calculating means 444.

なお、以下の説明において、次の表現を用いる。
Y:輝度信号
E:輪郭信号
YEn:輪郭強調信号
YnMax:輝度信号最大値
YnMin:輝度信号最小値
L:低周波信号
LnMax:低周波信号最大値
LnMin:低周波信号最小値
α:低周波域Edge度
Sn:Shoot量
SSn:抑制Shoot量
CYEn:補正輪郭強調信号
In the following description, the following expressions are used.
Y: Luminance signal E: Contour signal YEn: Contour emphasis signal YnMax: Luminance signal maximum value YnMin: Luminance signal minimum value L: Low frequency signal LnMax: Low frequency signal maximum value LnMin: Low frequency signal minimum value α: Low frequency range Edge Degree Sn: Shot amount SSn: Suppressed shot amount CYEn: Correction outline emphasis signal

輪郭強調処理が開始されると、処理対象となる画像信号は、輝度信号抽出手段422に入力される。輝度信号抽出手段422は、入力された画像信号から画素毎の輝度を示す輝度信号Yを抽出する。輝度信号抽出手段422により抽出された輝度信号Yは、輪郭信号抽出手段424、輝度信号最大値検出手段428、輝度信号最小値検出手段430、及び低周波信号抽出手段434に入力される。   When the contour enhancement process is started, the image signal to be processed is input to the luminance signal extraction unit 422. The luminance signal extraction unit 422 extracts a luminance signal Y indicating the luminance for each pixel from the input image signal. The luminance signal Y extracted by the luminance signal extraction unit 422 is input to the contour signal extraction unit 424, the luminance signal maximum value detection unit 428, the luminance signal minimum value detection unit 430, and the low frequency signal extraction unit 434.

(輪郭強調信号Ynの算出)
輪郭信号抽出手段424は、輝度信号抽出手段422から入力された輝度信号Yから、下記の式(1)に基づいて輪郭信号Eを生成する。但し、下記の式(1)において、E(i,j)は、位置(i,j)の画素に対応する輪郭信号Eの値を示す。また、Y(i+k,j+l)は、位置(i+k,j+l)の画素に対応する輝度信号Yの値を示す。そして、w1(k,l)は、空間フィルタ(以下、輪郭抽出フィルタ)の重み係数である。
(Calculation of outline emphasis signal Yn)
The contour signal extraction unit 424 generates a contour signal E from the luminance signal Y input from the luminance signal extraction unit 422 based on the following formula (1). However, in the following equation (1), E (i, j) represents the value of the contour signal E corresponding to the pixel at the position (i, j). Y (i + k, j + l) indicates the value of the luminance signal Y corresponding to the pixel at the position (i + k, j + l). W1 (k, l) is a weighting coefficient of the spatial filter (hereinafter, contour extraction filter).

Figure 2011139127
…(1)
Figure 2011139127
... (1)

ここで、位置(i,j)を注目位置とし、図5に示すように、注目位置の画素における輝度信号Yの値を輝度信号Yn、注目位置の画素における輪郭信号Eの値を輪郭信号Enと表記する。図5の例では、位置(2,2)が注目位置である。なお、ここで言う注目位置とは、輪郭強調処理の処理対象とされる画素の位置を指す。   Here, the position (i, j) is the target position, and as shown in FIG. 5, the value of the luminance signal Y at the pixel at the target position is the luminance signal Yn, and the value of the contour signal E at the pixel at the target position is the contour signal En. Is written. In the example of FIG. 5, the position (2, 2) is the target position. Note that the attention position here refers to the position of a pixel to be processed in the contour enhancement process.

輪郭信号抽出手段424により生成された輪郭信号Eは、輪郭強調信号算出手段426に入力される。また、輪郭強調信号算出手段426には輝度信号Yも入力される。輪郭強調信号算出手段426は、入力された輪郭信号E及び輝度信号Yに基づき、下記の式(2)のように輪郭信号Enと輝度信号Ynとを加算して輪郭強調信号YEnを生成する。輪郭強調信号算出手段426により生成された輪郭強調信号YEnは、Shoot量算出手段432、及び補正輪郭強調信号算出手段444に入力される。   The contour signal E generated by the contour signal extraction unit 424 is input to the contour enhancement signal calculation unit 426. Further, the luminance signal Y is also input to the contour enhancement signal calculation means 426. Based on the input contour signal E and luminance signal Y, the contour enhancement signal calculation means 426 adds the contour signal En and the luminance signal Yn as shown in the following equation (2) to generate the contour enhancement signal YEn. The contour enhancement signal YEn generated by the contour enhancement signal calculation unit 426 is input to the Shot amount calculation unit 432 and the corrected contour enhancement signal calculation unit 444.

Figure 2011139127
…(2)
Figure 2011139127
... (2)

(輝度信号最大値YnMax、輝度信号最小値YnMinの算出)
さて、輝度信号抽出手段422により抽出された輝度信号Yは、輝度信号最大値検出手段428、及び輝度信号最小値検出手段430にも入力される。輝度信号最大値検出手段428は、入力された輝度信号Yのうち、注目位置の周囲(所定範囲内)に位置する画素の輝度信号の最大値YnMax(輝度信号最大値YnMax)を検出する。但し、所定範囲の設定方法は任意に変更することが可能である。
(Calculation of luminance signal maximum value YnMax and luminance signal minimum value YnMin)
The luminance signal Y extracted by the luminance signal extraction unit 422 is also input to the luminance signal maximum value detection unit 428 and the luminance signal minimum value detection unit 430. The luminance signal maximum value detecting means 428 detects a maximum value YnMax (luminance signal maximum value YnMax) of a luminance signal of a pixel located around the target position (within a predetermined range) from the input luminance signal Y. However, the predetermined range setting method can be arbitrarily changed.

例えば、所定範囲を1次元的な範囲に設定した場合、輝度信号最大値検出手段428は、図6に示すように、1次元的な範囲内にある画素の輝度信号Yから輝度信号最大値YnMaxを検出する。また、所定範囲を2次元的な範囲に設定した場合、輝度信号最大値検出手段428は、図7に示すように、2次元的な範囲内にある画素の輝度信号Yから輝度信号最大値YnMaxを検出する。このようにして輝度信号最大値検出手段428により検出された輝度信号最大値YnMaxは、Shoot量算出手段432、低周波域Edge度算出手段440、及び補正輪郭強調信号算出手段444に入力される。   For example, when the predetermined range is set to a one-dimensional range, the luminance signal maximum value detecting unit 428 determines the luminance signal maximum value YnMax from the luminance signal Y of the pixels in the one-dimensional range as shown in FIG. Is detected. Further, when the predetermined range is set to a two-dimensional range, the luminance signal maximum value detecting unit 428, as shown in FIG. 7, determines the luminance signal maximum value YnMax from the luminance signal Y of the pixels within the two-dimensional range. Is detected. The luminance signal maximum value YnMax detected by the luminance signal maximum value detecting unit 428 in this way is input to the Shot amount calculating unit 432, the low frequency range edge degree calculating unit 440, and the corrected contour enhancement signal calculating unit 444.

また、輝度信号最小値検出手段430は、輝度信号抽出手段422から入力された輝度信号Yのうち、注目位置の周囲(所定範囲内)に位置する画素の輝度信号の最小値YnMin(輝度信号最小値YnMin)を検出する。但し、所定範囲の設定方法は任意に変更することが可能である。   Also, the luminance signal minimum value detecting means 430 is the luminance signal minimum value YnMin (luminance signal minimum) of the pixels located around the attention position (within a predetermined range) among the luminance signals Y input from the luminance signal extraction means 422. The value YnMin) is detected. However, the predetermined range setting method can be arbitrarily changed.

例えば、所定範囲を1次元的な範囲に設定した場合、輝度信号最小値検出手段430は、図6に示すように、1次元的な範囲内にある画素の輝度信号Yから輝度信号最小値YnMinを検出する。また、所定範囲を2次元的な範囲に設定した場合、輝度信号最小値検出手段430は、図7に示すように、2次元的な範囲内にある画素の輝度信号Yから輝度信号最小値YnMinを検出する。このようにして輝度信号最小値検出手段430により検出された輝度信号最小値YnMinは、Shoot量算出手段432、低周波域Edge度算出手段440、及び補正輪郭強調信号算出手段444に入力される。   For example, when the predetermined range is set to a one-dimensional range, the luminance signal minimum value detecting unit 430, as shown in FIG. 6, determines the luminance signal minimum value YnMin from the luminance signal Y of the pixels in the one-dimensional range. Is detected. When the predetermined range is set to a two-dimensional range, the luminance signal minimum value detecting unit 430, as shown in FIG. 7, determines the luminance signal minimum value YnMin from the luminance signal Y of the pixels in the two-dimensional range. Is detected. The luminance signal minimum value YnMin detected by the luminance signal minimum value detecting unit 430 in this way is input to the Shot amount calculating unit 432, the low frequency range Edge degree calculating unit 440, and the corrected contour enhancement signal calculating unit 444.

(Shoot量Snの算出)
上記の通り、Shoot量算出手段432には、輪郭強調信号YEn、輝度信号最大値YnMax、輝度信号最小値YnMinが入力される。Shoot量算出手段432は、輝度信号最大値YnMax及び輝度信号最小値YnMinをそれぞれ注目位置におけるOvershoot及びUndershootの閾値として利用し、下記の式(3)又は式(4)に基づいてShoot量Snを算出する。
(Calculation of Shot amount Sn)
As described above, the edge amount calculation unit 432 receives the edge enhancement signal YEn, the luminance signal maximum value YnMax, and the luminance signal minimum value YnMin. The shot amount calculation means 432 uses the luminance signal maximum value YnMax and the luminance signal minimum value YnMin as the thresholds of Overshoot and Undershot at the target position, respectively, and calculates the Shot amount Sn based on the following formula (3) or formula (4). calculate.

例えば、輪郭信号Enが0より大きい場合、Shoot量算出手段432は、下記の式(3)に基づいてShoot量Snを算出する。また、輪郭信号Enが0より小さい場合、Shoot量算出手段432は、下記の式(4)に基づいてShoot量Snを算出する。さらに、輪郭信号Enが0の場合、Shoot量算出手段432は、Shoot量Sn=0とする。このようにしてShoot量算出手段432により算出されたShoot量Snは、Shoot量抑制手段442に入力される。   For example, when the contour signal En is larger than 0, the shot amount calculation unit 432 calculates the shot amount Sn based on the following equation (3). When the contour signal En is smaller than 0, the shot amount calculation unit 432 calculates the shot amount Sn based on the following equation (4). Further, when the contour signal En is 0, the shot amount calculation unit 432 sets the shot amount Sn = 0. The shot amount Sn calculated by the shot amount calculation unit 432 in this way is input to the shot amount suppression unit 442.

Figure 2011139127
…(3)

Figure 2011139127
…(4)
Figure 2011139127
... (3)

Figure 2011139127
... (4)

(低周波信号最大値LnMax、低周波信号最小値LnMinの算出)
さて、輝度信号抽出手段422により抽出された輝度信号Yは、低周波信号抽出手段434にも入力される。低周波信号抽出手段434は、入力された輝度信号Yから、下記の式(5)に基づいて低周波信号Lを算出する。
(Calculation of low frequency signal maximum value LnMax, low frequency signal minimum value LnMin)
The luminance signal Y extracted by the luminance signal extracting unit 422 is also input to the low frequency signal extracting unit 434. The low frequency signal extraction means 434 calculates the low frequency signal L from the input luminance signal Y based on the following equation (5).

但し、下記の式(5)において、L(i,j)は、位置(i,j)の画素に対応する低周波信号Lの値を示す。また、Y(i+k,j+l)は、位置(i+k,j+l)の画素に対応する輝度信号Yの値を示す。そして、w2(k,l)は、空間フィルタ(以下、低域通過フィルタ)の重み係数である。この重み係数w2は、Overshoot及びUndershootの抑制対象となる特定の周波数帯域が通過するように設定される。   However, in the following formula (5), L (i, j) represents the value of the low frequency signal L corresponding to the pixel at the position (i, j). Y (i + k, j + l) indicates the value of the luminance signal Y corresponding to the pixel at the position (i + k, j + l). W2 (k, l) is a weighting coefficient of the spatial filter (hereinafter, low-pass filter). The weighting factor w2 is set so that a specific frequency band that is a suppression target of Overshoot and Undershot passes.

Figure 2011139127
…(5)
Figure 2011139127
... (5)

低周波信号抽出手段434により算出された低周波信号Lは、低周波信号最大値検出手段436、及び低周波信号最小値検出手段438に入力される。低周波信号最大値検出手段436は、入力された低周波信号Lのうち、注目位置の周囲(所定範囲内)に位置する画素の低周波信号の最大値LnMax(低周波信号最大値LnMax)を検出する。但し、所定範囲の設定方法は任意に変更することが可能である。   The low frequency signal L calculated by the low frequency signal extraction unit 434 is input to the low frequency signal maximum value detection unit 436 and the low frequency signal minimum value detection unit 438. The low frequency signal maximum value detecting means 436 calculates the maximum value LnMax (low frequency signal maximum value LnMax) of the low frequency signal of the pixel located around the target position (within a predetermined range) of the input low frequency signal L. To detect. However, the predetermined range setting method can be arbitrarily changed.

例えば、所定範囲を1次元的な範囲に設定した場合、低周波信号最大値検出手段436は、図6に示すように、1次元的な範囲内にある画素の低周波信号Lから低周波信号最大値LnMaxを検出する。また、所定範囲を2次元的な範囲に設定した場合、低周波信号最大値検出手段436は、図7に示すように、2次元的な範囲内にある画素の低周波信号Lから低周波信号最大値LnMaxを検出する。このようにして低周波信号最大値検出手段436により検出された低周波信号最大値LnMaxは、低周波域Edge度算出手段440に入力される。   For example, when the predetermined range is set to a one-dimensional range, the low-frequency signal maximum value detection unit 436 generates a low-frequency signal from the low-frequency signal L of the pixels in the one-dimensional range as shown in FIG. The maximum value LnMax is detected. When the predetermined range is set to a two-dimensional range, the low-frequency signal maximum value detection unit 436 generates a low-frequency signal from the low-frequency signal L of the pixels in the two-dimensional range as shown in FIG. The maximum value LnMax is detected. The low frequency signal maximum value LnMax detected by the low frequency signal maximum value detection unit 436 in this way is input to the low frequency range Edge degree calculation unit 440.

また、低周波信号最小値検出手段438は、入力された低周波信号Lのうち、注目位置の周囲(所定範囲内)に位置する画素の低周波信号の最小値LnMin(低周波信号最小値LnMin)を検出する。但し、所定範囲の設定方法は任意に変更することが可能である。   The low frequency signal minimum value detecting means 438 also includes a low frequency signal minimum value LnMin (low frequency signal minimum value LnMin) of a pixel located around the target position (within a predetermined range) of the input low frequency signal L. ) Is detected. However, the predetermined range setting method can be arbitrarily changed.

例えば、所定範囲を1次元的な範囲に設定した場合、低周波信号最小値検出手段438は、図6に示すように、1次元的な範囲内にある画素の低周波信号Lから低周波信号最小値LnMinを検出する。また、所定範囲を2次元的な範囲に設定した場合、低周波信号最小値検出手段438は、図7に示すように、2次元的な範囲内にある画素の低周波信号Lから低周波信号最小値LnMinを検出する。このようにして低周波信号最小値検出手段438により検出された低周波信号最小値LnMinは、低周波域Edge度算出手段440に入力される。   For example, when the predetermined range is set to a one-dimensional range, the low-frequency signal minimum value detection unit 438 performs the low-frequency signal from the low-frequency signal L of the pixels in the one-dimensional range as shown in FIG. The minimum value LnMin is detected. Further, when the predetermined range is set to a two-dimensional range, the low frequency signal minimum value detecting means 438 performs the low frequency signal from the low frequency signal L of the pixels within the two dimensional range as shown in FIG. The minimum value LnMin is detected. The low frequency signal minimum value LnMin detected by the low frequency signal minimum value detecting means 438 in this way is input to the low frequency range Edge degree calculating means 440.

(低周波域Edge度αの算出)
上記の通り、低周波域Edge度算出手段440には、輝度信号最大値YnMax、輝度信号最小値YnMin、低周波信号最大値LnMax、低周波信号最小値LnMinが入力される。低周波域Edge度算出手段440は、輝度信号最大値YnMaxと低周波信号最大値LnMaxとの間の差分絶対値(以下、最大値差分)、又は、輝度信号最小値YnMinと低周波信号最小値LnMinとの間の差分絶対値(以下、最小値差分)に基づいて低周波域Edge度αを算出する。
(Calculation of low-frequency edge degree α)
As described above, the luminance signal maximum value YnMax, the luminance signal minimum value YnMin, the low frequency signal maximum value LnMax, and the low frequency signal minimum value LnMin are input to the low frequency range Edge degree calculation means 440. The low frequency range edge degree calculating means 440 is a difference absolute value between the luminance signal maximum value YnMax and the low frequency signal maximum value LnMax (hereinafter, maximum value difference), or the luminance signal minimum value YnMin and the low frequency signal minimum value. The low frequency range Edge degree α is calculated based on the absolute value of the difference from LnMin (hereinafter, the minimum value difference).

図9に示すように、最大値差分又は最小値差分の値が小さい部分ほど、低周波域のEdgeである度合いが高い。一方、図10に示すように、最大値差分又は最小値差分の値が大きい部分ほど、低周波域のEdgeである度合いが低い。そこで、低周波域Edge度算出手段440は、下記の式(6)に基づいて低周波域Edge度αを算出する。なお、下記の式(6)において、VMaxは、輝度信号Yの取り得る最大値である。このようにして低周波域Edge度算出手段440により算出された低周波域Edge度αは、Shoot量抑制手段442に入力される。   As shown in FIG. 9, the smaller the maximum value difference or the minimum value difference, the higher the degree of edge in the low frequency range. On the other hand, as shown in FIG. 10, the greater the maximum value difference or the minimum value difference, the lower the degree of edge in the low frequency range. Therefore, the low frequency range edge degree calculation means 440 calculates the low frequency range edge degree α based on the following equation (6). In the following formula (6), VMax is the maximum value that the luminance signal Y can take. The low frequency range edge degree α calculated by the low frequency range edge degree calculating means 440 in this way is input to the shot amount suppressing means 442.

Figure 2011139127
…(6)
Figure 2011139127
(6)

(抑制Shoot量SSnの算出)
上記の通り、Shoot量抑制手段442には、Shoot量Sn、及び低周波域Edge度αが入力される。Shoot量抑制手段442は、入力された低周波域Edge度αに応じてShoot量Snを抑制した抑制Shoot量SSnを算出する。但し、Shoot量Snが0の場合、Shoot量抑制手段442は、Overshoot及びUndershootが発生しないと判断し、Shoot量Snを抑制しない。この場合、Shoot量抑制手段442は、抑制Shoot量SSnとして、元のShoot量Snを補正輪郭強調信号算出手段444に入力する。
(Calculation of suppression shot amount SSn)
As described above, the shot amount Sn and the low frequency range edge degree α are input to the shot amount suppression unit 442. The shot amount suppression means 442 calculates a suppressed shot amount SSn in which the shot amount Sn is suppressed according to the input low frequency range edge degree α. However, when the Shot amount Sn is 0, the Shot amount suppression unit 442 determines that Overshoot and Undershot do not occur, and does not suppress the Shot amount Sn. In this case, the Shot amount suppression unit 442 inputs the original Shot amount Sn to the corrected contour emphasis signal calculation unit 444 as the suppression Shot amount SSn.

一方、Shoot量Snが0より大きい場合、Shoot量抑制手段442は、注目位置にてOvershootが発生しているものと判断する(図8を参照)。また、Shoot量Snが0より小さい場合、Shoot量抑制手段442は、注目位置にてUndershootが発生していると判断する(図8を参照)。そして、Shoot量抑制手段442は、例えば、下記の式(7)に基づいて、低周波域Edge度αが小さいほど0に近づくようにShoot量Snを抑制する。   On the other hand, if the Shot amount Sn is greater than 0, the Shot amount suppressing means 442 determines that Overshoot has occurred at the position of interest (see FIG. 8). Also, if the Shot amount Sn is smaller than 0, the Shot amount suppressing means 442 determines that Undershoot has occurred at the position of interest (see FIG. 8). Then, the shot amount suppression unit 442 suppresses the shot amount Sn so as to approach 0 as the low frequency range edge degree α decreases, for example, based on the following equation (7).

Figure 2011139127
…(7)
Figure 2011139127
... (7)

但し、上記の式(7)において、kは、Shoot量Snの抑制度合いを決める抑制係数である。この抑制係数kは、図11に示すように、低周波域Edge度αに基づいて決定される。図11の例では、低周波域Edge度αに比例して抑制係数kが増加しているが、必ずしも低周波域Edge度αと抑制係数kとが比例関係になくてもよい。例えば、低周波域Edge度αのn次(n≧2)で抑制係数kが増加するような関係でもよい。また、図11に例示したように、低周波域Edge度αが所定値を越えると、抑制係数kは一定値1.0となる。   However, in said Formula (7), k is a suppression coefficient which determines the suppression degree of Shot amount Sn. As shown in FIG. 11, the suppression coefficient k is determined based on the low frequency range Edge degree α. In the example of FIG. 11, the suppression coefficient k increases in proportion to the low frequency range Edge degree α, but the low frequency range Edge degree α and the suppression coefficient k do not necessarily have a proportional relationship. For example, a relationship in which the suppression coefficient k increases in the nth order (n ≧ 2) of the low frequency range Edge degree α may be used. Further, as illustrated in FIG. 11, when the low frequency range Edge degree α exceeds a predetermined value, the suppression coefficient k becomes a constant value 1.0.

このようにしてShoot量抑制手段442により算出された抑制Shoot量SSnは、補正輪郭強調信号算出手段444に入力される。なお、Shoot量抑制手段442は、抑制Shoot量SSnが所定値(クリップ値)以下となるように、抑制Shoot量SSnがクリップ値を越えた場合に抑制Shoot量SSnとしてクリップ値を補正輪郭強調信号算出手段444に入力されるように構成されていてもよい。   The suppression shot amount SSn calculated by the shot amount suppression unit 442 in this way is input to the corrected contour emphasis signal calculation unit 444. The shot amount suppression unit 442 corrects the clip value as the suppression shot amount SSn when the suppression shot amount SSn exceeds the clip value so that the suppression shot amount SSn is equal to or less than a predetermined value (clip value). The calculation unit 444 may be configured to be input.

(補正輪郭強調信号CYEnの算出)
上記の通り、補正輪郭強調信号算出手段444には、輪郭強調信号YEn、輝度信号最大値YnMax、輝度信号最小値YnMin、及び抑制Shoot量SSnが入力される。補正輪郭強調信号算出手段444は、入力された輪郭強調信号YEn、輝度信号最大値YnMax、輝度信号最小値YnMin、及び抑制Shoot量SSnに基づいて、下記の式(8)により補正輪郭強調信号CYEnを算出する。
(Calculation of corrected contour emphasis signal CYEn)
As described above, the contour enhancement signal YEn, the luminance signal maximum value YnMax, the luminance signal minimum value YnMin, and the suppression shot amount SSn are input to the corrected contour enhancement signal calculation unit 444. The corrected contour emphasizing signal calculation means 444 is based on the input contour emphasizing signal YEn, luminance signal maximum value YnMax, luminance signal minimum value YnMin, and suppression shot amount SSn, and the corrected contour emphasizing signal CYEn according to the following equation (8). Is calculated.

但し、補正Shoot量SSnが0の場合(Shoot量Snが0の場合)、補正輪郭強調信号算出手段444は、補正輪郭強調信号CYEnとして、輪郭強調信号YEnを出力する。一方、補正Shoot量SSnが0でない場合、補正輪郭強調信号算出手段444は、下記の式(8)に基づいて算出した補正輪郭強調信号CYEnを出力する。この補正輪郭強調信号CYEnは、低周波域のEdgeである度合いを加味してOvershoot及びUndershootが抑制された輪郭強調信号である。   However, when the corrected Shot amount SSn is 0 (when the Shot amount Sn is 0), the corrected contour emphasis signal calculation unit 444 outputs the contour emphasis signal YEn as the corrected contour emphasis signal CYEn. On the other hand, when the corrected Shot amount SSn is not 0, the corrected outline emphasis signal calculating unit 444 outputs a corrected outline emphasis signal CYEn calculated based on the following equation (8). The corrected contour emphasis signal CYEn is a contour emphasis signal in which overshoot and undershoot are suppressed in consideration of the degree of edge in the low frequency range.

Figure 2011139127
…(8)
Figure 2011139127
(8)

(まとめ)
以上説明したように、低周波域Edge度αに基づいて抑制Shoot量SSnを算出し、この抑制Shoot量SSnを用いて輪郭強調処理を実行することにより、図12〜図14に示すように、適切な輪郭強調効果を得ることができる。図12〜図14を参照すると、強く抑制すべきOvershootやUndershootが強く抑制され、あまり抑制されるべきでないOvershootやUndershootが弱く抑制された補正輪郭強調信号が得られている。このような適応的な抑制効果は、画像信号が持つ波形の平坦度に応じてOvershoot及びUndershootを抑制する方法を適用した場合には得られないものである。
(Summary)
As described above, by calculating the suppression Shot amount SSn based on the low frequency range Edge degree α and executing the edge enhancement process using the suppression Shot amount SSn, as shown in FIGS. An appropriate edge enhancement effect can be obtained. Referring to FIGS. 12 to 14, a corrected contour emphasizing signal is obtained in which Overshot and Undershot that should be strongly suppressed are strongly suppressed, and Overshot and Undershot that should not be suppressed so much are weakly suppressed. Such an adaptive suppression effect cannot be obtained when a method for suppressing Overshoot and Undershot according to the flatness of the waveform of the image signal is applied.

[3:輪郭強調処理の流れ]
次に、図15、図16を参照しながら、本実施形態に係る輪郭強調処理の流れについて説明する。図15、図16は、本実施形態に係る輪郭強調処理の流れを示す説明図である。なお、図15、図16に示す輪郭強調処理は、上記の輪郭強調処理部42の機能により実現される。
[3: Outline enhancement processing flow]
Next, the flow of the contour enhancement process according to the present embodiment will be described with reference to FIGS. 15 and 16. 15 and 16 are explanatory diagrams showing the flow of the contour emphasis process according to the present embodiment. Note that the contour enhancement processing shown in FIGS. 15 and 16 is realized by the function of the contour enhancement processing unit 42 described above.

図15に示すように、まず、輝度信号抽出手段422に画像信号が入力される(S102)。次いで、輝度信号抽出手段422は、入力された画像信号から輝度信号Yを算出する(S104)。ここで算出された輝度信号Yは、輪郭信号抽出手段424、輝度信号最大値検出手段428、輝度信号最小値検出手段430、及び低周波信号抽出手段434に入力される。   As shown in FIG. 15, first, an image signal is input to the luminance signal extraction means 422 (S102). Next, the luminance signal extraction unit 422 calculates the luminance signal Y from the input image signal (S104). The luminance signal Y calculated here is input to the contour signal extraction unit 424, the luminance signal maximum value detection unit 428, the luminance signal minimum value detection unit 430, and the low frequency signal extraction unit 434.

次いで、輪郭信号抽出手段424は、入力された輝度信号Yから輪郭信号Eを抽出する(S106)。ここで抽出された輪郭信号Eは、輪郭強調信号算出手段426に入力される。次いで、低周波信号抽出手段434は、入力された輝度信号から低周波信号Lを抽出する(S108)。ここで抽出された低周波信号Lは、低周波信号最大値検出手段436、及び低周波信号最小値検出手段438に入力される。   Next, the contour signal extraction unit 424 extracts the contour signal E from the input luminance signal Y (S106). The contour signal E extracted here is input to the contour enhancement signal calculation means 426. Next, the low frequency signal extraction means 434 extracts the low frequency signal L from the input luminance signal (S108). The low frequency signal L extracted here is input to the low frequency signal maximum value detecting means 436 and the low frequency signal minimum value detecting means 438.

次いで、図16に示すように、全対象画素に対する処理ループが開始される(S110)。この処理ループは、画像信号に含まれる全画素の位置を対象に、注目画素の位置を移動させながら、後述するステップS112〜S128までの処理を繰り返すものである。つまり、画素信号の全ての画素について、画素単位でステップS112〜S128までの処理が実行される。   Next, as shown in FIG. 16, a processing loop for all target pixels is started (S110). This processing loop repeats the processing from steps S112 to S128 described later while moving the position of the target pixel with respect to the positions of all the pixels included in the image signal. That is, the process from step S112 to S128 is executed on a pixel basis for all pixels of the pixel signal.

例えば、注目画素の位置を示すインデックスをnとし、画像信号に含まれる画素数をNとすると、ステップS110、S130で囲まれた処理ステップは、インデックスnを1からNまでインクリメントしながら繰り返し実行される。なお、以下では注目画素の位置を示すインデックスがnの場合について説明する。   For example, assuming that the index indicating the position of the target pixel is n and the number of pixels included in the image signal is N, the processing steps surrounded by steps S110 and S130 are repeatedly executed while incrementing the index n from 1 to N. The Hereinafter, a case where the index indicating the position of the target pixel is n will be described.

この処理ループにおいて、まず、輪郭強調信号算出手段426は、入力された輪郭信号Eに基づいて輪郭強調信号YEnを算出する(S112)。ここで算出された輪郭強調信号YEnは、Shoot量算出手段432、及び補正輪郭強調信号算出手段444に入力される。   In this processing loop, first, the contour enhancement signal calculation unit 426 calculates a contour enhancement signal YEn based on the input contour signal E (S112). The contour enhancement signal YEn calculated here is input to the Shot amount calculation unit 432 and the corrected contour enhancement signal calculation unit 444.

次いで、輝度信号最大値検出手段428は、入力された輝度信号Yから輝度信号最大値YnMaxを検出する(S114)。さらに、輝度信号最小値検出手段430は、入力された輝度信号Yから輝度信号最小値YnMinを検出する(S114)。ここで検出された輝度信号最大値YnMax、輝度信号最小値YnMinは、Shoot量算出手段432、低周波域Edge度算出手段440、及び補正輪郭強調信号算出手段444に入力される。   Next, the luminance signal maximum value detection unit 428 detects the luminance signal maximum value YnMax from the input luminance signal Y (S114). Further, the luminance signal minimum value detecting means 430 detects the luminance signal minimum value YnMin from the inputted luminance signal Y (S114). The detected luminance signal maximum value YnMax and luminance signal minimum value YnMin are input to the Shot amount calculating unit 432, the low frequency range edge degree calculating unit 440, and the corrected contour enhancement signal calculating unit 444.

次いで、Shoot量算出手段432は、入力された輪郭強調信号YEn、輝度信号最大値YnMax、及び輝度信号最小値YnMinに基づいてShoot量Snを算出する(S116)。ここで算出されたShoot量Snは、Shoot量抑制手段442に入力される。次いで、Shoot量抑制手段442は、入力されたShoot量Snが0であるか否かを判定する(S118)。Shoot量Sn=0の場合、処理は、ステップS120へと進行する。一方、Shoot量Sn≠0の場合、処理は、ステップS122へと進行する。   Next, the Shot amount calculation unit 432 calculates the Shot amount Sn based on the input contour emphasis signal YEn, the luminance signal maximum value YnMax, and the luminance signal minimum value YnMin (S116). The calculated Shot amount Sn is input to the Shot amount suppressing means 442. Next, the Shot amount suppressing means 442 determines whether or not the inputted Shot amount Sn is 0 (S118). If the Shot amount Sn = 0, the process proceeds to Step S120. On the other hand, if the amount of shot Sn is not 0, the process proceeds to step S122.

ステップS120へと処理が進行した場合、Shoot量抑制手段442はShoot量Snを抑制せず、補正輪郭強調信号算出手段444は輪郭強調信号YEnを補正せずに出力する(S120)。一方、ステップS122へと処理が進行した場合、低周波信号最大値検出手段436は、入力された低周波信号Lから低周波信号最大値LnMaxを検出する(S122)。また、低周波信号最小値検出手段438は、入力された低周波信号Lから低周波信号最小値LnMinを検出する(S122)。ここで検出された低周波信号最大値LnMax、低周波信号最小値LnMinは、低周波域Edge度算出手段440に入力される。   When the process proceeds to step S120, the shot amount suppression unit 442 does not suppress the shot amount Sn, and the corrected outline emphasis signal calculation unit 444 outputs the outline emphasis signal YEn without correction (S120). On the other hand, when the process proceeds to step S122, the low-frequency signal maximum value detecting unit 436 detects the low-frequency signal maximum value LnMax from the input low-frequency signal L (S122). The low frequency signal minimum value detecting means 438 detects the low frequency signal minimum value LnMin from the input low frequency signal L (S122). The detected low frequency signal maximum value LnMax and the low frequency signal minimum value LnMin are input to the low frequency range edge degree calculating means 440.

次いで、低周波域Edge度算出手段440は、入力された輝度信号最大値YnMax、輝度信号最小値YnMin、低周波信号最大値LnMax、及び低周波信号最小値LnMinに基づいて低周波域Edge度αを算出する(S124)。ここで算出された低周波域Edge度αは、Shoot量抑制手段442に入力される。   Next, the low frequency range edge degree calculation means 440 calculates the low frequency range edge degree α based on the input luminance signal maximum value YnMax, luminance signal minimum value YnMin, low frequency signal maximum value LnMax, and low frequency signal minimum value LnMin. Is calculated (S124). The low frequency range edge degree α calculated here is input to the shot amount suppressing means 442.

次いで、Shoot量抑制手段442は、入力されたShoot量Sn、低周波域Edge度αに基づいて抑制Shoot量SSnを算出する(S126)。ここで算出された抑制Shoot量SSnは、補正輪郭強調信号算出手段444に入力される。次いで、補正輪郭強調信号算出手段444は、入力された輝度信号最大値YnMax、輝度信号最小値YnMin、抑制Shoot量SSnに基づいて補正輪郭強調信号CYEnを算出する(S128)。そして、ここで算出された補正輪郭強調信号CYEnが出力される。   Next, the shot amount suppressing means 442 calculates the suppressed shot amount SSn based on the input shot amount Sn and the low frequency range edge degree α (S126). The suppression shot amount SSn calculated here is input to the corrected contour emphasis signal calculation means 444. Next, the corrected contour emphasizing signal calculation unit 444 calculates a corrected contour emphasizing signal CYEn based on the input luminance signal maximum value YnMax, luminance signal minimum value YnMin, and suppression shot amount SSn (S128). Then, the corrected contour emphasis signal CYEn calculated here is output.

ステップS120又はステップS128の処理が完了すると、処理は、ステップS130へと進行する。この時点で、インデックスnに対応する注目位置の輪郭強調信号(輪郭強調信号YEn又は補正輪郭強調信号CYEn)が出力されている。そこで、ステップS130に処理が進行すると、ステップS110に処理が戻り、インデックスが1インクリメントさせて再びステップS112〜S130に至る処理ステップが実行される。画像信号に含まれる全画素について輪郭強調信号が出力されると、一連の処理が終了する。   When the process of step S120 or step S128 is completed, the process proceeds to step S130. At this time, the contour emphasis signal (the contour emphasis signal YEn or the corrected contour emphasis signal CYEn) at the target position corresponding to the index n is output. Therefore, when the process proceeds to step S130, the process returns to step S110, the index is incremented by 1, and the process steps from step S112 to S130 are executed again. When the contour emphasis signal is output for all the pixels included in the image signal, a series of processing ends.

以上、本実施形態に係る輪郭強調処理の流れについて説明した。このように、低周波域のEdgeに生じるOvershoot及びUndershootを、抑制すべき周波数を考慮して低周波域Edgeである度合いを判断し、その度合い応じて抑制するため、強調すべきEdge部分の効果を損なうこと無く、抑制対象の低周波域Edgeについて適切に抑制することが可能になる。   The flow of the contour enhancement process according to the present embodiment has been described above. As described above, the effects of the edge portion to be emphasized are determined in order to determine the degree of the low frequency range edge by considering the frequency to be suppressed and the overshoot and the undershot generated in the low frequency range edge. It is possible to appropriately suppress the low frequency range Edge to be suppressed without impairing.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

10 撮像装置
12 レンズ
14 絞り
16 シャッター
18 撮像素子
20 AFE回路
22 前処理部
24 後処理部
26 データ圧縮部
28 メモリカードインターフェース
30 メモリカード
32 ホワイトバランス処理部
34 デモザイク処理部
36 ノイズ低減処理部
38 ガンマ補正処理部
40 色補正処理部
42 輪郭強調処理部
422 輝度信号抽出手段
424 輪郭信号抽出手段
426 輪郭強調信号算出手段
428 輝度信号最大値検出手段
430 輝度信号最小値検出手段
432 Shoot量算出手段
434 低周波信号抽出手段
436 低周波信号最大値検出手段
438 低周波信号最小値検出手段
440 低周波域Edge度算出手段
442 Shoot量抑制手段
444 補正輪郭強調信号算出手段
DESCRIPTION OF SYMBOLS 10 Imaging device 12 Lens 14 Aperture 16 Shutter 18 Image sensor 20 AFE circuit 22 Pre-processing part 24 Post-processing part 26 Data compression part 28 Memory card interface 30 Memory card 32 White balance processing part 34 Demosaic processing part 36 Noise reduction processing part 38 Gamma Correction processing unit 40 Color correction processing unit 42 Contour emphasis processing unit 422 Luminance signal extraction means 424 Contour signal extraction means 426 Contour emphasis signal calculation means 428 Luminance signal maximum value detection means 430 Luminance signal minimum value detection means 432 Shot amount calculation means 434 Low Frequency signal extraction means 436 Low frequency signal maximum value detection means 438 Low frequency signal minimum value detection means 440 Low frequency range Edge degree calculation means 442 Shot amount suppression means 444 Correction contour emphasis signal calculation means

Claims (7)

画像を成す複数の画素のそれぞれに対応する輝度信号と、前記画像に含まれる輪郭部分の輝度を示す輪郭信号とを加算して輪郭強調信号を生成する輪郭強調手段と、
前記輝度信号の低周波数帯域成分である低周波信号を抽出する低周波信号抽出手段と、
注目画素の周囲に位置する複数の画素について、前記輝度信号の最大値及び最小値、及び、前記低周波信号の最大値及び最小値、を検出する最大・最小値検出手段と、
前記低周波信号の最大値と前記輝度信号の最大値との差分絶対値、又は前記低周波信号の最小値と前記輝度信号の最小値との差分絶対値、が大きいほど低い値となり、当該差分絶対値が小さいほど高い値となる低周波エッジ度を算出する低周波エッジ度算出手段と、
前記輪郭強調信号と、前記輝度信号の最大値又は最小値と、に基づいて算出される前記注目画素のShoot量を、前記低周波エッジ度が小さいほど0に近づくように抑制して抑制Shoot量を算出する抑制Shoot量算出手段と、
前記抑制Shoot量算出手段により算出された抑制Shoot量に基づいて前記輪郭強調信号を補正する輪郭強調信号補正手段と、
を備える
ことを特徴とする、画像処理装置。
Contour enhancement means for generating a contour enhancement signal by adding a luminance signal corresponding to each of a plurality of pixels constituting an image and a contour signal indicating the luminance of a contour portion included in the image;
Low frequency signal extraction means for extracting a low frequency signal that is a low frequency band component of the luminance signal;
Maximum / minimum value detection means for detecting the maximum value and minimum value of the luminance signal and the maximum value and minimum value of the low-frequency signal for a plurality of pixels located around the pixel of interest;
The larger the absolute value of the difference between the maximum value of the low frequency signal and the maximum value of the luminance signal, or the absolute value of the difference between the minimum value of the low frequency signal and the minimum value of the luminance signal, the lower the value. A low frequency edge degree calculating means for calculating a low frequency edge degree that is higher as the absolute value is smaller;
The shot amount of the target pixel calculated based on the contour emphasis signal and the maximum value or the minimum value of the luminance signal is suppressed so as to approach zero as the low frequency edge degree is smaller, and is suppressed. A suppression Shot amount calculating means for calculating
Contour enhancement signal correction means for correcting the contour enhancement signal based on the suppression shot amount calculated by the suppression shot amount calculation means;
An image processing apparatus comprising:
前記低周波エッジ度算出手段は、前記Shoot量が所定値よりも大きい場合、前記低周波信号の最大値と前記輝度信号の最大値との差分絶対値に基づいて前記低周波エッジ度を算出し、前記Shoot量が所定値よりも小さい場合、前記低周波信号の最小値と前記輝度信号の最小値との差分絶対値に基づいて前記低周波エッジ度を算出する
ことを特徴とする、請求項1に記載の画像処理装置。
The low-frequency edge degree calculating means calculates the low-frequency edge degree based on an absolute difference between the maximum value of the low-frequency signal and the maximum value of the luminance signal when the amount of shot is larger than a predetermined value. The low-frequency edge degree is calculated based on an absolute difference value between a minimum value of the low-frequency signal and a minimum value of the luminance signal when the amount of shot is smaller than a predetermined value. The image processing apparatus according to 1.
前記Shoot量算出手段は、前記輪郭強調信号と、前記輝度信号の最大値又は最小値と、に基づいて前記注目画素のShoot量を算出する際、前記輪郭信号の値が正の場合には前記輪郭強調信号と前記輝度信号の最大値とに基づいて前記注目画素のShoot量を算出し、前記輪郭信号の値が負の場合には前記輪郭強調信号と前記輝度信号の最小値とに基づいて前記注目画素のShoot量を算出する
ことを特徴とする、請求項2に記載の画像処理装置。
The Shot amount calculating means calculates the Shot amount of the target pixel based on the contour emphasis signal and the maximum value or the minimum value of the luminance signal, and when the value of the contour signal is positive, A Shot amount of the target pixel is calculated based on a contour emphasis signal and the maximum value of the luminance signal, and when the value of the contour signal is negative, based on the contour emphasis signal and the minimum value of the luminance signal. The image processing apparatus according to claim 2, wherein a Shot amount of the target pixel is calculated.
前記抑制Shoot量算出手段は、前記低周波エッジ度が小さいほど0に近づくように、かつ、前記低周波エッジ度が大きいほど前記Shoot量に近づくように、前記抑制Shoot量を算出する
ことを特徴とする、請求項3に記載の画像処理装置。
The suppression Shot amount calculation means calculates the suppression Shot amount so that the smaller the low frequency edge degree is, the closer to 0 is, and the lower the low frequency edge degree is, the closer the Shot amount is. The image processing apparatus according to claim 3.
前記最大・最小値検出手段は、Shoot量の補正対象とする注目画素を基準として所定範囲内に位置する複数の画素について、前記輝度信号の最大値及び最小値、又は、前記低周波信号の最大値及び最小値、を検出する際に、検出対象となる前記複数の画素を決める所定範囲を任意に変更する
ことを特徴とする、請求項4に記載の画像処理装置。
The maximum / minimum value detecting means is configured to detect the maximum value and minimum value of the luminance signal or the maximum value of the low-frequency signal for a plurality of pixels located within a predetermined range with reference to a target pixel as a correction amount of a shot amount. The image processing apparatus according to claim 4, wherein when the value and the minimum value are detected, a predetermined range for determining the plurality of pixels to be detected is arbitrarily changed.
複数の画素からなる画像の画像信号から輝度信号を抽出する輝度信号抽出手段と、
前記輝度信号から画像の輪郭を示す輪郭信号を抽出する輪郭信号抽出手段と、
をさらに備える
ことを特徴とする、請求項5に記載の画像処理装置。
A luminance signal extracting means for extracting a luminance signal from an image signal of an image composed of a plurality of pixels;
Contour signal extraction means for extracting a contour signal indicating the contour of an image from the luminance signal;
The image processing apparatus according to claim 5, further comprising:
画像を成す複数の画素のそれぞれに対応する輝度信号と、前記画像に含まれる輪郭部分の輝度を示す輪郭信号とを加算して輪郭強調信号を生成する輪郭強調ステップと、
前記輝度信号の低周波数帯域成分である低周波信号を抽出する低周波信号抽出ステップと、
注目画素の周囲に位置する複数の画素について、前記輝度信号の最大値及び最小値、及び、前記低周波信号の最大値及び最小値、を検出する最大・最小値検出ステップと、
前記低周波信号の最大値と前記輝度信号の最大値との差分絶対値、又は前記低周波信号の最小値と前記輝度信号の最小値との差分絶対値、が大きいほど低い値となり、当該差分絶対値が小さいほど高い値となる低周波エッジ度を算出する低周波エッジ度算出ステップと、
前記輪郭強調信号と、前記輝度信号の最大値又は最小値と、に基づいて算出される前記注目画素のShoot量を、前記低周波エッジ度が小さいほど0に近づくように抑制して抑制Shoot量を算出する抑制Shoot量算出ステップと、
前記抑制Shoot量算出ステップにて算出された抑制Shoot量に基づいて前記輪郭強調信号を補正する輪郭強調信号補正ステップと、
を含む
ことを特徴とする、画像処理方法。
A contour emphasizing step for generating a contour emphasizing signal by adding a luminance signal corresponding to each of a plurality of pixels constituting the image and a contour signal indicating the luminance of a contour part included in the image;
A low frequency signal extraction step of extracting a low frequency signal which is a low frequency band component of the luminance signal;
A maximum / minimum value detecting step for detecting a maximum value and a minimum value of the luminance signal and a maximum value and a minimum value of the low-frequency signal for a plurality of pixels located around the pixel of interest;
The larger the absolute value of the difference between the maximum value of the low frequency signal and the maximum value of the luminance signal, or the absolute value of the difference between the minimum value of the low frequency signal and the minimum value of the luminance signal, the lower the value. A low frequency edge degree calculating step for calculating a low frequency edge degree that becomes a higher value as the absolute value is smaller;
The shot amount of the target pixel calculated based on the contour emphasis signal and the maximum value or the minimum value of the luminance signal is suppressed so as to approach zero as the low frequency edge degree is smaller, and is suppressed. A suppression shot amount calculating step for calculating
A contour enhancement signal correcting step of correcting the contour enhancement signal based on the suppression shot amount calculated in the suppression shot amount calculation step;
An image processing method comprising the steps of:
JP2009295941A 2009-12-25 2009-12-25 Image processor and image processing method Pending JP2011139127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295941A JP2011139127A (en) 2009-12-25 2009-12-25 Image processor and image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295941A JP2011139127A (en) 2009-12-25 2009-12-25 Image processor and image processing method

Publications (1)

Publication Number Publication Date
JP2011139127A true JP2011139127A (en) 2011-07-14

Family

ID=44350158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295941A Pending JP2011139127A (en) 2009-12-25 2009-12-25 Image processor and image processing method

Country Status (1)

Country Link
JP (1) JP2011139127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9727984B2 (en) 2014-03-19 2017-08-08 Samsung Electronics Co., Ltd. Electronic device and method for processing an image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9727984B2 (en) 2014-03-19 2017-08-08 Samsung Electronics Co., Ltd. Electronic device and method for processing an image

Similar Documents

Publication Publication Date Title
US9445022B2 (en) Image processing apparatus and image processing method, and program
KR101086424B1 (en) Apparatus and method for processing digital image
US8300120B2 (en) Image processing apparatus and method of processing image for reducing noise of the image
JP6169186B2 (en) Image processing method and apparatus, and photographing terminal
JP5213670B2 (en) Imaging apparatus and blur correction method
US8363123B2 (en) Image pickup apparatus, color noise reduction method, and color noise reduction program
US8594451B2 (en) Edge mapping incorporating panchromatic pixels
US8102445B2 (en) Solid-state image-capturing apparatus, camera, and method of processing signal
EP2608527B1 (en) Image pickup apparatus, control method for image pickup apparatus, and storage medium
US9117136B2 (en) Image processing method and image processing apparatus
TW201143413A (en) System and method for detecting and correcting defective pixels in an image sensor
JP5781372B2 (en) Image processing apparatus and imaging apparatus
JP6711396B2 (en) Image processing device, imaging device, image processing method, and program
JP5541205B2 (en) Image processing apparatus, imaging apparatus, image processing program, and image processing method
US8526754B2 (en) System for enhancing depth of field with digital image processing
US7817852B2 (en) Color noise reduction image processing apparatus
TW201318418A (en) Method of noise reduction in image and device thereof
JP2008305122A (en) Image-processing apparatus, image processing method and program
JP2012141725A (en) Signal processor, signal processing method, and program
JP2011139127A (en) Image processor and image processing method
JP5146223B2 (en) Program, camera, image processing apparatus, and image contour extraction method
JP5871590B2 (en) Imaging apparatus and control method thereof
US20140185922A1 (en) Image processing apparatus and image processing method
JP5234123B2 (en) Image processing apparatus, imaging apparatus, and image processing program
JP5854801B2 (en) Image processing apparatus, image processing method, and program